Kriging {RandomFields}R Documentation

Kriging methods

Description

The function allows for different methods of kriging.

Usage

Kriging(krige.method, x, y=NULL, z=NULL, T=NULL, grid,
        gridtriple=FALSE, model, param, given, data, trend, pch=".",
        return.variance=FALSE, internal=FALSE)

Arguments

krige.method kriging method; currently only 'S' (simple kriging) and 'O' (ordinary kriging) implemented.
x (n x d) matrix or vector of x coordinates; coordinates of n points to be kriged
y vector of y coordinates.
z vector of z coordinates.
T vector in grid triple form for the time coordinates.
grid logical; determines whether the vectors x, y, and z should be interpreted as a grid definition, see Details.
gridtriple logical. Only relevant if grid=TRUE. If gridtriple=TRUE then x, y, and z are of the form c(start,end,step); if gridtriple=FALSE then x, y, and z must be vectors of ascending values.
model string; covariance model, see CovarianceFct, or type PrintModelList() to get all options.
param parameter vector: param=c(mean, variance, nugget, scale,...); the parameters must be given in this order. Further parameters are to be added in case of a parametrised class of covariance functions, see CovarianceFct. The value of mean must be finite in the case of simple kriging, and is ignored otherwise.
given matrix or vector of points where data are available.
data the data values given at given; it might be a vector or a matrix. If a matrix is given multivariate data are assumed which are kriged separately.
trend not programmed yet (will be used in case of universal kriging)
pch Kriging procedures are quite time consuming in general. The character pch is printed after roughly each 80th part of calculation.
return.variance logical. If FALSE the kriged field is returned. If TRUE a list of two elements, estim and var, i.e. the kriged field and the kriging variances, is returned.
internal FALSE. internal should not be set to TRUE by the user. (In case internal=TRUE, various consistency checks for the input variables are not performed. Further, grid must be FALSE, and model must be given in the output format of PrepareModel.)

Details

Value

If variance.return=FALSE Kriging returns a vector or matrix of kriged values corresponding to the specification of x, y, z, and grid, and data.

data: a vector or matrix with one column
* grid=FALSE. A vector of simulated values is returned (independent of the dimension of the random field)
* grid=TRUE. An array of the dimension of the random field is returned (according to the specification of x, y, and z).

data: a matrix with at least two columns
* grid=FALSE. A matrix with the ncol(data) columns is returned.
* grid=TRUE. An array of dimension d+1, where d is the dimension of the random field, is returned (according to the specification of x, y, and z). The last dimension contains the realisations.
If variance.return=TRUE a list of two elements, estim and var, i.e. the kriged field and the kriging variances, is returned. The format of estim is the same as described above. The format of var is accordingly.

Author(s)

Martin Schlather, martin.schlather@math.uni-goettingen.de http://www.stochastik.math.uni-goettingen.de/institute

References

Chiles, J.-P. and Delfiner, P. (1999) Geostatistics. Modeling Spatial Uncertainty. New York: Wiley.

Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: Wiley.

Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. New York: Oxford University Press.

Wackernagel, H. (1998) Multivariate Geostatistics. Berlin: Springer, 2nd edition.

See Also

CondSimu, CovarianceFct, EmpiricalVariogram, RandomFields,

Examples

## creating random variables first
## here, a grid is chosen, but does not matter
step <- 0.25 
x <-  seq(0,7,step)
param <- c(0,1,0,1)
model <- "exponential"
RFparameters(PracticalRange=FALSE)
p <- 1:7
points <- as.matrix(expand.grid(p,p))
data <- GaussRF(points, grid=FALSE, model=model, param=param)

## visualise generated spatial data
zlim <- c(-2.6,2.6)
colour <- rainbow(100)
image(p, p, xlim=range(x), ylim=range(x),
      matrix(data,ncol=length(p)),
      col=colour,zlim=zlim)

## now: kriging
krige.method <- "O" ## ordinary kriging
z <-  Kriging(krige.method=krige.method,
              x=x, y=x, grid=TRUE,
              model=model, param=param,
              given=points, data=data)
image(x,x,z,col=colour,zlim=zlim)

[Package RandomFields version 1.3.41 Index]