CheckXT {RandomFields}R Documentation

Internal functions – do not use them directly

Description

CheckXT checks whether the coordinates of the data and related parameters are specified correctly and transforms the coordinates into a standard format

PrepareModel checks whether the parameters of the covariance model and related parameters are specified correctly and transforms the parameters into a standard format

convert.to.readable is the inverse function to PrepareModel; see Details

plotWithCircles displays data values of marked point processes by circles

GetDistributionNames returns the names of the currently available marginal distributions of the random fields

paramextract extracts for some models some parameters from an internal parameter list

Usage

CheckXT(x, y, z, T, grid, gridtriple)
PrepareModel(model, param, timespacedim, trend, method=NULL,
             named=FALSE)
convert.to.readable(l, allowed=c("standard", "nested", "list")) 
plotWithCircles(data, factor=1.0, xlim=range(data[,1])+c(-maxr,maxr),
                ylim=range(data[,2])+c(-maxr,maxr),col=1, fill=0, ...)
GetDistributionNames()
paramextract(p, model=c("cutoff"))

Arguments

x x coordinates
y y coordinates
z z coordinates
T time instances
grid see GaussRF
gridtriple see GaussRF
model see GaussRF
param see GaussRF
timespacedim dimension of the random field including the time dimension, if there is any
trend mean or trend of the random field
method simulation method
named logical. If TRUE covnr and param are returned with names
l list as returned by PrepareModel
allowed allowed output formats, see CovarianceFct
data matrix of 3 columns; first two columns give the coordinates, the third the data
factor enlargement factor for data
xlim see plot
ylim see plot
col border colour of circles
fill filling colour of circles
... further graphical parameters
p internal parameter list; e.g. the columns of CheckAndComplete(...)$param.
model the name of a covariance model.

Details

convert.to.readable is roughly speaking the inverse function to PrepareModel. convert.to.readable also tries to simplify the model definition, but cannot rediscover the given method for the simulation of the nugget effect in all cases. Due to the simplification in convert.to.readable and the special definition of the nugget effect for nested models, convert.to.readable may return a correct model definition in case of incorrect input, namely if scale is set to 0 in a list definition, see Examples.

Author(s)

Martin Schlather, martin.schlather@math.uni-goettingen.de http://www.stochastik.math.uni-goettingen.de/institute

See Also

CovarianceFct

Examples


x <- function(...) {
  str(PrepareModel(...))
  cat("--------------------------------\n")
  str(convert.to.readable(PrepareModel(...)))
}
model <- list(list(model="whi", kappa=5, var=2, s=4), "+",
    list(model="whi", kappa=1, var=3, s=0)) ## s=0 should not be used only in
##                             a model definition where the parameters are
##                             are given in a matrix, see the result
x(model=model, ti=1, me="ci")

## since convert.to.readable performs a one-step simplification,
## iterative calls may further simplify the model
xx <- convert.to.readable(PrepareModel(model=model, ti=1, me="ci"))
x(model=xx$mo, pa=xx$pa, ti=1, me=xx$me)

## back to the matrix definition of nested models
str(convert.to.readable(PrepareModel(xx, ti=1), allowed="nested"))

## back to the (correct) list definition
str(convert.to.readable(PrepareModel(xx, ti=1), allowed="list"))

[Package RandomFields version 1.3.41 Index]