cv.GLMBoost {GAMBoost} | R Documentation |
Performs a convenience wrapper around cv.GAMBoost
for performing a K-fold cross-validation for GLMBoost
in search for the optimal number of boosting steps.
cv.GLMBoost(x,y,penalty=length(y),just.criterion=TRUE,...)
y |
response vector of length n . |
x |
n * q matrix of covariates with linear influence. |
penalty |
penalty for the covariates with linear influence. |
just.criterion |
logical value indicating wether a list with the goodness-of-fit information should be returned or a GLMBoost fit with the optimal number of steps. |
... |
parameters to be passed to cv.GAMBoost or subsequently GAMBoost |
GLMBoost
fit with the optimal number of boosting steps or list with the following components:
criterion |
vector with goodness-of fit criterion for boosting step 1 , ... , maxstep |
se |
vector with standard error estimates for the goodness-of-fit criterion in each boosting step. |
selected |
index of the optimal boosting step. |
Harald Binder binderh@fdm.uni-freiburg.de
GLMBoost
, cv.GAMBoost
, GAMBoost
## Not run: ## Generate some data x <- matrix(runif(100*8,min=-1,max=1),100,8) eta <- -0.5 + 2*x[,1] + 4*x[,3] y <- rbinom(100,1,binomial()$linkinv(eta)) ## Fit the model with only linear components gb1 <- GLMBoost(x,y,penalty=100,stepno=100,trace=TRUE,family=binomial()) ## 10-fold cross-validation with prediction error as a criterion gb1.crit <- cv.GLMBoost(x,y,penalty=100,maxstepno=100,trace=TRUE, family=binomial(), K=10,type="error") ## Compare AIC and estimated prediction error which.min(gb1$AIC) which.min(gb1.crit$criterion) ## End(Not run)