GLMBoost {GAMBoost} | R Documentation |
GLMBoost
a convenience wrapper around GAMBoost
, for fitting generalized linear models by likelihood based boosting.
GLMBoost(x,y,penalty=length(y),standardize=TRUE,...)
x |
n * q matrix of covariates with linear influence. |
y |
response vector of length n . |
penalty |
penalty value (scalar or vector of length q) for update of individual linear components in each boosting step. If this is set to 0 the covariates enter the model as mandatory covariates, which are updated together with the intercept term in each step. |
standardize |
logical value indicating whether linear covariates should be standardized for estimation. |
... |
arguments that should be passed to GAMBoost |
Object returned by call to GAMBoost
(see documentation there), with additional class GLMBoost
.
Harald Binder binderh@fdm.uni-freiburg.de
Tutz, G. and Binder, H. (2007) Boosting ridge regression. Computational Statistics & Data Analysis, 51(12), 6044–6059.
## Generate some data x <- matrix(runif(100*8,min=-1,max=1),100,8) eta <- -0.5 + 2*x[,1] + 4*x[,3] y <- rbinom(100,1,binomial()$linkinv(eta)) ## Fit a model with only linear components gb1 <- GLMBoost(x,y,penalty=100,stepno=100,trace=TRUE,family=binomial()) # Inspect the AIC for a minimum plot(gb1$AIC) # print the selected covariates, i.e., covariates with non-zero estimates getGAMBoostSelected(gb1) ## Make the first two covariates mandatory gb2 <- GLMBoost(x,y,penalty=c(0,0,rep(100,ncol(x)-2)), stepno=100,family=binomial(),trace=TRUE)