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Introduction

This thesis,Set estimation under convexity type restrictions, collects the research work done dur-
ing these last years under the supervision of Prof. Alberto Rodríguez Casal. First and foremost
I would like to thank him for his help and his effort.Muchas gracias por confiar en mi, por tu
dedicación y por tu ayuda.

The title set estimationrefers to the subject matter of the thesis, the reconstruction of an
unknown setS from a random sample of points whose distribution is related to it. Apart from
the set itself, we are also interested in approximating a particular characteristic of the set, the
surface area. It isunder convexity type restrictionsbecause the problem of set estimation is so
extensive that giving an efficient general solution is almost unfeasible.A traditional approach
consists in assuming that the set of interest is convex. However, we restrict ourselves to a more
flexible shape condition namedα-convexity, which allows to handle a larger family of sets.

The essay has been organized in the following way. First sections in Chapter 1 provide an
overview of set estimation results. Previous research on topics such as support estimation and
surface area estimation is reviewed and the notation for some basic conceptsis introduced. Last
section of Chapter1 is devoted to the statement of the main results we have obtained during the
course of this research. The purpose of this chapter is to introduce the reader into the frame-
work in which we develop our study and to present precisely our contributions. For a complete
discussion of the results and their proofs, the reader is referred to Chapters2 and3. Chapter2
focuses on the detailed analysis of a support estimator, theα-convex hull estimator. Chapter3
provides an in-depth analysis of a new estimator for the surface area of abody. In Chapter4 we
present the results of a simulation study comparing some of the estimators discussed in previous
chapters. Finally, we also include three useful appendices. In Appendix A we state and prove a
series of geometric results that help us to relate theα-convexity with other geometric properties.
In AppendixB we focus on the behaviour of a morphological operator, the closing of a random
sample of points with respect to closed and open balls. Finally, we have developed a new li-
brary, namedalphahull, for the implementation inR of the discussed estimators. Appendix
C describes the functions in the library, their usage, arguments, returned values and examples.

The course of the thesis does not faithfully reproduce the time sequence inobtaining the
results. In chronological order, the results in Subsection3.3.1, providing the almost sure conver-
gence rate of the proposed estimator for the surface area, are the starting point of our research.
This work was accepted for publication in Advances in Applied Probability. The in-depth study
of the α-convex hull estimator in Chapter2 led us to complete the analysis of the statistical
properties of the surface area estimator proposed in Chapter3, see Subsection3.3.2.
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Chapter 1

On set estimation

1.1 Introduction

The problem of reconstructing a setS from a finite set of points taken into it has been addressed
in different fields of research. In computational geometry, for instance, the efficient construction
of convex hulls for finite sets of points has important applications in pattern recognition, cluster
analysis and image processing, among others. For example, in Figure1.1, image analysis tools
could be used to recover the original setS in the left plot from the corrupt version shown in
the right plot. We refer toPreparata and Shamos(1985) for an introduction to computational
geometry and its applications. In a different framework, the set of points from which we try to
reconstructS is assumed to be non-deterministic. The termset estimationrefers to the statistical
problem of estimating an unknown setS from a random sample of pointsXn = {X1, . . . , Xn}
whose distribution is closely related toS. But, what kind of sets are we talking about? We may
be interested, for example, in recovering a distribution support, its boundary or a level set.

Formally, thesupport estimation problem is established as the problem of estimating the
support of an absolutely continuous probability measurePX from independent observations
drawn from it.

Figure 1.1:Original setS and corrupt version.

Korostelëv and Tsybakov(1993) refers toGeffroy (1964), Rényi and Sulanke(1963), and

3



4 CHAPTER 1. ON SET ESTIMATION

Rényi and Sulanke(1964) as the first works on support estimation.Rényi and Sulanke(1963)
andRényi and Sulanke(1964) studied the case whenS is a convex support in the bidimensional
euclidean space and proposed a natural estimator, the convex hull of thesampleXn. However,
if S is not convex, the convex hull of the sample is not an appropriate estimator.How can
we estimateS if no assumption is made on its shape? In this setting,Chevalier(1976) and
Devroye and Wise(1980) proposed to estimate the support of an unknown probability measure
by means of a smoothed version of the sampleXn. The problem of support estimation was
introduced byDevroye and Wise(1980) in connection with a practical application, the detec-
tion of abnormal behaviour of a system, plant or machine. Results on the performance of the
estimator were obtained, among others, byChevalier(1976), Devroye and Wise(1980), and
Korostelëv and Tsybakov(1993). Of course, there are situations in between the two described
above, that is, we can assume that the setS satisfies some shape restriction, more flexible than
convexity. InRodríguez-Casal(2007), the estimation of anα-convex support is considered. The
α-convexity assumption plays a mayor role in this thesis and will be studied in depthin the
course of the dissertation.

Set estimation is also related to another interesting problem, the estimation of certaingeo-
metric characteristics of the set such as thevolume or thesurface area. Obviously, there are
other statistical fields which also cope with problems regarding set measurements as, for exam-
ple, the stereology. However, stereology focuses on the estimation of certain characteristics ofS
(volume, surface area,etc.) without needing to reconstruct the set, see, e.g.,Baddeley and Jensen
(2005), Cruz-Orive(2001/02), whereas the primary object of interest of set estimation is the set
itself. Turning to the set estimation framework, it seems natural to think that the volume or the
surface area of a good set estimator should provide good approximationsof these geometrical
quantities.Bräker and Hsing(1998) studied the asymptotic properties of the length and area of
the convex hull of a random sample of points inR2. The more recent work byCuevas et al.
(2007) focuses on the surface area estimation problem from a different pointof view. Assuming
no shape restriction and that we have observations from both the set of interest and its comple-
ment, the surface area can be approximated, based on the notion of Minkowski content, handling
two support estimators. Adding the flexibleα-convexity condition, we propose in Section1.5a
new surface area estimator, which gives a compromise between the no shape restriction consid-
ered byCuevas et al.(2007) and the restrictive convexity assumption. The asymptotic behaviour
of this new estimator was analysed byPateiro-López and Rodríguez-Casal(2008). A complete
presentation of the obtained results is provided in Chapter3.

This chapter is organized as follows. Section1.2 introduces some basic notions used in
set estimation theory. In Section1.3 we give a brief outline of the classical support estimators
available in the literature and their properties. Subsection1.3.1 deals with the general case,
when no assumption is made on the shape of the set of interestS. Subsection1.3.2provides
a review of the main results on support estimation under the convexity assumption, including
the aforementioned works on the convex hull estimator. The notion ofα-convexity is discussed
in detail in Section1.4, along with a review of the literature on set estimation under this shape
restriction. Section1.5is devoted to the surface area estimation problem. Finally, in Section1.6
we present the main results contained in this thesis.
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1.2 Basic concepts on set estimation theory

Like in other contexts, in order to evaluate a set estimatorSn, we need certain measure of the
distance between the estimator and the targetS. We all are familiarized with the concept of
Euclidean distance between points in thed-dimensional Euclidean spaceRd but, what is the
distance between sets? see for example Figure1.2. How can be defined the distance between
the setA and the setC? We might be persuaded to think that the distance is zero, since both
sets share a common border. However, it is clear that if we want to move from pointa ∈ A to
C, even to the nearest point ofC, the distance we have to cover will be positive. The feeling is
that, in order to give an adequate definition for the distance betweenA andC, we should take
into account the distances from the points inA to the boundary ofC and vice versa.

A C

a
b

Figure 1.2:On an adequate definition of the distance between sets.

1.2.1 The Hausdorff distance

The Hausdorff distance can be defined over the space of the nonempty compact subsets in a given
metric space. However, since it is enough for our purposes, we concentrate on thed-dimensional
Euclidean spaceRd, equipped with the inner product〈·, ·〉 and the norm‖·‖. See, for example,
Edgar(1990) andMatheron(1975) for a more extensive discussion of the Hausdorff metric.

Definition 1.2.1. Let A and C be nonempty compact subsets ofRd. The Hausdorff distance
betweenA andC is defined by

dH(A, C) = max

{

sup
a∈A

d(a, C), sup
c∈C

d(c, A)

}

,

where
d(a, C) = inf {‖a − c‖ : c ∈ C} . (1.1)

Defining the Hausdorff distance over the collection of nonempty compact subsets ofRd

ensures thatdH is a metric. By restricting the definition of the Hausdorff distance to nonempty
and bounded subsets,dH is well defined. On the other hand, if we do not restrict the definition
of the Hausdorff distance to closed subsets, it could be the case that the distance between two
sets is zero, even if the two sets are not equal.

Equation (1.1) defines the distance between a pointa ∈ A and a setC. It is worth pointing
out that this distance is not necessarily equal to the Hausdorff distance between the set{a} and
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the setC, see Figure1.3. In fact,

dH({a}, C) = max

{

d(a, C), sup
c∈C

d(c, {a})
}

= sup
c∈C

‖c − a‖ .

a

C

b

d(a, C)

dH({a}, C)

Figure 1.3:dH({a}, C) is not necessarily equal tod(a, C).

An alternative and useful way of defining the Hausdorff distance usesthe concept of open
ε-neighbourhood of a set.

Definition 1.2.2. LetA be a nonempty compact subset ofRd. The openε-neighbourhood ofA,
B̊(A, ε), is defined by

B̊(A, ε) = {x ∈ Rd : d(x, A) < ε}. (1.2)

Analogously to (1.2), we can define the closedε-neighbourhood of a set.

Definition 1.2.3. Let A be a nonempty compact subset ofRd. The closedε-neighbourhood of
A, B(A, ε), is defined by

B(A, ε) = {x ∈ Rd : d(x, A) ≤ ε}.

Definition 1.2.4. Let A and C be nonempty compact subsets ofRd. The Hausdorff distance
betweenA andC is defined by

dH(A, C) = inf
{

ε > 0 : A ⊂ B̊(C, ε) andC ⊂ B̊(A, ε)
}

.

Figure1.4 illustrates how to compute the Hausdorff distance between two sets. It can be
easily proved that Definitions1.2.1 and 1.2.4 are equivalent. There is a third definition for
the Hausdorff distance inRd. Its formulation is based on mathematical morphology theory.
Mathematical morphology can be defined as the theory for the analysis of theshape of spatial
structures, based on set theory, integral geometry, and lattice algebra.It is an extremely powerful
image analysis methodology that has been applied to numerous scientific fields such as biology,
quality control, and medical imaging. For a more comprehensive presentationon this topic,
we refer toSerra(1984). Morphological operators aim to extract relevant structures of the set
under study from its interaction with another set of known shape called structuring element. The
dilation and the erosion of a set by a structuring element are the two fundamental morphological
operators. They are closely related to the Minkowski addition and subtraction defined below.
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C
AεA

Figure 1.4:εA = inf
{

ε > 0 : A ⊂ B̊(C, ε)
}

.

Definition 1.2.5. LetA, C be subsets ofRd. The Minkowski addition,⊕, is defined by

A ⊕ C = {a + c : a ∈ A, c ∈ C}.
The Minkowski subtraction,⊖, is defined by

A ⊖ C = {x : {x} ⊕ C ⊂ A}.
For λ ∈ R,

λC = {λc : c ∈ C}.
Note that, according to this notation,A ⊕ {x} is the translation ofA by the vectorx. The

dilation and erosion operators are formally defined from the Minkowski addition and Minkowski
substraction, respectively. They are always performed by applying astructuring element to the
set of interest. Thus, the result of the dilation or erosion of a setA is the result of the interaction
between the set and the structuring element. Dilation allows the set to expand while erosion
shrinks the set by eroding its boundary. The way in which the set is dilated or eroded depends
on the structuring element. Although, a priori, the structuring element could beany set, in our
context it is usual to considerd-dimensional balls. We denote byB(x, r) andB̊(x, r) the closed
and open ball with centrex and radiusr, respectively. In order to simplify the notationB andB̊
will stand forB(0, 1) andB̊(0, 1). Moreover, from now on,Ac, int(A), A and∂A will denote
the complement, interior, closure and boundary ofA, respectively.

Definition 1.2.6. The dilation of a setA ⊂ Rd by the structuring element̊B(0, r) is defined as
the union of open balls of radiusr with centres inA, that is,

⋃

x∈A

B̊(x, r).

Definition 1.2.7. The erosion of a setA ⊂ Rd by the structuring element̊B(0, r) is defined as
the locus of pointsx such thatB̊(x, r) is included inA, that is,

{x : B̊(x, r) ⊂ A}.
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A A ⊕ rB̊ A ⊖ rB̊

r

Figure 1.5:Dilation and erosion of the setA by the structuring element̊B(0, r).

The dilation and erosion of a setA by the structuring element̊B(0, r), see Figure1.5, fit in
with the above defined Minkowski additionA⊕B̊(0, r) and Minkowski subtractionA⊖B̊(0, r),
respectively. It is worth mentioning that this relation cannot be generalizedto all structuring
elements. For the definition of the dilation and erosion of a setA by a general structuring
elementC, seeSerra(1984). As an example, Figure1.6 shows the dilation of the setA by the
triangleC, and the setA ⊕ C. Since the triangle is not symmetric with respect to the origin,
both operations do not lead to the same result.

A

C

(a) (b) (c)

Figure 1.6:(a) SetA and structuring elementC. (b) A ⊕ C. (c) Dilation ofA byC.

As previously mentioned, there is an alternative definition of the Hausdorffdistance, formu-
lated in terms of the dilation.

Definition 1.2.8. Let A and C be nonempty compact subsets ofRd. The Hausdorff distance
betweenA andC is defined by

dH(A, C) = inf{ε > 0 : A ⊂ C ⊕ εB̊ andC ⊂ A ⊕ εB̊}.

It is straightforward to prove that Definitions1.2.1, 1.2.4and1.2.8are equivalent. Note that
the openε-neighbourhood in (1.2) satisfies

B̊(A, ε) = {x ∈ Rd : d(x, A) < ε} =
⋃

x∈A

B̊(x, ε) = A ⊕ εB̊.
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The Hausdorff distance gives us an idea of the proximity of two sets and, inthis sense, it is
an appropriate tool to evaluate the performance of a set estimatorSn. It is desirable that

dH(S, Sn) → 0. (1.3)

However, the convergence in (1.3) is not sufficient in general to ensure that the estimatorSn

performs well. For example, from the sets in Figure1.7, it is apparent that the Hausdorff distance
dH(A, C) is close to zero, even though we do not have the feeling that both sets are similar. If
we are concern, not only about the proximity of the sets, but also about the shape similarity, we
should ask the estimator to satisfy both (1.3) and

dH(∂S, ∂Sn) → 0. (1.4)

Conditions that guarantee the convergence (1.3) and (1.4) (in probability, almost surely, ...) of
some existing estimators can be found, for example, inCuevas and Rodríguez-Casal(2004).

C

A

Figure 1.7:In greenA = B(0, 1). In red a setC, visually close toA. Although both sets are
close in terms of the Hausdorff distance, their shapes are quite different.

1.2.2 The distance in measure

The distance in measure is useful to quantify the similarity in content of two sets.Again, it can
be defined in any measure space but it is enough for our purposes to consider the measure space
(Rd,B, µ), whereB denotes the Borelσ-algebra ofRd andµ denotes the Lebesgue measure.

Definition 1.2.9. LetA andC ⊂ B. The distance in measure betweenA andC is defined by

dµ(A, C) = µ(A∆C),

whereA∆C denotes the symmetric difference betweenA andC, that is,

A∆C = (A \ C) ∪ (C \ A).
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The distance in measure is specially useful when we are interested in the content of the sets
rather than in their proximity. Furthermore, the distance in measure is closely related to theL1

functional distance since

dµ(A, C) =

∫

|IA − IC | dµ,

whereIA andIC denote the indicator functions ofA andC, respectively.

1.3 Support estimation

Returning to the subject matter of this chapter, let us assume that we are given a random sample
Xn = {X1, . . . , Xn} of i.i.d. observations from a random variableX with absolutely continuous
probability distributionPX and nonempty compact supportS ⊂ Rd. The goal is to reconstruct
the set by using the available information. As usual in estimation, the problem changes sub-
stantially depending on the model assumptions. In Subsection1.3.1we tackle the most general
framework, when no assumptions are made on the shape ofS. In this situation we need to define
a flexible estimator in order to effectively estimateS whatever its shape. More sophisticated es-
timators can be considered if we are given some additional information on the set. For instance
if we know thatS in convex. In that case we can ensure that, at least, the convex hull of the
sample is contained in the set. The convexity ofS is one of the classical assumptions in the lit-
erature on set estimation. Because of its importance, we have considered appropriate to include
an independent subsection devoted to this subject. Thus, in Subsection1.3.2the estimation of
a convex setS is discussed. The main drawback of the convexity assumption is that it rules a
large number of sets out.

1.3.1 The general case

If no assumption is made on the shape ofS, then the only information we have comes from the
sample. Actually, this is the first estimator we shall consider. The estimatorXn is dH -consistent,
that is, with probability one,dH(S,Xn) → 0 (it is understood that the limit asn → ∞ is taken).
However, it can be easily seen thatdµ(S,Xn) = µ(S) > 0. As mentioned in the introduction of
this chapter,Chevalier(1976) andDevroye and Wise(1980) proposed a very intuitive estimator
based on an smoothed version of the sample that achieves better results fordµ. More precisely,
let

Sn = B(Xn, εn) =

n
⋃

i=1

B(Xi, εn), (1.5)

whereεn is a number depending only uponn. We shall refer to this estimator as Devroye-Wise
estimator, see Figure1.8. Devroye and Wise(1980) establishes thedµ-consistency in probabil-
ity and almost surely of (1.5). If εn → 0 andnεd

n → ∞, thendµ(S, Sn) → 0 in probability.
In fact, the result is proved not only for the Lebesgue measureµ and compact sets, but for any
measure whose restriction to a general setS is absolutely continuous with respect to the distri-
butionPX . It is worth noting that the assumptions onεn are identical to those imposed on the
bandwidth parameter in nonparametric density estimation, to ensure the consistency. Moreover,
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we release that similar conditions also imply thedµ- consistency in mean of a more sophisti-
cated support estimator, thern-convex hull ofXn, see Chapter2. Regarding other works on the
Devroye-Wise estimator,Korostelëv and Tsybakov(1993) obtained the minimax convergence
rates ofSn by assuming that the boundary ofS satisfies some piecewise Lipschitz conditions.
Cuevas and Rodríguez-Casal(2004) are concerned with the estimation of∂S with respect to
the Hausdorff metric. Although the almost suredH -consistency ofSn can be straightforwardly
obtained under the assumption thatεn → 0, consistency results of the formdH(∂S, ∂Sn) → 0
are not so immediate. Note in Figure1.8 that, asεn is smaller, the estimator becomes more and
more fragmented with holes in the midst of the sample points. In order to consistently estimate
∂S, it is useful to take larger values ofεn to guarantee thatS ⊂ Sn. The precise result, estab-
lished byCuevas and Rodríguez-Casal(2004), states thatεn → 0 almost surely together with
S ⊂ Sn imply the almost suredH - consistency of∂Sn. Another way to ensure the almost sure
dH -consistency is by assuming certain shape restriction onS. In this situation it seems natural to
selectεn such thatSn fulfills the same shape restriction asS. For example, if we assume thatS
is star-shaped, we can incorporate this additional information to the Devroye-Wise estimator in
such a way thatSn is also star-shaped. This provides a method of choosingεn from the sample
that ensuresdH(∂S, ∂Sn) → 0 almost surely, seeBaíllo and Cuevas(2001).

(a) (b) (c)

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Figure 1.8: (a) Sample in the discB(0, 0.5) \ B̊(0, 0.2) of sizen = 300. (b) Devroye-Wise
estimator forεn = 0.02. (c) Devroye-Wise estimator forεn = 0.05.

1.3.2 On the estimation of a convex set

When the setS is assumed to be convex there is a natural estimator, the convex hull of the sample

Hn = conv(X1, . . . , Xn). (1.6)

Note that, a priori,Hn is a reasonable choice since the convex hull fulfills the convexity shape
restriction assumed onS. Moreover,Hn is the maximum likelihood estimator in the family of all
closed convex sets, seeKorostelëv and Tsybakov(1993). Now, how closely isS approximated
by the convex hullHn of the sampleXn? This problem is posed inDümbgen and Walther
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(1996). The proximity between the set and the convex hull is studied in terms of the Haus-
dorff distance in an arbitrary dimensiond. More precisely, it is proved thatdH(S, Hn) =
O((log n/n)1/d) almost surely. Furthermore, if∂S satisfies an additional smoothness condi-
tion, it is proved thatdH(S, Hn) is of order(log n/n)2/(d+1).

Also in connection with the convex hull estimator, there are a series of papers concerned with
certain statistics ofHn such as the number of vertices, the number of facets, the volume, and
the surface area. For example,Bräker and Hsing(1998) studied the asymptotic behaviour of the
expected area and perimeter ofHn in the bidimensional case under more general conditions than
those considered byRényi and Sulanke(1963) andRényi and Sulanke(1964). SeeSchneider
(1988) for a extensive review of classical references in this line.

1.4 Relaxing the convexity assumption

The convexity assumption may be too restrictive in practice and the estimatorHn, given in (1.6),
is not the best possible choice whenS is not convex. Notice thatHn tends to fill in the space
in the midst of the observations. The result is a convex set when the original one had not even
to be connected. This section focuses on the introduction of a more flexible assumption than
convexity, namedα-convexity.

Definition 1.4.1. A setA ⊂ Rd is said to beα-convex, forα > 0, if

A = Cα(A),

where
Cα(A) =

⋂

{B̊(x,α): B̊(x,α)∩A=∅}

(

B̊(x, α)
)c

(1.7)

is called theα-convex hull ofA.

Theα-convex hull of a setA satisfies thatCα(A) ⊂ Cα′(A) for α ≤ α′. Furthermore, it can
be proved that, under certain conditions ofA, seeWalther(1999), Cα(A) tends to the closure of
A asα tends to zero and it tends to the convex hull ofA asα tends to infinity, see Figure1.9.

Figure 1.9:Finite set of points andα-convex hull for increasing values ofα.
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Regarding the relation between convexity andα-convexity, ifA is convex and closed then it
is alsoα-convex for allα > 0, see Figure1.10. On the other hand,Walther(1999) proved that
if the interior of the convex hull is not empty, then the reciprocal is also true.

α

(a) (b) (c)

Figure 1.10:(a) Set convex andα-convex for allα > 0. (b) Set non convex butα-convex. (c) Set
neither convex norα-convex for anyα > 0.

Theα-convex hull of a set is intimately related to the dilation and erosion operators through
the closing of the set, whose precise definition is given below. The idea behind the morphological
closing is to define an operator that tends to recover the original shape ofa set that has been
previously dilated. This is achieved by eroding the dilated set. Note that the closing may not
coincide with the original set since dilation and erosion are not inverse operators. In the same
manner, once a set has been eroded, there exists in general no inverse transformation to recover
the initial set. The morphological opening tries to recover as much as possiblethe original shape
of an eroded set by dilating it.

Definition 1.4.2. The closing of a setA with respect to̊B(0, r) is defined as

(A ⊕ rB̊) ⊖ rB̊.

Definition 1.4.3. The opening of a setA with respect to̊B(0, r) is defined as

(A ⊖ rB̊) ⊕ rB̊.

As it occurred with the dilation and erosion, the closing and opening are the result of the
interaction between the set of interest and a structuring element. Definitions1.4.2and1.4.3
correspond with the particular case in which the structuring element is the open ballB̊(0, r). See
Matheron(1975) for the definition of opening and closing with respect to a general structuring
element. Figures1.11 and1.12 show the closing and opening of a given setA, respectively.
Closing and opening operations are increasing, idempotent, and dual to each other with respect
to taking complements, that is,(Ac ⊖ rB̊)⊕ rB̊ = ((A⊕ rB̊)⊖ rB̊)c and(Ac ⊕ rB̊)⊖ rB̊ =
((A ⊖ rB̊) ⊕ rB̊)c. We say that a setA is morphologically close with respect to̊B(0, r) if
A = (A⊕ rB̊)⊖ rB̊, and morphologically open with respect to̊B(0, r) if A = (A⊖ rB̊)⊕ rB̊.
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A A ⊕ rB̊ (A ⊕ rB̊) ⊖ rB̊

Figure 1.11:Dilation an erosion leading to the closing ofA.

A A ⊖ rB̊ (A ⊖ rB̊) ⊕ rB̊

Figure 1.12:Erosion and dilation leading to the opening ofA.

It is easy to prove that the opening ofA coincides with the points of all balls̊B(x, r) which
are completely contained inA, that is,

(A ⊖ rB̊) ⊕ rB̊ =
⋃

B̊(y,r)⊂A

B̊(y, r). (1.8)

Equation (1.8), together with the duality with respect to the complement of opening and closing,
leads to

(A ⊕ rB̊) ⊖ rB̊ =
⋂

{B̊(x,r): B̊(x,r)∩A=∅}

(

B̊(x, r)
)c

, (1.9)

which coincides with the definition of theα-convex hull in (1.7), for α = r. Therefore, the
α-convexity of a setA can be defined in terms of the closing with respect toB̊(0, α). Thus, the
setA is said to beα-convex if

A = (A ⊕ αB̊) ⊖ αB̊.

Once we have introduced all these concepts we are in a position to return to the subject
matter, the estimation of a setS from a sampleXn = {X1, . . . , Xn}. If the setS is α-convex,
then theα-convex hull of the sample

Cα(Xn) = (Xn ⊕ αB̊) ⊖ αB̊ (1.10)
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seems to be the natural estimator. The estimator in (1.10) was first studied byRodríguez-Casal
(2007) under the assumption that the setS belongs to Serra’s regular model. We refer toSerra
(1984) for a complete description of this class of sets.

Definition 1.4.4. Serra’s regular model is the class of compact setsA that are morphologically
open and closed with respect to the compact ballαB of radiusα for someα > 0, that is,

A = (A ⊖ αB) ⊕ αB = (A ⊕ αB) ⊖ αB.

The Serra’s regular model was studied in depth byWalther(1999). Indeed,Walther(1999)
provided a generalization of the Blaschke’s Rolling Theorem that gives an exact geometric char-
acterization of Serra’s regular model in terms ofα-convexity and free rolling conditions. Before
stating the theorem in question, we introduce the free rolling condition and somecomments
concerning its definition.

Definition 1.4.5. LetA ⊂ Rd be a closed set. The ballαB is said to roll freely inA if for each
boundary pointa ∈ ∂A there exists somex ∈ A such thata ∈ B(x, α) ⊂ A.

It should be mentioned that the free rolling condition in Theorem1.4.1 is not exactly the
same as the one given in Definition1.4.5. In Walther(1999) it is also required thatA ⊖ αB
is path-connected in order to preserve the physical meaning of rolling freely. This additional
requirement will not be necessary for our purposes and that’s the reason why it is not included
in Definition1.4.5. Next, we present Theorem1.4.1as it is stated inWalther(1999).

Theorem 1.4.1(Walther(1999)). LetS 6= ∅ be a compact and path-connected subset ofRd and
α > 0. Then, the following conditions are equivalent:

i) The conditions

S = (S ⊖ λB) ⊕ λB, 0 ≤ λ ≤ α,

S = (S ⊕ λB) ⊖ λB, 0 ≤ λ < α,

hold.

ii) S andSc areα-convex andint(Si) 6= ∅.

iii) A ball of radiusλ rolls freely insideS andSc for all 0 ≤ λ ≤ α.

iv) For everyr1 ∈ [0, α], r2 ∈ [0, α) there existA, D ⊂ Rd with S = A ⊕ r1B = D ⊖ r2B.

v) ∂S is a (d− 1)-dimensionalC1 submanifold inRd with the outward pointing unit normal
vectorη(x) at x ∈ ∂S, satisfying the Lipschitz condition

‖η(x) − η(t)‖ ≤ 1

α
‖x − t‖ , for all x, t ∈ ∂S.

Moreover, for someα > 0 above is equivalent to

vi) S belongs to Serra’s regular model.
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The importance of Theorem1.4.1 lies in the fact that it links the notions ofα-convexity,
free rolling condition and Serra’s regular model and it relates geometric properties to analytic
concepts whose mathematical treatment is, in principle, quite different. Turning to theα-convex
hull estimator, it is common in the literature to assume thatS satisfies the conditions of Theorem
1.4.1. However, for our purposes it suffices to assume that

(A1) S is a nonempty compact subset ofRd such that a ball of radiusα > 0 rolls freely inS
and inSc,

where the free rolling condition must be understood in the sense of Definition1.4.5. We do not
need the setS to be path-connected nor the more restrictive free rolling condition assumedin
Theorem1.4.1. Assumption (A1) is enough to guarantee thatS is α-convex, see LemmaA.0.8
in Appendix A. It also guarantees the existence at each points ∈ ∂S of a unique outward
pointing unit normal vectorη(s) such thatB(s−αη(s), α) ⊂ S andB(s+αη(s), α) ⊂ Sc, see
LemmaA.0.5 for the precise statement and proof. In some sense these results can be thought
as an alternative proof for Remark 3 inWalther (1999) referring to the validity of Theorem
1.4.1when the setS is not assumed to be path-connected. LemmaA.0.5 will be very useful
when studying the convergence rate of theα-convex hull estimator. Another implication of
Assumption (A1) has to do with the concept of positive reach of a set, not mentioned so far.
Federer(1959) defines the reach of a setS, reach(S), as the largestα, possibly infinity, such
that if x ∈ Rd andd(x, S) < α, then the metric projection ofx onto S is unique. Federer
(1959) provides a generalization of the Steiner’s formula for sets with positive reach. Recall
that, roughly speaking, the Steiner’s formula establishes that thed-dimensional measure of the
closedr-neighbourhood of a convex set inRd can be expressed as a polynomial of degree at
mostd in r. Although the characterization of the sets of positive reach is beyond the scope of
this work, LemmaA.0.7 relates the free rolling condition and the reach. More precisely that
result states that under Assumption (A1), the reach ofS is greater or equal toα. LemmaA.0.7
will be useful in Chapters2 and3.

We end this section with a review of the main existing results on the behaviour of the
α-convex hull estimator. The proximity between a setS and theα-convex hull of a sample
of points taken into it is studied inRodríguez-Casal(2007). If no assumption is made onS,
apart for theα-convexity, it can be proved thatdH(S, Cα(Xn)) = O((log n/n)1/d) almost
surely. Note that, although the family ofα-convex sets is much wider than the family of con-
vex sets, the convergence rates ofdH(Cα(Xn), S) anddH(Hn, S) are of the same order, see
Dümbgen and Walther(1996). If S is under the conditions of Theorem1.4.1, it is proved
that dH(S, Cα(Xn)) = O((log n/n)2/(d+1)) almost surely. Again, the order of convergence
of dH(S, Cα(Xn)) is equal to that obtained fordH(S, Hn) whenS is convex and satisfies the
smoothness conditions of Theorem1.4.1. The same order of convergence(log n/n)2/(d+1) is
obtained fordH(∂S, ∂Cα(Xn)) anddµ(S, Cα(Xn)). We must be aware, however, that the esti-
mator (1.10) suffers from an inherent limitation since, in practice, the parameterα is typically
unknown. When this is the case,Crn(Xn) is proposed to estimateS, with rn > 0. Note that ifS
is α-convex, then it is alsorn-convex forrn ≤ α and, therefore, the estimatorCrn(Xn) seems to
be a sensible choice wheneverrn is small enough. This can be guaranteed if we choosern → 0.
Rodríguez-Casal(2007) provides the convergence rates fordH(S, Crn(Xn)), dµ(S, Crn(Xn))
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anddH(∂S, ∂Crn(Xn)). Further details on thern-convex hull estimator are given in Chapter2,
where we analyse the asymptotic behaviour ofE(dµ(S, Crn(Xn))).

1.5 When the target is the surface area

Until now we have discussed the problem of estimating a set from a random sample of points
taken into it. When studying this problem, one immediately realizes that, apart fromthe set
itself, there are geometrical characteristics that may be of interest. Everybody remembers the
perimeter and area of the square, the triangle or the circle. And almost everybody remembers
the formulas for the volume or surface area of the sphere, for example. These are some of the
geometric characteristics we referred to. They provide us with important additional information
about the shape of the set and, therefore, it is useful to know them. Consider for example, in
the bidimensional case, the ratio between the perimeter and the squared rootof the area of a set.
This measure, known in the literature as contour index, provides a scale invariant measurement
of boundary roughness. Its minimal value,2

√
π, is attained by the circle and it increases as

the set becomes more fragmented. The contour index has been used as anauxiliary diagnosis
criterion in medical imaging. For example, in oncology the irregularity in the border of a tumor
may suggest a bad prognosis since the damage is highly disseminated, seeCuevas et al.(2007)
for more details. In this section we focus our attention on the estimation of the surface area of a
set. The estimation of the surface area of a setS in the Euclidean spaceRd has been extensively
considered in the literature. Some of the most relevant results in this field, obtained by using
tools of nonparametric statistics, have been published in recent years. When one has to confront
the problem of estimating the surface area of a body from which we only have a sample of points
Xn = {X1, . . . , Xn}, many questions arises in a moment. The first and at the same time most
naive one is how to do it. One immediately visualizes the problem inR2, selects those points of
the sample which are closer to the boundary of the set and adds up the lengthof the segments
that join the selected points. The first dilemma we face with is how to determine whichpoints
of the sample are closer to the boundary of the set. This has to do with the intuitive idea of what
an extreme point is. Thus, we could consider the convex hull of the sampleHn as starting point,
recall (1.6). However, the convex hull does not always work well and it is not difficult to picture
situations where the perimeter ofHn systematically underestimates the real perimeter of the set,
see for example Figure1.13(a), where the convex hull of a uniform sample of sizen = 500 in
the discB(0, 0.5) \ B̊(0, 0.25) is represented. The asymptotic properties of certain statistics of
the convex hull of a sample inR2 were studied byBräker and Hsing(1998), among others. They
obtained the asymptotic normality of the perimeter ofHn as well as its convergence rate in mean.
In spite of the fact that the results are really significant, they are established on the assumption
that the set of interest is convex, which may be too restrictive in practice aswe have already
argued. The generalization of the definition of convex hull, leads to new geometric objects
that capture the shape of the set of interest, even when the set is not convex. These geometric
objects, such as theα-shape, closely related to theα-convex hull, have their origin in the field
of computational geometry, and are based on the weakening of the notion ofextreme point, see
Edelsbrunner et al.(1983). Although the computational geometry framework is deterministic,
we can adapt the definitions by substituting a sampleXn for a finite point set. Thus, given a
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Figure 1.13:Estimation of the boundary of the discB(0, 0.5) \ B̊(0, 0.25) from a uniform sam-
ple of sizen = 500. (a) Convex hull estimator. Forα = 0.25, (b) α-shape and (c)α-convex
hull. (d) Devroye-Wise estimator forε = 0.04.

sampleXn andα > 0, theα-shape ofXn is a polytope which is neither necessarily convex nor
necessarily connected. The precise definition ofα-shape relies on the notions ofα-extreme and
α-neighbours.

Definition 1.5.1. A sample pointXi is termedα-extreme if there exists a closed ball of radius
α, B(x, α), such thatXi lies on its boundary and̊B(x, α) does not intersect the sample.

Definition 1.5.2. If for two α-extreme pointsXi andXj there exists a closed ball of radiusα
such that both points lie on its boundary and the interior of the ball do not enclose any of the
points of the sample, thenXi andXj are said to beα-neighbours.

Definition 1.5.3. Theα-shape is the straight line graph whose vertexes are theα-extreme points
and whose edges connect the respectiveα-neighbours.
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Figure 1.13 (b) shows theα-shape of the sample in the discB(0, 0.5) \ B̊(0, 0.25), for
α = 0.25. The value of the parameterα controls the shape of the estimator. For sufficiently
largeα, theα-shape is identical to the convex hull of the sample. Asα decreases, the shape
shrinks until that, for sufficiently smallα, the α-shape is the empty set. In Figure1.14, it
is shown the influence of the value ofα over theα-shape. Even though theα-shape seems
to achieve good results for adequate values ofα, it also presents some difficulties. First, the
α-shape is a subgraph of the Delaunay triangulation and, therefore, its implementation is based
on the construction of the Voronoi diagram and the triangulation of Delaunay of the sample. This
implementation is not straightforward and, for the moment, we have programmed this estimator
for the bidimensional case inR. Anyway, the main difficulty is related to the manner in which
the problem can be tackled from the theoretical point of view.
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Figure 1.14:Influence of the value ofα over theα-shape of a uniform sample of sizen = 500
on the discB(0, 0.5) \ B̊(0, 0.25). (a) α = 0.01, (b) α = 0.03, (c) α = 0.07, (d) α = 1.

Another approach to the estimation of the surface area of a setS consists of making use of the
known support estimators. Intuitively, we can think that if a given estimator works well as an es-
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timator of the boundary∂S, its surface area will also work well as an estimator of the surface area
of S. However, this is not always true. See, for example, Figure1.13(d), where the Devroye-
Wise estimator for the uniform sample of sizen = 500 on the discB(0, 0.5) \ B̊(0, 0.25) is
represented, withεn = 0.04. Recall (1.5) for the definition of the Devroye-Wise estimator. In
spite of the fact that the Devroye-Wise estimator works well as an estimator of the support and of
the boundary, when computing the surface area of the estimator the results are not so good. The
irregularity of the boundary of the estimator does not affect to the Hausdorff distance between
the original set and the estimator but it contributes to increase the surface area, as it is shown in
a very simple example in Figure1.15.
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Figure 1.15:The Hausdorff distancedH(A, C) is the same in both cases (a) and (b).

And what about the surface area of theα-convex hull of the sample,Cα(Xn)? Recall (1.10)
for the definition of the estimator. In Figure1.13 (c) we represent theα-convex hull for the
example considered along this section, withα = 0.25. The main obstacle we encounter when
we try to determine the surface area of theα-convex hull of the sample is that, althoughCα(Xn)
is completely known, it is hard to identify its boundary explicitly and handle it theoretically.

There is another alternative to the estimation of the surface area of a set, based on the notion
of Minkowski content, seeMattila (1995) for a complete discussion of this topic. This approach
represents the basis of the work byCuevas et al.(2007) and serves us as pattern and starting
point to develop the results in Chapter3.

Definition 1.5.4. The surface area of a bodyA ⊂ Rd is given by the Minkowski content,

L0(A) = lim
ε→0

µ(B(∂A, ε))

2ε
= lim

ε→0
L(ε),

provided that this limit exists and it is finite, where

L(ε) =
µ(B(∂A, ε))

2ε
.
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When trying to determine the boundary of a set it seems important to know, notonly the
points that belong to the set, but also the points that do not belong to it. In fact,the boundary
is somewhere in between points of the set and points of its complement. In view ofDefinition
1.5.4, we realize that the problem of estimating the surface area of a set reduces to the problem
of estimating the measure of the dilation of its boundary. And this cannot be done correctly
unless we have information of both the set and its complement. The sampling modelconsidered
by Cuevas et al.(2007) is justified by this idea. Thus, letG denote the set of interest. Assume
without lost of generality thatG ⊂ (0, 1)d and defineR = [0, 1]d \ int(G). The sampling
information is given by i.i.d. observations(Z1, ξ1), . . . , (Zn, ξn) of a random variable(Z, ξ),
whereZ is uniformly distributed on the unit square[0, 1]d and ξ = I{Z∈G}. Let us denote
Xn = {Zi : ξi = 1} andYn = {Zi : ξi = 0}, see Figure1.16. For simplicity we abbreviate
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Figure 1.16:(a) In green the setG. In red R = [0, 1]d \ int(G). (b) Uniform sample of size
n = 5000 on the unit square. In greenXn and in redYn.

L0(G) to L0 and∂G to Γ . In view of Definition1.5.4, a natural estimator ofL0 is given by

Ln =
µ(Γn)

2εn
, (1.11)

being Γn an estimator ofB(Γ, εn). And how do we estimate the dilation of the boundary
B(Γ, εn)? The key consists of using the following representation ofB(Γ, εn), valid under mild
conditions,

B(Γ, εn) = B(G, εn) ∩ B(R, εn).

Therefore, it is possible to construct an estimator ofL0 from estimators of the setsG andR.
Thus, ifGn andRn denote estimators ofG andR, respectively, let

Γn = B(Gn, εn) ∩ B(Rn, εn). (1.12)

The choice of the set estimatorsGn andRn leads us back to Section1.3 and the comments
therein. Cuevas et al.(2007) proposed to estimateG andR empirically by means of the sam-
plesXn andYn, respectively. We will refer to the estimatorLn obtained this way as empirical
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estimator. Note that if we replaceGn andRn in (1.12) by Xn andYn, thenΓn turns out to
be the intersection of two Devroye-Wise estimators. Some theoretical properties of the empir-
ical estimator concerning strong consistency,L1-error and convergence rates can be found in
Cuevas et al.(2007). For example, they proved the universal consistency of the estimator, pro-
vided thatL0 exists. More precisely, under standardness hypothesis preventing thesetG from
having too sharp inlets and peaks alongΓ , if {εn} is a sequence of positive numbers satisfying
εn → 0 andnεd

n/ log n → ∞, thenLn → L0 almost surely. Under stronger assumptions, the
L1-convergence rate for the estimatorL0 is attained, being of ordern−1/2d.

As occurred with the support estimation problem discussed in Section1.3, more sophisti-
cated estimators can be considered if we are given some information on the set G. Chapter
3 focuses on the estimation of the surface area of a bodyG satisfying Assumption (A1), see
page16. It can be proved that, under Assumption (A1), the setsG andR are bothα-convex.
For this reason we propose to estimateG andR by means of theα-convex hull ofXn andYn,
respectively. Thus, let

Gn = Cα(Xn) and Rn = Cα(Yn).

The estimatorLn in (1.11), obtained after substitutingB(Cα(Xn), εn)∩B(Cα(Yn), εn) for Γn,
is studied in depth in Chapter3.

1.6 A brief overview of the main results

The aim of this section is to briefly highlight the main results achieved in the course of this
research. During this time, our interest has been mainly focused on the support and surface
area estimation problems introduced in Sections1.3, 1.4, and1.5. As mentioned, the effective
estimation of a set is not an easy task and it heavily depends on the assumptions of the model. If
no information about the shape of the set is given, then we have no choicebut to consider flexible
estimators that cover quite different situations. More sophisticated estimatorscan be considered
if we restrict the family of sets to approximate. Traditionally, the support estimation problem
has been addressed for the family of convex sets. The convexity assumption, however, may be
too restrictive in practice and, for this reason, we concentrate on a more flexible geometrical
condition, theα-convexity.

1.6.1 Results on the estimation ofα-convex sets

Chapter2 focuses on the estimation ofα-convex sets. Under this assumption, theα-convex hull
of a sample of points taken into the set of interest turns out to be the natural estimator. Formally,
let S ⊂ Rd be a nonemptyα-convex compact set withα > 0. The goal is to estimateS based on
a sampleXn from a random variableX with absolutely continuous probability distributionPX

and supportS. Since the parameterα is typically unknown, we consider the estimatorCrn(Xn),
wherern is assumed to be lower or equal toα for all n. Is Crn(Xn) a consistent estimator of
S? Under which conditions? How closely isS approximated byCrn(Xn)? In Chapter2 we
give answer to these questions. A sufficient and necessary condition for the consistency of the
rn-convex hull estimator is given in Theorem2.5.1. It is proved thatE(dµ(S, Crn(Xn))) → 0 if
and only ifnrd

n → ∞. It is worth mentioning that theα-convexity assumption is not essential
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for the consistency of the estimator. In fact, it can be proved that, ifrn → 0 andnrd
n → ∞, then

we still haveE(dµ(S, Crn(Xn))) → 0, even ifS is notα-convex. Note that the assumptions on
rn are identical to those on the smoothing parameter of the Devroye-Wise estimatoryielding its
consistency in probability, seeDevroye and Wise(1980).

Regarding the proximity betweenS andCrn(Xn), we concentrate on the distance in mea-
sure between both sets. The almost sure convergence rate fordµ(S, Crn(Xn)) was obtained by
Rodríguez-Casal(2007), assuming thatS is under the conditions of Theorem1.4.1. More pre-
cisely, it was proved that the order of convergence isr−1

n (log n/n)2/(d+1). In Theorem2.5.2we
provide the convergence rate ofE(dµ(S, Crn(Xn))). As in Rodríguez-Casal(2007), we require
an additional condition onS which, in particular, implies theα-convexity. We assume that a ball
of radiusα > 0 rolls freely inS and inSc. This free rolling type condition plays a major role in
the proofs and it deserves some comments. First, it excludes the presenceof sharp peaks in the
set. Note that, by merely assumingα-convexity, we cannot ensure that the boundary of the set is
smooth. On the other hand, assuming that a ball of radiusα > 0 rolls freely inS rules sets with
isolated points out, for example. Roughly speaking, the free rolling conditionin S forces the
boundary points to be in direct contact with the interior of the set. At this pointone may wonder,
in view of the important role of the free rolling condition, why the title of Chapter2 only refers
to theα-convexity. Well, the reason is that theα-convexity is the condition which originally
motivated the definition of the estimator. Theα-convex hull of a sample makes sense regardless
of more restrictive assumptions onS and, for this reason, we have decided to emphasize this
property.

Regarding the probability distribution, it is useful to assume thatPX is uniformly bounded
on S. Formally, PX is uniformly bounded onS if there existsδ > 0 such thatPX(C) ≥
δµ(C ∩ S) for all Borel setC ⊂ Rd. Is it straightforward to verify that, for example, the
uniform distribution onS is uniformly bounded.

Having discussed the assumptions, we are now ready to state the main result of Chapter2.
Then, letS be a nonempty compact subset ofRd such that a ball of radiusα > 0 rolls freely in
S and inSc and assume thatPX is uniformly bounded onS. Under these conditions, Theorem
2.5.2states that if the sequence{rn} satisfies

lim
n→∞

nrd
n

log n
= ∞,

then

E(dµ(S, Crn(Xn))) = O

(

r
− d−1

d+1
n n− 2

d+1

)

.

We must not forget to say that the concept of unavoidable family of sets, discussed in detail in
Sections2.3and2.4plays a major role in Chapter2 and it is essential for proving Theorem2.5.2.
Finally, we prove in Theorem2.5.3that the obtained convergence rate ofE(dµ(S, Crn(Xn)))
cannot be improved since there exist sets under the stated conditions for which

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Crn(Xn))) > 0.

These results lead us to compare the convergence rate ofE(dµ(S, Crn(Xn))), provided by
Theorem2.5.2, to that ofdµ(S, Crn(Xn)) (almost sure convergence rate), seeRodríguez-Casal
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(2007). The obtained convergence rate forE(dµ(S, Crn(Xn))) is faster since the logarithmic

term vanishes and the penalty factorr
−(d−1)/(d+1)
n is asymptotically smaller thanr−1

n .

1.6.2 Results on the surface area estimation

The focus of Chapter3 is to address the problem of the surface area estimation. When intro-
ducing this problem in Section1.5, we made a distinction between the case where the sampling
information comes from points in the set of interest and the case where the sampling informa-
tion comes from points both in the set of interestG ⊂ (0, 1)d and inR = [0, 1]d \ int(G). The
former case can be described as a further step in support estimation. In spite of the fact that
this approach seems more elementary and intuitive, it turns out to be difficult tohandle since it
is not straightforward to know whether a sample point is close to the boundary. In Chapter3
we confine ourselves to the case where the sampling information is given by i.i.d. observations
(Z1, ξ1), . . . , (Zn, ξn) of a random variable(Z, ξ), whereZ is uniformly distributed on the unit
square[0, 1]d andξ = I{Z∈G}. Using the notation introduced in Section1.5, we consider

Ln =
µ(Γn)

2εn
,

beingΓn an estimator ofB(Γ, εn) and εn > 0. Recall that the above expression forLn is
motivated by Definition1.5.4. Thus, for small values ofεn, Ln estimatesL0, the Minkowski
content ofG. Assume thatG andR are bothα-convex. Then, we propose to estimateB(Γ, εn)
by

Γn = B(Cα(Xn), εn) ∩ B(Cα(Yn), εn)

whereXn = {Zi : ξi = 1} andYn = {Zi : ξi = 0}. A question of theoretical importance is
the existence of the Minkowski contentL0. This has to do with the behaviour of the function
µ(B(Γ, ε)) and, therefore, with the assumptions on the setG. Regarding the estimator, the
natural question is whether or notLn accurately approximatesL0. Analogous to the support
estimation problem, the results in Chapter3 are obtained under an additional free rolling type
condition. Again, it is assumed that a ball of radiusα > 0 rolls freely in G and inGc. This
condition ensures that the Minkowski content is well defined. Anyway,Ln makes sense under
milder conditions. For example, theα-convexity ofG andR is enough to ensure that, with
probability one,Γn ⊂ B(Γ, εn). This fact shows thatLn is biased, as it tends to underestimate
L0. The asymptotic properties ofLn are studied and compared to those of the surface area
estimator proposed byCuevas et al.(2007). Theorems3.3.1and3.3.2provide, respectively, the
almost sure convergence rate and theL1-convergence rate ofLn to L0. More precisely, under
the stated conditions it is proved that, with probability one,

inf
εn

|Ln − L0| = O

(

log n

n

)
1

d+1

,

where the optimal order is attained forεn = (log n/n)1/(d+1). Regarding theL1-convergence
rate, we prove that the logarithmic factor can be removed in the above expression and hence,

inf
εn

E |Ln − L0| = O
(

n− 1
d+1

)

.
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The optimal order in this case is attained forεn = n−1/(d+1). TheL1-convergence of the pro-
posed estimator is, therefore, faster than that of the empirical estimator proposed byCuevas et al.
(2007), which was proved to be of ordern−1/2d.

1.6.3 Computational issues

Having discussed the theoretical properties of different support andsurface area estimators,
Chapter4 focuses on how practical analysis can be carried out. Computing theα-convex hull
is not immediate and, for this reason, we devote part of Chapter4 to the description of the
implementation algorithm proposed byEdelsbrunner et al.(1983).

As well as theα-convex hull, we have programmed the surface area estimator discussed in
Chapter3 for the particular case ofR2. We illustrate the surface area estimation problem via a
simulation study in which we compare our estimator to that proposed byCuevas et al.(2007).
Since the study did not achieve the expected success, an alternative approach to the surface
area estimation problem is discussed. Given theα-convex hull of a sample, we can compute
its boundary length by adding the lengths of the arcs that form its boundary. Analogous, we
can consider the length of theα-shape. A simulation study on the performance of these kind of
surface area estimators is also provided in Chapter4.

As a conclusion, the obtained results do not suggest that the models basedon the Minkowski
content are significantly better than those based on the more intuitive idea of measuring the
boundary of a support estimator. The promising results that this last simulationstudy reveals
encourage us to find a theoretical justification that explains this good behaviour. Therefore,
further research on this topic is needed.

Finally, it is worthwhile to point out that, as a consequence of the implementation inR of
the discussed estimators, we have developed a new library namedalphahull. The complete
documentation of the package, including the description of the functions, is available in Ap-
pendixC. We would like to highlight here some of the most important features of the library.
Apart from the functions that compute the support and surface area estimators used in the sim-
ulation studies, thealphahull package includes some other functions that can be useful in
different contexts. For example, we have programmed the Voronoi diagram and the Delaunay
triangulation of a given sample of points. The Voronoi diagram and the Delaunay triangulation
are widely used in many fields of research and, as far as we know, thereis not a refined code in
R providing these geometric structures. Therefore, we aim for thealphahull package to be
thought not only as collection of functions to carry out the discussed simulation studies, but as a
useful tool for further research beyond the context of this work.





Chapter 2

Estimation of α-convex sets

2.1 Introduction

Having reviewed the basics of set estimation, we now turn our attention to the problem of support
estimation under the assumption ofα-convexity. Theα-convexity, defined in Section1.4, is a
condition that affects the shape of the set of interest but which is less restrictive than convexity
and therefore, it allows a wider range of applications.

This chapter is organized as follows. We begin with a formal description of the framework
and the estimator under study, theα-convex hull of a random sample of points taken in the set
of interest. In order to obtain the asymptotic properties of the estimator it will be useful to
construct unavoidable families of sets. The precise definition of unavoidable family is given in
Section2.2. Section2.3 is entirely devoted to the definition of suitable unavoidable families in
the bidimensional case. General results on the construction of such familiesin Rd are stated in
Section2.4. Finally, the main results on the behaviour of the estimator, regarding its consistency
and optimal convergence rate, are proved in Section2.5.

2.2 Preliminaries

Let S be a nonempty compact subset ofRd such thatS is α-convex for someα > 0. Assume
that we are given a random sampleXn = {X1, . . . , Xn} from X, whereX denotes a random
variable inRd with absolutely continuous probability distributionPX and supportS. Then,
S = Cα(S) and theα-convex hull of the sample

Cα(Xn) = (Xn ⊕ αB̊) ⊖ αB̊

turns out to be a natural estimator for the setS. However, theα-convex hull of the sample has the
drawback of depending on the unknown parameterα. This difficulty can be overcome by taking
a sequence of positive numbers{rn} converging to zero asn tends to infinity. This ensures that
rn ≤ α for large enoughn. For the sake of simplicity we assume thatrn ≤ α for all n and
define the estimator

Sn = Crn(Xn) = (Xn ⊕ rnB̊) ⊖ rnB̊. (2.1)

27
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Since with probability oneXn ⊂ S, we obtain by the properties of theα-convex hull operator
that

Sn = (Xn ⊕ rnB̊) ⊖ rnB̊ ⊂ (Xn ⊕ αB̊) ⊖ αB̊ ⊂ (S ⊕ αB̊) ⊖ αB̊ = S. (2.2)

If we consider the distance in measure to quantify the similarity in content ofS andSn, then
(2.2) yields

dµ(S, Sn) = µ(S∆Sn) = µ((S \ Sn) ∪ (Sn \ S)) = µ(S \ Sn).

Before beginning the systematic study of the random variabledµ(S, Sn), it is convenient to make
some preliminary comments since the procedure of bounding the expected value of dµ(S, Sn)
involves a slight change in the estimator which needs to be justified. Although the definition of
Sn given in (2.1) arises naturally in connection with theα-convex hull, the derivation of a bound
for E(dµ(S, Sn)) is a laborious task which can be simplified if, instead ofSn as defined in (2.1),
we consider the estimator

Sn = (Xn ⊕ rnB) ⊖ rnB. (2.3)

It is important to note that, although we use the same notationSn for both(Xn⊕rnB)⊖rnB and
(Xn⊕rnB̊)⊖rnB̊, both estimators are not necessarily equal, see Figure2.1. However, we prove

b
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Figure 2.1:For the point setX = {X1, X2, X3}, (X ⊕ rB̊)⊖ rB̊ = X and(X ⊕ rB)⊖ rB =
X ∪ {c}.

in AppendixB that, sincePX is absolutely continuous, with probability one,(Xn⊕rnB)⊖rnB
coincides with(Xn ⊕ rnB̊) ⊖ rnB̊ and hence we can computeE(dµ(S, Sn)) by using either
(2.1) or (2.3). As we have already commented, the problem of boundingE(dµ(S, Sn)) is easier
to handle whenSn is defined as in (2.3) and, for this reason, throughout the remainder of this
chapter,Sn will refer to the estimator(Xn ⊕ rnB) ⊖ rnB. Then,

E(dµ(S, Sn)) = E(µ(S \ Sn)) = E(µ{x ∈ S : x /∈ Sn})

= E
∫

S
I{x/∈Sn}µ(dx) =

∫

S
P (x /∈ Sn)µ(dx)

=

∫

S
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx). (2.4)
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In order to bound (2.4), we make use of the concept of unavoidable family of sets, defined below.

Definition 2.2.1. Let x ∈ Rd, r > 0 andEx,r = {B(y, r) : y ∈ B(x, r)}. The family of sets
Ux,r is said to be unavoidable forEx,r if, for all B(y, r) ∈ Ex,r, there existsU ∈ Ux,r such that
U ⊂ B(y, r).

As a consequence of Definition2.2.1, if Ux,rn is an unavoidable family of sets forEx,rn , then

{∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅} ⊂ {∃U ∈ Ux,rn : U ∩ Xn = ∅}
and then

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≤ P (∃U ∈ Ux,rn : U ∩ Xn = ∅).
Moreover, ifUx,rn is a finite family,

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≤ P (∃U ∈ Ux,rn : U ∩ Xn = ∅)
≤

∑

U∈Ux,rn

P (U ∩ Xn = ∅)

=
∑

U∈Ux,rn

P (∀Xj , j = 1, . . . , n, Xj /∈ U)

=
∑

U∈Ux,rn

(1 − PX(U))n. (2.5)

To sum up, if we define for eachx ∈ S a familyUx,rn unavoidable and finite forEx,rn then,
from (2.4) and (2.5), it follows that

E(dµ(S, Sn)) =

∫

S
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx)

≤
∫

S

∑

U∈Ux,rn

(1 − PX(U))nµ(dx). (2.6)

From (2.6) it is apparent that the problem of finding an upper bound forE(dµ(S, Sn)) reduces
to the problem of finding a lower bound forPX(U), for all U ∈ Ux,rn . In view of (2.6) it would
be desirable that both the lower bound and the number of elements of the familyUx,rn depend
in the simplest possible way on the pointx. How do we define suitable families forEx,rn? It is
clear that, given a pointx ∈ S, there is not just one possible unavoidable familyUx,rn and that
the setsU ⊂ Ux,rn can substantially change from one family to another. It is important to note
that the shape ofU determines the value ofPX(U). Therefore, the choice ofUx,rn is a crucial
point in the resolution of (2.6).

As mentioned in the introduction of this chapter, Sections2.3 and2.4 are devoted to the
definition of suitable unavoidable families inR2 andRd, respectively. We wish to emphasize
that, although the results in Section2.3could have been stated directly in the general framework
Rd, we have considered that the proofs inR2 provide the reader with a more geometric view
of the problem. A first approach to the less involved bidimensional case may be helpful since
it gives insight into some special features that arise as a consequence of the increase in the
dimension of the space. Anyhow, readers may prefer to omit Section2.3on their first encounter
and return for reference if required.
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2.3 Defining unavoidable families inR2

The main goal of this section is to define unavoidable families of setsUx,rn for eachx ∈ S ⊂ R2

and find a lower bound for the probabilityPX(U), for U ∈ Ux,rn . But, how can we define the
above-mentioned families? How does the pointx ∈ S affect the definition of the familyUx,rn

and the probabilityPX(U)? In order to find a lower bound forPX(U) it is useful to assume that
the probability distributionPX is uniformly bounded onS.

Definition 2.3.1. Let PX be a probability distribution with supportS ⊂ R2. It is said thatPX

is uniformly bounded onS if

∃δ > 0 such thatPX(C) ≥ δµ(C ∩ S) (2.7)

for all Borel setC ⊂ R2.

Remark 2.3.1. If the probability distributionPX is uniform onS, condition (2.7) is satisfied
with δ = 1/µ(S). In this case we havePX(C) = δµ(C ∩ S). In general,δ ≤ 1/µ(S).

Remark 2.3.2. Let us assume thatUx,rn is an unavoidable family of sets forEx,rn . Taking
into account condition (2.7), the problem of giving a lower bound forPX(U), with U ∈ Ux,rn ,
reduces to measuring the setU ∩ S. In particular, if U ⊂ S,

PX(U) ≥ δµ(U). (2.8)

Remark2.3.2 gives us the key to defining suitable unavoidable families of sets. Let us
assume thatU belongs to an unavoidable familyUx,rn and thatU ⊂ S. Then (2.8) is satisfied.
Moreover, by the definition of unavoidable family,U ⊂ B(y, rn) for somey ∈ B(x, rn) and
hence the order ofµ(U) will be r2

n at most. In other words, the best lower bound we can obtain
for PX(U) in this context is of orderr2

n. So the question is: can we define unavoidable families
Ux,rn such thatU ⊂ S for all U ∈ Ux,rn , being the measure ofU of orderr2

n? Evidently it
will depend on the pointx ∈ S we are considering. Ifx is not close to the boundary ofS, it
seems reasonable to think that we will be able to define large setsU totally contained inS. On
the contrary, if the pointx is close to the boundary ofS it does not seem straightforward to find
that kind of setsU . For this reason, we will divide the supportS into two subsets; the first one,
formed by points which are far away from the boundary ofS, and the second one, formed by
points which are closer to the boundary. Roughly speaking, for those points x which are far
away from the boundary, we will be able to define familiesUx,rn such that the setsU ∈ Ux,rn

are contained inS, µ(U) does not depend onx and, on top of that,µ(U) is of orderr2
n. For

those pointsx which are closer to the boundary things are not that simple. In that case wewill
have to consider different familiesUx,rn and the values ofPX(U) will depend ond(x, ∂S).

Proposition2.3.1gives the desired unavoidable families for the points which are far away
from the boundary ofS. By points which are far away from the boundary we mean those points
x ∈ S such thatd(x, ∂S) > rn/2. Taking into account Definition2.2.1, it will not be difficult
to define a suitable familyUx,rn . We need that, giveny ∈ B(x, rn), there existsU ∈ Ux,rn such
thatU ⊂ B(y, rn). In view of the previous comments, it would be also desirable thatU was
totally contained inS and thatµ(U) was of orderr2

n. Thus, we would ensure the best possible
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rate forPX(U). Note that ifx ∈ S andd(x, ∂S) > rn/2, then the ballB(x, rn/2) is fully
contained inS. So, the idea is to divideB(x, rn/2) into a finite number of subsets. How? In
view of the target it seems reasonable to consider a partition ofB(x, rn/2) into circular sectors.
Why circular sectors? This choice rests upon two main reasons. First, the measure of a circular
sector ofB(x, rn/2) is of orderr2

n. Second, if the central angle of the defined sectors is not too
large, then the resulting familyUx,rn is unavoidable.

Before the statement of Proposition2.3.1, we give the precise definition of the circular sec-
tors and introduce some basic notation that will be useful later. The definitions given forR2

can be easily generalized to thed-dimensional case, as it will be shown in Section2.4. Thus,
let S2 = {u ∈ R2 : ‖u‖ = 1} denote the unit circle inR2. Let ϕu,v denote the angle be-
tween the vectorsu andv. It is understood thatϕu,v ∈ [0, π] andϕu,v = ϕv,u. Finally, let
e2 = (0, 1) ∈ R2.

Definition 2.3.2. For u ∈ S2 andθ ∈ [0, π/2], we define the sets

Cθ
u = {x ∈ R2 : 〈x, u〉 ≥ ‖x‖ cos θ}

and the circular sectors
Cθ

u,r = Cθ
u ∩ B(0, r).

Remark 2.3.3. On the basis of Definition2.3.2, it is straightforward thatCθ
u,r is the circular

sector with central angle2θ enclosed by the radiiv1 = rRθ(u) and v2 = rR−1
θ (u), where

Rθ : R2 −→ R2 denotes the counter-clockwise rotation of angleθ, whose associated matrix
with respect to the canonical basis is

(

cos θ − sin θ
sin θ cos θ

)

.

In Figure2.2we show an example ofCθ
u,r.

Proposition 2.3.1. LetS be a nonempty compact subset ofR2 such that a ball of radiusα > 0
rolls freely inS and inSc. Let X be a random variable with probability distributionPX and
supportS. We assume that the probability distributionPX satisfies that there existsδ > 0 such
that

PX(C) ≥ δµ(C ∩ S)

for all Borel setC ⊂ R2.
Then, for allx ∈ S such thatd(x, ∂S) > rn/2, there exists a finite familyUx,rn with m1 = 6

elements, unavoidable forEx,rn and that satisfies

PX(U) ≥ L1r
2
n, U ∈ Ux,rn ,

where the constantL1 > 0 is independent ofx.
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v1
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Figure 2.2:Circular sectorCθ
u,r.

Proof. First consider the family

U0,rn = {Cπ/6
u,rn/2, u ∈ W},

whereW ⊂ R2 denotes a set of unit vectors that divides the unit circle into six circular sectors
with central angleπ/3. Figure2.3 shows one possible choice ofW and the corresponding

family U0,rn . To simplify notation somewhat, we abbreviateC
π/6
u andC

π/6
u,rn to Cu andCu,rn ,

respectively. Note that the definition ofW implies that

B(0, rn) =
⋃

u∈W
Cu,rn .

The fact thatU0,rn is unavoidable forE0,rn easily follows from Lemma2.3.2, stated below. To
see this, note that forB(y, rn) ∈ E0,rn , there existsu ∈ W such thaty ∈ Cu,rn . Now, by Lemma
2.3.2, Cu,rn ⊂ B(y, rn) and thereforeCu,rn/2 ⊂ B(y, rn). This completes the proof thatU0,rn

is unavoidable. Thus, it remains to prove Lemma2.3.2. First, however, we need to introduce a
preliminary result. Lemma2.3.1characterizes the points inCθ

u and will be needed in the proof
of 2.3.2.

Lemma 2.3.1. Letx 6= 0. Then
x ∈ Cθ

u ⇔ ϕx,u ≤ θ.

Proof. Let x ∈ Cθ
u. We have that

‖x‖ cos ϕx,u = 〈x, u〉 ≥ ‖x‖ cos θ. (2.9)

The inequality in (2.9) holds if and only ifϕx,u ≤ θ, since the cosine function is monotonically
decreasing in[0, π].

We are now ready to state and prove Lemma2.3.2. This lemma reveals that the partition
of B(0, rn) into circular sectors with central angleπ/3 is indeed a sensible choice, since it
guarantees that the constructed sets are unavoidable.
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Figure 2.3:(a) The setW = {ui, i = 1, . . . , 6} divides the unit circle into six circular sectors

with central angleπ/3. (b) FamilyU0,rn = {Cπ/6
u,rn/2, u ∈ W}.

Lemma 2.3.2. For all u ∈ S2 andr > 0,

Cu,r ⊂
⋂

y∈Cu,r

B(y, r).

Proof. Let z ∈ Cu,r. We need to show that, for ally ∈ Cu,r, ‖z − y‖ ≤ r. Assume, without
loss of generality, thatz andy are both non zero vectors since the result is trivial otherwise. We
have that

‖z − y‖2 = 〈z − y, z − y〉 = ‖z‖2 + ‖y‖2 − 2 〈z, y〉 = ‖z‖2 + ‖y‖2 − 2‖z‖‖y‖ cos ϕz,y.

By the triangle inequality for angles

ϕz,y ≤ ϕz,u + ϕu,y.

Sincez, y ∈ Cu, it follows from Lemma2.3.1thatϕz,u ≤ π/6 andϕy,u ≤ π/6. Hence,

ϕz,y ≤ ϕz,u + ϕu,y ≤ π

3

and thereforecos ϕz,y ≥ cos(π/3) = 1/2. In short,

‖z − y‖2 ≤ ‖z‖2 + ‖y‖2 − ‖z‖‖y‖ ≤ max(‖z‖2, ‖y‖2) ≤ r2.

Once we have proved thatU0,rn is unavoidable forE0,rn consider, for eachx ∈ S such that
d(x, ∂S) > rn/2, the family

Ux,rn = {x} ⊕ U0,rn = {{x} ⊕ Cu,rn/2, u ∈ W}.
The familyUx,rn , obtained by translating the familyU0,rn by the vectorx, is unavoidable for
Ex,rn , as we state in Lemma2.3.3.
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Lemma 2.3.3. LetU0,r be an unavoidable family forE0,r. ThenUx,r = {x} ⊕ U0,r = {{x} ⊕
U, U ∈ U0,r} is unavoidable forEx,r.

Proof. Let B(y, r) ∈ Ex,r. ThenB(y − x, r) ∈ E0,r and, sinceU0,r is unavoidable forE0,r,
there existsU ∈ U0,r such thatU ⊂ B(y − x, r). The proof is now complete as

{x} ⊕ U ⊂ {x} ⊕ B(y − x, r) ≡ B(y, r).

To complete the proof of Proposition2.3.1it remains to give a lower bound for the prob-
ability of the sets of the unavoidable family we have just defined. For eachu ∈ W we have
that

PX

(

{x} ⊕ Cu,rn/2

)

≥ δµ
(

{x} ⊕ Cu,rn/2 ∩ S
)

= δµ
(

{x} ⊕ Cu,rn/2

)

= δµ
(

Cu,rn/2

)

.

This follows simply because{x} ⊕ Cu,rn/2 ⊂ B(x, rn/2) ⊂ S sinced(x, ∂S) > rn/2 and the
Lebesgue measure is invariant under translations, see Figure2.4. Moreover,

µ
(

Cu,rn/2

)

=
1

6
µ(B(0, rn/2)) =

1

6
π
(rn

2

)2

and then

PX

(

{x} ⊕ Cu,rn/2

)

≥ δ
1

6
π
(rn

2

)2
.

To summarize, we have shown that

PX(U) ≥ L1r
2
n, U ∈ Ux,rn ,

for L1 = δπ/24 > 0 and the proof of Proposition2.3.1is complete.

Therefore, givenx ∈ S with d(x, ∂S) > rn/2, Proposition2.3.1provides, independently of
x, a lower bound for the probability of all the sets in an unavoidable family forEx,rn . The given
family consists of circular sectors with radiusrn/2 and central angleπ/3. It is important to note
that the collection of unit vectorsW from which the circular sectors are defined is not unique. In
particular, any rotation ofW results in a new collection of unit vectors that could also be used to
define a new unavoidable family with the same properties as the one considered in Proposition
2.3.1.

Before proceeding to the definition of unavoidable families of sets for pointsx ∈ S with
d(x, ∂S) ≤ rn/2, we wish to emphasize some aspects of this kind of families. So far we have
considered circular sectors with central angleπ/3. Which is the role of this angle? Could we
have chosen circular sectors with a larger amplitude? And another kind of sets? Of course, we
could have defined larger sets provided that they are unavoidable. Forpoints which lie far away
from the boundary we have proved that it is enough to consider circularsectors with radiusrn/2
and central angleπ/3. Using the same argument for pointsx ∈ S such thatρ = d(x, ∂S) ≤
rn/2 we only could infer thatB(x, ρ) ⊂ S and hence the lower bound for the probability of
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S

x

B(x, rn/2)−→
{x}⊕B(0, rn)

Cu,rn/2

Figure 2.4: For x ∈ S under the conditions stated in Proposition2.3.1, we have that
{x} ⊕ Cu,rn/2 ⊂ B(x, rn/2) ⊂ S.

these circular sectors would be of orderρ2. Can we improve this bound? The answer is yes. We
can find larger unavoidable sets. To see this, assume without loss of generality thatx = 0 and
divideB(0, r) into a finite number of sectorsCθ

u,r with θ > 0. Then for fixedu,

U =
⋂

y∈Cθ
u,r

B(y, r) (2.10)

is the largest set contained inB(y, r) for all y ∈ Cθ
u,r. But, what is its measure? Obviously it

depends onθ. For example, ifθ = π/2 then we divideB(0, r) into two circular sectors with
central angleπ. In that case, it can be easily proved thatU = {0}. Smaller values ofθ result in
larger setsU . In particular, Lemma2.3.2shows that, fixedθ = π/6, the set in (2.10) contains
at least one circular sector with central angleπ/3. In Proposition2.3.2we show that for points
x ∈ S with ρ = d(x, ∂S) ≤ rn/2 andθ = π/6 we can give a lower bound forPX(U) of

orderr1/2
n ρ3/2. Note that this bound is better than the one we can obtain for circular sectorsof

B(x, ρ). Hence, Proposition2.3.2provides the second key result in this section. At this point it
is worth discussing some of the properties of the sets

⋂

y∈Cu,r

B(y, r), with u ∈ S2, andr > 0. (2.11)

As will be emphasized later, these sets are known in the literature as Reuleauxtriangle, see
Figure2.5. They solve the problem of finding unavoidable families for the bidimensionalcase.
Our first goal was to generalize this concept to thed-dimensional case. However, as will be
seen in Section2.4, the argument inRd is somewhat different since it becomes tough to handle
with the intersection in (2.11) whend > 2. Note that it is fundamental not only to define large
unavoidable sets but also to measure them. This causes technical difficultiesas the dimension
increases. Anyway, an in-depth study of the set (2.11) in R2 may be helpful since it offers a
comprehensive overview of the problem. The following result tells us that these sets are quite
simple for the bidimensional case.
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b

b

b

0

u

v1

v2

Figure 2.5:Reuleaux triangle.

Lemma 2.3.4. Givenu ∈ S2, we have

⋂

y∈Cu,r

B(y, r) = B(0, r) ∩ B(v1, r) ∩ B(v2, r),

wherev1 = rR(u) andv2 = rR−1(u), R : R2 −→ R2 being the counter-clockwise rotation of
angleπ/6.

Remark 2.3.4. As previously discussed, the setB(0, r) ∩ B(v1, r) ∩ B(v2, r) in R2 is the
so-called Reuleaux triangle. Formally, the Reuleaux triangle is defined froman equilateral
triangle with sides of lengthl. It is constructed by drawing the arcs from each polygon vertex
of the equilateral triangle between the other two vertices. Thus, the Reuleaux triangle is the set
bounded by these three arcs. An important property is that it is a set of constant widthl, see
Figure 2.6. It is known that the diameter of a set of constant widthl is preciselyl. SeeBenson
(1966), Croft et al. (1991), Eggleston(1958), and the references cited therein for a detailed
development of these concepts.

Proof. It is straightforward to verify

⋂

y∈Cu,r

B(y, r) ⊂ B(0, r) ∩ B(v1, r) ∩ B(v2, r) (2.12)

since, by definition,0 ∈ Cu,r andv1, v2 ∈ Cu,r, as it can be deduced from Remark2.3.3. Let us
now consider the second statement. Letx ∈ B(0, r) ∩ B(v1, r) ∩ B(v2, r) andy ∈ Cu,r. We
need to show that

‖x − y‖ ≤ r. (2.13)

It follows from (2.12) thaty ∈ B(0, r) ∩ B(v1, r) ∩ B(v2, r) and hence, since the diameter of
the Reuleaux triangle isr, (2.13) holds.
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w

Figure 2.6:Sets of constant width.

We now concentrate on the pointsx which are close to the boundary ofS. Recall that by
points which are close to the boundary ofS we mean thosex ∈ S such thatd(x, ∂S) ≤ rn/2.
As previously described, we shall consider in this context unavoidable sets which are larger than
the circular sectors used for points away from∂S. The unavoidable setsU we shortly define
guarantee a lower bound forPX(U) of order r1/2

n d(x, ∂S)3/2. Proposition2.3.2 makes this
ideas precise.

Proposition 2.3.2. LetS be a nonempty compact subset ofR2 such that a ball of radiusα > 0
rolls freely inS and inSc. Let X be a random variable with probability distributionPX and
supportS. We assume that the probability distributionPX satisfies that there existsδ > 0 such
that

PX(C) ≥ δµ(C ∩ S)

for all Borel setC ⊂ R2.
Then, for allx ∈ S such thatd(x, ∂S) ≤ rn/2, there exists a finite familyUx,rn with m2 = 6

elements, unavoidable forEx,rn and that satisfies

PX(U) ≥ L2r
1
2
n d(x, ∂S)

3
2 , U ∈ Ux,rn ,

where the constantL2 > 0 is independent ofx.

Proof. Let x ∈ S such thatd(x, ∂S) ≤ rn/2 < α. We denoteρ = d(x, ∂S). By LemmasA.0.7
andA.0.5 there exists a unique pointPΓ x ∈ ∂S and a unique unit vectorη ≡ η(PΓ x) such that

B(PΓ x − αη, α) ⊂ S

and therefore, given an unavoidable familyUx,rn ,

PX(U) ≥ δµ(U ∩ S) ≥ δµ(U ∩ B(PΓ x − αη, α)), U ∈ Ux,rn . (2.14)

Note that this simplifies the proof since by (2.14) it follows that we just need to define a suitable
family Ux,rn and boundµ(U ∩ B(PΓ x − αη, α)) for U ∈ Ux,rn . Let us consider a composite
function T formed by first applying the orthogonal transformationO : R2 −→ R2 such that
O(e2) = −η and then applying the translation by the vectorx, see Figure2.7. In particular
T (0) = x, T ((α − ρ)e2) = x − (α − ρ)η = PΓ x − αη, and

T (B((α − ρ)e2, α)) = B(PΓ x − αη, α).

Then, letU0,rn be an unavoidable family forE0,rn . The following result holds.
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b

b
b

x

PΓ x − αη

PΓ x

η(x)

B(PΓ x − αη, α)

S

−→T
b

B((α − ρ)e2, α)

0

Figure 2.7:For the functionT , T (B((α − ρ)e2, α)) = B(PΓ x − αη, α).

Lemma 2.3.5. LetU0,r be an unavoidable family forE0,r and letO : R2 −→ R2 be an orthog-
onal transformation. Then{O(U), U ∈ U0,r} is also an unavoidable family forE0,r.

Proof. Let B(y, r) ∈ E0,r. Theny ∈ B(0, r) and using thatO is an orthogonal transformation,
we have thatO−1(y) ∈ B(0, r). AsU0,r is an unavoidable family forE0,r, there existsU ∈ U0,r

such thatU ⊂ B(O−1(y), r). The result is now immediate since

O(U) ⊂ O(B(O−1(y), r)) = B(y, r).

What Lemma2.3.5asserts is that the orthogonal transformation of an unavoidable family
for E0,rn results in another unavoidable family forE0,rn . On the other hand, Lemma2.3.3estab-
lished that the result of the translation of an unavoidable family forE0,rn by the vectorx is an
unavoidable family forEx,rn . As an immediate consequence, we obtain that

Ux,rn = {T (U), U ∈ U0,rn}

is unavoidable forEx,rn . Furthermore,

µ(T (U) ∩ B(PΓ x − αη, α)) = µ(U ∩ B((α − ρ)e2, α)),

as the Lebesgue measure is invariant under translations and orthogonaltransformations. Thus,
the problem reduces to defining an unavoidable familyU0,rn for E0,rn and finding a lower bound
for µ(U ∩ B((α − ρ)e2, α)) for all U ∈ U0,rn .

Before continuing the proof of Proposition2.3.2, it may be useful to make some comments
concerning the measure of the setsU ∩ B((α − ρ)e2, α). Note that when defining unavoidable
sets forE0,rn , the main difficulty in giving a lower bound forµ(U ∩ B((α − ρ)e2, α)) arises
with those points which lie far away in the direction of the vector−e2. In fact,

min
y∈B(0,rn)

µ (B(y, rn) ∩ B((α − ρ)e2, α)) = µ(B(−rne2, rn) ∩ B((α − ρ)e2, α))
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sincey = −rne2 represents the point where the distance between the centres of both balls
attains its maximum and, as a direct consequence, the intersection its minimum. Recall that,
by the definition of unavoidable family, for eachy ∈ B(0, rn) there existsU ∈ U0,rn such
that U ⊂ B(y, rn). So, it is more involved to find unavoidable setsU with large enough
µ(U ∩ B((α − ρ)e2, α)) for points close to−rne2. This motivates dividingB(0, rn) into two
subsets as follows

B(0, rn) = Grn ∪ Frn ,

where

Grn =

{

y ∈ B(0, rn) : 〈y, e2〉 ≥ −1

2
‖y‖
}

and

Frn =

{

y ∈ B(0, rn) : 〈y, e2〉 < −1

2
‖y‖
}

.

Figure2.8shows the setsGrn andFrn . Roughly speaking,Frn contains the pointsy ∈ B(0, rn)
for which B(y, rn) ∩ B((α − ρ)e2, α) is small. Therefore, the unavoidable setsU in this case
should be carefully selected. On the contrary,Grn contains the pointsy ∈ B(0, rn) for which
B(y, rn) ∩ B((α − ρ)e2, α) is larger. For these points the setsU can be circular sectors. Propo-
sition2.3.3shows thatµ(U ∩ B((α − ρ)e2, α)) is then large enough.

π/6

B(0, rn)

Grn

Frn

Figure 2.8:Grn andFrn .

Proposition 2.3.3. There exists a finite set of unit vectorsWG ⊂ S2 such that, for ally ∈ Grn ,
there existsu ∈ WG such thaty ∈ Cu,rn ⊂ B(y, rn) and

µ(Cu,rn ∩ B((α − ρ)e2, α)) ≥ LGr
1
2
n ρ

3
2 ,

whereLG > 0 is a constant.

Proof. Let us consider the set

WG = {(1, 0), (−1, 0), (1/2,
√

3/2), (−1/2,
√

3/2)}. (2.15)
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It is straightforward to verify, see Figure2.9, that

Grn =
⋃

u∈WG

Cu,rn .

Therefore, for ally ∈ Grn there existsu ∈ WG such thaty ∈ Cu,rn . By Lemma2.3.2it follows
thatCu,rn ⊂ B(y, rn). We need to measureCu,rn ∩ B((α − ρ)e2, α) for u ∈ WG . Note that at
least half of the setCu,rn is contained in the halfplaneH0 = {x = (x1, x2) ∈ R2 : x2 ≥ 0}
and hence it is sufficient for our purposes to concentrate onCu,rn ∩ H0.

π/6

(1, 0)(−1, 0)

(

1
2
,
√

3
2

)(

− 1
2
,
√

3
2

)

Figure 2.9:Unit vectorsWG = {(1, 0), (−1, 0), (1/2,
√

3/2), (−1/2,
√

3/2)} and Cu,rn , for
u ∈ WG .

Let ν =
√

ρ(2α − ρ). By the Pythagorean theorem, it is straightforward to see thatν
represents the distance to the origin from the points such that∂B((α − ρ)e2, α) intersects the
axisOX, see Figure2.10.

Lemma 2.3.6.
B(0, ν) ∩ H0 ⊂ B((α − ρ)e2, α).

Proof. Let x ∈ B(0, ν) ∩ H0. We have that

‖x − (α − ρ)e2‖2 = ‖x‖2 + ‖(α − ρ)e2‖2 − 2(α − ρ) 〈x, e2〉
≤ ν2 + (α − ρ)2

= α2.

The first inequality follows fromx ∈ H0 which implies that〈x, e2〉 ≥ 0. The second equality
follows immediately from the definition ofν.

Lemma2.3.6yields the following result. Foru ∈ WG

Cu,rn ∩ B((α − ρ)e2, α) ⊃ Cu,rn ∩ B(0, ν) ∩ H0

= Cu,τn ∩ H0,
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0

(α − ρ)

ν

α

0

B((α − ρ)e2, α) B((α − ρ)e2, α)

B(0,
√

ρ(α − ρ)) ∩ H0

(a) (b)

Figure 2.10:(a) ν =
√

ρ(2α − ρ). (b) B(0, ν) ∩ H0 ⊂ B((α − ρ)e2, α).

whereτn = min(ν, rn). Therefore,

µ(Cu,rn ∩ B((α − ρ)e2, α)) ≥ µ(Cu,τn ∩ H0) ≥
1

2
µ(Cu,τn) =

π

12
τ2
n ≥ π

12
r1/2
n ρ3/2.

The second inequality is a direct consequence of the definition ofWG , see Figure2.11, whereas
the last one follows from the fact thatρ < rn ≤ α. This completes the proof of Proposition
2.3.3, with LG = π/12 > 0 constant.

In view of Proposition2.3.3we define, forx ∈ Grn , the family

UG
0,rn

= {Cu,rn , u ∈ WG},

formed bymG = 4 elements. We now turn to the points inFrn . The aim is to define for those
points a finite familyUF

0,rn
, such that, for ally ∈ Frn , there existsU ∈ UF

0,rn
that satisfies

U ⊂ B(y, rn) and

µ(U ∩ B((α − ρ)e2, α)) ≥ LFr
1
2
n ρ

3
2 , ∀U ∈ UF

0,rn
. (2.16)

At this point, it may be useful to make some comments concerning the main differences between
Grn andFrn . One might be tempted to proceed as before forFrn and define the set of unit vectors

WF = {(−1/2,−
√

3/2), (1/2,−
√

3/2)}.

Again we would have that, see Figure2.12(a)

Frn =
⋃

u∈WF

Cu,rn .
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u =
(

1
2
,
√

3
2

)

u = (1, 0)

B((α − ρ)e2, α) B((α − ρ)e2, α)

B(0, ν) ∩ H0 B(0, ν) ∩ H0

Figure 2.11:In grayCu,rn for u = (1, 0) andu = (1/2,
√

3/2). In blackCu,rn ∩B(0, ν)∩H0.

We have thatµ(Cu,rn ∩ B((α − ρ)e2, α)) ≥ πτ2
n

12 , for τn = min(ν, rn).

If we repeat the sketch of the proof forGrn and defineU to be the circular sectorsCu,rn for
u ∈ WF , we could no longer guarantee the lower bound in (2.16). Note that the intersection
Cu,rn ∩ B((α − ρ)e2, α) for u ∈ WF is considerably smaller than foru ∈ WG . In fact, it can
be easily proved that, foru ∈ WF ,

µ(Cu,rn ∩ B((α − ρ)e2, α)) ≤
√

3ρ2,

as it is shown in Figure2.12 (b). Therefore, we need to consider different setsU . We have
previously discussed the possibility of defining unavoidable sets, larger than circular sectors.
For a fixed unit vectoru,

U =
⋂

y∈Cu,rn

B(y, rn) (2.17)

is the largest set such thatU ⊂ B(y, rn) for all y ∈ Cu,rn . Figure2.13showsCu,rn , for an
u ∈ WF and the corresponding setU defined in (2.17). Observe thatU ∩ B((α − ρ)e2, α)
is clearly larger thanCu,rn ∩ B((α − ρ)e2, α). The difference between both intersections will
play a fundamental role in obtaining the lower bound in (2.16). In fact, it is not necessary to
consider the wholeU as defined in (2.17). For our purposes it is sufficient to measure a portion
of U ∩ B((α − ρ)e2, α). We shall consider sets as the one represented in gray in Figure2.14.
Its measure is large enough to satisfy (2.16). We give the precise definition of this kind of sets
in Proposition2.3.4, that solves the problem for the points inFrn .

Proposition 2.3.4. There exists a finite family of setsUF
0,rn

such that, for ally ∈ Frn , there
existsU ∈ UF

0,rn
such thatU ⊂ B(y, rn) and

µ(U ∩ B((α − ρ)e2, α)) ≥ LFr
1
2
n ρ

3
2 ,

with LF > 0 a constant.
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2

)

B((α − ρ)e2, α)
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,−

√
3

2

)(
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,−

√
3

2

)

ρ

√
3ρ

(a) (b)

Figure 2.12:(a) WF = {(−1/2,−
√

3/2), (1/2,−
√

3/2)} and Cu,rn , for u ∈ WF . (b) For
u ∈ WF , Cu,rn ∩ B((α − ρ)e2, α) is contained in the rectangle of heightρ and base

√
3ρ.

Proof. First, let us consider the set

B((α − ρ)e2, α) ∩ B(−rne2, rn),

which corresponds to the intersection between two balls of radiiα andrn, respectively, being
α + rn − ρ the distance between their centres, see Figure2.15(a). The values ofh1, h2 and
λ in Figure2.15(b) can be deduced from the Pythagorean theorem. They satisfy the following
equations







(rn − h1)
2 + λ2 = r2

n,
(α − h2)

2 + λ2 = α2,
h1 + h2 = ρ.

By solving the system,

h1 =
ρ(2α − ρ)

2(α + rn − ρ)
, h2 =

ρ(2rn − ρ)

2(α + rn − ρ)
, and λ =

√

2rnh1 − h2
1.

We now define the set

C(h1) = {x ∈ R2 : −h1 ≤ 〈x, e2〉 ≤ 0} ∩ B(−rne2, rn).

Lemma2.3.7provides a lower bound for the measure ofC(h1).

Lemma 2.3.7. Given the previous setC(h1), then

µ(C(h1)) ≥
√

2

3
r

1
2
n ρ

3
2 .

Proof. We have that

µ(C(h1)) =

∫ h1

0
2
√

2rny − y2dy. (2.18)
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B((α − ρ)e2, α) B((α − ρ)e2, α)
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(
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√
3

2

)

u =
(

1
2
,−

√
3

2

)

(a) (b)

Figure 2.13:(a) Cu,rn with u = (1/2,−
√

3/2). (b)
⋂

y∈Cu,rn
B(y, rn).

Fory ∈ [0, h1] we have thaty ≤ rn, since by constructionh1 ≤ ρ and by assumptionρ ≤ rn/2.
Hence,2rny − y2 ≥ rny and

µ(C(h1)) ≥
∫ h1

0
2
√

rnydy =
4

3
r

1
2
n h

3
2
1 .

Moreover,h1 ≥ ρ/2, sincern ≤ α and this completes the proof.

Remark 2.3.5.Note that the exact value of the integral in (2.18) can be explicitly computed since
it coincides with the area of the circular segment defined by the chord thatjoins the intersection
points ofB((α − ρ)e2, α) ∩ B(−rne2, rn). Thus,

µ(C(h1)) = r2
n arccos

(

rn − h1

rn

)

− (rn − h1)
√

2rnh1 − h2
1.

At this point we have defined the setC(h1), whose measure verifies the statement of Propo-
sition2.3.4. Next lemma shows thatC(h1) is contained inB((α − ρ)e2, α).

Lemma 2.3.8.
C(h1) ⊂ B((α − ρ)e2, α).

Proof. Let x ∈ C(h1).

‖x − (α − ρ)e2‖2 = ‖x‖2 + (α − ρ)2 − 2(α − ρ) 〈x, e2〉 . (2.19)

By definition,x ∈ B(−rne2, rn) and therefore

‖x‖2 ≤ −2rn 〈x, e2〉 .
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u =
(

1
2
,−

√
3

2

)

Figure 2.14:The dashed area corresponds toU =
⋂

y∈Cu,rn
B(y, rn) with u = (1/2,−

√
3/2).

Furthermore, by definition,〈x, e2〉 ≥ −h1. Turning to (2.19) we get

‖x − (α − ρ)e2‖2 ≤ 2rnh1 + (α − ρ)2 + 2(α − ρ)h1

= 2(rn + α − ρ)h1 + (α − ρ)2

= ρ(2α − ρ) + (α − ρ)2

= α2.

It follows from Lemmas2.3.7and2.3.8that

µ(C(h1) ∩ B((α − ρ)e2, α)) ≥ Lr
1
2
n ρ

3
2 . (2.20)

In order to complete the proof, it remains to define the familyUF
0,rn

mentioned in the statement
of Proposition2.3.4. In view of (2.20), it seems natural to divideC(h1). Let us first consider the
following partition ofR2.

R2 = {x = (x1, x2) ∈ R2 : x1 ≥ 0} ∪ {x = (x1, x2) ∈ R2 : x1 ≤ 0}.

We denoteQ1 = {x = (x1, x2) ∈ R2 : x1 ≥ 0} andQ2 = {x = (x1, x2) ∈ R2 : x1 ≤ 0}.
Then,

Frn = (Q1 ∩ Frn) ∪ (Q2 ∩ Frn)

and, in the same manner,

C(h1) = (Q1 ∩ C(h1)) ∪ (Q2 ∩ C(h1)).

Lemma 2.3.9. for all y ∈ Qi ∩ Frn we have that

Qi ∩ C(h1) ⊂ B(y, rn), i = 1, 2.
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0

α

rn

(a)

0

α

rn

(b)

λ
h2 =

ρ(2rn−ρ)
2(α+rn−ρ)

h1 =
ρ(2α−ρ)

2(α+rn−ρ) ρ

Figure 2.15:(a) The dashed area corresponds toB((α − ρ)e2, α) ∩ B(−rne2, rn). In gray
C(h1). (b) Values ofh1, h2 andλ.

Proof. Let x ∈ Q1 ∩ C(h1). First, it can be easily proved that

Q1 ∩ Frn = Cu,rn ,

with u = (1/2,−
√

3/2). What we need to prove is

x ∈
⋂

y∈Cu,rn

B(y, rn).

It follows from Lemma2.3.4that
⋂

y∈Cu,rn

B(y, rn) = B(0, rn) ∩ B(v1, rn) ∩ B(v2, rn),

wherev1 = rnR(u) = rn

(√
3/2,−1/2

)

andv2 = rnR−1(u) = −rne2. We have by definition
thatx ∈ B(v2, rn). Moreover,

‖x‖2 ≤ λ2 + h2
1 = 2rnh1 ≤ r2

n,

sinceh1 ≤ ρ ≤ rn/2. Note that the last inequality justifies the choice ofρ ≤ rn/2. And,

‖x − v1‖2 =

(

x1 −
√

3rn

2

)2

+
(

x2 +
rn

2

)2
≤
(√

3rn

2

)2

+
(rn

2

)2
= r2

n,

since0 ≤ x1 ≤ λ ≤
√

3rn/2 and−h1 ≤ x2 ≤ 0, whereh1 ≤ ρ ≤ rn/2. Thus, we have shown
that

x ∈ B(0, rn) ∩ B(v1, rn) ∩ B(v2, rn)

and the lemma is proved forQ1 ∩ C(h1). The proof forQ2 ∩ C(h1) is analogous.
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In view of the previous results we define, forx ∈ Frn , the family

UF
0,rn

= {Qi ∩ C(h1), i = 1, 2},

formed bymF = 2 elements. It follows from Lemma2.3.9that, for ally ∈ Frn , there exists
i ∈ {1, 2} such thatQi ∩ C(h1) ⊂ B(y, rn). Moreover, by Lemma2.3.7,

Lr
1
2
n ρ

3
2 ≤ µ(C(h1)) =

2
∑

i=1

µ(Qi ∩ C(h1)).

The symmetry of the setC(h1) with respect to the axisOY implies that the orthogonal transfor-
mationO : R2 −→ R2 such thatO(x) = O(x1, x2) = (−x1, x2) transformsQ1 ∩ C(h1) into
Q2 ∩ C(h1) and then both sets measure the same, that is,

µ(Q1 ∩ C(h1)) = µ(Q2 ∩ C(h1)) =
1

2
µ(C(h1)).

By Lemma2.3.8we further have that, fori = 1, 2

Qi ∩ C(h1) ⊂ C(h1) ⊂ B((α − ρ)e2, α)

and hence

µ(Qi ∩ C(h1) ∩ B((α − ρ)e2, α)) = µ(Qi ∩ C(h1)) ≥ LFr
1
2
n ρ

3
2 ,

whereLF =
√

2/6. This completes the proof of Proposition2.3.4.

Now, we define

U0,rn = UG
0,rn

∪ UF
0,rn

and, as we mentioned at the beginning of Proposition2.3.2,

Ux,rn = {T (U), U ∈ U0,rn}

is a finite family withm2 = mG + mF = 6 elements satisfying that, for eachU ∈ U0,rn ,

PX(T (U)) ≥ δµ(T (U) ∩ B(PΓ x − αη, α)) = δµ(U ∩ B((α − ρ)ed, α)) ≥ L2r
1
2
n ρ

3
2 ,

whereL2 = δ min(LG , LF ). This completes the proof of Proposition2.3.2.
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2.4 Defining unavoidable families inRd

The approach to the general caseRd will be much more involved than inR2 even though the
sketch of the proofs and the basic ideas still hold. In the same way as forR2, we shall consider
two different situations in order to define unavoidable families and give a lower bound for the
probability of the sets in those families. The argument for the points ofS which are far away
from the boundary inRd is analogous to that forR2. Recall that inR2 it was sufficient to
consider circular sectors of radiusrn and central angleπ/3. By Lemma2.3.2the choice of the
central angleπ/3 guarantees that the circular sectors are unavoidable. Now we shall consider
the generalization to the multidimensional case of the circular sectors inR2. What, however,
is more complicated to handle is the case of the points ofS which are closer to the boundary.
We have discussed that for points which are close to the boundary inR2 it was not sufficient
for our purposes to consider circular sectors. In the previous sectionwe introduced then the
Reuleaux triangles to solve the problem. But, unfortunately, we cannot generalize the concept of
Reauleaux triangle to thed-dimensional case so the main difficulty in this section is constructing
sets both unavoidable and large enough for points which are close to the boundary.

Thus, the main theorem of this section rests upon two important results. First, Proposition
2.4.1again defines a finite family of unavoidable sets forEx,rn whenx ∈ S andd(x, ∂S) >
rn/2. The result also gives a lower bound for the probability of such sets, which is independent
of x. In the same manner, Proposition2.4.2defines a finite family of unavoidable sets forEx,rn

and gives a lower bound for the probability of such sets whenx ∈ S andd(x, ∂S) ≤ rn/2. In
that case the probability depends on the distance fromx to the boundary of the set. Moreover,
the number of sets that form the unavoidable families is independent ofx in both situations.

As we have already comment, we shall work with thed-dimensional generalization of the
bidimensional sectors. Hence, before proceeding to the results we introduce the precise defini-
tion of these sets and some useful notation. From now on, letSd = {u ∈ Rd : ‖u‖ = 1} be
the unit sphere inRd. Let ϕu,v denote the angle between the vectorsu andv. As in R2, it is
understood thatϕu,v ∈ [0, π] andϕu,v = ϕv,u. Finally, leted = (0, . . . , 0, 1) ∈ Rd and letωd

be the measure of the unit ball inRd.

Definition 2.4.1. For u ∈ Sd andθ ∈ [0, π/2], we define the sets

Cθ
u = {x ∈ Rd : 〈x, u〉 ≥ ‖x‖ cos θ}

and the generalized circular sectors

Cθ
u,r = Cθ

u ∩ B(0, r).

Figure2.16shows an example ofCθ
u in R3.

As we said before, Proposition2.4.1defines unavoidable families for those points which
are far away from the boundary ofS and gives a lower bound for the probability of such sets.
The proofs of Proposition2.4.1and2.3.1are essentially the same, apart from some elementary
results, which were straightforward in the bidimensional case, but not in the general case. On the
other hand, some of the results inRd follow either directly from or similarly to the corresponding
results inR2. For this reason we will skip some of the proofs throughout this section.
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θ
u

Cθ
u

Figure 2.16:Cθ
u in R3.

Proposition 2.4.1. LetS be a nonempty compact subset ofRd such that a ball of radiusα > 0
rolls freely inS and inSc. Let X be a random variable with probability distributionPX and
supportS. We assume that the probability distributionPX satisfies that there existsδ > 0 such
that

PX(C) ≥ δµ(C ∩ S)

for all Borel setC ⊂ Rd.
Then, for allx ∈ S such thatd(x, ∂S) > rn/2, there exists a finite familyUx,rn with m1

elements, unavoidable forEx,rn and that satisfies

PX(U) ≥ L1r
d
n, U ∈ Ux,rn ,

where the constantsm1 andL1 > 0 are independent ofx.

Proof. The cased = 1 is handled separately as it is simpler. Forx ∈ R under the stated
conditions let us consider the unavoidable family

{[x − rn/2, x], [x, x + rn/2]}.

The result holds forL1 = δ/2. The cased = 2 was proved in Proposition2.3.1. Let us then
assume thatd ≥ 3. It may be noted that the proof remains valid for the bidimensional case,
although Proposition2.3.1 is simpler. First, we need to define a finite set of unit vectorsW
that enables us to divide the ballB(0, rn) into generalized circular sectors of central angleπ/3.
Recall that inR2, the familyW was explicitly defined. However, for the general caseRd the
family is found by an indirect method. Lemma2.4.2states that, sinceSd is compact, we can
coverB(0, rn) by finitely many generalized circular sector with positive central angle. First, we
state Lemma2.4.1, whose proof is identical to that of Lemma2.3.1in R2.

Lemma 2.4.1. Letx 6= 0. Then,

x ∈ Cθ
u ⇔ ϕx,u ≤ θ.
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Lemma 2.4.2. Letθ > 0. There exists a finite family of unit vectorsWθ such that

B(0, r) =
⋃

u∈Wθ

Cθ
u,r,

for all r > 0.

Proof. Let us first consider the sphereSd. It can be easily proved that{int(Cθ
u), u ∈ Sd} is an

open cover ofSd, since for eachu ∈ Sd we have thatu ∈ int(Cθ
u). By the compactness ofSd,

there exists a finite familyWθ ⊂ Sd such that

Sd ⊂
⋃

u∈Wθ

int(Cθ
u). (2.21)

Now, let x ∈ B(0, r). For x = 0 it is clear thatx ∈ Cθ
u for all u ∈ Wθ. For x 6= 0 let us

considerv = x/ ‖x‖ ∈ Sd. By (2.21) there existsu ∈ Wθ such thatv ∈ Cθ
u. Sinceϕx,u = ϕv,u

it follows from Lemma2.4.1thatx ∈ Cθ
u. Therefore,

B(0, r) ⊂
⋃

u∈Wθ

Cθ
u ∩ B(0, r) =

⋃

u∈Wθ

Cθ
u,r.

By definition ofCθ
u,r it immediate follows thatCθ

u,r ⊂ B(0, r) for all u ∈ Wθ and the proof is
complete.

Fix θ = π/6 and then, by Lemma2.4.2, there exists a finite family of unit vectorsWπ/6

such that
B(0, rn) =

⋃

u∈Wπ/6

Cπ/6
u,rn

.

Recall that, in order to simplify the notation, we writeCu, Cu,rn andW to refer toC
π/6
u , C

π/6
u,rn

andWπ/6, respectively. GivenB(y, rn) ∈ E0,rn , there existsu ∈ W such thaty ∈ Cu,rn . In
the same manner as Lemma2.3.2in R2, Lemma2.4.3shows thatCu,rn ⊂ B(y, rn). Since the
proof of Lemma2.4.3is based on the triangle inequality

ϕz,y ≤ ϕz,u + ϕu,y ≤ π

3
,

which remains true for arbitrary dimension, see Figure2.17, we skip the details.

Lemma 2.4.3. For all u ∈ Sd andr > 0,

Cu,r ⊂
⋂

y∈Cu,r

B(y, r).

Therefore, we define the family

U0,rn = {Cu,rn/2, u ∈ W}.
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z

v

w

ϕv,z
ϕw,z

ϕv,w

Figure 2.17:Triangle inequality inR3. We have thatϕv,z ≤ ϕv,w + ϕw,z.

Lemma2.4.3shows thatU0,rn is an unavoidable family forE0,rn . Now, for x ∈ S such that
d(x, ∂S) > rn/2 we define

Ux,rn = {x} ⊕ U0,rn = {{x} ⊕ Cu,rn/2, u ∈ W}.

It follows from Lemma2.4.4that the familyUx,rn is unavoidable forEx,rn . As in the bidimen-
sional case, the translation of unavoidable families gives unavoidable families.

Lemma 2.4.4.LetU0,r be an unavoidable family forE0,r. Then the familyUx,r = {x}⊕U0,r =
{{x} ⊕ U, U ∈ U0,r} is unavoidable forEx,r.

Proof. Analogous to the proof of Lemma2.3.3.

Finally, for eachu ∈ W

PX

(

{x} ⊕ Cu,rn/2

)

≥ δµ
(

{x} ⊕ Cu,rn/2 ∩ S
)

= δµ
(

{x} ⊕ Cu,rn/2

)

= δµ
(

Cu,rn/2

)

.

The last inequality is obtained by using thatd(x, ∂S) > rn/2 and that the Lebesgue mea-
sure is invariant under translations. Moreover, it follows from Lemma2.4.2that we can cover
B(0, rn/2) by a finite numberm1 of generalized circular sectorsCu,rn/2, all of them with the
same measure. Therefore,

µ
(

Cu,rn/2

)

≥ 1

m1
µ(B(0, rn/2)) =

1

m1
ωd

(rn

2

)d
(2.22)

and,

PX

(

{x} ⊕ Cu,rn/2

)

≥ δ
1

m1
ωd

(rn

2

)d
.

To sum up,
PX(U) ≥ L1r

d
n, U ∈ Ux,rn ,

beingL1 = δωd/(2dm1) and the proof of Proposition2.4.2is now complete.
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Remark 2.4.1. In Proposition2.3.1in R2 we coveredB(0, rn/2) by six nonoverlapping circular
sectorsCu,rn/2 with central angleπ/3. Thus,

µ(Cu,rn/2) =
1

6
µ(B(0, rn/2)).

However, we cannot guarantee a similar result in general dimension. By Lemma2.4.2we can
coverB(0, rn/2) by a not easy to compute finite number of generalized circular sectors but we
cannot ensure that they are nonoverlapping sectors. This explains why (2.22) is an enequality.

Once we have proved Proposition2.4.1it remains to explain what happens whenx ∈ S and
d(x, ∂S) ≤ rn/2. As we mentioned when dealing with the problem inR2, it is not sufficient
to consider circular sectors as unavoidable sets. Proposition2.4.2below defines unavoidable
families for those points which are close to the boundary ofS and gives a lower bound for the
probability of the sets that form the family. Although the sketch of the proof is almost identical
to that of Proposition2.3.2we need some extra auxiliary results to handle the more general case
of Rd.

Proposition 2.4.2. LetS be a nonempty compact subset ofRd such that a ball of radiusα > 0
rolls freely inS and inSc. Let X be a random variable with probability distributionPX and
supportS. We assume that the probability distributionPX satisfies that there existsδ > 0 such
that

PX(C) ≥ δµ(C ∩ S)

for all Borel setC ⊂ Rd.
Then, for allx ∈ S such thatd(x, ∂S) ≤ rn/2, there exists a finite familyUx,rn with m2

elements, unavoidable forEx,rn and that satisfies

PX(U) ≥ L2r
d−1
2

n d(x, ∂S)
d+1
2 , U ∈ Ux,rn ,

where the constantsm2 andL2 > 0 are independent ofx.

Proof. Let x ∈ S such thatd(x, ∂S) ≤ rn/2. We denoteρ = d(x, ∂S). The proof ford = 1 is
immediate. Consider the unavoidable family

{[x − ρ, x], [x, x + ρ]}

and the result holds forL2 = δ. The cased = 2 was proved in Proposition2.3.2. Let us assume
that d ≥ 3. Again, the proof remains valid for the bidimensional case. As inR2, the rolling
condition inS simplifies the proof. Using the same notation, letPΓ x be the metric projection of
x ontoΓ = ∂S andη the outward pointing unit normal vector atPΓ x. It is enough to define an
unavoidable familyUx,rn and find a lower bound forµ(U ∩ B(PΓ x − αη, α)) for all U ∈ Ux,rn .
Now, suppose that we are able to define a suitable unavoidable familyU0,rn . Consider the
composite functionT formed by first applying an orthogonal transformationO : Rd −→ Rd

such thatO(ed) = −η and then applying the translation by the vectorx. In particularT (0) = x,
T ((α − ρ)ed) = x − (α − ρ)η = PΓ x − αη and

T (B((α − ρ)ed, α)) = B(PΓ x − αη, α).
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Then
µ(T (U) ∩ B(PΓ x − αη, α)) = µ(U ∩ B((α − ρ)ed, α)),

since the Lebesgue measure is invariant under translations and orthogonal transformations. It
suffices to give a lower bound forµ(U∩B((α−ρ)ed, α)) for U ∈ U0,rn , since as in Lemma2.3.5
we can prove in thed-dimensional case that the orthogonal transformation of an unavoidable
family for E0,rn results in another unavoidable family forE0,rn . This argument is made rigorous
in the following lemma. We skip the proof since it is identical to that of Lemma2.3.5in R2.

Lemma 2.4.5. LetU0,r be an unavoidable family forE0,r and O : Rd −→ Rd an orthogonal
transformation. Then{O(U), U ∈ U0,r} is an unavoidable family forE0,r.

Therefore, it suffices to consider

Ux,rn = {T (U), U ∈ U0,rn}

which, by Lemmas2.4.4and2.4.5, is also unavoidable forEx,rn . We will, thus, concentrate
on the definition of a familyU0,rn , unavoidable forE0,rn . We need to boundµ(U ∩ B((α −
ρ)ed, α)) for U ∈ U0,rn . Recall from Proposition2.3.2the comment on the measure of the sets
U ∩ B((α − ρ)ed, α). Once again, when defining unavoidable sets forE0,rn and giving a lower
bound forµ(U ∩ B((α − ρ)ed, α)), one must be careful with those points that lie far away in
the direction of−ed. For this reason we divideB(0, rn) as follows:

B(0, rn) = Grn ∪ Frn ,

where

Grn =

{

y ∈ B(0, rn) : 〈y, ed〉 ≥ −1

2
‖y‖
}

and

Frn =

{

y ∈ B(0, rn) : 〈y, ed〉 < −1

2
‖y‖
}

.

Figure2.18represents the setsGrn andFrn in R3.
Proposition2.4.3solves the problem for the pointsy ∈ Grn . This result shows that we can

construct a finite unavoidable familyUG
0,rn

, such that for ally ∈ Grn there existsU ∈ UG
0,rn

such
thatU ⊂ B(y, rn) and

µ(U ∩ B((α − ρ)ed, α)) ≥ LGr
d−1
2

n ρ
d+1
2 , ∀U ∈ UG

0,rn
.

Before presenting the proof of Proposition2.4.3we would like to briefly comment on the main
differences between the general case and the bidimensional one, see Proposition2.3.3. The first
step in the proof of Proposition2.3.3consisted of coveringGrn by four circular sectors with
central angleπ/3. These circular sectors were determined by the family of unit vectorsWG

given in (2.15). Moreover, the position in the plane of the circular sectorsCu,rn , with u ∈ WG

(see Figure2.9) guaranteed that

µ(Cu,rn ∩ H0) ≥
1

2
µ(Cu,rn) ≥ 1

12
πr2

n. (2.23)
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π/6

B(0, rn)

Grn

Frn

Figure 2.18:Grn andFrn in R3.

Note that the key to obtaining (2.23) is that〈u, e2〉 ≥ 0 for all u ∈ WG . However, this is not
true in general dimension since it is not possible to coverGrn by generalized circular sectors
Cu,rn such that〈u, ed〉 ≥ 0. For this reason we have to relax this condition. Thus, several extra
auxiliary results are needed for the proof of Proposition2.4.3.

Proposition 2.4.3.There exists a finite family of unit vectorsWG such that for ally ∈ Grn there
existsu ∈ WG such thaty ∈ Cu,rn ⊂ B(y, rn) and

µ(Cu,rn ∩ B((α − ρ)ed, α)) ≥ LGr
d−1
2

n ρ
d+1
2 ,

with LG > 0 constant.

Proof. First let us prove thatGrn can be covered by a finite number of generalized circular
sectorsCu,rn . This result is an immediate consequence of Lemma2.4.2, sinceGrn ⊂ B(0, rn).
However, in order to guarantee that the measure ofCu,rn ∩ B((α − ρ)ed, α) is large enough,
the family of unit vectorsWG cannot be chosen arbitrarily. Lemma2.4.6states that, for fixed
γ ∈ (0, π/2], we can coverGrn by a finite number of generalized circular sectorsCu,rn such
that 〈u, ed〉 ≥ − sin γ. This additional property refers to the position in the space of the sets
Cu,rn that form the covering. For small values ofρ, that is, for pointsx which are close to
the boundary ofS, the ballB((α − ρ)ed, α) is practically totally contained in the halfspace
H0 = {x = (x1, . . . , xd) ∈ Rd : xd ≥ 0}. For this reason, in order to obtain large values
of µ(Cu,rn ∩ B((α − ρ)ed, α)), we also need the setsCu,rn to be contained inH0, or at least
a considerable portion of each setCu,rn . Hence, the goal is to coverGrn by setsCu,rn with
the smallest possibleϕu,ed

. In order to ensure this, we restrict ourselves to thoseu ∈ Sd such
that 〈u, ed〉 ≥ − sin γ. We shall see after Lemma2.4.6that anyγ ∈ (0, π/6) can be used to
construct the desired covering.

Lemma 2.4.6.Let0 < γ ≤ π/2. There exists a finite set of unit vectorsWG(γ) ⊂ Sd, such that
for all u ∈ WG(γ) we have that〈u, ed〉 ≥ − sin γ and

Grn ⊂
⋃

u∈WG(γ)

Cu,rn .
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Proof. Let us first consider the set

DG = {y ∈ Rd : ‖y‖ = 1, 〈y, ed〉 ≥ −1/2}.

Figure2.19shows the setDG in R3. We shall prove that

{int(Cu), u ∈ Dγ}

is an open cover ofDG , where

Dγ = {u ∈ Rd : ‖u‖ = 1, 〈u, ed〉 ≥ − sin γ}.

Then, lety ∈ DG . First, if 〈y, ed〉 ≥ − sin γ, theny ∈ int(Cu) for u = y ∈ Dγ . Let us now
suppose that〈y, ed〉 < − sin γ. Sincey ∈ DG we have that

π

2
+ γ < ϕy,ed

≤ 2π

3
. (2.24)

Let u be a unit vector in the plane passing through the origin and determined by the vectorsed

andy, such that〈u, ed〉 = − sin γ. That is,

u = ay + bed,

wherea, b ∈ R satisfy the following system of equations

{ 〈u, ed〉 = a 〈y, ed〉 + b = − sin γ,

‖u‖2 = a2 + b2 + 2ab 〈y, ed〉 = 1.

We obtain, by solving the system and using that〈y, ed〉 = cos ϕy,ed
= yd,

b = − sin γ − a cos ϕy,ed
and a = ±

√

1 − sin2 γ

1 − y2
d

= ± cos γ

sinϕy,ed

.

Note that (2.24) guarantees that the obtained solutions are well defined. If we choose

a =
cos γ

sin ϕy,ed

,

then

u = ay + bed =
cos γ

sinϕy,ed

y +

(

− sin γ − cos γ

sinϕy,ed

cos ϕy,ed

)

ed.

Figure2.19(c) shows the vectoru defined fromy ∈ DG with 〈y, ed〉 < − sin γ. By construction,
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u ∈ Dγ . Moreover,y ∈ int(Cu), since

〈y, u〉 = 〈y, ay + bed〉
= a + b cos ϕy,ed

=
cos γ

sin ϕy,ed

− sin γ cos ϕy,ed
− cos2 ϕy,ed

cos γ

sinϕy,ed

=
cos γ − sin γ sinϕy,ed

cos ϕy,ed
− cos2 ϕy,ed

cos γ

sinϕy,ed

=
cos γ sin2 ϕy,ed

− sin γ sinϕy,ed
cos ϕy,ed

sinϕy,ed

= cos γ sin ϕy,ed
− sin γ cos ϕy,ed

= sin(ϕy,ed
− γ)

> cos π/6.

The last inequality is a direct consequence of

π

2
< ϕy,ed

− γ ≤ 2π

3
− γ <

2π

3
.

Therefore,{int(Cu), u ∈ Dγ} is an open cover ofDG . SinceDG is compact, there exists a finite
family of unit vectorsWG(γ) ⊂ Dγ such that

DG ⊂
⋃

u∈WG(γ)

int(Cu). (2.25)

Now, let y ∈ Grn . If y = 0 then y ∈ Cu for all u ∈ WG(γ). For y 6= 0 we have that
v = y/ ‖y‖ ∈ DG and by (2.25) there existsu ∈ WG(γ) such thatv ∈ Cu. This immediately
yields thaty ∈ Cu, sinceϕy,u = ϕv,u. Hence,

Grn = Grn ∩ B(0, rn) ⊂
⋃

u∈WG(γ)

Cu ∩ B(0, rn) =
⋃

u∈WG(γ)

Cu,rn

and the proof is complete.

As we have already mentioned, Lemma2.4.6plays an important role in the proof of Propo-
sition 2.4.3. First, because it follows from this result that it is possible to coverGrn by a finite
number of setsCu,rn . Second, Lemma2.4.6gives us the key to defining the unit vectors from
which the setsCu,rn are constructed and those unit vectors satisfy that〈u, ed〉 ≥ − sin γ. It
is worth commenting at this point the important role ofγ. In Section2.3 we saw that for the
bidimensional case, Lemma2.4.6remains valid even forγ = 0. In fact, it suffices to consider
WG(0) ≡ WG , beingWG the family defined in (2.15). It can be easily proved that for all
u ∈ WG(0) we have that〈u, ed〉 ≥ − sin 0 = 0 and thatGrn coincides with the union of sets
Cu,rn with u ∈ WG(0) (see Figure2.9). However, whend > 2 Lemma2.4.6is not true for
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π/6

γ

DG
y

ed

π/6

γ

y

ed

π/6

γ

ed

u
y

ed

(a) (b) (c)

Figure 2.19:(a) DG in R3. In the dashed area〈y, ed〉 ≥ − sin γ. (b) Intersection ofDG with
the plane defined byed andy. (c) For y ∈ DG with 〈y, ed〉 < − sin γ consideru in the plane
defined fored andy such that〈u, ed〉 = − sin γ.

γ = 0. For instance, inR3 it is not possible to cover the points{y ∈ Grn : 〈y, ed〉 = −‖y‖ /2}
by a finite number of generalized circular sectorsCu,rn such that〈u, ed〉 ≥ 0. We would need
an infinite number of sectors to cover the setGrn . To avoid this difficulty, we chooseγ > 0.

If γ is small enough, a considerable portion ofCu,rn will be contained inH0. As in the
bidimensional case, it suffices to consider that portion in order to give a lower bound forµ(U ∩
B((α − ρ)ed, α)) for U = Cu,rn , u ∈ WG(γ). Let ν =

√

ρ(2α − ρ). Then,ν represents the
distance to the origin from the pointsx = (x1, . . . , xd) such thatx ∈ ∂B((α − ρ)ed, α) and
xd = 0, see Figure2.20.

Lemma 2.4.7.
B(0, ν) ∩ H0 ⊂ B((α − ρ)ed, α).

Proof. The result is proved analogously to Lemma2.3.6, using that forx ∈ B(0, ν) ∩ H0,
〈x, ed〉 ≥ 0.

Lemma2.4.7establishes that

Cu,rn ∩ B((α − ρ)ed, α) ⊃ Cu,rn ∩ H0 ∩ B(0, ν) = Cu,τn ∩ H0,

whereτn = min(ν, rn). Recall that inR2 the intersectionCu ∩H0 contains at least one circular
sector with central angleπ/6 and hence

µ(Cu,τn ∩ H0) ≥
1

2
µ(Cu,τn).

This was enough for our purposes in the bidimensional case. The drawback of working in
Rd is that one cannot immediately infer the position in the space of the setsCu,τn and the
measure ofCu,τn ∩H0. We shall see in Lemma2.4.8that if u satisfies〈u, ed〉 ≥ − sin(γ), with
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(a) (b)

B((α − ρ)ed, α)

α − ρ
α

ν

B((α − ρ)ed, α)

B(0, ν) ∩ H0

Figure 2.20:(a) Value ofν. (b) Elements in Lemma2.4.7in R3.

0 ≤ γ < π/6, thenCu ∩ H0 contains a generalized circular sectorCθ
ũ, whereθ = θ(γ) > 0.

Therefore,
µ(Cu,τn ∩ H0) ≥ C(γ)µ(Cu,τn), u ∈ WG(γ).

Lemma 2.4.8. Let 0 < γ < π/6. For eachu ∈ Sd such that〈u, ed〉 ≥ − sin γ there exists a
unit vectorũ such that

Cθ
ũ ⊂ Cu ∩ H0,

where

θ =
π
6 − γ

2
.

Proof. Let u ∈ Sd such that〈u, ed〉 ≥ − sin γ. If u = ed the result follows easily by taking
ũ = u. If u 6= ed, choosẽu ∈ Sd in the plane passing through the origin and determined by the
vectorsu anded such that the angle betweenũ andu is

ϕu,ũ =
π
6 + γ

2
.

That is,
ũ = au + bed,

wherea, b ∈ R are the solutions of the following system of equations.
{ 〈ũ, u〉 = a + b 〈u, ed〉 = cos ϕu,ũ,

‖ũ‖2 = a2 + b2 + 2ab 〈u, ed〉 = 1.

We solve the system and, by using that〈u, ed〉 = cos ϕu,ed
, we obtain

b = ±
√

1 − cos2 ϕu,ũ

1 − 〈u, ed〉2
= ± sinϕu,ũ

sinϕu,ed

and a = cos ϕu,ũ − b cos ϕu,ed
.
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If we choose

b =
sinϕu,ũ

sinϕu,ed

,

then

ũ =

(

cos ϕu,ũ − sinϕu,ũ

sinϕu,ed

cos ϕu,ed

)

u +
sin ϕu,ũ

sin ϕu,ed

ed. (2.26)

Figure2.21shows the vector̃u. Let us prove thatCθ
ũ ⊂ Cu, whereθ = (π/6 − γ)/2. Then,

letx ∈ Cθ
ũ. It follows from Lemma2.4.1thatϕx,ũ ≤ θ and by constructionϕũ,u = (π/6+γ)/2.

Then, by the triangle inequality for angles, we have

ϕx,u ≤ ϕx,ũ + ϕũ,u ≤
π
6 − γ

2
+

π
6 + γ

2
=

π

6

and thenx ∈ Cu. Let us now prove thatCθ
ũ ⊂ H0. Again, letx ∈ Cθ

ũ. By the triangle inequality
for angles,

ϕx,ed
≤ ϕx,ũ + ϕũ,ed ≤

π
6 − γ

2
+ ϕũ,ed. (2.27)

Moreover,cos ϕũ,ed = 〈ũ, ed〉 and by (2.26) we have

〈ũ, ed〉 = 〈au + bed, ed〉
= a cos ϕu,ed

+ b

= cosϕu,ũ cos ϕu,ed
− sinϕu,ũ cos2 ϕu,ed

sinϕu,ed

+
sinϕu,ũ

sinϕu,ed

= cosϕu,ũ cos ϕu,ed
+

sinϕu,ũ(1 − cos2 ϕu,ed
)

sinϕu,ed

= cosϕu,ũ cos ϕu,ed
+ sinϕu,ũ sin ϕu,ed

= cos (ϕu,ũ − ϕu,ed
) .

If ϕu,ũ ≥ ϕu,ed
,

|ϕu,ũ − ϕu,ed
| = ϕu,ũ − ϕu,ed

≤ ϕu,ũ =
π
6 + γ

2
=

γ

2
+

π

12
.

If ϕu,ũ < ϕu,ed
,

|ϕu,ũ − ϕu,ed
| = ϕu,ed

− ϕu,ũ = ϕu,ed
−

π
6 + γ

2
≤ π

2
+ γ −

π
6 + γ

2
=

γ

2
+

5π

12
,

where the last inequality is a consequence of〈u, ed〉 ≥ − sin γ. Therefore,

|ϕu,ũ − ϕu,ed
| ≤ γ

2
+

5π

12

and, turning to (2.27), we obtain that

ϕx,ed
≤

π
6 − γ

2
+

γ

2
+

5π

12
=

π

2
.
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That is,
〈x, ed〉 = ‖x‖ cos ϕx,ed

≥ 0

and thenCθ
ũ ⊂ H0.

(a) (b)

u

Cu

Cu ∩ H0

u

ed

ũ

θ =
π
6

−γ

2

π
6

+γ

2

π
6

Figure 2.21:(a) SetCu ∩ H0 for u ∈ S3 satisfying〈u, ed〉 ≥ − sin γ with 0 < γ < π/6. (b) In
Lemma2.4.8we define the vector̃u in the plane passing through the origin and determined by
the vectorsu anded such thatϕu,ũ = (π/6 + γ)/2 andCθ

ũ ⊂ (Cu ∩ H0).

Note that the choice ofγ in the interval(0, π/6) is the key to guaranteeing thatCθ
ũ has

positive central angle. Fixγ ∈ (0, π/6). It follows from Lemma2.4.6that we can coverGrn

by a finite number of generalized circular sectorsCu,rn , such that for ally ∈ Grn there exists
u ∈ WG ≡ WG(γ) with 〈u, ed〉 ≥ − sin γ such thaty ∈ Cu,rn . Moreover, Lemma2.4.3yields
thatCu,rn ⊂ B(y, rn). By Lemmas2.4.7and2.4.8we have that, for eachCu,rn with u ∈ WG ,

Cu,rn ∩ B((α − ρ)ed, α) ⊃ Cu,rn ∩ H0 ∩ B(0, ν)

⊃ Cθ
ũ,rn

∩ B(0, ν)

= Cθ
ũ,τn

,

whereτn = min(ν, rn). Then, by Lemma2.4.2,

µ(Cu,rn ∩ B((α − ρ)ed, α)) ≥ µ(Cθ
ũ,τn

) ≥ 1

m
µ(B(0, τn)). (2.28)

Recall that according to Lemma2.4.2the ballB(0, τn) can be covered by a finite numberm
of circular sectors. It remains to find a lower bound for the measure ofB(0, τn). By using that
rn ≤ α andρ ≤ rn/2, we have that

µ (B(0, ν)) = wdρ
d
2 (2α − ρ)

d
2 ≥ wdρ

d
2 r

d
2
n ≥ wdρ

d+1
2 r

d−1
2

n .
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On the other hand, sinceρ ≤ rn/2, we also have that

µ (B(0, rn)) = wdr
d
n = wdr

d+1
2

n r
d−1
2

n ≥ wdρ
d+1
2 r

d−1
2

n .

Turning to (2.28) we deduce that

µ(Cu,rn ∩ B((α − ρ)e2, α)) ≥ LGρ
d+1
2 r

d−1
2

n ,

whereLG = wd/m > 0 is constant.

Therefore, we have solved the problem for those pointsy ∈ Grn . The unavoidable family of
setsUG

0,rn
we shall consider is

UG
0,rn

= {Cu,rn , u ∈ WG},

beingmG the number of elements of that family, determined by the number of unit vectors in
WG . We now concentrate on the pointsy ∈ Frn . Recall that

Frn =

{

y ∈ B(0, rn) : 〈y, ed〉 < −1

2
‖y‖
}

.

The aim is to define a finite family of setsUF
0,rn

, such that for ally ∈ Frn , there existsU ∈ UF
0,rn

such thatU ⊂ B(y, rn) and

µ(U ∩ B((α − ρ)ed, α)) ≥ LFr
d−1
2

n ρ
d+1
2 , ∀U ∈ UF

0,rn
.

As in the bidimensional case, the generalized circular sectorsCu,rn are no longer appropriate
to form the unavoidable familyUF

0,rn
. For example, consider the pointy = −rned ∈ Frn

and the generalized circular sectorC−ed,rn . Theny ∈ C−ed,rn ⊂ B(y, rn). The intersection
C−ed,rn ∩ B((α − ρ)ed, α) is small, as it is shown in Figure2.22in R3. In fact, it can be easily
proved that

µ(C−ed,rn ∩ B((α − ρ)ed, α)) = O(ρd).

Even though we could have considered different circular sectors fory = −rned, we need that
Cu,rn ⊂ B(y, rn). This fact determines the position in the space ofCu,rn in such a way that the
measure ofCu,rn ∩ B((α − ρ)ed, α) would not be much larger thatC−ed,rn ∩ B((α − ρ)ed, α)
and hence not large enough for our purposes. We need to define another kind of sets fory ∈ Frn .
Proposition2.4.4provides a solution to this problem.

Proposition 2.4.4. There exists a finite family of setsUF
0,rn

such that, for ally ∈ Frn , there
existsU ∈ UF

0,rn
such thatU ⊂ B(y, rn) and

µ(U ∩ B((α − ρ)ed, α)) ≥ LFr
d−1
2

n ρ
d+1
2 ,

with LF > 0 a constant.
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B((α − ρ)ed, α)

C
−ed

ρ

ρ
√

3/3

Figure 2.22:SetC−ed
in R3. The volume of the represented cylinder of heightρ is ρπ(ρ

√
3/3)2.

The cylinder contains the setC−ed,rn ∩B((α− ρ)ed, α). The radiusρ
√

3/3 is derived from the
Pythagorean theorem.

Proof. The sketch of the proof is the same as that of Proposition2.3.4. First, we shall de-
fine a set whose measure is large enough for our purposes. Then we shall construct a par-
tition generated by a finite number of subsets, all of them with the same measure,and sat-
isfying the conditions to form an unavoidable familyUF

0,rn
. Let us consider as reference set

B((α − ρ)ed, α) ∩ B(−rned, rn). We define

C(h1) = {x ∈ Rd : −h1 ≤ 〈x, ed〉 ≤ 0} ∩ B(−rned, rn), (2.29)

where

h1 =
ρ(2α − ρ)

2(α + rn − ρ)

is the distance from the hyperplane{x = (x1, . . . , xd) ∈ Rd : xd = 0} to any point of
∂B((α − ρ)ed, α) ∩ ∂B(−rned, rn). Its value is computed from the Pythagorean theorem (re-
call Proposition2.3.4). In Figure2.23the setC(h1) is represented for the particular case ofR3.
Lemma2.4.9gives a lower found for the measure ofC(h1).

Lemma 2.4.9. We have that

µ(C(h1)) ≥ Lr
d−1
2

n ρ
d+1
2 .

Proof. Let us consider the translation by the vectorh1ed. It is straightforward to see thatC(h1)⊕
{h1ed} = C0(h1), where

C0(h1) = {x = (x1, . . . , xd) ∈ Rd : 0 ≤ 〈x, ed〉 ≤ h1} ∩ B(−(rn − h1)ed, rn).

Moreover, since the Lebesgue measure is invariant under translations,we have thatµ(C(h1)) =
µ(C0(h1)). For0 ≤ l ≤ h1 we define the set

C0(h1, l) = {x = (x1, . . . , xd−1, l) : x ∈ C0(h1)}.
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B((α − ρ)ed, α)

B(−rned, rn)

h1

Figure 2.23:The dashed area corresponds toB((α − ρ)ed, α) ∩ B(−rned, rn) in R3. In gray
it is representedC(h1).

It can be easily seen thatC0(h1, l) is the (d − 1)-dimensional sphere with centreled and radius
r(l), where

r(l) =
√

r2
n − (rn − h1 + l)2 =

√

2rn(h1 − l) − (h1 − l)2.

Then, by using that the Lebesgue measure is a product measure,

µ(C(h1)) =

∫ h1

0
µd−1(C0(h1, l))dl = ωd−1

∫ h1

0
r(l)d−1dl,

whereµd−1 denotes the(d − 1)-dimensional Lebesgue measure. Therefore,

µ(C(h1)) = ωd−1

∫ h1

0

(

2rn(h1 − l) − (h1 − l)2
)

d−1
2 dl

= ωd−1

∫ h1

0

(

2rnt − t2
)

d−1
2 dt

≥ ωd−1

∫ h1

0
(rnt)

d−1
2 dt

= ωd−1r
d−1
2

n h
d+1
2

1

2

d + 1
. (2.30)

We have used the change of variables formula witht = h1−l. Fort ∈ [0, h1] we get thatt ≤ rn,
since by constructionh1 ≤ ρ ≤ rn/2. Moreover, sincern ≤ α we have that

h1 =
ρ(2α − ρ)

2(α + rn − ρ)
≥ ρ

2

and then

µ(C(h1)) ≥
ωd−1

(d + 1)2
d−1
2

r
d−1
2

n ρ
d+1
2 .
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Lemma2.4.9asserts that the measure ofC(h1) is large enough for our purposes. The fol-
lowing lemma generalizes Lemma2.3.8.

Lemma 2.4.10.
C(h1) ⊂ B((α − ρ)ed, α).

Proof. The proof is analogous to that of Lemma2.3.8. Again, the result can be proved by
using that, ifx ∈ C(h1) then x ∈ B(−rned, rn) and hence,‖x‖2 ≤ −2rn 〈x, ed〉, where
〈x, ed〉 ≥ −h1.

Lemma2.4.10plays an important role since it guarantees thatC(h1) intersectsB((α −
ρ)ed, α) in a large set. To sum up, we have proved that, by Lemmas2.4.9and2.4.10,

µ(C(h1) ∩ B((α − ρ)ed, α)) ≥ Lr
d−1
2

n ρ
d+1
2 .

However, it still remains to determine which sets form the finite familyUF
0,rn

mentioned in the
statement of Proposition2.4.4. Using the same arguments as in Proposition2.3.4, we divide
the setC(h1) into a finite number of components, all of them with the same measure. They
should also fulfill the conditions to form the familyUF

0,rn
. Recall that in the bidimensional

case we considered the partitionR2 = Q1 ∪ Q2, whereQ1 = {x = (x1, x2) ∈ R2 : x1 ≥ 0}
andQ2 = {x = (x1, x2) ∈ R2 : x1 ≤ 0}. Based on this partition we dividedC(h1) into two
subsets. These two subsets were proved to measure the same sinceC(h1) is symmetric with
respect to the axisOX. How can we divideC(h1) in Rd? How do we construct a partition in a
finite number of sets, all of them with the same measure? We next state an important and general
result that provides a finite partition ofRd. An immediate consequence of this general result is
that it gives us the key step toward the definition of finite partitions of any subset ofRd.

Lemma 2.4.11.Letθ > 0. There exists a finite family of unit vectorsWθ ⊂ Sd−1 such that

Rd =
⋃

u∈Wθ

Qθ
u,

where, for eachu ∈ Wθ ⊂ Sd−1,

Qθ
u =

{

x = (x1, . . . , xd−1, xd) ∈ Rd : (x1, . . . , xd−1) ∈ Cθ
u ⊂ Rd−1

}

.

Proof. Since the unit sphere inRd−1 is compact we get, by the same arguments as in Lemma
2.4.2, thatRd−1 can be covered by a finite number of setsCθ

u, with θ > 0. LetWθ ⊂ Sd−1 be
the finite family of unit vectors that determine those setsCθ

u. We have that

Rd−1 =
⋃

u∈Wθ

Cθ
u.

Now, Rd = Rd−1 × R and

Rd =
⋃

u∈Wθ

{

x = (x1, . . . , xd−1, xd) ∈ Rd : (x1, . . . , xd−1) ∈ Cθ
u ⊂ Rd−1

}

=
⋃

u∈Wθ

Qθ
u.
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(a) (b)

u

Qθ
u

u

Qθ
u ∩ B(0, rn)

Figure 2.24:(a) Example ofQθ
u in R3. (b) Qθ

u ∩ B(0, rn) in R3.

Figure2.24 represents a setQθ
u in R3. As mentioned, Lemma2.4.11gives us the key to

constructing partitions of subsets ofRd. In particular,

Frn =
⋃

u∈Wθ

Qθ
u ∩ Frn .

Fix θ = π/6. As we will see, such choice ofθ is arbitrary in some sense. In fact, the
following results remain valid for different values ofθ. He have chosen the valueθ = π/6
because it allows us to continue with the same notation. Thus, we writeW andQu to refer
to Wθ andQθ

u for θ = π/6 as defined in Lemma2.4.11. Note that the setsQ1 andQ2 in
Proposition2.3.4coincide, returning to the notation of Lemma2.4.11for d = 2, with Q1 and
Q−1, respectively. Let us consider the partition

C(h1) =
⋃

u∈W
Qu ∩ C(h1). (2.31)

Lemma2.4.16, corresponding to Lemma2.3.9 in R2, states that the partition given in (2.31)
provides an unavoidable family of sets. Lemma2.4.17proves that the setsQu ∩ C(h1) with
u ∈ W measure the same. First, however, we require several preliminary results, needed in the
proof of Lemma2.4.16. Lemmas2.4.12and2.4.13prove that, bothC(h1) andFrn are contained
in B(0, rn) ∩ B(−rned, rn). On the other hand, Lemma2.4.14establishes that the distance
betweenx, y ∈ B(0, rn)∩B(−rned, rn) such thatx lies on the boundary ofB(−rned, rn) and
y lies on the boundary ofB(0, rn) is lower or equal torn, wheneverx andy fulfill

x1y1 + . . . + xd−1yd−1 ≥ β

√

‖x‖2 − x2
d

√

‖y‖2 − y2
d, (2.32)

for someβ ≥ 1/3. In spite of the fact that it seems to be an artifitial condition, Lemma2.4.15
shows that in particular,x, y ∈ Qu fulfill the restriction (2.32) for β = 1/2.
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Lemma 2.4.12.
C(h1) ⊂ B(0, rn) ∩ B(−rned, rn).

Proof. The lemma will be proved if we can show thatC(h1) ⊂ B(0, rn). Let x ∈ C(h1). Since
x ∈ B(−rned, rn), we have that

‖x + rned‖2 = ‖x‖2 + r2
n + 2rn 〈x, ed〉 ≤ r2

n.

Then, by the definition ofC(h1) and the fact thath1 ≤ ρ ≤ rn/2,

‖x‖2 ≤ −2rn 〈x, ed〉 ≤ 2rnh1 ≤ r2
n.

Lemma 2.4.13.
Frn ⊂ B(0, rn) ∩ B(−rned, rn).

Proof. We have to show thatFrn ⊂ B(−rned, rn). Let y ∈ Frn . We have that

‖y + rned‖2 = ‖y‖2 + r2
n + 2rn 〈y, ed〉 < ‖y‖2 + r2

n − rn ‖y‖ ≤ max(‖y‖2 , r2
n) ≤ r2

n.

Observe that ifx ∈ C(h1), then‖x − (α − ρ)ed‖2 ≤ α2 by Lemma2.4.10. Moreover, it
follows from Lemma2.4.12that‖x‖2 ≤ r2

n and‖x + rned‖2 ≤ r2
n . If y ∈ Frn , Lemma2.4.13

yields that‖y‖2 ≤ r2
n and‖y + rned‖2 ≤ r2

n.

Lemma 2.4.14.Letx, y ∈ Rd such that

i) ‖x‖2 ≤ r2
n, ‖x‖2 = −2rnxd,

ii) ‖y‖2 = r2
n, ‖y‖2 ≤ −2rnyd,

iii) x1y1 + . . . + xd−1yd−1 ≥ β
√

‖x‖2 − x2
d

√

‖y‖2 − y2
d, for anyβ ≥ 1/3.

Then,

‖x − y‖2 ≤ r2
n.

Proof. Let x andy be under the stated conditions.

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 〈x, y〉 = −2rnxd + r2
n − 2 〈x, y〉 = r2

n − 2 (〈x, y〉 + rnxd) .

We denoteE(x, y) = 〈x, y〉 + rnxd. Then,

‖x − y‖2 ≤ r2
n ⇔ E(x, y) ≥ 0.
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By iii), we obtain

E(x, y) = x1y1 + . . . + xd−1yd−1 + xdyd + rnxd

≥ β

√

‖x‖2 − x2
d

√

‖y‖2 − y2
d + xd(yd + rn)

= β
√

−2rnxd − x2
d

√

r2
n − y2

d + xd(yd + rn)

= β
√

2rnu − u2
√

2rnv − v2 − uv.

The last equality follows from the change of variables formula withu = −xd andv = yd + rn.
Now, i) yields

0 ≤ ‖x‖2 = −2rnxd ≤ r2
n

and hence0 ≤ u ≤ rn/2. Similarly, by ii)

‖y‖2 = r2
n ≤ −2rnyd

and, therefore,yd ≤ −rn/2. Moreover,‖y‖2 = r2
n yieldsy2

d ≤ r2
n and, in particular,yd ≥ −rn.

Finally,
−rn ≤ yd ≤ −rn/2.

Then,0 ≤ u ≤ rn/2 and0 ≤ v ≤ rn/2. By using thatβ ≥ 1/3 we complete the proof since

E(x, y) ≥ β
√

2rnu − u2
√

2rnv − v2 − uv

= β
√

u(2rn − u)
√

v(2rn − v) − uv

≥ β

√

u
3rn

2

√

v
3rn

2
− uv

= β
3rn

2

√
uv − uv

≥ rn

2

√
uv − uv

≥ √
uv

√
uv − uv

= 0.

Lemma 2.4.15.Letu ∈ W ⊂ Sd−1. For all x, y ∈ Qu we have that

x1y1 + . . . + xd−1yd−1 ≥ 1

2

√

‖x‖2 − x2
d

√

‖y‖2 − y2
d.

Proof. Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Qu. We denotex−d = (x1, . . . , xd−1)
and y−d = (y1, . . . , yd−1) the (d − 1)-dimensional vectors obtained after removing the last
component of the original vectors. Then

x1y1 + . . . + xd−1yd−1 = 〈x−d, y−d〉 = ‖x−d‖ ‖y−d‖ cos ϕx−d,y−d
.
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Sincex, y ∈ Qu, we have thatx−d, y−d ∈ Cu ⊂ Rd−1 and hence

cos ϕx−d,y−d
≥ cos(ϕx−d,u + ϕy−d,u) ≥ cos

π

3
=

1

2
.

The result is a straightforward consequence of‖x−d‖ =
√

‖x‖2 − x2
d. We complete the proof

of the lemma by applying the same arguments toy.

Note that the proof of Lemma2.4.15makes clear that the choice ofθ defining the setsQθ
u is,

in some sense, arbitrary. In fact, by proceeding in an analogous mannerwe can deduce a more
general result. For allx, y ∈ Qθ

u, with θ ≤ arccos(1/3)
2 we have that

x1y1 + . . . + xd−1yd−1 ≥ 1

3

√

‖x‖2 − x2
d

√

‖y‖2 − y2
d. (2.33)

Note that (2.33) is exactly the same as condition iii) of Lemma2.4.14. Even so, the choice
θ = π/6 is enough for our purposes.

Now we are ready to prove that the setsQu ∩ C(h1), with u ∈ W, satisfy the conditions to
form the familyUF

0,rn
we are trying to define for two reasons. First, theθ = π/6 is small enough

to guarantee that(Qu ∩ C(h1)) ⊂ B(y, rn) for all y ∈ Qu ∩ Frn , see Lemma2.4.16. Second,
the partition in (2.31) is such that all setsQu∩C(h1) with u ∈ W measure the same, see Lemma
2.4.17.

Lemma 2.4.16.Letu ∈ W ⊂ Sd−1. For all y ∈ Qu ∩ Frn ,

Qu ∩ C(h1) ⊂ B(y, rn).

Proof. Let y ∈ Qu ∩ Frn . We define

y∗ = rn
y

‖y‖ .

Therebyy∗ = (y∗1, . . . , y
∗
d) satisfies:

i) ‖y∗‖2 = r2
n.

ii) y∗ ∈ Frn .

iii) y∗ ∈ Qu.

Then, by i), ii) and Lemma2.4.13we deduce that‖y∗‖2 = r2
n and‖y∗‖2 ≤ −2rny∗d.

Let x ∈ Qu ∩ C(h1), with ‖x‖2 = −2rnxd. Figure2.25represents a setQu ∩ C(h1) in R3.
It follows from Lemma2.4.12that‖x‖2 ≤ r2

n. By the definition ofx and by iii) we have that
x, y∗ ∈ Qu and hence, by Lemma2.4.15, we can conclude that all the hypothesis of Lemma
2.4.14are fulfilled. Therefore,

‖x − y∗‖ ≤ rn.



2.4 DEFINING UNAVOIDABLE FAMILIES IN Rd 69

That is,y∗ ∈ B(x, rn) for all x ∈ Qu ∩C(h1), with ‖x‖2 = −2rnxd. Moreover, it follows from
Lemma2.4.12that0 ∈ B(x, rn) for all x ∈ Qu ∩ C(h1), with ‖x‖2 = −2rnxd. By using that
B(x, rn) is convex and that the pointy lies on the segment that joins 0 withy∗, we have that

y ∈ B(x, rn) for all x ∈ Qu ∩ C(h1) with ‖x‖2 = −2rnxd. (2.34)

Now, letx ∈ Qu ∩ C(h1) arbitrary. Then

x∗ =
x + rned

‖x + rned‖
rn − rned

satisfies:

i) ‖x∗‖2 = −2rnx∗
d.

ii) x∗ ∈ C(h1). To prove this note first that i) yieldsx∗ ∈ B(−rned, rn). Moreover,
〈x∗, ed〉 ≤ 0. The remainder of the proof consists of showing that〈x∗, ed〉 ≥ −h1. Thus,

〈x∗, ed〉 = 〈 x + rned

‖x + rned‖
rn − rned, ed〉 =

rn

‖x + rned‖
(〈x, ed〉 + rn) − rn.

Sincex ∈ C(h1), we have that‖x + rned‖ ≤ rn and hence rn
‖x+rned‖ ≥ 1. Moreover,

〈x, ed〉 + rn ≥ −h1 + rn ≥ 0. That is,

〈x∗, ed〉 ≥ 〈x, ed〉 + rn − rn = 〈x, ed〉 ≥ −h1.

iii) x∗ ∈ Qu. We need to show thatx∗
−d = (x∗

1, . . . , x
∗
d−1) ∈ Cu. By using that

x∗ =
x + rned

‖x + rned‖
rn − rned =

rn

‖x + rned‖
x +

(

r2
n

‖x + rned‖
− rn

)

ed,

we have that
x∗
−d =

rn

‖x + rned‖
x−d.

Sincex ∈ Qu,

〈

x∗
−d, u

〉

=
rn

‖x + rned‖
〈x−d, u〉

≥ rn

‖x + rned‖
‖x−d‖ cos

π

6

=
∥

∥x∗
−d

∥

∥ cos
π

6
.

Thenx∗ ∈ Qu ∩ C(h1) with ‖x∗‖2 = −2rnxd and by (2.34) we have thatx∗ ∈ B(y, rn) for
all y ∈ Qu ∩ Frn . It follows from Lemma2.4.13that−rned ∈ B(y, rn) for all y ∈ Qu ∩ Frn .
Moreover,x lies on the segment that joinsx∗ with −rned. In fact, we shall see thatx =
ax∗ − (1 − a)rned with a ∈ [0, 1]. By the definition ofx∗, it follows that

x =
‖x + rned‖

rn
x∗ −

(

1 − ‖x + rned‖
rn

)

rned,
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where

0 ≤ ‖x + rned‖
rn

≤ 1

asx ∈ C(h1). Finally, sinceB(y, rn) is convex, we have that

x ∈ B(y, rn) for all y ∈ Qu ∩ Frn .

To sum up, we have proved that

Qu ∩ C(h1) ⊂ B(y, rn) for all y ∈ Qu ∩ Frn .

This completes the proof of Lemma2.4.16.

Figure 2.25:Example of setQu ∩ C(h1) in R3.

We are now ready to complete the proof of Proposition2.4.4. In view of the previous results
we define the finite family

UF
0,rn

= {Qu ∩ C(h1), u ∈ W ⊂ Sd−1} .

Sincey ∈ Frn , there existsu ∈ W such thaty ∈ Qu ∩ Frn . Lemma2.4.16yieldsQu ∩
C(h1) ⊂ B(y, rn). Moreover,

C(h1) =
⋃

u∈W
Qu ∩ C(h1)

and, by appealing to Lemma2.4.9, we get

Lr
d−1
2

n ρ
d+1
2 ≤ µ(C(h1)) ≤

∑

u∈W
µ(C(h1) ∩ Qu). (2.35)

Next we prove that the setsQu ∩ C(h1) measure all the same, independently ofu ∈ W.

Lemma 2.4.17.For all u, v ∈ W,

µ(Qu ∩ C(h1)) = µ(Qv ∩ C(h1)).
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Proof. Let u, v ∈ W. Consider the orthogonal transformation

O−d : Rd−1 −→ Rd−1

such thatO−d(u) = v. Consider the function

O : Rd −→ Rd,

whereO(x) = O(x1, . . . , xd−1, xd) := (O−d(x−d), xd). The functionO is also an orthogonal
transformation. We have that

O(C(h1)) = C(h1). (2.36)

Let us first prove thatO(C(h1)) ⊂ C(h1). Consider the vectorO(x) with x ∈ C(h1). Then
O(x) ∈ B(−rned, rn), since

‖O(x) + rned‖2 = ‖O−d(x−d)‖2 + (xd + rn)2 = ‖x−d‖2 + (xd + rn)2 = ‖x + rned‖2 ≤ r2
n.

Moreover,−h1 ≤ 〈O(x), ed〉 ≤ 0, since〈O(x), ed〉 = xd andx ∈ C(h1) and henceO(x) ∈
C(h1). Next we prove thatC(h1) ⊂ O(C(h1)). Let x ∈ C(h1). We have thatx = O(O−1(x)),
whereO−1 denotes the inverse orthogonal transformation. We shall see thatO−1(x) ∈ C(h1).
First,O−1(x) ∈ B(−rned, rn) as

∥

∥O−1(x) + rned

∥

∥

2
=
∥

∥O−1
−d(x−d)

∥

∥

2
+(xd+rn)2 = ‖x−d‖2+(xd+rn)2 = ‖x + rned‖2 ≤ r2

n.

We have used thatO−1
−d, inverse ofO−d, is also an orthogonal transformation. Moreover−h1 ≤

〈

O−1(x), ed

〉

≤ 0 since
〈

O−1(x), ed

〉

= xd andx ∈ C(h1). ThenO−1(x) ∈ C(h1) and the
proof of (2.36) is complete.

Now, we see that
O(Qu) = Qv. (2.37)

Consider the vectorO(x) with x ∈ Qu. ThenO(x) = (O−d(x−d), xd), wherex−d =
(x1, . . . , xd−1) ∈ Cu. We have that

〈O−d(x−d), v〉 = 〈O−d(x−d),O−d(u)〉 = 〈x−d, u〉 ≥ ‖x−d‖ cos
π

6
= ‖O−d(x−d)‖ cos

π

6
,

and henceO(x) ∈ Qv. Let x ∈ Qv. We can writex = O(O−1(x)) = (O−1
−d(x−d), xd) and

〈

O−1
−d(x−d), u

〉

=
〈

O−1
−d(x−d),O−1

−d(v)
〉

= 〈x−d, v〉 ≥ ‖x−d‖ cos
π

6
=
∥

∥O−1
−d(x−d)

∥

∥ cos
π

6
.

We have used thatO−1
−d is also an orthogonal transformation. ThenO−1(x) ∈ Qu and hence

Qv ⊂ O(Qu). This completes the proof of (2.37).
Finally, givenu, v ∈ W, we have shown that there is an orthogonal transformationO such

that O(Qu ∩ C(h1)) = Qv ∩ C(h1). Since the measure remains invariant under orthogonal
transformations we get that

µ(Qu ∩ C(h1)) = µ (O (Qu ∩ C(h1))) = µ (Qv ∩ C(h1)) .
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Turning to equation (2.35) we can conclude that, for allu ∈ W,

µ (Qu ∩ C(h1)) ≥
1

mF Lr
d−1
2

n ρ
d+1
2 ,

wheremF represents the number of elements that formW. Lastly, by Lemma2.4.10it follows
that

Qu ∩ C(h1) ⊂ C(h1) ⊂ B((α − ρ)ed, α)

and

µ (Qu ∩ C(h1) ∩ B((α − ρ)ed, α)) = µ(Qu ∩ C(h1)) ≥ LFr
d−1
2

n ρ
d+1
2 ,

completing the proof of Proposition2.4.4.

We finish the proof of Proposition2.4.2by defining the family

U0,rn = UG
0,rn

∪ UF
0,rn

.

Then,
Ux,rn = {T (U), U ∈ U0,rn}

is a finite family withm2 = mG + mF elements satisfying that, for eachU ∈ U0,rn ,

PX(T (U)) ≥ δµ(T (U) ∩ B(PΓ x − αη, α)) = δµ(U ∩ B((α − ρ)ed, α)) ≥ L2r
d−1
2

n ρ
d+1
2 ,

whereL2 = δ min(LG , LF ).

2.5 Main results

The aim of this section is to present the achieved results on the consistency and convergence rate
of the estimatorSn defined in (2.3). The concept of unavoidable family, discussed in Sections
2.3and2.4 for the particular case ofR2 and the general case ofRd, respectively, plays a major
role in the development of this section. Propositions2.4.1and2.4.2and their counterparts in the
bidimensional case are the key results in deriving the convergence rate of E(dµ(S, Sn)), which
is given in Theorem2.5.2, the main result of this chapter. In Theorem2.5.3we show that the
obtained convergence rate cannot be improved. Finally, some general ideas about unavoidable
families will be particularly useful for proving the consistency of the estimator, established in
Theorem2.5.1, below.

Theorem 2.5.1. Let S ⊂ Rd be a nonemptyα-convex compact set withα > 0. Let X be
a random variable with probability distributionPX and densityf whose support isS. Let
Xn = {X1, . . . , Xn} be a random sample fromX and let{rn} be a sequence of positive terms
which do not depend on the sample such thatrn ≤ α. Then,

lim
n→∞

E(dµ(S, Sn)) = 0

if and only iflimn→∞ nrd
n = ∞.
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Proof. Recall that, according to the definition of the estimatorSn in (2.3) and by (2.4),

E(dµ(S, Sn)) = E(µ(S \ Sn)) =

∫

S
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx).

Let us first assume thatlimn→∞ nrd
n = ∞. We shall see that, for almost allx ∈ R,

lim
n→∞

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) = 0. (2.38)

Note that if (2.38) holds, then by the dominated convergence theorem

lim
n→∞

E(dµ(S, Sn)) = lim
n→∞

∫

S
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx)

=

∫

S
lim

n→∞
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx)

= 0. (2.39)

For eachx ∈ S let us consider the familyUx,rn = {Uu
x,rn

, u ∈ W}, whereW is the finite family
of unit vectors given by Lemma2.4.2for θ = π/6 and for eachu ∈ W, Uu

x,rn
= {x}⊕Cu,rn is

the translation of the setCu,rn by x. ThenUx,rn is a finite unavoidable family forEx,rn as can be
deduced from Lemmas2.4.2, 2.4.3and2.4.4. Denote bym the number of sets ofUx,rn , which
coincides with the number of unit vectors ofW. Then, using the same argument as in (2.6) we
have that

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≤
∑

u∈W
(1 − PX(Uu

x,rn
))n. (2.40)

In order to give a lower bound forPX(Uu
x,rn

) in (2.40) it will be useful following general version
of the Lebesgue density theorem. SeeDevroye(1983) for the proof of the lemma.

Lemma 2.5.1(Lebesgue density theorem,Devroye(1983)). If f is a density inRd andA is a
compact set ofRd with µ(A) > 0, then

lim
h→0

1

µ(hA)

∫

{x}⊕hA
f(y)dy = f(x), almost allx.

Lemma2.5.1gives us the key to bounding the probability of small compact sets in a neigh-
bourhood of the pointx, from the value of the density inx and the Lebesgue measure of the set.
Thus, let us consider the compact setCu,1 andh > 0. We have that

{x} ⊕ hCu,1 = {x} ⊕ Cu,h = Uu
x,h.

It follows from Lemma2.5.1that for almost allx, there existshx such that for allh ≤ hx we
have

PX(Uu
x,h) =

∫

Uu
x,h

f(y)dy ≥ f(x)

2
µ(Cu,h). (2.41)

For eachn ∈ N let hn ≡ hn,x = min(rn, hx). ThenUu
x,hn

⊂ Uu
x,rn

and we can apply (2.41) to
conclude that

PX(Uu
x,rn

) ≥ PX(Uu
x,hn

) ≥ f(x)

2
µ(Cu,hn) ≥ f(x)

2

µ(B(0, hn))

m
=

f(x)

2

wdh
d
n

m
= Lxhd

n,
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where, ifx ∈ S, Lx = f(x)wd

2m > 0. Returning to (2.40) we have

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≤ m(1 − Lxhd
n)n ≤ me−nLxhd

n .

The last inequality follows from the fact that(1 − z)n ≤ e−nz, for z ∈ [0, 1]. Note that we can
guarantee thatLxhd

n ≤ 1 sinceLxhd
n ≤ PX(Uu

x,rn
). Then

lim
n→∞

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≤ lim
n→∞

me−nLxhd
n .

Finally, the definition ofhn and the assumptionlimn→∞ nrd
n = ∞ yield limn→∞ nLxhd

n = ∞.
As a consequence,

lim
n→∞

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) = 0, for almost allx ∈ S,

which yields (2.39).
We now prove the converse assertion. Thus, let us assume thatlimn→∞ E(dµ(S, Sn)) = 0.

Note that

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≥ P (B(x, rn) ∩ Xn = ∅)
= (1 − PX(B(x, rn)))n. (2.42)

If the sequence{nrd
n} does not converge to infinity asn → ∞, then we may find a bounded

subsequence{nkr
d
nk
}. Therefore, there existsM > 0 such thatnkr

d
nk

≤ M for all nk and as an
immediate consequencelimk→∞ rd

nk
= 0. In this case Lemma2.5.1ensures that, for almost all

x, for large enoughk,

PX(B(x, rnk
)) =

∫

B(x,rnk
)
f(y)dy ≤ 2f(x)µ(B(0, rnk

)) = 2f(x)wdr
d
nk

= Lxrd
nk

, (2.43)

where nowLx = 2f(x)wd. In order to simplify the notation let

Ψn(x) = P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)

and consider the subsequence{Ψnk
(x)}. We now combine (2.42) and (2.43) to get

lim inf
k→∞

Ψnk
(x) ≥ lim inf

k→∞
(1 − PX(B(x, rnk

)))nk

≥ lim inf
k→∞

(1 − Lxrd
nk

)nk

≥ lim inf
k→∞

exp

(

−nkLxrd
nk

1 − Lxrd
nk

)

≥ e−LxM . (2.44)

We have used that(1 − z)n ≥ exp(−nz/(1 − z)) for z ∈ [0, 1). The case whenz = 0 is
straightforward and forz ∈ (0, 1) write (1 − z)n = exp(n log(1 − z)) and use the fact that
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log(1 − z) > −z/(1 − z). The last inequality holds sincelimk→∞ rd
nk

= 0 and{nkr
d
nk
} is

bounded byM . By the Fatou’s Lemma and (2.44) we obtain

lim
k→∞

E(dµ(S, Snk
)) = lim

k→∞

∫

S
Ψnk

(x)µ(dx)

= lim inf
k→∞

∫

S
Ψnk

(x)µ(dx) ≥
∫

S
lim inf
k→∞

Ψnk
(x)µ(dx) > 0,

which is a contradiction since we are assuming thatlimn→∞ E(dµ(S, Sn)) = 0 and hence every
subsequence ofE(dµ(S, Sn)) must also converge to zero. So, the sequence{nrd

n} must converge
to infinity and this concludes the proof of the theorem.

Remark 2.5.1. By definition,dµ(S, Sn) = µ(S \ Sn) + µ(Sn \ S). Theα-convexity assump-
tion of Theorem2.5.1ensures thatSn ⊂ S and, therefore,µ(Sn \S) = 0. Anyway, if the setS is
not assumed to beα-convex, a similar consistency result can be stated under an extra condition
on the parameterrn. It can be proved that, if{rn} is a sequence of positive terms such that
limn→∞ rn = 0 and limn→∞ nrd

n = ∞, thenlimn→∞ E(dµ(S, Sn)) = 0. Without going into
details, the proof follows easily from

E(dµ(S, Sn)) = E(µ(S \ Sn)) + E(µ(Sn \ S)). (2.45)

Note that the first term in the right-hand side of (2.45) was studied in Theorem2.5.1and that
theα-convexity assumption is not needed to guarantee thatlimn→∞ E(µ(S \ Sn)) = 0 for a
compact setS. For the second term in the right-hand side of (2.45) we haveE(µ(Sn \ S)) ≤
µ(S ⊕ rnB) − µ(S) since, with probability one,Sn ⊂ (S ⊕ rnB). The Lebesgue dominated
convergence theorem ensures thatlimn→∞ µ(S ⊕ rnB) = µ(S) if limn→∞ rn = 0.

Having obtained the consistency of the estimator, we now focus on the convergence rate
of E(dµ(S, Sn)). As mentioned in Chapter1, Rodríguez-Casal(2007) obtains, under similar
conditions onS, the almost sure convergence rate ofdµ(S, Sn). A more detail comparison of
these results is given in Remark2.5.2, after the statement Theorem2.5.2, below.

Theorem 2.5.2.Let S be a nonempty compact subset ofRd such that a ball of radiusα > 0
rolls freely inS and inSc. Let X be a random variable with probability distributionPX and
supportS. We assume that the probability distributionPX satisfies that there existsδ > 0 such
that PX(C) ≥ δµ(C ∩ S) for all Borel subsetC ⊂ Rd. LetXn = {X1, . . . , Xn} be a random
sample fromX and let{rn} be a sequence of positive numbers which do not depend on the
sample such thatrn ≤ α. If the sequence{rn} satisfies

lim
n→∞

nrd
n

log n
= ∞, (2.46)

then

E(dµ(S, Sn)) = O

(

r
− d−1

d+1
n n− 2

d+1

)

. (2.47)
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Remark 2.5.2. Rodríguez-Casal(2007) proves that, ifS is under the conditions of Theo-
rem 1.4.1 and {rn} is a sequence of positive numbers satisfying (2.46), then dµ(S, Sn) =
O(r−1

n (log n/n)2/(d+1)), almost surely. The convergence rate ofE(dµ(S, Sn)) obtained in The-
orem2.5.2is, therefore, faster than the almost sure convergence rate ofdµ(S, Sn). Note that

the logarithmic term vanishes in (2.47). Moreover, the penalty factorr−(d−1)/(d+1)
n is asymptot-

ically smaller thanr−1
n .

Proof. Recall that, if we define for eachx ∈ S a familyUx,rn unavoidable and finite forEx,rn ,
then

E(dµ(S, Sn)) =

∫

S
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx)

≤
∫

S

∑

U∈Ux,rn

(1 − PX(U))nµ(dx)

≤
∫

S

∑

U∈Ux,rn

exp(−nPX(U))µ(dx).

The last inequality follows by applying that(1 − z)n ≤ e−nz, for z ∈ [0, 1]. We divideS into
two subsets

S =
{

x ∈ S : d(x, ∂S) >
rn

2

}

∪
{

x ∈ S : d(x, ∂S) ≤ rn

2

}

and then

E(dµ(S, Sn)) ≤
∫

S

∑

U∈Ux,rn

exp(−nPX(U))µ(dx)

=

∫

{x∈S: d(x,∂S)> rn
2 }

∑

U∈Ux,rn

exp(−nPX(U))µ(dx)

+

∫

{x∈S: d(x,∂S)≤ rn
2 }

∑

U∈Ux,rn

exp(−nPX(U))µ(dx). (2.48)

For thosex ∈ S such thatd(x, ∂S) > rn/2 we make use of the familiesUx,rn given in Propo-
sition 2.4.1. Recall that Proposition2.4.1ensures the existence of suitable finite familiesUx,rn

and provides a lower bound on the probability of the setsU , independent ofx. Thus,

∫

{x∈S: d(x,∂S)> rn
2 }

∑

U∈Ux,rn

exp(−nPX(U))µ(dx)

≤
∫

{x∈S: d(x,∂S)> rn
2 }

m1 exp(−nL1r
d
n)µ(dx)

= O
(

e−L1nrd
n

)

, (2.49)
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wherem1 denotes the finite number of elements ofUx,rn . Note thatm1 is also independent of
x. Now, for thosex ∈ S such thatd(x, ∂S) ≤ rn/2, we may consider the unavoidable families
Ux,rn given in Proposition2.4.2. Let m2 be the number of elements ofUx,rn . We have that

∫

{x∈S: d(x,∂S)≤ rn
2 }

∑

U∈Ux,rn

exp(−nPX(U))µ(dx)

≤
∫

{x∈S: d(x,∂S)≤ rn
2 }

m2 exp

(

−L2nr
d−1
2

n d(x, ∂S)
d+1
2

)

µ(dx)

=

∫

T −1([0,rn/2])
g(T (x))µ(dx),

whereT : S → R is defined asT (x) = d(x, ∂S) andg(z) = m2 exp(−L2nr
d−1
2

n z
d+1
2 ). It

follows from the change of variables formula (see Theorem 16.12 ofBillingsley (1995)) that
∫

T −1([0,rn/2])
g(T (x))µ(dx) =

∫

[0,rn/2]
g(ρ)µT −1(dρ)

whereρ = T (x) andµT −1 is the measure onR defined by

µT −1(A) = µ(T −1(A)),

for A ⊂ R. The measureµT −1 is characterized by

F (z) = µ{x ∈ S : d(x, ∂S) ≤ z}.
Under the stated conditions it can be proved that, for0 ≤ z < α, F (z) is a polynomial of degree
at mostd in z, seeFederer(1959). Therefore, it is a differentiable function andF ′(z) is bounded
on compact sets. In short, we obtain

∫

[0,rn/2]
g(ρ)µT −1(dρ)

=

∫

[0,rn/2]
m2 exp

(

−L2nr
d−1
2

n ρ
d+1
2

)

F ′(ρ)dρ

≤ K

∫ rn
2

0
m2 exp

(

−L2nr
d−1
2

n ρ
d+1
2

)

dρ

= K

∫

L2n

2(d+1)/2
rd
n

0
m2

1
d+1
2 L

2/(d+1)
2

r
− d−1

d+1
n n− 2

d+1 e−vv
1−d
d+1 dv

= O

(

r
− d−1

d+1
n n− 2

d+1

)

, (2.50)

where we have used the change of variables formulav = L2nr
d−1
2

n ρ
d+1
2 and also the fact that

∫∞
0 e−vv

1−d
d+1 dv < ∞. Turning to the computation ofE(dµ(S, Sn)) in (2.48), it follows from

(2.49) and (2.50) that

E(dµ(S, Sn)) = O

(

e−L1nrd
n + r

− d−1
d+1

n n− 2
d+1

)

. (2.51)
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Now if (2.46) holds, then for allM > 0 there existsN ∈ N such that

nrd
n ≥ M log n,

for all n ≥ N and hence
e−L1nrd

n ≤ e−L1M log n = n−L1M .

As a consequence

lim sup
n→∞

e−L1nrd
n

r
− d−1

d+1
n n− 2

d+1

≤ lim sup
n→∞

n−L1M

r
− d−1

d+1
n n− 2

d+1

= lim sup
n→∞

r
d−1
d+1
n n( 2

d+1
−L1M) = 0, (2.52)

for large enoughM . Remember thatrn is bounded (rn ≤ α by assumption). We now combine
(2.51) and (2.52) to obtain

E(dµ(S, Sn)) = O

(

e−L1nrd
n + r

− d−1
d+1

n n− 2
d+1

)

= O

(

r
− d−1

d+1
n n− 2

d+1

)

,

which completes the proof.

Finally, next lemma shows that the obtained rate in Theorem2.5.2cannot be improved since
there exist sets under the stated conditions for which

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Sn)) > 0.

Theorem 2.5.3.Under the conditions of Theorem2.5.2, there exist setsS for which

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Sn)) > 0.

Proof. Let S = B(0, α) and assume that the distributionPX is uniform onS. Our aim is to find
a lower bound forE(dµ(S, Sn)). Thus,

E(dµ(S, Sn)) =

∫

S
P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx)

≥
∫

{x∈S: d(x,∂S)≤ rn
2 }

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅)µ(dx).

For eachx ∈ S such thatd(x, ∂S) ≤ rn/2 let η = x/ ‖x‖ and

x̃ = (α + rn − d(x, ∂S))η = (‖x‖ + rn)η. (2.53)

In Figure2.26we show an example of the definition ofx̃ in the particular case ofR2. Note that
x̃ ∈ B(x, rn) and hence

P (∃y ∈ B(x, rn) : B(y, rn) ∩ Xn = ∅) ≥ P (B(x̃, rn) ∩ Xn = ∅) = (1 − PX(B(x̃, rn)))n.
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b

b

x

x̃

η

B(0, α)

B(x̃, rn)

Figure 2.26:Givenx ∈ B(0, α) such thatd(x, ∂S) ≤ rn/2, we definẽx = (α+rn−d(x, ∂S))η.

In short,

E(dµ(S, Sn)) ≥
∫

{x∈S: d(x,∂S)≤ rn
2 }

(1 − PX(B(x̃, rn)))nµ(dx), (2.54)

wherex̃ is given by (2.53). First we shall see thatPX(B(x̃, rn)) ≤ 1/2. Remember that, under
the assumption of the uniform distribution onS, we have

PX(B(x̃, rn)) =
µ(B(x̃, rn) ∩ S)

µ(S)
. (2.55)

Let us consider an orthogonal transformationO : Rd → Rd such thatO(η) = −ed. Then

O(B(x̃, rn) ∩ S) = B(−(α + rn − d(x, ∂S))ed, rn) ∩ B(0, α).

It is easy to see that

B(−(α + rn − d(x, ∂S))ed, rn) ⊂ {z ∈ Rd : 〈z, ed〉 ≤ 0}

and, since the Lebesgue measure is invariant under orthogonal transformations, we have

µ(B(x̃, rn) ∩ S) = µ(B(−(α + rn − d(x, ∂S))ed, rn) ∩ B(0, α))

≤ µ({z ∈ Rd : 〈z, ed〉 ≤ 0} ∩ B(0, α))

=
1

2
µ(B(0, α)). (2.56)

Combine (2.55) and (2.56) to get

PX(B(x̃, rn)) ≤ 1

2
. (2.57)
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We return to (2.54) to obtain that

E(dµ(S, Sn)) ≥
∫

{x∈S: d(x,∂S)≤ rn
2 }

(1 − PX(B(x̃, rn)))nµ(dx)

≥
∫

{x∈S:d(x,∂S)≤rn/2}
exp

( −nPX(B(x̃, rn))

1 − PX(B(x̃, rn))

)

µ(dx)

≥
∫

{x∈S:d(x,∂S)≤rn/2}
exp (−2nPX(B(x̃, rn))) µ(dx). (2.58)

We have used again the fact that(1 − z)n ≥ exp(−nz/(1 − z)) for z ∈ [0, 1) together with
(2.57). In view of (2.58) we need again an upper bound forPX(B(x̃, rn)). The bound in
(2.57) will be now too rough for our purposes and so we shall see that it can be sharpened.
Let us now consider the composed function formed by first applying the previous orthogonal
transformationO : Rd → Rd such thatO(η) = −ed and then applying the translation by the
vector(α − d(x, ∂S))ed, see Figure2.27. Using again that the Lebesgue measure is invariant
under orthogonal transformations and translations we have that

µ(B(B(x̃, rn) ∩ S)) = µ(B(−rned, rn) ∩ B((α − d(x, ∂S))ed, α)).

The setB(−rned, rn) ∩ B((α − d(x, ∂S))ed, α) is the intersection of two balls with radiusrn

b

b

x

x̃

η

B(0, α)

B(x̃, rn)

bO(x̃)

−e2

B(0, α)

h2
h1

b

b

B(−rne2, rn)

−→O −→⊕{(α − d(x, ∂S))e2}
(a) (b) (c)

Figure 2.27:(a)B(x̃, rn)∩S. (b) Result of applying an orthogonal transformationO : R2 → R2

such thatO(η) = −e2. (c) Translation by the vector(α − d(x, ∂S))e2. In blackA(h2) and in
grayC(h1).

andα such that the distance between their centres is equal toα+ rn − d(x, ∂S). Recall that this
set appeared for the first time in Proposition2.4.4. Following the notation used previously,

B(−rned, rn) ∩ B((α − d(x, ∂S))ed, α) = C(h1) ∪ A(h2),

whereC(h1) is given by (2.29) and

A(h2) = {z ∈ Rd : −(h1 + h2) ≤ 〈z, ed〉 ≤ −h1} ∩ B((α − d(x, ∂S))ed, α).
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Recall that the values ofh1 andh2 were easily deduced from the Pythagorean theorem by solving
the system







(rn − h1)
2 + λ2 = r2

n,
(α − h2)

2 + λ2 = α2,
h1 + h2 = d(x, ∂S).

Thus,

h1 =
d(x, ∂S)(2α − d(x, ∂S))

2(α + rn − d(x, ∂S))
, h2 =

d(x, ∂S)(2rn − d(x, ∂S))

2(α + rn − d(x, ∂S))
.

SinceC(h1) andA(h2) are disjoint, up to a zero measure set, we have

µ(B(−rned, rn) ∩ B((α − d(x, ∂S))ed, α)) = µ(C(h1)) + µ(A(h2)). (2.59)

First, in order to find an upper bound in (2.59), we shall see thatµ(A(h2)) ≤ µ(C(h1)). It can
be easily proved thatµ(A(h2)) = µ(A0(h2)), where

A0(h2) = {z = (z1, . . . , zd) ∈ Rd : 0 ≤ 〈z, ed〉 ≤ h2} ∩ B(−(α − h2)ed, α).

Note thatA0(h2) is obtained after applying an orthogonal transformation and a translation to
A(h2). Using a similar argument as in the proof of Lemma2.4.9let 0 ≤ l ≤ h2 and define the
set

A0(h2, l) = {z = (z1, . . . , l) ∈ Rd : z ∈ A0(h2)}.

Then

µ(A0(h2)) =

∫ h2

0
µd−1(A0(h2, l))dl

whereµd−1 denotes the (d − 1)-dimensional Lebesgue measure andA0(h2, l) refers to the
(d − 1)-dimensional sphere with centreled and radiuss(l), being

s(l) =
√

α2 − (α − h2 + l)2.

Therefore,

µ(A(h2)) = ωd−1

∫ h2

0
s(l)d−1dl. (2.60)

Recall from Lemma2.4.9that

µ(C(h1)) = ωd−1

∫ h1

0
r(l)d−1dl, (2.61)

wherer(l) =
√

r2
n − (rn − h1 + l)2, for 0 ≤ l ≤ h1. In view of (2.60) and (2.61) and since

h2 ≤ h1, if we are able to prove thats(l) ≤ r(l) for 0 ≤ l ≤ h2, then

µ(A(h2)) = ωd−1

∫ h2

0
s(l)d−1dl ≤ ωd−1

∫ h2

0
r(l)d−1dl ≤ ωd−1

∫ h1

0
r(l)d−1dl = µ(C(h1)).
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As r(l) ≥ 0 ands(l) ≥ 0 it suffices to show thats(l)2 ≤ r(l)2 or, equivalently,r(l)2−s(l)2 ≥ 0.
By constructionr(0)2 = s(0)2 = λ2. and an easy computation shows thatr(l)2 − s(l)2 is an
increasing function. Indeed,

r(l)2 − s(l)2 = 2l(α − rn + h1 − h2) + (h2
2 − h2

1 + 2rnh1 − 2αh2) (2.62)

and the derivative of (2.62) with respect tol satisfies

2(α − rn + h1 − h2) ≥ 0,

sincern ≤ α andh2 ≤ h1. Therefores(l) ≤ r(l) for 0 ≤ l ≤ h2 andµ(A(h2)) ≤ µ(C(h1)).
Now. if we return to the equation (2.59), we get

µ(B(x̃, rn) ∩ S) ≤ 2µ(C(h1)). (2.63)

We will thus concentrate onC(h1). Lemma2.4.9provided a lower bound for the measure of
C(h1). However, we now need an upper bound forµ(C(h1)). Proceed as in the proof of Lemma
2.4.9to get

µ(C(h1)) = ωd−1

∫ h1

0

(

2rnt − t2
)

d−1
2 dt,

see (2.30). It is immediate that2rnt − t2 ≤ 2rnt, for 0 ≤ t ≤ h1 and hence

µ(C(h1)) ≤ ωd−1

∫ h1

0
(2rnt)

d−1
2 dt =

ωd−1

d + 1
2

d+1
2 r

d−1
2

n h
d+1
2

1 .

Sinceh1 ≤ d(x, ∂S), we have

µ(C(h1)) ≤
ωd−1

d + 1
2

d+1
2 r

d−1
2

n d(x, ∂S)
d+1
2 . (2.64)

Combine (2.63) and (2.64) to obtain

µ(B(x̃, rn) ∩ S) ≤ ωd−1

d + 1
2

d+3
2 r

d−1
2

n d(x, ∂S)
d+1
2 .

As a consequence,

PX(B(x̃, rn)) ≤ 1

µ(S)

ωd−1

d + 1
2

d+3
2 r

d−1
2

n d(x, ∂S)
d+1
2 = Lr

d−1
2

n d(x, ∂S)
d+1
2 .

Finally, if we apply the latter bound to (2.58), then we have that

E(dµ(S, Sn)) ≥
∫

{x∈S:d(x,∂S)≤rn/2}
exp

(

−2nLr
d−1
2

n d(x, ∂S)
d+1
2

)

µ(dx)

=

∫

T −1([0,rn/2])
g(T (x))µ(dx),
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whereT : S → R is defined asT (x) = d(x, ∂S) andg(z) = exp(−2nLr
d−1
2

n z
d+1
2 ). By the

change of variables formula (see Theorem 16.12 ofBillingsley (1995))
∫

T −1([0,rn/2])
g(T (x))µ(dx) =

∫

[0,rn/2]
g(ρ)µT −1(dρ)

whereρ = T (x) andµT −1 is the measure onR defined by

µT −1(A) = µ(T −1(A)),

for A ⊂ R. The measureµT −1 is characterized by

F (z) = µ{x ∈ S : d(x, ∂S) ≤ z}.

We know fromFederer(1959) thatF (z) is a polynomial of degree at mostd in z. In fact, in this
particular case, forz < α, F (z) = ωd(α

d − (α − z)d). ThereforeF is differentiable and

E(dµ(S, Sn)) ≥
∫

[0,rn/2]
g(ρ)µT −1(dρ)

=

∫ rn/2

0
exp

(

−2nLr
d−1
2

n ρ
d+1
2

)

F ′(ρ)dρ

=

∫ rn/2

0
exp

(

−2nLr
d−1
2

n ρ
d+1
2

)

ωdd(α − ρ)d−1dρ.

It is immediate to show that for0 ≤ ρ ≤ rn/2 the functionF ′(ρ) = ωdd(α−ρ)d−1 is decreasing
with F ′(ρ) ≥ F ′(rn/2) = ωdd(α − rn/2)d−1 ≥ ωdd(α/2)d−1. Therefore

E(dµ(S, Sn)) ≥
∫ rn/2

0
exp

(

−2nLr
d−1
2

n ρ
d+1
2

)

ωdd
(α

2

)d−1
dρ

= ωdd
(α

2

)d−1
∫ 2nL

2(d+1)/2
rd
n

0

1
d+1
2 (2L)2/(d+1)

r
− d−1

d+1
n n− 2

d+1 e−vv
1−d
d+1 dv

= ωdd
(α

2

)d−1 1
d+1
2 (2L)2/(d+1)

r
− d−1

d+1
n n− 2

d+1

∫ 2nL

2(d+1)/2
rd
n

0
e−vv

1−d
d+1 dv.

We have used the change of variables formula withv = 2nLr
d−1
2

n ρ
d+1
2 . Therefore

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Sn)) ≥ lim inf

n→∞
ωdd (α/2)d−1

d+1
2 (2L)2/(d+1)

∫ 2nL

2(d+1)/2
rd
n

0
e−vv

1−d
d+1 dv.

Sincenrd
n → ∞, we have

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Sn)) ≥ ωdd (α/2)d−1

d+1
2 (2L)2/(d+1)

∫ ∞

0
e−vv

1−d
d+1 dv > 0.

This completes the proof of the theorem.
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Remark 2.5.3. We conjecture that

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Sn)) > 0

for any setS under the conditions of Theorem2.5.2. The proof relies on the following “local
convexity” property, which we thinkS fulfills. We say thatS is “locally convex” in B(s, τ)∩∂S
for s ∈ ∂S andτ > 0 if there existsε > 0 such that for allt ∈ B(s, τ)∩ ∂S, the setB(t, ε)∩S
is contained in the halfspace{x ∈ Rd : 〈x − t, η(t)〉 ≤ 0}. Note that this local convexity
property holds for anys ∈ ∂S, τ > 0, andε > 0 whenS is a ball of radiusα as in Theorem
2.5.3.



Chapter 3

Surface area estimation

3.1 Introduction

The surface area estimation problem was briefly introduced in Chapter1. In this chapter we pro-
pose an in-depth study of a new estimator for the surface area, based onthe notion of Minkowski
content and on theα-convexity assumption. We have structured this chapter as follows. In Sec-
tion 3.2 we introduce the estimatorLn along with a brief discussion of the sampling model
and the assumptions. In Section3.3 the asymptotic behaviour of the proposed estimator is
analysed. More precisely, the almost sure convergence rate and theL1-convergence rate are
provided in Subsections3.3.1and3.3.2, respectively. The results in Chapter2 will be useful in
order to derive theL1-convergence rate. The results in Subsection3.3.1can be also found in
Pateiro-López and Rodríguez-Casal(2008), accepted for its publication in Advances in Applied
Probability.

3.2 The sampling model and the estimator

As has been argued, the notion of Minkowski content serves us as starting point for defining a
suitable surface area estimator. The assumptions of the model are motivated by its definition.
Thus, letG be a nonempty compact set inRd and assume, without lost of generality, thatG ⊂
(0, 1)d. The Minkowski content ofG, recall Definition1.5.4, is given by

L0 ≡ L0(G) = lim
ε→0

µ(B(∂G, ε))

2ε
= lim

ε→0
L(ε), (3.1)

provided that this limit exists and is finite, being

L(ε) =
µ(B(∂G, ε))

2ε
. (3.2)

Note thatB(∂G, ε) in (3.2) represents the closedε-neighbourhood of the boundary∂G and
that, in order to estimateB(∂G, ε), it would be desirable to have information from bothG and
R = [0, 1]d \ int(G) since∂G is somewhere in between points of the set and points of its com-
plement. For this reason the sampling information is assumed to be given by i.i.d. observations

85
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(Z1, ξ1), . . . , (Zn, ξn) of a random variable(Z, ξ), whereZ is uniformly distributed on the unit
square[0, 1]d andξ = I{Z∈G}. Let us denote byPX andPY the conditional distributions of the
observations inG and inR, that is, the distributions ofX = Z|{ξ = 1} andY = Z|{ξ = 0},
respectively. It is not difficult to prove thatPX andPY are both uniform onG andR, respec-
tively. Let {εn} be a deterministic sequence of positive numbers which converges to zero as n
tends to infinity. We propose to estimateL0 by means of

Ln =
µ(Γn)

2εn
, (3.3)

beingΓn an estimator ofB(∂G, εn). We saw in Chapter1 that the problem of estimatingL0

can be tackled as a problem of set estimation, since, assuming the mild conditionint(G) = G,
B(∂G, εn) can be written as the intersectionB(G, εn)∩B(R, εn). Thus, ifGn andRn estimate
G andR, respectively, then

Γn = B(Gn, εn) ∩ B(Rn, εn) (3.4)

estimatesB(∂G, εn). Continuing with the theme ofα-convexity discussed in Chapter2, this
chapter deals with the case whereG andR are bothα-convex. In this situation we propose
to estimateG andR by means of theα-convex hull of the samplesXn = {Zi : ξi = 1} and
Yn = {Zi : ξi = 0}, respectively. Therefore, let

Gn = Cα(Xn) = (Xn ⊕ αB̊) ⊖ αB̊, (3.5)

Rn = Cα(Yn) = (Yn ⊕ αB̊) ⊖ αB̊, (3.6)

and letΓn be the estimator obtained after replacing (3.5) and (3.6) in (3.4). Thus, the estimator
Ln in (3.3) is now completely defined. Before proceeding to the analysis of the properties of
Ln, it is convenient to make some comments on its definition. First,Gn andRn in (3.5) and
(3.6) do not coincide exactly with the set estimators studied in Chapter2, see (2.3) where the
estimator with closed balls was defined. Anyway, remember that in AppendixB we prove that,
with probability one, both definitions are equivalent and hence, it makes nodifference whether
we consider the estimator defined with open or closed balls. Considering (2.3) helped us to
obtain the theoretical properties of theα-convex hull estimator and for that reason we used it
in Chapter2. However, in the case ofLn the definition in (2.3) does not facilitate the proofs
and we have decided to work with (3.5) and (3.6) since they reliably reproduce the definition of
α-convex hull. Anyway, we recall here LemmaB.0.9since we will refer to it when computing
E(Ln).

Second, in view of (3.2) we would like to make a remark on the behaviour of the function
µ(B(∂G, ε)). In Chapter1 we commented thatFederer(1959) provides a generalization of the
Steiner’s formula for sets with positive reach. There, it is established thatthe d-dimensional
measure of the closedε-neighbourhood of a set with positive reach inRd can be expressed as
a polynomial of degree at mostd in ε. The positive reach of a set is closely related to the free
rolling condition. In AppendixB we prove that ifG is a nonempty closed set inRd such that a
ball of radiusα > 0 rolls freely inG and inGc, then∂G has positive reach. Therefore, under this
rolling condition we may use Federer’s theorem to conclude thatµ(B(∂G, ε)) coincides locally
with a polynomial of degree at mostd in ε. From the Lebesgue density theorem and the rolling
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condition it can be proved thatµ(∂G) = 0. It follows from this fact and from the polynomial
representation ofµ(B(∂G, ε)) that the limit in (3.2) exists and, as a consequence, the coefficient
of ε in the polynomial must coincide with2L0. This property has useful implications. For
example, we can conclude that|L(εn) − L0| = O(εn).

Finally, we would like to note thatG andR do not play completely interchangeable roles
even though they are bothα-convex. In AppendixA we list some useful results under the
assumption thatG is a nonempty closed set such that a ball of radiusα rolls freely inG and in
Gc. In LemmaA.0.4 we prove that in those resultsG can be replaced byGc. However, it is
important to emphasize thatR is not equal toGc. For example, we cannot ensure that a ball of
radiusα rolls freely inR, see Figure3.1. Note that∂R does not coincide with∂G, since it also
includes the boundary of[0, 1]d. Even so, Assumption (A1) in page16 applied to the setG will
be enough for our purposes.

α

G

[0, 1]2

Figure 3.1:G in green andR in red are bothα-convex. A ball of radiusα rolls freely inG and
in Gc. A ball of radiusα does not roll freely inR.

3.3 Asymptotic behaviour ofLn

In this section we present the main results regarding the behaviour of the estimatorLn defined
in (3.2) with Gn andRn as given in (3.5) and (3.6). First, we proof Theorem3.3.1, which gives
the almost sure rate of convergence ofLn to L0. Under the same conditions, Theorem3.3.2
gives us theL1-convergence rate ofLn. From now on and for the sake of simplicity, we use the
notationΓ = ∂G.

3.3.1 Almost sure convergence rate

Theorem 3.3.1.LetG ⊂ (0, 1)d be a nonempty compact set. Assume that a ball of radiusα > 0
rolls freely inG and inGc. Then, with probability one,

inf
εn

|Ln − L0| = O

(

log n

n

)
1

d+1

,
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and the optimal order is attained forεn = (log n/n)1/(d+1).

Remark 3.3.1. In Cuevas et al.(2007) a similar estimator to the one studied here is proposed.
There, it is considered the estimatorLn defined in (3.2) with Gn = Xn andRn = Yn. Its almost
sure consistency andL1-convergence rate are provided, but not the almost sure convergence
rate. In order to compare both estimators we refer to Theorem3.3.2where theL1-convergence
rate for the estimator proposed in this chapter is provided.

Proof. We follow the ideas of the proof of Theorem 3 inRodríguez-Casal(2007). The proof
is based on Propositions3.3.1, 3.3.2 and 3.3.3. Proposition3.3.1 establishes that ifΓ ⊂
B(ZX

n , 2̺n) ∩ B(ZY
n , 2̺n), whereZX

n = {Zi ∈ Xn : d(Zi, Γ ) ≤ ̺2
n} andZY

n = {Zi ∈ Yn :
d(Zi, Γ ) ≤ ̺2

n}, thenB(Γ, εn)\Γn is contained in the discDn = B(Γ, εn) \ B(Γ, εn − K̺2
n)

for large enoughK. Proposition3.3.2relies onµ(Dn) = O(̺2
n) to find a bound for|Ln − L0|

depending only onεn and̺n. Finally, in Proposition3.3.3we determine the order of̺n for
which, with probability one, we have thatΓ ⊂ B(ZX

n , 2̺n) ∩ B(ZY
n , 2̺n) for large enoughn,

that is,̺n satisfies

P
(

Γ ⊂ B(ZX
n , 2̺n) ∩ B(ZY

n , 2̺n) eventually
)

= 1.

Theorem3.3.1is a straightforward consequence of these three results.

Proposition 3.3.1. Let G be a set under the conditions of Theorem3.3.1. Then the following
results hold.

i) With probability one,Γn ⊂ B(Γ, εn).

ii) Let us assume that̺n → 0 satisfies̺ 2
nε−1

n → 0 and that

P
(

Γ ⊂ B(ZX
n , 2̺n) ∩ B(ZY

n , 2̺n) eventually
)

= 1,

whereZX
n = {Zi ∈ Xn : d(Zi, Γ ) ≤ ̺2

n} andZY
n = {Zi ∈ Yn : d(Zi, Γ ) ≤ ̺2

n}. Then,
if K ≥ max (2, 8/α), we have that

P
(

B(Γ, εn − K̺2
n) ⊂ Γn eventually

)

= 1.

Remark 3.3.2. The proof of i) remains true under milder conditions. It is only needed that the
setsG andR are bothα-convex. Theα-convexity ofG andR follows easily from Assumption
(A1) as we mention in the proof below.

Proof. Under the conditions of the proposition,G andGc are bothα-convex, see LemmaA.0.8.
It can be easily seen that, as a consequence,R is alsoα-convex. Since, with probability one,
Xn ⊂ G andYn ⊂ R,

Gn = Cα(Xn) ⊂ Cα(G) = G and Rn = Cα(Yn) ⊂ Cα(R) = R.

Thus, with probability one,

Γn = B(Gn, εn) ∩ B(Rn, εn) ⊂ B(G, εn) ∩ B(R, εn) = B(Γ, εn),
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which concludes the proof of i). On the other hand, the proof of ii) will be finished if we show
that

P
(

Γ ⊂ B(Gn, K̺2
n) ∩ B(Rn, K̺2

n) eventually
)

= 1, (3.7)

since ifΓ ⊂ B(Gn, K̺2
n) ∩ B(Rn, K̺2

n) andεn > K̺2
n, then

B(Γ, εn − K̺2
n) ⊂ B

(

B
(

Gn, K̺2
n

)

∩ B
(

Rn, K̺2
n

)

, εn − K̺2
n

)

⊂ B(Gn, εn) ∩ B(Rn, εn) = Γn.

In order to prove (3.7) it is suffices to show that with probability one, for large enoughn,

xG = x − K̺2
nη(x) ∈ Gn and xR = x + K̺2

nη(x) ∈ Rn (3.8)

for all x ∈ Γ , whereη(x) is the outward pointing unit normal vector atx, see LemmaA.0.5.
To prove (3.8) we need to show thatxG cannot be contained in an open ball of radiusα

which does not meet the sampleXn. In the same manner, we need to prove thatxR cannot be
contained in an open ball of radiusα which does not meet the sampleYn. The situation in which
the centre of the ball is close toΓ is analysed in Lemma3.3.2. This lemma yields the result for
xG. ForxR we have also to analyse the situation in which the centre of the ball is far fromΓ .
This case is studied in Lemma3.3.3. Finally, in Lemma3.3.4both results are used to establish
the precise conditions under which (3.8) is satisfied. Proposition3.3.1is a consequence of this
result. We begin with a geometric lemma, needed to prove Lemma3.3.2.

Lemma 3.3.1. Let G be a set under the conditions of Theorem3.3.1and y ∈ Rd such that
d(y, Γ ) = α− κ where0 ≤ κ ≤ α. Then, for allx ∈ Rd with d(x, Γ ) ≤ κ/2 and‖x − y‖ ≥ α
we have that

‖x − PΓ y‖ ≥
√

ακ

2
,

wherePΓ y is the metric projection ofy ontoΓ .

Proof. This lemma is similar to Lemma 1 inRodríguez-Casal(2007) and its proof is almost
identical. Lety ∈ Rd be a point such thatd(y, Γ ) = α − κ, where0 ≤ κ ≤ α. The result is
trivial for κ = 0. Hence, let us assume thatκ > 0. Since reach(Γ ) ≥ α, we denote byPΓ y
the unique metric projection ofy ontoΓ , see LemmaA.0.6. Let η be the outward pointing unit
normal vector atPΓ y, see Figure3.2.

First, we assume thaty ∈ G. Then, LemmaA.0.1 ensures thaty = PΓ y − (α − κ)η. Let
t = PΓ y + αη. Then, forx ∈ Rd with d(x, Γ ) ≤ κ/2 and‖x − y‖ ≥ α,

α2 ≤ ‖x − y‖2 = ‖x − PΓ y + (α − κ)η‖2 = ‖x − PΓ y‖2+(α−κ)2+2(α−κ) 〈x − PΓ y, η〉 ,

(

α − κ

2

)2
≤ ‖x − t‖2 = ‖x − PΓ y − αη‖2 = ‖x − PΓ y‖2 + α2 − 2α 〈x − PΓ y, η〉 .

The second inequality is consequence ofd(x, Γ ) ≤ κ/2 andd(t, Γ ) = α. Then

‖x − PΓ y‖2 + 2(α − κ) 〈x − PΓ y, η〉 ≥ 2ακ − κ2,
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‖x − PΓ y‖2 − 2α 〈x − PΓ y, η〉 ≥ −ακ +
κ2

4
.

Multiplying the first inequality byα and the second by(α − κ) and adding, we have that

‖x − PΓ y‖2 ≥ 2α2κ − ακ2 − (α − κ)ακ + (α − κ)κ2

4

2α − κ
=

α2κ + (α − κ)κ2

4

2α − κ
≥ ακ

2
,

where the last inequality is a consequence of0 < κ ≤ α.
For y ∈ Gc we can apply the previous result toGc. In this casey ∈ Gc andΓ is also the

boundary ofGc, see LemmaA.0.2.

y

PΓ y

tb

b

b

b

α

α − κ

x
Γ

Figure 3.2:Main elements considered in the proof of Lemma3.3.1.

Lemma 3.3.2. LetG be a set under the conditions of Theorem3.3.1and let us assume that

Γ ⊂ B(ZX
n , 2̺n) ∩ B(ZY

n , 2̺n),

whereZX
n = {Zi ∈ Xn : d(Zi, Γ ) ≤ ̺2

n} andZY
n = {Zi ∈ Yn : d(Zi, Γ ) ≤ ̺2

n}. Then, for all
y ∈ Rd such thatd(y, Γ ) = α − κ with max(2, 8/α)̺2

n < κ ≤ α,

B̊(y, α) ∩ Xn 6= ∅ and B̊(y, α) ∩ Yn 6= ∅.

Proof. Let y ∈ Rd be a point such thatd(y, Γ ) = α − κ with max(2, 8/α)̺2
n < κ ≤ α. We

denote byPΓ y the metric projection ofy onto Γ . SinceΓ ⊂ B(ZX
n , 2̺n), there existszx ∈

ZX
n such that‖zx − PΓ y‖ ≤ 2̺n. Furthermore,d(zx, Γ ) ≤ ̺2

n < κ/2. If ‖zx − y‖ ≥ α, then
Lemma3.3.1yields that

‖zx − PΓ y‖ ≥
√

ακ

2
> 2̺n,

which leads to a contradiction. The last inequality is a consequence ofκ > 8̺2
n/α. Therefore

‖zx − y‖ < α andB̊(y, α) ∩ Xn 6= ∅. Analogously, it can be proved that̊B(y, α) ∩ Yn 6= ∅.
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Before stating Lemma3.3.3it is necessary to introduce some notation. Since we are assum-
ing G ⊂ (0, 1)d, for all x ∈ G

d(x, Rd \ (0, 1)d) > 0.

The functiond(·, Rd \(0, 1)d) is continuous and therefore it reaches its minimum in the compact
setG. Let us denote bye this minimum, that is,

e = min
x∈G

d(x, Rd \ (0, 1)d) > 0. (3.9)

Note thatB(G, e) ⊂ [0, 1]d.

Lemma 3.3.3. Letx ∈ Rd be a point such that0 ≤ d(x, G) ≤ e/2 and lety /∈ [0, 1]d such that
x ∈ B̊(y, α). Then there existsz0 ∈ R for whichB(z0, e/4) ⊂ B̊(y, α).

Proof. The function
d(λ) = d(λx + (1 − λ)y, G), 0 ≤ λ ≤ 1,

is continuous. Sincey /∈ [0, 1]d, we have thatd(0) = d(y, G) > e. Furthermore

d(1) = d(x, G) ≤ e/2.

Bolzano’s Theorem ensures that there existsz0 on the segment with endpointsx andy such that
d(z0, G) = 3e/4. Moreover,z0 ∈ R sincez0 ∈ B(G, e) ⊂ [0, 1]d andz0 /∈ G, see Figure3.3.
Now, let us prove thatB(z0, e/4) ⊂ B̊(y, α). Let z ∈ B(z0, e/4). We have that

‖z − y‖ ≤ ‖z − z0‖ + ‖z0 − y‖ ≤ e

4
+ ‖z0 − y‖ .

Sincez0 lies on the segment with endpointsx andy,

‖z0 − y‖ = ‖x − y‖ − ‖x − z0‖ .

Fromd(z0, G) = 3e/4 andd(x, G) ≤ e/2 it follows that‖x − z0‖ ≥ e/4 and, therefore,

‖z0 − y‖ = ‖x − y‖ − ‖x − z0‖ < α − e

4
.

Thus,
‖z − y‖ <

e

4
+ α − e

4
= α.

Lemma 3.3.4. Let us assume thatΓ ⊂ B(ZX
n , 2̺n) ∩ B(ZY

n , 2̺n) andK̺2
n < min (e/2, α),

where K ≥ max (2, 8/α). Let us also assume thatdH(Xn, G) < α and dH(Yn, R) <
min(e/4, α). Then, for allx ∈ Γ ,

x − K̺2
nη(x) ∈ Gn and x + K̺2

nη(x) ∈ Rn,

whereη(x) is the outward pointing unit normal vector atx.
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α

e/2

G

b bb
x z y

[0, 1]2

Figure 3.3:Main elements considered in the proof of Lemma3.3.3.

Proof. Let x ∈ Γ andxG = x − K̺2
nη(x). The pointxG belongs toGn if any open ball of

radiusα that contains the pointxG meets the sampleXn. Thus, lety ∈ Rd be a point such
thatxG ∈ B̊(y, α). We want to show that̊B(y, α) ∩ Xn is not empty. This is straightforward
wheny ∈ G, since by assumptiondH(Xn, G) < α. Now, let us suppose thaty ∈ Gc. Since
xG ∈ B̊(y, α)∩G (K̺2

n < α), thend(y, Γ ) = α− κ, whereκ > K̺2
n ≥ max (2, 8/α) ̺2

n. By
Lemma3.3.2, we have that̊B(y, α) ∩ Xn 6= ∅.

Now, letxR = x + K̺2
nη(x). As before, in order to prove thatxR belongs toRn, we need

to show thatB̊(y, α) ∩ Yn is not empty, for anyy ∈ Rd such thatxR ∈ B̊(y, α). Again, this
is straightforward wheny ∈ R, sincedH(Yn, R) < α by assumption. Now, let us assume that
y /∈ R. There are two possibilities:y ∈ G or y /∈ [0, 1]d. For the first one, asxR ∈ B̊(y, α)∩Gc

(K̺2
n < α), we have thatd(y, Γ ) = α − κ, with κ > K̺2

n ≥ max (2, 8/α) ̺2
n. Lemma3.3.2

implies thatB̊(y, α) ∩ Yn 6= ∅. Finally, if y /∈ [0, 1]d, by the definition ofxR, we have that
d(xR, G) = K̺2

n < e/2. Then Lemma3.3.3establishes that there existsz0 ∈ R such that
B(z0, e/4) ⊂ B̊(y, α). SincedH(Yn, R) < e/4, we have thatB(z0, e/4) ∩ Yn 6= ∅. Thus, we
have that̊B(y, α) ∩ Yn 6= ∅.

The proof of Proposition3.3.1 is now complete since the conditions of Lemma3.3.4are
satisfied with probability one for large enoughn.

Now, we are ready to prove Proposition3.3.2, which gives a bound for the distance|Ln−L0|
by splitting it into abias term |L(εn) − L0| and avarianceterm |Ln − L(εn)|. Recall thatL0,
L(εn) andLn are defined in equations (3.1), (3.2) and (3.3), respectively.

Proposition 3.3.2.Under the conditions of Proposition3.3.1we have that, with probability one,

|Ln − L0| ≤ |L(εn) − L0| + O

(

̺2
n

εn

)

= O(εn) + O

(

̺2
n

εn

)
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and
inf
εn

|Ln − L0| = O(̺n). (3.10)

Proof. We have that
|Ln − L0| ≤ |Ln − L(εn)| + |L(εn) − L0|.

In Section3.2 we discussed that|L(εn) − L0| = O(εn). On the other hand, Proposition3.3.1
yields

P
(

B(Γ, εn − K̺2
n) ⊂ Γn ⊂ B(Γ, εn) eventually

)

= 1.

Then with probability one, for large enoughn,

|Ln − L(εn)| =
µ(B(Γ, εn))

2εn
− µ(Γn)

2εn
≤ µ(B(Γ, εn)) − µ(B(Γ, εn − K̺2

n))

2εn
.

In the following lemma the convergence rate of the last term in the previous inequality is deter-
mined.

Lemma 3.3.5.Assume thatF (ε) = µ(B(Γ, ε)) is differentiable in a neighbourhood of zero and
that the derivativeF ′ is continuous at zero. Then

lim
n→∞

µ(Dn)

2K̺2
n

= L0,

whereDn = B(Γ, εn) \ B(Γ, εn − K̺2
n).

Remark 3.3.3. In Lemma3.3.5we assume that the functionF (ε) = µ(B(Γ, ε)) is smooth in
a neighbourhood of zero. This holds in particular for the boundaryΓ of a setG such that a
ball of radiusα rolls freely inG and inGc. In that case, it can be proved thatΓ satisfies the
conditions of Theorem 5.6 inFederer(1959), see LemmaA.0.6. As we have already observed
this result ensures thatF (ε) coincides locally, forε ∈ (0, α), with a polynomial of degree at
mostd. Therefore Lemma3.3.5is enough for our purposes.

Proof. For large enoughn (sinceεn, ̺n → 0 and̺2
nε−1

n → 0) we have that

µ(Dn)

2K̺2
n

=
µ (B(Γ, εn)) − µ

(

B(Γ, εn − K̺2
n)
)

2K̺2
n

=
F (εn) − F (εn − K̺2

n)

2K̺2
n

=
F ′(ςn)K̺2

n

2K̺2
n

=
F ′(ςn)

2
,

where we have applied the Mean Value Theorem, beingςn a point in the interval(εn−K̺2
n, εn).

SinceF ′ is continuous at zero,

lim
n→∞

µ(Dn)

2K̺2
n

=
F ′(0)

2
= L0,

where the last equality is a consequence of (3.1).



94 CHAPTER 3. SURFACE AREA ESTIMATION

By Lemma3.3.5, with probability one,

|Ln − L(εn)| = O

(

̺2
n

εn

)

.

Therefore, with probability one,

|Ln − L0| ≤ |L(εn) − L0| + O

(

̺2
n

εn

)

= O(εn) + O

(

̺2
n

εn

)

.

Now, if we make equal the convergence orders of both terms on the right-hand side, then (3.10)
holds forεn = ̺n. This completes the proof of Proposition3.3.2.

As we mentioned at the beginning of the proof of Theorem3.3.1, in the following proposition
we determine the rate for̺n which guarantees that, with probability one,Γ ⊂ B(ZX

n , 2̺n) ∩
B(ZY

n , 2̺n) for large enoughn.

Proposition 3.3.3. If c > 0 is large enough then

P
(

Γ ⊂ B(ZX
n , 2̺n) ∩ B(ZY

n , 2̺n) eventually
)

= 1,

where

̺n =

(

c log n

n

)
1

d+1

,

ZX
n = {Zi ∈ Xn : d(Zi, Γ ) ≤ ̺2

n}, andZY
n = {Zi ∈ Yn : d(Zi, Γ ) ≤ ̺2

n}.

Proof. Theorem 1 ofDümbgen and Walther(1996) establishes that, for̺n > 0,

P (Γ * B(ZU
n , 2̺n)) ≤ ̺−d

n Π(G, ZU
n , ̺n), U = X ,Y,

whereΠ(G, ZU
n , ̺n) = supx∈Γ P (B(x, ̺n) ∩ ZU

n = ∅). By the Borel-Cantelli lemma, it is
enough to prove prove that

∞
∑

n=1

̺−d
n Π(G, ZU

n , ̺n) < ∞, U = X ,Y. (3.11)

Let x ∈ Γ . SinceZ is uniformly distributed on[0, 1]d we have that, for̺ 2
n < e (recall equation

(3.9)),

P (B(x, ̺n) ∩ ZX
n = ∅) = P (Zi /∈ B(x, ̺n) ∩ B(Γ, ̺2

n) ∩ G, i = 1, . . . , n)

=
(

1 − µ(B(x, ̺n) ∩ B(Γ, ̺2
n) ∩ G)

)n

≤ exp
(

−nµ(B(x, ̺n) ∩ B(Γ, ̺2
n) ∩ G)

)

.

Likewise,

P (B(x, ̺n) ∩ ZY
n = ∅) ≤ exp

(

−nµ(B(x, ̺n) ∩ B(Γ, ̺2
n) ∩ R)

)

.

Lemma3.3.6 stated below is proved inRodríguez-Casal(2007). It gives a lower bound for
µ(B(x, ̺n) ∩ B(Γ, ̺2

n) ∩ G) andµ(B(x, ̺n) ∩ B(Γ, ̺2
n) ∩ R) for large enoughn.
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Lemma 3.3.6. If G is under the conditions of Theorem3.3.1, then there exist constantsγ, β > 0
such that,∀ε ∈ [0, β], ∀x ∈ Γ ,

µ(B(x, ε) ∩ B(Γ, ε2) ∩ G) ≥ γεd+1 and µ(B(x, ε) ∩ B(Γ, ε2) ∩ Gc) ≥ γεd+1.

It is easy to prove that if̺n is small enough, for example̺2n < e, then

µ(B(x, ̺n) ∩ B(Γ, ̺2
n) ∩ R) = µ(B(x, ̺n) ∩ B(Γ, ̺2

n) ∩ Gc)

and, therefore, by Lemma3.3.6

P (B(x, ̺n) ∩ ZU
n = ∅) ≤ exp

(

−nγ̺d+1
n

)

, U = X ,Y.

It is not hard to prove that for large enoughc, (3.11) is satisfied. Thus, the proof of Proposition
3.3.3is complete.

Theorem3.3.1is a straightforward consequence of Propositions3.3.1, 3.3.2and3.3.3.

3.3.2 L1- convergence rate

Theorem 3.3.2.LetG ⊂ (0, 1)d be a nonempty compact set. Assume that a ball of radiusα > 0
rolls freely inG and inGc. Then,

inf
εn

E |Ln − L0| = O
(

n− 1
d+1

)

and the optimal order is attained forεn = n−1/(d+1).

Remark 3.3.4. TheL1-convergence rate for the estimator ofL0 based on the empirical ap-
proximation ofB(Γ, εn) proposed byCuevas et al.(2007) is n−1/(2d), which is worse than the
L1-convergence raten−1/(d+1) attained by the estimator proposed in this chapter. The main rea-
son for this improvement is that smoothing the samplesXn andYn allows us to choose smaller
radiusεn of ordern−1/(d+1). In Cuevas et al.(2007), the order of the optimalεn wasn−1/(2d).

Proof. We have that

|Ln − L0| ≤ |Ln − L(εn)| + |L(εn) − L0| . (3.12)

It follows from Proposition3.3.1that, with probability one,Γn ⊂ B(Γ, εn). As a consequence
Ln ≤ L(εn) and hence|Ln − L(εn)| = L(εn) − Ln. Taking expectations in (3.12) we get

E |Ln − L0| ≤ L(εn) − E(Ln) + |L(εn) − L0| . (3.13)

Under the stated conditions|L(εn) − L0| = O(εn). Now, by the definition ofLn,

E(Ln) = E

(

µ(Γn)

2εn

)

=
1

2εn
E

(
∫

I{x∈Γn}µ(dx)

)

=
1

2εn

∫

E
(

I{x∈Γn}
)

µ(dx) =
1

2εn

∫

B(Γ,εn)
P (x ∈ Γn)µ(dx),
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where we have used again that, with probability one,Γn ⊂ B(Γ, εn). Then,

E(Ln) =
1

2εn

∫

B(Γ,εn)
(1 − P (x /∈ Γn)) µ(dx)

=
µ(B(Γ, εn))

2εn
− 1

2εn

∫

B(Γ,εn)
P (x /∈ Γn)µ(dx)

= L(εn) − 1

2εn

∫

B(Γ,εn)
P (x /∈ Γn)µ(dx).

Therefore,

|E(Ln) − L(εn)| =
1

2εn

∫

B(Γ,εn)
P (x /∈ Γn)µ(dx). (3.14)

It follows from (3.4) that

P (x /∈ Γn) = P (x /∈ B(Gn, εn) ∩ B(Rn, εn))

= P (x ∈ B(Gn, εn)c ∪ B(Rn, εn)c)

≤ P (x /∈ B(Gn, εn)) + P (x /∈ B(Rn, εn))

and hence the left-hand side in (3.14) can be bounded above by two integrals. To be precise,

|E(Ln) − L(εn)| ≤ 1

2εn

∫

B(Γ,εn)
P (x /∈ B(Gn, εn))µ(dx)

+
1

2εn

∫

B(Γ,εn)
P (x /∈ B(Rn, εn))µ(dx)

= (I) + (II). (3.15)

First, let us consider the term

(I) =
1

2εn

∫

B(Γ,εn)
P (x /∈ B(Gn, εn))µ(dx). (3.16)

Let x ∈ B(Γ, εn) ands ∈ Γ such that‖x − s‖ = d(x, Γ ). Define

xG = x − εnη(s),

beingη(s) the outward pointing unit normal vector ats, see LemmaA.0.5. Under the stated con-
ditions the vectorη(s) is unique. Moreover, ifd(x, Γ ) < α the points ∈ Γ such that‖x − s‖ =
d(x, Γ ) is also unique, see LemmaA.0.7. LemmaA.0.5ensures thatB(s− αη(s), α) ⊂ G and
hencexG ∈ G for εn ≤ α, see Figure3.4. Furthermore,

x /∈ B(Gn, εn) ⇒ xG = x − εnη(s) /∈ Gn

which yields
P (x /∈ B(Gn, εn)) ≤ P (xG /∈ Gn).
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η(s)

x
xR

xG

B(Γ, εn)

α

G

[0, 1]2

b

b

b

Figure 3.4:The dashed area corresponds withB(Γ, εn). In Theorem3.3.2we define forx ∈
B(Γ, εn) the pointsxG = x − εnη(s) andxR = x + εnη(s). For large enoughn, xG ∈ G and
xR ∈ R .

Replace into (3.16) to get

(I) ≤ 1

2εn

∫

B(Γ,εn)
P (xG /∈ Gn)µ(dx). (3.17)

In Chapter2 we bounded probabilities like the one that appears in (3.17), see (2.4) and
(2.5). However, the estimator was not exactly the same asGn since it was defined with closed
balls, recall (2.3). We prove in AppendixB that it makes no difference whether we consider the
estimator defined with open or closed balls, since with probability one both estimator are equal.
Therefore, the results in Chapter2 can also be applied here. Following the same steps as in (2.5),
if we define a finite familyUxG,α unavoidable forExG,α, we have that

P (xG /∈ Gn) ≤
∑

U∈UxG,α

P (U ∩ Xn = ∅). (3.18)

Consider, forA ⊂ Rd, the random variableξ(A) =
∑n

i=1 I{Zi∈A,ξi=1}. It is easy to see that
ξ(A) has a binomial distributionB(n, pA) where

pA = P (Z ∈ A, ξ = 1) = P (ξ = 1)P (Z ∈ A|ξ = 1) = µ(G)PX(A).

Then,
P (U ∩ Xn = ∅) = P (ξ(U) = 0) = (1 − µ(G)PX(U))n

and replacingP (U ∩ Xn = ∅) in (3.18) we get

P (xG /∈ Gn) ≤
∑

U∈UxG,α

(1 − µ(G)PX(U))n ≤
∑

U∈UxG,α

exp(−nµ(G)PX(U)). (3.19)
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In short, we need to define a suitable unavoidable family forExG,α and give a lower bound for
PX(U). Remember that the definition of a suitable unavoidable family forExG,α depends on
the distance from the pointxG to the boundaryΓ . This distance is easy to compute since, if
2εn < α, then

d(xG, Γ ) = d(x − εnη(s), Γ ) =

{

εn + d(x, Γ ) if x ∈ G,
εn − d(x, Γ ) if x /∈ G.

From the latter,
εn − d(x, Γ ) ≤ d(xG, Γ ) ≤ 2εn.

Therefore, we can maked(xG, Γ ) as small as desired for large enoughn. Let εn ≤ α/4. Note
thatG , PX , andxG satisfy the conditions of Proposition2.4.2, since we are assuming that a ball
of radiusα rolls freely inG and inGc, PX is the uniform distribution onG, andxG ∈ G with
d(xG, Γ ) ≤ α/21. By Proposition2.4.2, there exists a finite familyUxG,α/2 with m2 elements,
unavoidable forExG,α/2 and that satisfies

PX(U) ≥ L2

(α

2

)
d−1
2

d(xG, Γ )
d+1
2 , U ∈ UxG,α/2

whereL2 > 0 is a constant. Turning to (3.17) and (3.19),

(I) ≤ 1

2εn

∫

B(Γ,εn)
m2 exp

(

−nµ(G)L2

(α

2

)
d−1
2

d(xG, Γ )
d+1
2

)

µ(dx)

≤ 1

2εn

∫

B(Γ,εn)
m2 exp

(

−nµ(G)L2

(α

2

)
d−1
2

(εn − d(x, Γ ))
d+1
2

)

µ(dx)

=
1

2εn

∫

B(Γ,εn)
gn(d(x, Γ ))µ(dx),

beinggn(z) = m2 exp(−nµ(G)L2

(

α
2

)
d−1
2 (εn−z)

d+1
2 ). It follows from the change of variables

formula that
∫

B(Γ,εn)
gn(d(x, Γ ))µ(dx) =

∫ εn

0
gn(ρ)µT −1(dρ),

beingρ = d(x, Γ ) andµT −1 the measure onR characterized by

F (z) = µ{x ∈ Rd : d(x, Γ ) ≤ z} = µ(B(Γ, z)).

As we have seen, for0 ≤ z < α, F (z) is a polynomial of degree at mostd in z. Therefore, it is
a differentiable function andF ′(z) is bounded on compact sets. In short, we obtain

(I) ≤ 1

2εn

∫ εn

0
gn(ρ)F ′(ρ)dρ ≤ 1

2εn
K

∫ εn

0
gn(ρ)dρ. (3.20)

1We apply Proposition2.4.2with rn = α.
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By the change of variablest = εn − ρ we obtain

∫ εn

0
gn(ρ)dρ =

∫ εn

0
m2 exp

(

−nµ(G)L2

(α

2

)
d−1
2

(εn − ρ)
d+1
2

)

dρ

=

∫ εn

0
m2 exp

(

−nµ(G)L2

(α

2

)
d−1
2

t
d+1
2

)

dt.

Let u = nµ(G)L2

(

α
2

)
d−1
2 t

d+1
2 . Then,

∫ εn

0
m2 exp

(

−nµ(G)L2

(α

2

)
d−1
2

t
d+1
2

)

dt

=

∫ nµ(G)L2(α
2 )

d−1
2 ε

d+1
2

n

0
m2

1
d+1
2 (µ(G)L2)2/(d+1)

(α

2

)− d−1
d+1

n− 2
d+1 e−uu

1−d
d+1 du

= O
(

n− 2
d+1

)

.

Finally, replace in (3.20) to get

(I) = O
(

ε−1
n n− 2

d+1

)

. (3.21)

It remains to study the term

(II) =
1

2εn

∫

B(Γ,εn)
P (x /∈ B(Rn, εn))µ(dx).

Again, letx ∈ B(Γ, εn) ands ∈ Γ such that‖x − s‖ = d(x, Γ ). We define

xR = x + εnη(s).

For large enoughn we have thatxR ∈ Gc, see Figure3.4. Note that LemmaA.0.5 ensures that
B(s + αη(s), α) ⊂ Gc. Therefore, it suffices to considerεn ≤ α in order to guarantee that
xR ∈ Gc. Moreover,

x /∈ B(Rn, εn) ⇒ xR = x + εnη(s) /∈ Rn

and hence
P (x /∈ B(Rn, εn)) ≤ P (xR /∈ Rn).

As we explained before, the definition of unavoidable families helps us to findan upper bound
for P (xR /∈ Rn). Thus, ifUxR,α is a finite and unavoidable family forExR,α, then

(II) ≤ 1

2εn

∫

B(Γ,εn)
P (xR /∈ Rn)µ(dx)

≤ 1

2εn

∫

B(Γ,εn)

∑

U∈UxR,α

(1 − µ(R)PY (U))nµ(dx)

≤ 1

2εn

∫

B(Γ,εn)

∑

U∈UxR,α

exp(−nµ(R)PY (U))µ(dx). (3.22)
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We obtain (3.22) using the same arguments as in (3.18) but definingξ(A) =
∑n

i=1 I{Zi∈A,ξi=0}.
Now, if 2εn < α,

d(xR, Γ ) = d(x + εnη(s), Γ ) =

{

εn + d(x, Γ ) if x /∈ G,
εn − d(x, Γ ) if x ∈ G.

Therefore,
εn − d(x, Γ ) ≤ d(xR, Γ ) ≤ 2εn (3.23)

andd(xR, Γ ) can be as small as desired for large enoughn. However, in this situation we cannot
directly apply Proposition2.4.2 in order to define unavoidable families. As we have already
discussed in Section3.2, the setR does not satisfy Assumption (A1). We need the following
auxiliary result.

Lemma 3.3.7. LetG ⊂ (0, 1)d be a nonempty compact set. Assume that a ball of radiusα > 0
rolls freely inG and inGc. Let0 < α0 < α and

S = B(Γ, α0) ∩ Gc.

ThenS is a nonempty compact set such that a ball of radiusα∗ > 0 rolls freely inS and inSc,
beingα∗ = min(α0/2, α − α0).

Proof. It can be easily seen thatS is a nonempty compact set. Note thatS is defined as the
intersection of compacts sets. In order to prove the result we shall see that a ball of radiusα0/2
rolls freely inS and a ball of radiusα − α0 rolls freely inSc. In Figure3.5we show the main
elements considered in this result. First, we need to determine∂S. We have that

∂S = Γ ∪ (∂B(Γ, α0) ∩ Gc). (3.24)

Equation (3.24) can be easily deduced using the definition of boundary of a set, LemmaA.0.3,
and basic properties on the behaviour of the closure of the finite union of sets.

∂S = B(Γ, α0) ∩ Gc ∩ (B(Γ, α0) ∩ Gc)c

= (B(Γ, α0) ∩ Gc) ∩ (B(Γ, α0)c ∪ Gcc
)

= (B(Γ, α0) ∩ Gc) ∩ (B(Γ, α0)c ∪ G)

= (B(Γ, α0) ∩ B(Γ, α0)c ∩ Gc) ∪ (B(Γ, α0) ∩ Gc ∩ G)

= (∂B(Γ, α0) ∩ Gc) ∪ Γ.

Moreover, we shall see that

∂B(Γ, α0) = {x ∈ Rd : d(x, Γ ) = α0}.

SinceB(Γ, α0) = {x ∈ Rd : d(x, Γ ) ≤ α0} and the functiond(·, Γ ) is continuous, it follows
easily that∂B(Γ, α0) ⊂ {x ∈ Rd : d(x, Γ ) = α0}. On the other hand, it is not difficult to
prove that, by the free rolling condition inG and inGc and since0 < α0 < α, {x ∈ Rd :
d(x, Γ ) = α0} ⊂ ∂B(Γ, α0). Therefore, we have

∂B(Γ, α0) ∩ Gc = {x ∈ Gc : d(x, Γ ) = α0}, (3.25)
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To summarize, (3.24) and (3.25) characterize∂S. Now we are ready to complete the proof.
Let s ∈ ∂S. We shall see that there existsx ∈ S such thats ∈ B(x, α0/2) ⊂ S. By (3.24) and
(3.25), we must consider two different situations.

i) Suppose thats ∈ Γ . The free rolling condition inG and inGc guarantees that there exists
η(s), such thats ∈ B(s + αη(s), α) ⊂ Gc. Define

x = s +
α0

2
η(s)

and then
s ∈ B(x, α0/2) ⊂ B(s + αη(s), α) ⊂ Gc.

Moreover,B(x, α0/2) ⊂ B(Γ, α0) since for ally ∈ B(x, α0/2) we have

d(y, Γ ) ≤ ‖y − s‖ ≤ ‖y − x‖ + ‖x − s‖ ≤ α0

2
+

α0

2
= α0.

In short,s ∈ B(x, α0/2) ⊂ S.

ii) Now suppose thats ∈ ∂B(Γ, α0) ∩ Gc. By (3.25), d(s, Γ ) = α0. LemmaA.0.7 estab-
lishes that there exists a unique pointt ∈ Γ such that‖s − t‖ = α0. Moreover, by Lemma
A.0.1, s = t + α0η(t), beingη(t) the unique unit vector such thatB(t + αη(t), α) ⊂ Gc.
Again, if we define

x = s − α0

2
η(t) = t +

α0

2
η(t),

then we gets ∈ B(x, α0/2) ⊂ S.

It remains to prove that a ball of radiusα−α0 rolls freely inSc. Note that, since a ball of radius
α0/2 rolls freely inS, it follows from LemmaA.0.2 that∂Sc = ∂S. Moreover

Sc = (B(Γ, α0) ∩ Gc)c = B(Γ, α0)c ∪ Gcc
= B(Γ, α0)c ∪ Gcc

= B(Γ, α0)c ∪ G.

Let x ∈ ∂Sc. Again, we must consider two different situations.

i) If s ∈ Γ , then

s ∈ B(s − αη(s), α − α0) ⊂ B(s − αη(s), α) ⊂ G ⊂ Sc.

ii) If s ∈ ∂B(Γ, α0)∩Gc, we have proved thatd(s, Γ ) = α0 and there exists a uniquet ∈ Γ
such that‖s − t‖ = α0. Let

x = s + (α − α0)η(t) = t + αη(t).

Thens ∈ B(x, α − α0) and it is straightforward to verify thatB(x, α − α0) ⊂ Sc.

The proof is complete.
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α
α0

S = B(Γ, α0) ∩ Gc

G

[0, 1]2

Figure 3.5:In greenG. A ball of radiusα rolls freely inG and inGc. In grayS = B(Γ, α0)∩Gc,
whereα0 < α. A ball of radiusα0/2 rolls freely inS. A ball of radiusα− α0 rolls freely inSc.

Turning back to the proof of Theorem3.3.2, recall the definition ofe given in (3.9) and let
α0 < min(e, α). By Lemma3.3.7, S = B(Γ, α0) ∩ Gc is a nonempty compact set such that a
ball of radiusα∗ > 0 rolls freely inS and inSc, beingα∗ = min(α0/2, α−α0). Letεn ≤ α∗/4
and then the following results hold.

i) S ⊂ R, since by assumptionα0 < e.

ii) xR ∈ S. Note thatxR ∈ Gc sinceεn ≤ α andd(xR, Γ ) ≤ 2εn ≤ α0.

iii) d(xR, ∂S) = d(xR, Γ ) ≤ α∗/2. We prove this equality by using that

d(xR, ∂S) = min(d(xR, Γ ), d(xR, ∂B(Γ, α0) ∩ Gc)).

Suppose thatd(xR, Γ ) ≥ d(xR, ∂B(Γ, α0)∩Gc) = ‖xR − z‖, with z ∈ ∂B(Γ, α0)∩Gc.
We shall see that this yields a contradiction. SincexR = x + εnη(s) with s ∈ Γ , we have
that

d(z, Γ ) ≤ ‖z − s‖ ≤ ‖z − xR‖ + ‖xR − s‖ ≤ 2d(xR, Γ ) ≤ 4εn ≤ α∗ < α0,

where we have used (3.23). However, by (3.25), d(z, Γ ) = α0. Therefored(xR, ∂S) =
d(xR, Γ ) ≤ 2εn ≤ α∗/2.

To summarize, we have defined a nonempty compact setS ⊂ R such that a ball of radius
α∗ > 0 rolls freely inS and inSc. Moreover,xR ∈ S with d(xR, ∂S) = d(xR, Γ ) ≤ α∗/2,
for large enoughn. Let us consider the random variableXS with uniform distribution onS.
Then, by Proposition2.4.2there exists a finite familyUxR,α∗ with m2 elements, unavoidable for
ExR,α∗ and that satisfies

PXs(U) =
µ(U ∩ S)

µ(S)
≥ L2α

∗ d−1
2 d(xR, Γ )

d+1
2 ,
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for all U ∈ UxR,α∗ , beingL2 > 0 a constant. We prove in Lemma3.3.8thatUxR,α∗ is also
unavoidable forExR,α sinceα∗ < α. Use thatY is the uniform distribution onR and that
S ⊂ R to obtain that, for allU ∈ UxR,α∗ ,

PY (U) =
µ(U ∩ R)

µ(R)
≥ µ(U ∩ S)

µ(R)
=

µ(S)

µ(R)
PXS

(U) ≥ µ(S)

µ(R)
L2α

∗ d−1
2 d(xR, Γ )

d+1
2 .

Turning back to (3.22) we obtain

(II) ≤ 1

2εn

∫

B(Γ,εn)
m2 exp

(

−nµ(S)L2α
∗ d−1

2 d(xR, Γ )
d+1
2

)

µ(dx).

Analogous to the term (I), we get

(II) = O(ε−1
n n− 2

d+1 ). (3.26)

Replace (3.21) and (3.26) into (3.15) and then

|E(Ln) − L(εn)| = O(ε−1
n n− 2

d+1 ). (3.27)

Now, going back to (3.13) and using (3.27) and the fact that|L(εn) − L0| = O(εn), we get that

E |Ln − L0| = O(ε−1
n n− 2

d+1 ) + O(εn).

Making equal the convergence orders of both terms in the right-hand sidewe obtain the optimal
convergence order forE |Ln − L0|. Therefore, forεn = n−1/(d+1)

E |Ln − L0| = O
(

n− 1
d+1

)

.

The proof of Theorem3.3.2is complete.

Lemma 3.3.8.LetUx,r0 be an unavoidable family forEx,r0 , with r0 > 0. ThenUx,r0 is unavoid-
able forEx,r, for r ≥ r0.

Proof. Let y ∈ B(x, r). If ‖y − x‖ ≤ r0, then by definition of unavoidable family forEx,r0 ,
there existsU ∈ Ux,r0 such that

U ⊂ B(y, r0) ⊂ B(y, r).

Suppose thatr0 < ‖y − x‖ ≤ r and define

y∗ = x + r0
y − x

‖y − x‖ ∈ B(x, r0).

Then, there existsU ∈ Ux,r0 such thatU ⊂ B(y∗, r0) ⊂ B(y, r) since, for allz ∈ B(y∗, r0),
we have that

‖z − y‖ ≤ ‖z − y∗‖ + ‖y∗ − y‖ ≤ r0 +

∥

∥

∥

∥

x + r0
y − x

‖y − x‖ − y

∥

∥

∥

∥

= r0 +

(

1 − r0

‖y − x‖

)

‖y − x‖ = ‖y − x‖ ≤ r.

This completes the proof of the lemma.





Chapter 4

Implementation issues and simulation
results

4.1 Introduction

In the previous chapters we have discussed the support and surfacearea estimation problems
from a theoretical point of view. We now turn our attention to how practical analysis can be
carried out in theR computing environment.

Some of the estimators defined in Chapter1, such as the Devroye-Wise support estimator,
are easy to understand and implement. The implementation of theα-convex hull, however, is not
so immediate and some effort is required in order to compute it efficiently.Edelsbrunner et al.
(1983) proposed an algorithm to construct theα-convex hull of a finite set of points inR2. The
algorithm is based on the closed relationship that exists between this construct and Delaunay
triangulations. Following the methodology described byEdelsbrunner et al.(1983), we have
programmed theα-convex hull of a sample. To be precise, we have programmed the complement
of theα-convex hull of a sample, which can be written as a union of open balls and halfplanes.
Many times, however, our interest lies in the surface area of a set (boundary length inR2)
rather than in its support. Given theα-convex hull of a sample we can compute its boundary
length by adding the lengths of the arcs that form its boundary. Another way to estimate the
boundary length of a set is by using theα-shape of a sample of points taken in it. The notion
of α-shape, briefly discussed in Chapter1, is derived from a generalization of the convex hull
definition. This construct is also closely related to the Delaunay triangulationsand an algorithm
for determining theα-shape of a finite set of points is given inEdelsbrunner et al.(1983). We
have also implemented this algorithm inR. An alternative perspective to the boundary length
estimation problem relies on the notion of Minkowski content. Based on this notion and on the
α-convex hull implementation, we can compute the boundary length estimatorLn discussed in
Chapter3. Note thatLn is defined from theα-convex hull of two given samples. Therefore,
we consider in this chapter two different approaches to the boundary length estimation problem,
depending on the available information. If the information comes from a sample of points in
the set of interest, then we estimate the boundary length of the set via the perimeter of a support
estimator such as theα-convex hull estimator or theα-shape estimator. If we are provided with
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a sample of points in the set and in its complement, then we estimate the boundary length of
the set via the Minkowski content. We shall refer to these two different situations as one sample
approach and two sample approach, respectively.

This chapter is organized as follows. Section4.2 starts by discussing some computational
issues in theα-convex hull estimator. A brief overview of the Voronoi and Delaunay geo-
metric structures is included along with the description of the implementation algorithmof the
α-convex hull. Section4.3is devoted to the boundary length estimation problem, more precisely
to the two sample approach. We present the results of a simulation study on the estimatorLn

defined in Chapter3. Section4.4 is devoted to the one sample approach, stressing theα-shape
estimator. All the programmed functions have been put together inR package format. The
resulting library of functions, namedalphahull, is intended to provide a means of better un-
derstanding the different estimators discussed throughout this dissertation. Details on how to
use the package and short scripts to execute some basic examples are inserted along the chapter
in typewriter font. More extended documentation of the package is available inAppendixC.

4.2 Programming theα-convex hull

Let S be a nonempty compact subset ofR2 and letXn = {X1, . . . , Xn} be a random sample
from X, whereX denotes a random variable with supportS. Remember that, forα > 0, the
α-convex hull ofXn is given by

Cα(Xn) =
⋂

{B̊(x,α): B̊(x,α)∩Xn=∅}

(

B̊(x, α)
)c

. (4.1)

Edelsbrunner et al.(1983) defined a similar construct, theα-hull of a finite set of points, for an
arbitraryα ∈ R. According to the terminology used byEdelsbrunner et al.(1983), theα-convex
hull in (4.1) coincides with the−1/α-hull. By DeMorgan’s law, the complement ofCα(Xn) can
be written as the union of all open balls of radiusα which contain no point ofXn, that is,

Cα(Xn)c =
⋃

{B̊(x,α): B̊(x,α)∩Xn=∅}

B̊(x, α). (4.2)

This representation ofCα(Xn)c provides a means of computing theα-convex hull. Thus,
the problem is to determine the union of the open balls in (4.2). The solution to this prob-
lem is closely related to the Voronoi diagrams and Delaunay triangulations. Weprovide a
brief introduction to these geometric structures which are further discussed in Aurenhammer
(1991), Aurenhammer and Klein(2000), andMøller (1994), among others. A tessellation or
mosaic of thed-dimensional Euclidean spaceRd is a subdivision ofRd into d-dimensional non-
overlapping sets. Depending on the situation, these sets are called cells, crystals, regions,etc.
The Voronoi diagram is one of the most attracting tessellations since it provides models for many
natural phenomena and has numerous mathematical and statistical applications. We define the
Voronoi diagram of a sampleXn in R2. This definition can be straightforwardly generalized to
thed-dimensional Euclidean space and to a deterministic finite set of points.
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Definition 4.2.1. The Voronoi diagram ofXn is a covering of the plane byn regionsVi, where
for i = 1, . . . , n,

Vi = {x ∈ R2 : ‖x − Xi‖ ≤ ‖x − Xj‖ for all Xj ∈ Xn}.

Remark 4.2.1. Definition 4.2.1 corresponds with the closest point Voronoi diagram defined
by Edelsbrunner et al.(1983), who distinguishes between closest and furthest point Voronoi
diagram.

For each sample pointXi, the setVi consists of all points inR2 which haveXi as near-
est sample point. The cellsVi are closed and convex and they can be proved to have disjoint
topological interiors. The cellVi is unbounded if and only ifXi is a point which belongs to the
boundary of the convex hull ofXn. OtherwiseVi is a nonempty convex polygon. Figure4.1(a)
shows the Voronoi diagram of a uniform random sample of sizen = 30 on the unit square. Each
regionVi contains the pointXi. The dashed lines represent the semi-infinite line segments of
the unbounded Voronoi cells. Two sample pointsXi andXj are said to be Voronoi neighbours
if the cellsVi andVj share a common point.

Another interesting structure, closely related to the Voronoi diagram, is the Delaunay trian-
gulation.

Definition 4.2.2. The Delaunay triangulation ofXn is defined as the straight line dual to the
Voronoi diagram ofXn, that is, there exists a straight line edge betweenXi andXj if and only
if Vi andVj are Voronoi neighbours.

Figure4.1 (b) shows the Delaunay triangulation of the above-mentioned uniform random
sample. Each Delaunay cell is a triangle whose vertices are sample points andwhose circumcen-
tre coincides with a Voronoi cell vertex, see Figure4.2. Observe that the Delaunay triangulation
constitutes a tessellation of the convex hull ofXn.

There is a one-to-one correspondence between the Voronoi diagramand the Delaunay tri-
angulation. The algorithm for the construction of the Voronoi diagram is based on this duality.
Edelsbrunner et al.(1983) underlines the fact that both the Voronoi diagram and the Delaunay
triangulation can be constructed inO(n log n) time. Moreover, the Voronoi diagram can be con-
structed from the respective Delaunay triangulation inO(n) time and vice versa. Lemma4.2.1
stated below is the key result that relates the problem of computingCα(Xn)c in (4.2) with the
Voronoi diagram and Delaunay triangulation. SeeEdelsbrunner et al.(1983) for the proof.

Lemma 4.2.1. Let B̊(x, r) be an open ball which does not contain any point of a sampleXn.
Either B̊(x, r) lies entirely outside the convex hull ofXn or there is an open ball which contains
B̊(x, r) but no points ofXn and which has its centre on an edge of the Voronoi diagram ofXn.

Note that by Lemma4.2.1, the union of open balls in (4.2) can be reduced to the union of
open balls with centres on the edges of the Voronoi diagram which do not contain any point
of the sample and whose radii are greater or equal toα. This fact considerably simplifies the
problem of computing (4.2). Anyway, the union of open balls with centres on the edges of the
Voronoi diagram which do not contain any point of the sample and whose radii are greater or
equal toα is still too complex. How can we compute these sets? Let us consider the following
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(a) (b)

Figure 4.1:(a) Voronoi diagram of a uniform random sample of sizen = 30 on the unit square.
The dashed lines represent the semi-infinite line segments of the unbounded Voronoi cells. (b) In
blue the Delaunay triangulation dual to the Voronoi diagram.

Xj

Xk

Xi

Figure 4.2:Uniform random sampleXn of sizen = 10 on the unit square. In green Voronoi
diagram ofXn. In blue Delaunay triangulation. Each Delaunay cell is a triangle whose ver-
tices are sample points. The circumcentre of each Delaunay trianglêXiXjXk coincides with a
Voronoi cell vertex.

two possible situations. First, letXi andXj be two Voronoi neighbours such that the cellsVi

andVj share a common closed line segment[a, b], see Figure4.2. It follows from the duality
between the Voronoi diagram and the Delaunay triangulation that the union of open balls with
centres on the edge[a, b] which do not contain any point of a sample is equal to

B̊(a, ‖a − Xi‖) ∪ B̊(b, ‖b − Xi‖),
see Figure4.3. Therefore, the existence of an open ball with centrex on [a, b] and radiusα such
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thatB̊(x, α) ∩ Xn = ∅ will depend on the values‖a − Xi‖ and‖b − Xi‖.

b

b

b

b

B̊(b, ‖b − Xi‖)

B̊(a, ‖a − Xi‖)

a

b

Xj

Xi

Figure 4.3:Consider the sampleXn in Figure4.2. The pointsXi andXj are Voronoi neighbours
such that the cellsVi andVj share a common closed line segment[a, b]. The union of open balls
with centres on the edge[a, b] which do not contain any point ofXn is equal toB̊(a, ‖a − Xi‖)∪
B̊(b, ‖b − Xi‖).

Second, letXj andXk be two Voronoi neighbours such that the cellsVj andVk share a
common semi-infinite line segment[a,+∞) , see Figure4.2. Now, the union of open balls with
centres on the edge[a,+∞) which do not contain any point of a sample can be written as

B̊(a, ‖a − Xj‖) ∪ H(Xj , Xk),

whereH(Xj , Xk) denotes the open halfplane defined by the straight line throughXj andXk,
see Figure4.4. The existence of an open ball with centrex on [a,+∞) and radiusα such that
B̊(x, α) ∩ Xn = ∅ will depend on the value‖a − Xj‖.

All these considerations have been taken into account in the programming ofthe comple-
ment of theα-convex hull. As the number on edges in the Voronoi diagram is linear inn, see
Edelsbrunner et al.(1983), is follows thatCα(Xn)c can be written as union ofO(n) open balls
and halfplanes. Note that for each edge of the Voronoi diagram, the union of open balls with
centres on it and radiusα which do not contain any point ofXn can be written as the union
of at most four open balls or halfplanes. To summarize, the algorithm for theconstruction of
Cα(Xn)c is as follows.

1. Construct the Voronoi diagram and Delaunay triangulation ofXn.

2. For each edge of the Voronoi diagram determine the union of open ballswith centres on
it and radiusα which do not contain any point ofXn.

3. OutputCα(Xn)c.

OnceCα(Xn)c is constructed we can decide whether a given point ofR2 belongs to theα-convex
hull or not, by checking if it belongs to any of the open balls or halfplanes that form the comple-
ment of theα-convex hull. Moreover, the boundary ofCα(Xn) can be completely determined
and hence, we can also measure the perimeter ofCα(Xn).
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b

b

b
a

Xj

Xk

B̊(a, ‖a − Xj‖)

H(Xj , Xk)

Figure 4.4:Consider the sampleXn in Figure4.2. The pointsXj andXk are Voronoi neighbours
such that the cellsVj and Vk share a common semi-infinite line segment[a,+∞). The union
of open balls with centres on the edge[a,+∞) which do not contain any point ofXn can be
written asB̊(a, ‖a − Xj‖) ∪ H(Xj , Xk).

We next show an example on how to use thealphahull library to compute theα-convex
hull of a uniform random sample of sizen = 30 on the unit square. The following commands
generate the sample and return the corresponding Voronoi diagram andDelaunay triangulation.
We also produce a plot of the resulting geometric structures.

> library(alphahull)
> sample<-matrix(runif(60),nc=2)
> info<-inform.vor.tri(sample)
> plot(sample[,1],sample[,2])
> add.voronoi(info$mat.info,col=3)
> plot(info$tri.obj,add = T,col=4)

The functioninform.vor.tri invokes internal functions from theTRIPACK package. The
TRIPACK is a Fortran 77 software package that employs an incremental algorithm to construct
a constrained Delaunay triangulation of a set of points in the plane, seeRenka(1996). We
have programmed the Voronoi diagram from the Delaunay triangulation returned byTRIPACK.
The matrixinfo$mat.info contains all the information relating to the Voronoi diagram and
Delaunay triangulation of the sample.

> info$mat.info[1:5,]
l11 l12 l21 l22 m11

[1,] 0.7348463 0.5473715 0.7333052 0.7953018 0.7869268
[2,] 0.9059224 0.6084090 0.7348463 0.5473715 0.7869268
[3,] 0.8693576 0.5464288 0.7348463 0.5473715 0.8026671

......................................................
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m12 m21 m22 dum1 dum2 l1 l2 m1 m2
[1,] 0.6716652 0.6892330 0.6710579 0 0 15 28 1 39
[2,] 0.6716652 0.8026671 0.6275482 0 0 1 15 1 2
[3,] 0.6275482 0.8017665 0.4990455 0 0 4 15 2 13

For each row ofinfo$mat.info, the columnsl1, l2, m1, andm2 store the indexes
of two Voronoi neighbour sample points and the corresponding vertices of the shared Voronoi
edge, respectively. Their coordinates are given by the first eight columns. Finally,dum1 and
dum2 indicate whether the vertices of the Voronoi edge are infinite or not, that is,whether the
shared edge is a closed line segment (bothdum1 anddum2 equal to zero) or an semi-infinite
line segment.

> alpha<-0.15
> compl<-complement(alpha,info$mat.info)
> shape<-alpha.shape(info,alpha)
> ahull<-alpha.hull(shape,compl)
> plot.ahull(ahull,pvor=T,pdel=T,pshape=F,new=F,col=2)
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Figure 4.5:Uniform random sampleXn of sizen = 30 on the unit square. In red the boundary
of Cα(Xn) for α = 0.15. The boundary is determined by arcs of balls of radiusα that hit the
sample (dashed balls) and isolated sample points.

The functioncomplement returns the open balls and halfplanes determining the com-
plement of theα-convex hull for a given valueα > 0. In order to plot the boundary of the
α-convex hull, we need to determine which of the balls with radiusα in the complement hit two
Voronoi neighbour points. This is closely related to the concept ofα-neighbours, recall Defini-
tion 1.5.2. The functionalpha.shape returns, among other arguments, theα-extremes and
α-neighbours of the sample. The functionalpha.hull returns the boundary of theα-convex
hull and its length. By using the information provided by the functionalpha.shape, we
characterize the boundary of theα-convex hull by arcs of balls of radiusα that hit the sample
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and isolated sample points when this is the case, see Figure4.5. The perimeter coincides with
the sum of the lengths of the arcs that form the boundary. For example, for the discussed sample
andα = 0.15, we have

> ahull$length
[1] 4.900739.

We can also determine whether a given point inR2 belongs to theα-convex hull or not by means
of the functionin.alpha.hull.

> in.alpha.hull(ahull,c(0.5,0.5))
[1] FALSE
> in.alpha.hull(ahull,c(0.2,0.5))
[1] TRUE

Finally, the functionplot.ahull produces a plot of the boundary of theα-convex hull. If
desired it also adds the Voronoi diagram, the Delaunay triangulation or theα-shape ofXn to the
plot, see AppendixC for more details on the use of these functions. An in-depth study of the
α-shape is given in Section4.4. In Figure4.6 we show theα-convex hull ofXn for different
values ofα. It is clear from the plots thatCα(Xn) changes considerably depending on the value
of α. We discuss the choice ofα in Section4.4.

(a) (b) (c)

Figure 4.6:We plot in red the boundary of theα-convex hull of a uniform random sampleXn of
sizen = 30 on the unit square. (a)α = 0.13. (b) α = 0.2. (c) α = 0.3.

4.3 Boundary length estimation: the two samples approach

Let G ⊂ (0, 1)2 be a nonempty compact set inR2. In this section we present the results of a
simulation study comparing the behaviour of two boundary length estimators of the form

Ln =
µ(Γn)

2εn
,
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whereΓn is an estimator ofB(∂G, εn). In this situation the sampling information is assumed
to be given by i.i.d. observations(Z1, ξ1), . . . , (Zn, ξn) of a random variable(Z, ξ), whereZ is
uniformly distributed on the unit square[0, 1]2 andξ = I{Z∈G}. Let Xn = {Zi : ξi = 1} and
Yn = {Zi : ξi = 0}. First, we consider the estimatorLn proposed byCuevas et al.(2007), that
is, with

Γn = B(Xn, εn) ∩ B(Yn, εn).

We shall denote this estimator byLDW
n sinceΓn is defined as the intersection of two Devroye-

Wise estimators. Second, we consider the estimatorLn with

Γn = B(Cα(Xn), εn) ∩ B(Cα(Yn), εn).

We shall denote this estimator byLα
n sinceΓn is defined from theα-convex hull ofXn andYn.

Before presenting the simulation study, we briefly comment on some aspects ofthe implemen-
tation of both boundary length estimators. The main difference betweenLDW

n andLα
n resides

in the construction ofΓn. OnceΓn is obtained, the procedure for computingµ(Γn) is similar.
Cuevas et al.(2007) comment on the difficulty to give the exact value ofµ(Γn) and suggest the
possibility of approximatingµ(Γn) by using the Monte Carlo method. Thus, following the no-
tation inCuevas et al.(2007), let Z∗

1 , . . . , Z∗
B be a random sample, independent ofZ1, . . . , Zn,

from the uniform distribution on[0, 1]2. For bothLDW
n andLα

n, we have thatΓn ⊂ [0, 1]2, with
probability one for large enoughn, andµ(Γn) = P (Z∗

1 ∈ Γn). For largeB,

µB(Γn) =

∑B
i=1 I{Z∗

i ∈Γn}
B

approximatesµ(Γn). There are alternatives to this design, seeCruz-Orive(2001/02) for a tutorial
on geometric sampling. For example, instead of generatingB independent pointsZ∗

1 , . . . , Z∗
B

from the uniform distribution on[0, 1]2, we can proceed as follows. We divide the unit square
into b by b cells and generate a uniform random pointx = (x1, x2) on [0, 1/b]2. Then,

{(

x1 +
i

b
, x2 +

j

b

)

, i, j = 0, . . . , b − 1

}

constitutes a so-called systematic sequence ofb2 points on[0, 1]2, Z∗
1 , . . . , Z∗

b2 , see Figure4.7.
As before,

µb2(Γn) =

∑b2

i=1 I{Z∗
i ∈Γn}

b2
(4.3)

approximatesµ(Γn). One of the advantages of the systematic sampling design is that we only
need to generate one sample pointx. Furthermore, we have noticed in practice that the estima-
tions we obtain with this procedure are more stable than with the Monte Carlo sampling method.
Thus, the systematic sampling design allows us to efficiently estimateµ(Γn) with fewer points,
reducing the computational cost.

Once we have explained the method to estimateµ(Γn), the problem reduces to determining
whether a given pointZ∗

i belongs toΓn or not. Let us first consider the estimatorLDW
n . It is

easy to see thatZ∗
i ∈ Γn for all εn such that

εn ≥ max
i

{min
j

{‖Z∗
i − Zj‖ , ξj = 1}, min

j
{‖Z∗

i − Zj‖ , ξj = 0}}.
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Figure 4.7:Systematic design.

Let us now consider the estimatorLα
n. Then,Γn is defined as the intersection of the dilations

of radiusεn of both Cα(Xn) andCα(Yn). In Section4.3 we explained how to compute the
α-convex hull of a given sample. In order to determine ifZ∗

i belongs toΓn we have programmed
the functionin.BTnEn . The arguments of this function are theα-convex hull ofXn andYn,
the pointZ∗

i , and the radiusεn. The procedure is as follows. The auxiliary functiondilation
returns the distancesdX anddY from Z∗

i to Cα(Xn) andCα(Yn), respectively. Then,Z∗
i ∈ Γn

for all εn such that

εn ≥ max{dX , dY}.

Figure4.8gives insight into the procedure for determiningΓn for bothLDW
n andLα

n. In Figure
4.9we represent the setΓn for the estimatorLDW

n .

(a) (b)

ε0

yb zb

α

Figure 4.8:SampleXk = {X1, . . . , Xk} (black dots). (a) The dashed green area corresponds
to
⋃k

i=1 B(Xi, ε0). The pointy belongs to
⋃k

i=1 B(Xi, ε) for all ε ≥ min{‖y − Xi‖ , i =
1, . . . , k}. (b) In green boundary ofCα(Xk). The pointz belongs toB(Cα(Xk), ε) for all
ε ≥ d(z, Cα(Xk)).
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Figure 4.9: Uniform random sample(Zi, ξi), i = 1 . . . , 1000, on the unit square. In green
B(Xn, εn) and in red (dashed)B(Yn, εn), for εn = 0.03. The intersection of both regions,Γn,
estimatesB(∂G, εn). The original set is represented in Figure4.10(a), below.

4.3.1 Simulation study

In order to evaluate and compare the behaviour ofLα
n andLDW

n , we have considered two dif-
ferent sets, see Figure4.10(a), (b). We denote them byS andC, respectively, referring to their
shape. We have chosen these sets for several reasons. First, a ballof radiusαS rolls freely in
S and inSc for someαS > 0. The same property holds forC, beingαC > αS (note thatC is
wider thanS). In fact,αS = 0.035 whereasαC = 0.1 Therefore,S andC fulfill the conditions
under which the theoretical properties of the estimators have been obtained.Second, we know
for both sets the exact value of the boundary length, see Table4.1, since they are constructed
from a union of arcs. We shall use this information to evaluate the performance of the estimators.

S C

Boundary length 3.16 2.51

Table 4.1:Boundary length of the setsS andC in Figure4.10.

Proceeding as in the simulation study carried out byCuevas et al.(2007), both estimators
Lα

n andLDW
n have been evaluated for 500 samples of sizesn = 1000 andn = 5000. Regarding

the parameters, we have chosenαS = 0.03 and have slightly modified the estimatorLα
n for the

setC. Note that, by definition, we should estimate bothC and [0, 1]2 \ int(C) with the same
parameterαC . However, it is clear that both sets areα-convex for different values ofα. For this
reason we estimateB(∂C, εn) by means of

Γn = B(C0.2(Xn), εn) ∩ B(C0.1(Yn), εn).

We have considered 250 equidistant values ofεn from εn = 0.001 to εn = 0.250. The resam-
pling parameterb, used in the systematic design described at the beginning of this section, is
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Figure 4.10:(a) SetS. (b) SetC.

b = 40. Therefore, we approximateµ(Γn) by evaluating1600 points of the unit square, recall
the definition ofµb2(Γn) in (4.3). First, we show the results for the setC. Tables4.2 and4.3
provide, forn = 1000 and some values ofεn, the average, standard deviation and median of
bothLα

n andLDW
n computed from the 500 replications. The same results, forn = 5000, are

shown in Tables4.4, 4.5. Finally, we plot the Mean Square Error (MSE) forLα
n andLDW

n with
n = 1000, see Figure4.11(a), andn = 5000, see Figure4.11(b).

εn 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 0.81684 1.60635 1.91578 2.07226 2.16685 2.19261

Std. deviation 0.00000 0.12498 0.08362 0.05696 0.04453 0.03623 0.02738
Median 0.00000 0.81250 1.60256 1.91810 2.07386 2.16634 2.19293

εn 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.09326 2.00396 1.93119 1.86917 1.81670 1.76831 1.72203

Std. deviation 0.02214 0.01916 0.01772 0.01607 0.01479 0.01375 0.01250
Median 2.09491 2.00487 1.93280 1.87174 1.81724 1.76902 1.72313

Table 4.2:Average, standard deviation and median ofLα
n for the setC, based on 500 uniform

samples on the unit square with sample size n=1000.

Regarding the results for the setS, and for the sake of brevity, we only show the summary
results corresponding to the sample sizen = 5000. Tables4.6and4.7provide, forn = 5000 and
some values ofεn, the average, standard deviation and median of bothLα

n andLDW
n computed

from the 500 replications.
At this point, we make some comments on the behaviour of the estimatorLα

n. First of all, we
must admit that the results are not so good as expected, according to the theoretical properties
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εn 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 0.31344 1.29790 1.81036 2.03090 2.14738 2.18399

Std. deviation 0.00000 0.07044 0.08990 0.06049 0.04526 0.03688 0.02873
Median 0.00000 0.31250 1.29808 1.81304 2.03328 2.14518 2.18750

εn 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.08929 2.00265 1.92996 1.86910 1.81660 1.76830 1.72173

Std. deviation 0.02216 0.01923 0.01753 0.01630 0.01509 0.01385 0.01268
Median 2.09028 2.00487 1.93100 1.87012 1.81724 1.76902 1.72250

Table 4.3:Average, standard deviation and median ofLDW
n for the setC, based on 500 uniform

samples on the unit square with sample size n=1000.

εn 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00625 1.92284 2.21537 2.31475 2.36476 2.39559 2.32049

Std. deviation 0.04379 0.07450 0.04173 0.02872 0.01985 0.01697 0.00994
Median 0.00000 1.93750 2.21955 2.31681 2.36607 2.39583 2.32065

εn 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.18389 2.08127 1.99714 1.92794 1.86857 1.81365 1.76147

Std. deviation 0.00811 0.00698 0.00647 0.00575 0.00585 0.00488 0.00503
Median 2.18519 2.08198 1.99783 1.92708 1.86908 1.81386 1.76125

Table 4.4:Average, standard deviation and median ofLα
n for the setC, based on 500 uniform

samples on the unit square with sample size n=5000.

of the estimatorLα
n. A larger sample size might produce more remarkable features although

the computational cost substantially increases asn is larger. In spite of this first discouraging
impression, we have noticed some interesting peculiarities we next discuss.

1. As happened with the estimatorLDW
n , seeCuevas et al.(2007), Lα

n underestimates sys-
tematically the true valueL0. The bias decreases as the sample size increases.

2. The variance also decreases by increasing the sample size.

3. The bias is the main source of error inLα
n.

4. We have also observed that the values of the mean and the median are very close. This
suggests that the sampling distributions are almost symmetric.

Apart from the previous conclusions, we consider that it is interesting to compare the behav-
ior of Lα

n andLDW
n . While neither of theses alternatives feature an accurate approximation to

the target, we observe that:
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εn 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 1.51294 2.11728 2.27876 2.35119 2.39009 2.31759

Std. deviation 0.00000 0.08438 0.04194 0.02651 0.01956 0.01627 0.00988
Median 0.00000 1.51562 2.11538 2.27909 2.34984 2.38932 2.31793

εn 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.18235 2.08006 1.99712 1.92790 1.86846 1.81317 1.76156

Std. deviation 0.00800 0.00741 0.00675 0.00600 0.00569 0.00512 0.00496
Median 2.18287 2.07995 1.99603 1.92871 1.86759 1.81386 1.76125

Table 4.5:Average, standard deviation and median ofLDW
n for the setC, based on 500 uniform

samples on the unit square with sample size n=5000.
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Figure 4.11:Mean Square Error (MSE) ofLα
n (solid line) andLDW

n (dashed line) for the setC.
(a) n = 1000. (b) n = 5000.

1. In terms of the Mean Square Error (MSE), the estimatorLα
n improves the results obtained

with LDW
n , see Figure4.11. These differences are more obvious for small values of the

smoothing parameterεn and they are mainly due to the bias term, which is smaller for the
estimatorLα

n.

2. Observe that the differences between both estimators is less obvious asεn increases. The
reason is that when we dilate both estimators with large values ofǫn, the influence of those
points ofGn andRn which are not inXn andYn is not noticeable any more.
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εn 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 1.94110 2.64593 2.60890 2.36584 2.18777 2.05832

Std. deviation 0.00000 0.12758 0.10116 0.07361 0.05891 0.04732 0.03954
Median 0.00000 1.93750 2.64530 2.61351 2.36797 2.18924 2.05797

εn 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 1.95846 1.88848 1.82453 1.76424 1.71131 1.66469 1.62216

Std. deviation 0.03427 0.02990 0.02552 0.02259 0.01992 0.01740 0.01478
Median 1.95802 1.88853 1.82466 1.76389 1.71011 1.66377 1.62200

Table 4.6:Average, standard deviation and median ofLα
n for the setS, based on 500 uniform

samples on the unit square with sample size n=5000.

εn 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00033 1.90640 2.66134 2.61699 2.36965 2.18995 2.05963

Std. deviation 0.00745 0.13115 0.09951 0.07545 0.05887 0.04949 0.04076
Median 0.00000 1.90000 2.66239 2.61782 2.36797 2.18924 2.06087

εn 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 1.95762 1.88830 1.82507 1.76487 1.71191 1.66497 1.62230

Std. deviation 0.03527 0.03120 0.02620 0.02288 0.02006 0.01737 0.01498
Median 1.95802 1.88745 1.82370 1.76476 1.71248 1.66522 1.62267

Table 4.7:Average, standard deviation and median ofLDW
n for the setS, based on 500 uniform

samples on the unit square with sample size n=5000.

4.4 Boundary length estimation: the one sample approach

It may be the case that we only have information on the set of interestS ⊂ R2, that is, we
are provided with a random sampleXn from a random variableX with supportS. In Chapter
1 we have discussed different support estimators, such as the convex hull estimator and the
Devroye-Wise estimator. Suppose that we are interested in a geometric characteristic of the
setS, for example the boundary length. It seems natural to estimate the setS by means of a
support estimatorSn and then compute the boundary length ofSn. The main difference with
respect to the problem in Section4.3 is that now we have to estimate the boundary length from
inside the set since we do not have any kind of information about the complement. In this
section we compare the results obtained when we estimate the perimeter of a setS by using
theα-convex hull estimator andα-shape estimator of a given sample inS. In Section4.2 we
have commented on the implementation of theα-convex hull estimator. Theα-shape estimator,
however, was briefly introduced in Chapter1 but nothing was said about its structure or the
algorithm to compute it. Before presenting the results of the simulation study we would like to
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give some insight into the construction of theα-shape. First, recall Definitions1.5.1, 1.5.2, and
1.5.3. Theα-shape of a sampleXn is defined to be a straight line graph. One of the drawbacks of
its definition is that theα-shape does not provide us with a criterion to differentiate between the
insideand theoutsideof theα-shape. In Figure4.12(a) theα-shape of a uniform random sample
Xn on the unit square withα = 0.13 is represented. It does not seem clear how to define the
interior of theα-shape. On the contrary, theα-convex hull is completely characterized and we
can determine whether a given point belongs to theα-convex hull or not. As with theα-convex

(a) (b)

Figure 4.12:Uniform random sampleXn of sizen = 30 on the unit square. The boundary of
Cα(Xn) is represented in solid red. Theα-shape is represented by a straight black line graph.
(a) α = 0.13. (b) α = 0.3.

hull, the value ofα affects theα-shape. Thus, theα-shape tends to the convex hull of the sample
for large values ofα, whereas asα tends to zero theα-shape tends to the empty set. Another
drawback of theα-shape is that there exist few theoretical results on its behaviour, mainly due to
the difficulty formalizing its definition. In spite of these disadvantages we havedecided to study
the performance of the length of theα-shape as an estimator of the boundary length, since it is
relatively easy to implement and we have observed that it achieves good results.

In Edelsbrunner et al.(1983) it is proved that theα-shape is a subgraph of the Delaunay
triangulation defined in Section4.3. The algorithm for its construction is as follows.

1. Construct the Voronoi diagram and Delaunay triangulation ofXn.

2. Determine theα-extremes ofXn.

2.1. Determine the convex hull of the sample. The pointsXi ∈ Xn which lie on the
convex hull areα-extremes for allα > 0.

2.2. For eachXi which is not on the convex hull compute the distances fromXi to the
verticesv of the Voronoi cellVi. ThenXi is α-extreme for allα satisfying

0 < α ≤ max{‖Xi − v‖ , v vertex ofVi}.
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3. Determine theα-neighbours ofXn.

4. Output theα-shape.

We now briefly comment on how to solve step 3 of the algorithm. Given an edge of the
Delaunay triangulation[Xi, Xj ] and its dual edge of the Voronoi diagram, the extremesXi and
Xj areα-neighbours for allα satisfying

αmin ≤ α ≤ αmax, (4.4)

whereαmin andαmax are computed from the position ofXi andXj with respect to the vertices
of the dual Voronoi edge. In particular, if the Voronoi edge is a closedline segment[a, b], then
αmax = max{‖Xi − a‖ , ‖Xi − b‖} whereas if the Voronoi edge is a semi-infinite line segment
[a,+∞), thenαmax = ∞ and equation (4.4) reduces toα ≥ αmin. Obtaining the value of
αmin is a bit trickier. For example, if the Voronoi edge is a closed line segment[a, b], thenαmin

is not necessarily equal tomin{‖Xi − a‖ , ‖Xi − b‖}, see Figure4.13. Of course, we have
programmed all possible values ofαmin but we omit here the details since they do not contribute
to the understanding of the subject matter.

b

b

b

b

b

p

B(p, ‖Xi − Xj‖ /2)

B(b, ‖b − Xi‖)

B(a, ‖a − Xi‖)

a

b

Xj

Xi

Figure 4.13:Let [Xi, Xj ] be an edge of the Delaunay triangulation and let[a, b] be the corre-
sponding dual Voronoi edge. Then, we can find a ball of radiusα such that bothXi andXj lie
on its boundary for allαmin ≤ α ≤ αmax, beingαmax = max{‖Xi − a‖ , ‖Xi − b‖} and for
the given exampleαmin = ‖Xi − Xj‖ /2.

Regarding the implemented code, the functionalpha.shape returns theα-shape of a
sample. The input arguments are the output of the functioninform.vor.tri and the value
of α. Continuing with the example of Section4.3, we compute theα-shape of the sampleXn

for α = 0.3.

> alpha<-0.3
> shape<-alpha.shape(info,alpha)

The output objectshape contains the following components:



122 CHAPTER 4. IMPLEMENTATION ISSUES AND SIMULATION RESULTS

> names(shape)
[1] "sample" "info" "alp.shape" "alpha"
[5] "alpha.extremes" "possibles" "length"

Among other information,shape stores inshape$alpha.extremes the indexes of the
sample points that areα-extremes. The componentshape$alp.shape contains the coordi-
nates of each pair ofα-neighbours, the corresponding dual Voronoi edges and the valuesfrom
whichαmin andαmax are computed. The length of theα-shape is stored inshape$length.

> shape$alpha.extremes
[1] 21 7 5 2 30 10 8 22 13 28 1 20 23 9
> shape$length
[1] 3.039860

Finally, the functionplot.ashape produces a plot of theα-shape. If desired it also adds the
Voronoi diagram and the Delaunay triangulation ofXn. In Figure4.14we show the plot of the
α-shape for the discussed example.

> plot.ashape(shape,pvor=T,pdel=T,new=T)

Figure 4.14:Uniform random sampleXn of sizen = 30 on the unit square. In green Voronoi
diagram ofXn, in blue Delaunay triangulation and in blackα-shape forα = 0.3.

4.4.1 Simulation study

Again, we have considered the same setsS andC defined in Subsection4.3.1, see Figure4.10.
The setting is, however, different since now we are provided with random samples of points
generated into the sets under study but not into their complementaries. We generate 500 uniform
samples of sizen = 1000 on each set and evaluate the estimators for different values ofα, see
Table4.8. Summarizing, for each sampleXn and each value ofα we constructCα(Xn) and
the correspondingα-shape, denoted byαshape(Xn). Finally, we compute the boundary length of
both estimators. The results corresponding to the setC are summarized in Tables4.9, 4.10, and
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α 0.01 0.03 0.05 0.07 0.09

Table 4.8:Values ofα.

4.11. Tables4.12, 4.13, and4.14provide the results corresponding to the setS. Recall Table4.1
for the exact values of the boundary length.

α 0.01 0.03 0.05 0.07 0.09
Average 7.03104 2.70356 2.57810 2.53918 2.52043

Std. deviation 0.22676 0.02905 0.01207 0.00989 0.01036
Median 7.05082 2.69996 2.57740 2.53939 2.52082

Table 4.9:Average, standard deviation and median of the boundary length ofCα(Xn), based on
500 uniform samplesXn onC with sample size n=1000.

α 0.01 0.03 0.05 0.07 0.09
Average 14.17756 2.56695 2.51315 2.49881 2.49186

Std. deviation 0.38347 0.02445 0.00906 0.00751 0.00673
Median 14.16505 2.56389 2.51289 2.49883 2.49204

Table 4.10:Average, standard deviation and median of the boundary length ofαshape(Xn), based
on 500 uniform samplesXn onC with sample size n=1000.

α 0.01 0.03 0.05 0.07 0.09
Cα(Xn) 20.46161 0.03705 0.00435 0.00077 0.00016

αshape(Xn) 136.20260 0.00348 0.00008 0.00027 0.00050

Table 4.11:Mean square error of the boundary length ofCα(Xn) andαshape(Xn), based on 500
uniform samplesXn onC with sample size n=1000.

α 0.01 0.03 0.05 0.07 0.09
Average 7.56055 3.31702 3.27558 3.21966 2.66260

Std. deviation 0.22075 0.01844 0.03622 0.02116 0.07993
Median 7.56726 3.31649 3.28373 3.21991 2.65317

Table 4.12:Average, standard deviation and median of the boundary length ofCα(Xn), based
on 500 uniform samplesXn onS with sample size n=1000.
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α 0.01 0.03 0.05 0.07 0.09
Average 10.54785 3.19447 3.21567 3.19925 2.74672

Std. deviation 0.35094 0.01527 0.02962 0.09567 0.06215
Median 10.55026 3.19327 3.21205 3.14840 2.73819

Table 4.13:Average, standard deviation and median of the boundary length ofαshape(Xn), based
on 500 uniform samplesXn onS with sample size n=1000.

α 0.01 0.03 0.05 0.07 0.09
Cα(Xn) 19.40276 0.02461 0.01439 0.00386 0.25502

αshape(Xn) 54.68538 0.00134 0.00384 0.01060 0.17568

Table 4.14:Mean square error of the boundary length ofCα(Xn) andαshape(Xn), based on 500
uniform samplesXn onS with sample size n=1000.

We observe, for some values of the parameterα, a significant improvement compared to the
results of the simulation study discussed in Section4.3. Small values ofα, however, provide
considerably biased estimations, especially in the case of theα-shape, see the first column of
Tables4.10and4.13. This fact can be explained by the definition of theα-shape. Recall that
theα-shape was defined as the straight line graph whose edges connectα-neighbours. Whenα
is small, a considerable number of interior points of the set turn out to beα-extremes and the
α-shape looks like a mesh connecting many of them, see Figure4.15. As a consequence, the
length of theα-shape is large, as it is the result of the addition of many small segments.
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Figure 4.15:Boundary length estimation with smallα. (a) The boundary length ofCα(Xn) for
α = 0.01 is 6.782. (b) The boundary length ofαshape(Xn) for α = 0.01 is 14.053.

The estimations are also biased for large values ofα (compared to the real valuesαC and
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αS). This fact cannot be appreciated in the particular case of the setC sinceαC > 0.09. Note
that a ball of radiusα rolls freely inC and inCc for all α in Table4.8. However, observe the last
column of Tables4.12and4.13. It seems that there is an inflection point in the estimations of
the boundary length ofS. The reason is thatα = 0.09 is too large and the estimator is not longer
able to identify the cavities of the set. For example, theα-shape joinsα-extreme points from the
upper and lower part ofS. The same occurs withCα(Xn), see Figure4.16. As a consequence,
the boundary length is underestimated.
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Figure 4.16:Boundary length estimation with largeα. (a) The boundary length ofCα(Xn) for
α = 0.09 is 2.659. (b) The boundary length ofαshape(Xn) for α = 0.09 is 2.724.

Finally, we also include some descriptive graphs. Figures4.17and4.18show boxplots of
the estimates for different values ofα. Due to the bias problems explained before, the scale for
the caseα = 0.01 is much higher than for the rest of values ofα. For the sake of clarity, we
have omitted this case in the plots.
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Figure 4.17:Summary graphs for the setC. (a) Boxplots for the boundary length ofCα(Xn).
(b) Boxplots for the boundary length ofαshape(Xn).
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Figure 4.18:Summary graphs for the setS. (a) Boxplots for the boundary length ofCα(Xn).
(b) Boxplots for the boundary length ofαshape(Xn).



Appendix A

Rolling condition, positive reach and
α-convexity

The free rolling condition, recall Definition1.4.5, has useful implications which are worth not-
ing. In this appendix we list some results about the rolling condition that play animportant role
throughout this work. For example, sufficient conditions relating the rollingcondition to the
positive reach or theα-convexity of a set are given.

We begin by making some preliminary comments. Assume that a ball of radiusα > 0 rolls
freely in a nonempty closed setA ⊂ Rd and leta ∈ ∂A. By definition there existsx ∈ A such
thata ∈ B(x, α) ⊂ A and, necessarily,‖x − a‖ = α. Observe that if‖x − a‖ < α, then it
easily follows thata ∈ B̊(a, α − ‖x − a‖) ⊂ B̊(x, α) ⊂ int(A), yielding a contradiction since
a ∈ ∂A. Define the unit vectorη(a) = (a−x)/ ‖a − x‖. Then we can writeB(a−αη(a), α) ⊂
A sincex = a−αη(a). It is important to note that the free rolling condition inA does not imply
that the pointx and, consequently, the vectorη(a) are unique, see FigureA.1.

b

b

a2
b

b

ba1
α

A

Figure A.1: A ball of radiusα rolls freely inA. For the pointa1 ∈ ∂A there exists a unique
x ∈ A such thata1 ∈ B(x, α) ⊂ A. However, for the pointa2 ∈ ∂A, a2 ∈ B(x, α) ⊂ A for
infinitex ∈ A.

LemmaA.0.1shows that the uniqueness of the unit vectorη(a) such thatB(a−αη(a), α) ⊂
A is closely related to the existence of somex /∈ A such thata coincides with the metric
projection ofx ontoA.

127
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Lemma A.0.1. Let A ⊂ Rd be a nonempty closed set anda ∈ ∂A. Assume that there exists
x /∈ A such that

ρ = ‖x − a‖ = d(x, A),

that is,a is a metric projection ofx ontoA. If there existsα > 0 and a unit vectorη(a) such
thatB(a − αη(a), α) ⊂ A, then

x = a + ρη(a).

Proof. To see this suppose the contrary, that is, suppose that there existsx under the stated
conditions such thatx 6= a + ρη(a). Then, it can be easily seen thatx, a, anda− αη(a) cannot
lie on the same line and hence,

‖a − αη(a) − x‖ < ‖a − αη(a) − a‖ + ‖a − x‖ = α + ρ. (A.1)

Now, letz ∈ ∂B(a−αη(a), α)∩ [x, a−αη(a)], where[x, a−αη(a)] denotes the line segment
with endpointsx anda − αη(a), see FigureA.2. We have

‖a − αη(a) − x‖ = ‖a − αη(a) − z‖ + ‖z − x‖ = α + ‖z − x‖.

Therefore, by (A.1)

‖z − x‖ = ‖a − αη(a) − x‖ − α < α + ρ − α = ρ,

which is a contradiction sincez ∈ A andρ = d(x, A).

b

a − αη(a)

b
x

b
a

A

Ac

b z

Figure A.2:Elements of LemmaA.0.1.

Remark A.0.1. A direct consequence of LemmaA.0.1is that the vectorη(a) is unique, whenever
a is the metric projection of somex /∈ A ontoA. Another interpretation is that ifa ∈ ∂A and
there exists more that one ball such thata ∈ B(x, α) ⊂ A, thena cannot be the metric projection
of any pointx /∈ A, see FigureA.3.

The following lemma shows that the rolling condition guarantees some regularity on the
boundary of the set.
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α
ba

A

Figure A.3:For the setA in gray and the pointa ∈ ∂A we can find two unit vectorsη(a) such
thatB(a − αη(a), α) ⊂ A. It follows from LemmaA.0.1thata cannot be the metric projection
of anyx /∈ A ontoA.

Lemma A.0.2. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls
freely inA. Then,

int(Ac) = Ac and ∂A = ∂Ac.

Proof. First we prove that int(Ac) = Ac. It is straightforward to see thatAc ⊂ int(Ac) by using
thatAc is open. Now we prove that int(Ac) ⊂ Ac. Suppose the contrary, that is, suppose that
there existsx ∈ int(Ac) such thatx /∈ Ac. Then,x ∈ A ∩ Ac = ∂A. By the free rolling
condition inA, there existsp ∈ A such thatx ∈ B(p, α) ⊂ A. Moreover, as we have seen
‖x − p‖ = α. Sincex ∈ int(Ac), there existsε > 0 such thatB(x, ε) ⊂ Ac. Assume thatε < α
and consider the point

yλ = x + λ
p − x

‖p − x‖ , λ ∈ (0, ε).

We haveyλ ∈ B̊(p, α) ⊂ int(A). We get a contradiction sinceyλ ∈ B(x, ε) ⊂ Ac. The proof
for ∂A = ∂Ac is now straightforward if we use that the boundary of a set can be written as the
adherence of the set minus its interior. SinceAc is open and int(Ac) = Ac, we obtain

∂Ac = Ac \ int(Ac) = Ac \ Ac = Ac \ int(Ac) = ∂Ac = ∂A.

An immediate consequence of LemmaA.0.2 is given in the following lemma.

Lemma A.0.3. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls
freely inA. Then,

A = Acc
.

Proof. The result is a straightforward application of LemmaA.0.2. Use that int(Ac) = Ac to
obtain

Acc
= int(Ac)c = A.
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b x

Figure A.4:For A = B ∪ {x}, we have thatAcc
= int(A) = B. Note thatA does not fulfill the

free rolling condition inA.

Remark A.0.2. The setAcc
can also be written asint(A). SinceA is closed, it is straightforward

to verify thatint(A) ⊂ A. We then deduce that the rolling condition inA is essential in order to
guarantee thatA ⊂ int(A), since in general this is not true, see FigureA.4.

From here on, we will assume thatA ⊂ Rd is a nonempty closed set such that a ball of
radiusα > 0 rolls freely not only inA but also inAc. The implications of this assumption are
established in LemmasA.0.5, A.0.6, A.0.7, andA.0.8. First, we would like to comment on the
symmetric roles thatA andAc play in this assumption. It can be proved that the roles ofA and
Ac are interchangeable in the sense that if a ball of radiusα > 0 rolls freely inA and inAc, then

we also have that a ball of radiusα > 0 rolls freely inAc and inAcc
. The precise statement is

given in LemmaA.0.4, which relies on LemmaA.0.3.

Lemma A.0.4. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls

freely inA and inAc. Then, a ball of radiusα > 0 rolls freely inAc and inAcc
.

Proof. The result is a direct consequence of LemmaA.0.3which states thatAcc
= A.

Lemma A.0.5. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls
freely inA and inAc. Then, for alla ∈ ∂A there exists a unique unit vectorη(a) such that

B(a − αη(a), α) ⊂ A and B(a + αη(a), α) ⊂ Ac.

Proof. Let a ∈ ∂A. By the free rolling condition inA, there existsx ∈ A such thata ∈
B(x, α) ⊂ A. Moreover,x can be written asx = a − αη(a), whereη(a) = (a − x)/ ‖a − x‖.
By LemmaA.0.2, ∂A = ∂Ac and hencea ∈ ∂Ac. The free rolling condition inAc yields that
there existsy ∈ Ac such thata ∈ B(y, α) ⊂ Ac and then‖y − a‖ = d(y, A) = α, that is,a is
the metric projection ofy /∈ A ontoA. It follows from LemmaA.0.1 that

y = a + αη(a),

and thereforeB(a + αη(a), α) ⊂ Ac.

Remark A.0.3. Note that by LemmaA.0.2we can conclude that ifB(a + αη(a), α) ⊂ Ac, then
B̊(a + αη(a), α) ⊂ Ac, sinceint(Ac) = Ac.
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Next we focus on the relation between the free rolling condition and the positive reach of a
set. Recall that the reach of a nonempty setA, reach(A), is defined as the largestα, possibly
infinity, such that ifx ∈ Rd andd(x, A) < α, then the metric projection ofx ontoA is unique.
LemmaA.0.6states that ifA is a nonempty closed subset ofRd such that a ball of radiusα rolls
freely in A and inAc, then∂A has positive reach, being reach(∂A) ≥ α. As a consequence
every point whose distance to∂A is lower thanα has a unique metric projection onto∂A.

Lemma A.0.6. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls
freely inA and inAc. Then, for allx ∈ Rd such thatρ = d(x, ∂A) < α there exists a unique
pointa ∈ ∂A such that‖x − a‖ = d(x, ∂A). That is, the reach of∂A is greater or equal toα.

Proof. Let x ∈ Rd such thatρ = d(x, ∂A) < α. We can assume thatx /∈ ∂A since the result is
trivial otherwise. First, suppose thatx /∈ A. If there exist two metric projections ofx onto∂A,
namelya1 anda2, then by the free rolling condition inA and by LemmasA.0.1 andA.0.5, we
have that

x = a1 + ρη(a1) = a2 + ρη(a2),

whereη(a1) andη(a2) are the unique unit vector such that

B(ai − αη(ai), α) ⊂ A and B(ai + αη(ai), α) ⊂ Ac, i = 1, 2.

The pointsx, a2 + αη(a2), anda1 cannot lie on the same line. Otherwise

a1 = a2 + λη(a2)

for someλ ∈ R. But by assumptiona1 = a2 + ρη(a2)− ρη(a1) and hence|λ− ρ| = ρ, that is,
λ = 0 or λ = 2ρ.

b
x

b
a1

b

η(a2)

η(a1) a2

a2 + αη(a2)
b

None of these two values is valid. First,λ = 0 yields
a1 = a2 which is a contradiction since we are assuming that
both points are different. Second,λ = 2ρ < 2α yields

‖a1 − (a2 + αη(a2))‖ = |2ρ − α| < α,

and hencea1 ∈ B̊(a2 + αη(a2), α) ⊂ Ac, which is another
contradiction sincea1 ∈ ∂A. Therefore,x, a2 + αη(a2), and
a1 do not lie on the same line. Finally, using the strict triangle
inequality andρ ≤ α we have that

‖a1 − (a2 + αη(a2))‖ < ‖a1 − x‖ + ‖x − (a2 + αη(a2))‖ = ρ + (α − ρ) = α.

This is again a contradiction sincea1 ∈ ∂A. Therefore, the projection onto∂A of x /∈ A such
that ρ = d(x, ∂A) < α is unique. Now suppose thatx ∈ A. Since we are assuming that
x /∈ ∂A it can be easily seen thatx /∈ Ac. Moreover,∂Ac = ∂A by LemmaA.0.2 and hence
d(x, ∂Ac) < α. The result is now straightforward if we repeat the same steps as beforeand use
that, by LemmaA.0.4, the roles ofA andAc are interchangeable.

�
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Therefore, LemmaA.0.6 proves that a sufficient condition for∂A ⊂ Rd to have positive
reach is that a ball of radiusα > 0 rolls freely inA and inAc. It is convenient to note, as it
is shown in FigureA.5, that it is not enough that a ball of radiusα rolls freely inA in order to
guarantee thatreach(∂A) ≥ α. The same occurs if a ball of radiusα only rolls freely inAc, see
FigureA.6. In LemmaA.0.7we state a useful application of LemmaA.0.6.

Lemma A.0.7. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls
freely in A and in Ac. ThenA and Ac are both sets with positive reach, beingreach(A) and
reach(Ac) greater or equal toα.

Proof. The result is an immediate consequence of LemmaA.0.6.

α

b

xA

Figure A.5: A ball of radiusα rolls freely inA, d(x, ∂A) < α, and the metric projection ofx
onto∂A is not unique.

α

b

x
A

Figure A.6:A ball of radiusα rolls freely inAc, d(x, ∂A) < α, and the metric projection ofx
onto∂A is not unique.

Finally, it remains to establish the relation between the rolling condition and theα-convexity,
recall Definition1.4.1. LemmaA.0.8states the result.

Lemma A.0.8. LetA ⊂ Rd be a nonempty closed set. Assume that a ball of radiusα > 0 rolls
freely inA and inAc. ThenA andAc are bothα-convex.

Proof. First we shall prove thatA = Cα(A). Since by definitionA ⊂ Cα(A), it suffices to
show that ifx ∈ Ac thenx /∈ Cα(A). Thus, letx ∈ Ac andρ = d(x, A). If ρ ≥ α, then
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x ∈ B̊(x, α) ⊂ Ac and thereforex /∈ Cα(A). If ρ < α, then by LemmasA.0.7 andA.0.5 there
exists a unique pointa ∈ ∂A and a unique unit vectorη(a) such thatx = a + ρη(a) and

x ∈ B̊(a + αη(a), α) ⊂ Ac,

which yieldsx /∈ Cα(A). It remains to proof thatAc is α-convex. The result is an immediate
consequence of the latter and LemmaA.0.3.

Remark A.0.4. The converse of LemmaA.0.8may fail, that is, we may find setsA such that
A and Ac are bothα-convex but do not satisfy the rolling condition inA and in Ac. See for
example FigureA.4, where the setsA = B ∪ {x} and Ac = R2 \ B̊ are bothα-convex for
α = 1. However, a ball of radius 1 does not roll freely inA because of the pointx.





Appendix B

Closing of a sample with respect to
open and closed balls

Chapter2 focused on the study of a set estimator for a compact setS ⊂ Rd under the assump-
tion of α-convexity. As has been argued, theα-convex hull serves as basis to define a natural
estimator in this context. Thus, given a random sampleXn = {X1, . . . , Xn} from a random
variable with supportS, we defined

Sn = (Xn ⊕ rnB̊) ⊖ rnB̊.

Note that, according to Definition1.4.3, Sn is the closing ofXn with respect to̊B(0, rn). We
have pointed out that the method to boundE(dµ(S, Sn)) can be simplified if instead ofSn as
defined above we considered

Sn = (Xn ⊕ rnB) ⊖ rnB.

Although we have not introduced the precise definition in Chapter1, the latter estimatorSn is the
closing ofXn with respect toB(0, rn). The result of this appendix states that, with probability
one, both estimators are equal. More precisely, geometric arguments yield that if the closing of a
sampleXn with respect to the open ball̊B(0, r) is not the same as the closing ofXn with respect
to B(0, r), then there existy ∈ Rd andd + 1 sample points whose distance toy is exactly equal
to r. The proof concludes by showing that, under the assumption of an absolutely continuous
distribution, this is a zero-probability event. In short, it makes no difference whether we consider
Sn defined with open or closed balls.

Lemma B.0.9. Let Xn = {X1, . . . , Xn} be a random sample fromX, whereX denotes a
random variable inRd with absolutely continuous distributionPX . For anyr > 0, let

Cr(Xn) = (Xn ⊕ rB̊) ⊖ rB̊ and CB
r (Xn) = (Xn ⊕ rB) ⊖ rB.

Then, with probability one,

Cr(Xn) = CB
r (Xn).
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Proof. It is straightforward to verify thatCr(Xn) ⊂ CB
r (Xn) and hence

P (Cr(Xn) 6= CB
r (Xn)) = P (CB

r (Xn) \ Cr(Xn) 6= ∅).

By using the definitions of the Minkowski addition and Minkowski subtractionit can be easily
proved that ifCB

r (Xn) \ Cr(Xn) 6= ∅, then

int

(

n
⋃

i=1

B(Xi, r)

)

6=
n
⋃

i=1

B̊(Xi, r). (B.1)

Note that
⋃n

i=1 B̊(Xi, r) ⊂ int (
⋃n

i=1 B(Xi, r)) and hence (B.1) implies that there existsy ∈ Rd

such that

y ∈ int

(

n
⋃

i=1

B(Xi, r)

)

(B.2)

and, for alli ∈ {1, . . . , n},
‖y − Xi‖ ≥ r. (B.3)

It follows from (B.2) that there existsδ > 0 such thatB(y, δ) ⊂ ⋃n
i=1 B(Xi, r). In particular,

there existsi1 ∈ {1 . . . , n} such that‖y − Xi1‖ ≤ r and by (B.3) we have that

‖y − Xi1‖ = r.

Now, define

u1 =
y − Xi1

‖y − Xi1‖
(B.4)

and lety1,m = y + εmu1 be a sequence of vectors, whereεm represents a sequence of positives
numbers that converges to zero asm tends to infinity. Then,y1,m /∈ B(Xi1 , r) since

‖y1,m − Xi1‖ = ‖y + εmu1 − Xi1‖ = ‖(εm + ‖y − Xi1‖)u1‖ = εm + r > r, (B.5)

for all m ∈ N. By construction‖y − y1,m‖ = εm and hence, for large enoughm, y1,m ∈
B(y, δ) ⊂ ⋃n

i=1 B(Xi, r), that is, there existsim ∈ {1, . . . , n} such that‖y1,m − Xim‖ ≤ r.
Note that (B.5) yields im 6= i1. Now, since the sequence{Xim}m has a finite range, then
there must be at least one value which is taken on by infinitely many terms of{Xim}m. More
precisely, there exists a constant subsequence{Ximl

}l. For all l,

r ≤
∥

∥

∥
y − Ximl

∥

∥

∥
≤ ‖y − y1,m‖ +

∥

∥

∥
y1,m − Ximl

∥

∥

∥
= εml

+ r.

Let Ximl
≡ Xi2 and, sinceεml

tends to zero asl tends to infinity, the latter expression yields

‖y − Xi2‖ = r. (B.6)

Now, if d > 2 we proceed as follows. Iteratively, fork ∈ {2, . . . , d} let us consider the
(k − 1)-hyperplaneΠk defined by the pointsXi1 , . . . , Xik . Note that, since the distribution
is absolutely continuous,Πk is well defined with probability one. LetPΠk

y be the projection
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of y onto Πk. Note that, since
∥

∥y − Xij

∥

∥ = r for all j ≤ k, it is straightforward from the
Pythagorean theorem thatPΠk

y is the unique point inΠk equidistant fromXi1 , . . . , Xik . More
precisely, for allj ≤ k,

∥

∥PΠk
y − Xij

∥

∥

2
=
∥

∥y − Xij

∥

∥

2 − ‖y − PΠk
y‖2 = r2 − ‖y − PΠk

y‖2 .

For instance, fork = 2, PΠ2y is the middle point of the segment defined byXi1 andXi2 .
Similarly, for k = 3, PΠ3y is the circumcentre of the triangle defined byXi1 , Xi2 , andXi3 .
Define

uk =
y − PΠk

y

‖y − PΠk
y‖

whenevery 6= PΠk
y. Otherwise, letuk be any unit normal vector toΠk at the pointy ∈ Πk. Let

yk,m = y +εmuk be a sequence of vectors, whereεm represents a sequence of positive numbers
that converges to zero asm tends to infinity. Then,yk,m /∈ B(Xij , r) for j = 1, . . . , k, since

∥

∥yk,m − Xij

∥

∥

2
= ‖yk,m − PΠk

y‖2 +
∥

∥PΠk
y − Xij

∥

∥

2

= ‖y + εmuk − PΠk
y‖2 +

∥

∥PΠk
y − Xij

∥

∥

2

= (εm + ‖y − PΠk
y‖)2 +

∥

∥PΠk
y − Xij

∥

∥

2

≥ ε2
m + ‖y − PΠk

y‖2 +
∥

∥PΠk
y − Xij

∥

∥

2

= ε2
m + r2 > r, (B.7)

for all m ∈ N. Furthermore, by construction‖y − yk,m‖ = εm and therefore, for large
enoughm, yk,m ∈ B(y, δ) ⊂ ⋃n

i=1 B(Xi, r), that is, there existsim ∈ {1, . . . , n} such that
‖yk,m − Xim‖ ≤ r. Note that by (B.7) im 6= ij for j = 1, . . . , k. We use a similar argument
as in the proof of (B.6) to establish that there existsik+1 ∈ {1, . . . , n} such thatik+1 6= ij for
j = 1, . . . , k and

∥

∥y − Xik+1

∥

∥ = r.

To summarize, ifCB
r (Xn) \Cr(Xn) 6= ∅, then we have proved that there existy ∈ Rd andd+1

sample pointsXi1 , . . . , Xid+1
such that

∥

∥y − Xij

∥

∥ = r for all j = 1, . . . , d + 1. This implies
that

P (CB
r (Xn) \ Cr(Xn) 6= ∅) ≤ P (∃y, Xi1 , . . . , Xid+1

:
∥

∥y − Xij

∥

∥ = r, j = 1, . . . , d + 1).

Note that

∃y, Xi1 , . . . , Xid+1
:
∥

∥y − Xij

∥

∥ = r, j = 1, . . . , d + 1

⇔ ∃Xi1 , . . . , Xid+1
:
∥

∥c(Xi1 , . . . , Xid+1
) − Xij

∥

∥ = r, j = 1, . . . , d + 1,

wherec(Xi1 , . . . , Xid+1
) denotes the unique point equidistant fromXi1 , . . . , Xid+1

. Therefore,

P (CB
r (Xn) \ Cr(Xn) 6= ∅) ≤

(

n
d + 1

)

P (‖c(X1, . . . , Xd+1) − X1‖ = r).
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In order to computeP (‖c(X1, . . . , Xd+1) − X1‖ = r) we apply LemmaB.0.10, which states
that if ‖c(X1, . . . , Xd+1) − X1‖ = r, then c(X1, . . . , Xd+1) ∈ {p1, p2}, wherep1 and p2

depend only onX2, . . . , Xd+1. Note that a random set ofd+1 points from ad-variate continuous
distribution are noncoplanar with probability one. Thus, the convex hull ofa random set ofd+1
such points is a simplex with probability one. Therefore we are under the conditions in Lemma
B.0.10and

P (‖c(X1, . . . , Xd+1) − X1‖ = r) ≤
2
∑

i=1

P (‖pi(X2, . . . , Xd+1) − X1‖ = r)

=
2
∑

i=1

E (PX(‖pi(X2, . . . , Xd+1) − X1‖ = r|X2, . . . , Xd+1)) = 0

sinceµ{x ∈ Rd : ‖y − x‖ = r} = 0 for all y ∈ Rd andPX is absolutely continuous with
respect toµ. Therefore, we have proved that

P (CB
r (Xn) \ Cr(Xn) 6= ∅) = 0

and the proof is complete.

Lemma B.0.10. Let X1 . . . , Xd+1 be the vertices of ad-dimensional simplex inRd and let
c(X1, . . . , Xd+1) be the unique point inRd which is equidistant toX1, . . . , Xd+1. Assume that
‖c(X1, . . . , Xd+1) − X1‖ = r for fixedr > 0. Then

c(X1, . . . , Xd+1) ∈ {p1, p2},

wherepi ∈ Rd do not depend onX1, that is,pi ≡ pi(X2, . . . , Xd+1), i = 1, 2.

Proof. Let Πd be the(d − 1)-hyperplane defined byX2 . . . , Xd+1 and letc(X2, . . . , Xd+1) be
the unique point inΠd equidistant toX2 . . . , Xd+1. If c(X1, . . . , Xd+1) ∈ Πd, then the result
follows immediately sincec(X1, . . . , Xd+1) = c(X2, . . . , Xd+1) and

p1 = p2 = c(X2, . . . , Xd+1).

Otherwise, define fori = 1, 2,

pi = c(X2, . . . , Xd+1) +

√

r2 − ‖c(X2, . . . , Xd+1) − X2‖2ui, (B.8)

whereui, i = 1, 2 are the two possible unit normal vectors toΠd at c(X2, . . . , Xd+1), that
is, u1 = −u2. We shall see now thatc(X1, . . . , Xd+1) = pi for i = 1 or i = 2. Let
PΠd

c(X1, . . . , Xd+1) be the projection ofc(X1, . . . , Xd+1) ontoΠd. To simplify notation we
abbreviatePΠd

c(X1, . . . , Xd+1) to PΠd
c. Then

c(X1, . . . , Xd+1) = PΠd
c + ‖c(X1, . . . , Xd+1) − PΠd

c‖ c(X1, . . . , Xd+1) − PΠd
c

‖c(X1, . . . , Xd+1) − PΠd
c‖ (B.9)
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It follows from the Pythagorean theorem that, for allj = 2, . . . , d + 1,

‖PΠd
c − Xj‖2 = ‖c(X1, . . . , Xd+1) − Xj‖2 − ‖c(X1, . . . , Xd+1) − PΠd

c‖2

= r2 − ‖c(X1, . . . , Xd+1) − PΠd
c‖2 , (B.10)

that is,PΠd
c ∈ Πd is equidistant toX2, . . . , Xd+1 and hencePΠd

c = c(X2, . . . , Xd+1). If we
replacePΠd

c in (B.9), then

c(X1, . . . , Xd+1) = c(X2, . . . , Xd+1) + ‖c(X1, . . . , Xd+1) − PΠd
c‖u,

where

u =
c(X1, . . . , Xd+1) − PΠd

c

‖c(X1, . . . , Xd+1) − PΠd
c‖

is a unit normal vector toΠd at c(X2, . . . , Xd+1) and by (B.10)

‖c(X1, . . . , Xd+1) − PΠd
c‖2 = r2 − ‖PΠd

c − X2‖2 = r2 − ‖c(X2, . . . , Xd+1) − X2‖2 .

Therefore,c(X1, . . . , Xd+1) corresponds to one of thepi defined in (B.8). This completes the
proof of the lemma.
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The alphahull Package

The alphahull package is the result of the implementation of the estimators discussed throughout
this dissertation. Over the last years, theR computing environment has become a powerful
scientific tool that offers a rich collection of classical and modern statisticalmodeling techniques.
Motivated by its flexibility and its widely acceptance among the scientific community, we have
chosenR as programming language to develop this library of functions.

Title Generalization of the convex hull of a sample of points in the plane

Version 1.0

Date 2008-03-01

Author Beatriz Pateiro-López, Alberto Rodríguez-Casal

Maintainer Beatriz Pateiro-López <beatriz.pateiro@usc.es>

Depends R, tripack

Description This package computes the alpha-shape and alpha-convex hull of a given sample
of points in the plane. The concepts of alpha-shape and alpha-convex hull generalize the
definition of the convex hull. The programming is based on the Voronoi diagram and
Delaunay triangulation of the sample. The package also includes functions tocalculate
the dilation of the alpha-convex hull of a given sample and to determine whether a point
belongs to it. A function to estimate the Minkowsky content of a compact set is also
included.

License R functions: GPL, Fortran code: ACM, free for noncommercial use

R topics documented:
add.voronoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
alpha.hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
alpha.shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
alphahull-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

141
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angs.arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
dummy.coor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
in.BTnEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
in.alpha.hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
inform.vor.tri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
inter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
length.ahull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
plot.ahull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
plot.ashape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
rotation.cw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

add.voronoi Voronoi diagram

Description

This function adds the Voronoi diagram to an open plot.

Usage

add.voronoi(mat.info, ...)

Arguments

mat.info Output matrix from theinform.vor.del function, see Details.

... Arguments to be passed to methods, such as graphical parameters (see
par).

Details

The input matrixmat.info is one of the arguments included in the output list that the
functioninform.vor.del returns. It contains all the necessary information of the De-
launay triangulation and Voronoi diagram. For each edge of the Delaunaytriangulation
mat.info contains the indexes and coordinates of the sample points that form the edge,
the indexes and coordinates of the extremes of the corresponding segment in the Voronoi
diagram, and an indicator that takes the value 1 for those extremes of the Voronoi diagram
that represent a boundless extreme. The semi-infinite segments of the Voronoi diagram are
represented with dashed lines.
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See Also

inform.vor.tri.

Examples

# Simple example from TRIPACK
data(tritest)
sample<-matrix(c(tritest$x,tritest$y),nc=2,byrow=F)
plot(sample[,1],sample[,2],xlim=c(-1,2),ylim=c(-1,2))
# Delaunay triangulation and Voronoi diagram calculation
info<-inform.vor.tri(sample)
# Add Voronoi diagram
add.voronoi(info$mat.info,col=3)

# Random sample in the unit square
sample<-matrix(runif(20),nc=2)
plot(sample[,1],sample[,2],xlim=c(-1,2),ylim=c(-1,2))
# Delaunay triangulation and Voronoi diagram calculation
info<-inform.vor.tri(sample)
# Add Voronoi diagram
add.voronoi(info$mat.info,col=3)

alpha.hull alpha-convex hull calculation

Description

This function calculates the boundary of theα-convex hull of a given sample, from the
complement of theα-convex hull.

Usage

alpha.hull(shape, compl)

Arguments

shape Output list from thealpha.shape function.

compl Output matrix from thecomplement function.
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Details

The boundary of theα-convex hull is formed by arcs of the open balls that define the com-
plement of theα-convex hull. The arcs are determined by the intersections of some of these
balls. The extremes of an arc are given byc + rAθv andc + rA−θv wherec andr represent
the centre and radius of the arc, repectively andAθv represents the clockwise rotation of
angleθ of the unitary vectorv.

Value

A list with the following components:

sample A 2-column matrix with the coordinates of the sample points.

ahull.archs For each arc in the boundary of theα-convex hull,ahull.archs con-
tains the centre and radius of the arc, the unitary vectorv and the angleθ
that define the arc, see Details.

length Length of the boundary of theα-convex hull, seelength.ahull.

ashape Output list from thealpha.shape function.

alpha Value ofα.

complement Output matrix from thecomplement function.

See Also

alpha.shape, complement, rotation.cw, inter, length.ahull,
plot.ahull.

Examples

# Random sample in the unit square
sample<-matrix(runif(100),nc=2)
# value of alpha
alpha<-0.2
# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)
# Complement of the alpha-convex hull and alpha-hull boundary
compl<-complement(alpha,info$mat.info)
ahull<-alpha.hull(shape,compl)
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alpha.shape alpha-shape calculation

Description

This function calculates theα-shape of a given sample.

Usage

alpha.shape(info, alpha)

Arguments

info Output list from theinform.vor.tri function.

alpha Value ofα.

Details

Theα-shape is implemented with the algorithm described in Edelsbrunnneret al. (1983).

Value

A list with the following components:

sample A 2-column matrix with the coordinates of the sample points.

info Output list from theinform.vor.tri function.

alp.shape A nseg-row matrix with the coordinates and indexes of the edges of the
Delaunay triangulation that form theα-shape. The number of rowsnseg
coincides with the number of segments of theα-shape. The matrix also
includes information of the Voronoi extremes corresponding to each seg-
ment.

alpha Value ofα.
alpha.extremes

Vector with the indexes of the sample points that areα-extremes. See
Edelsbrunnneret al. (1983).

possibles Matrix with the coordinates and indexes of the edges of the Delaunay tri-
angulation that are candidates to form theα-shape. It includes the edges
whose extremes areα-extremes, not necessarilyα-neighbours.

length Length of theα-shape.
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References

Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R. (1983)On the shape of a set of points in
the plane. IEEE Transactions on Information Theory, Vol IT-29, No. 4.

See Also

inform.vor.tri, plot.ashape.

Examples

# Uniform sample of size n=300 on the disc B(c,0.5)\B(c,0.25),
# with c=(0.5,0.5).
n<-300
m<-0
sample<-matrix(0,n,2)
while(m<n){
x<-runif(1)
y<-runif(1)
d<-(x-0.5)^2+(y-0.5)^2
if((d<=(0.5)^2)&(d>=(0.25)^2)){
m<-m+1
sample[m,]<-c(x,y)
}
}
# Value of alpha
alpha<-0.1
# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)

alphahull-package

Generalization of the convex hull of a sample of points in the
plane

Description

This package computes theα-shape andα-convex hull of a given sample of points in the
plane. The concepts ofα-shape andα-convex hull generalize the definition of the convex
hull. The programming is based on the Voronoi diagram and Delaunay triangulation of the
sample. The package also includes functions to calculate the dilation of theα-convex hull
of a given sample and to determine whether a point belongs to it. A function to estimate the
Minkowsky content of a compact set is also included.
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Details

Package: alphahull
Type: Package
Version: 1.0
Date: 2008-03-01
License: R functions: GPL, Fortran code: ACM, free for noncommercial use

Author(s)

Beatriz Pateiro-López, Alberto Rodríguez-Casal.

Maintainer: Beatriz Pateiro-López <beatriz.pateiro@usc.es>

angs.arch Angles of the extremes of an arc

Description

Given a vectorv and an angleθ, angs.arch returns the angles thatAθv andA−θv form
with the axisOX, whereAθv represents the clockwise rotation of angleθ of the vectorv.

Usage

angs.arch(v, theta)

Arguments

v Vectorv in the plane.

theta Angleθ.

Details

The angle that forms the vectorv with the axisOX takes its value in[0, 2π).

Value

angs Numeric vector with two components.
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Examples

# Let v=c(0,1) and theta=pi/4
# Consider the arc such that v is the internal angle bisector
# that divides the angle 2*theta into two equal angles
# The angles that the arc forms with the OX axis are pi/4
# and 3*pi/4
v<-c(0,1)
theta<-pi/4
angs.arch(v,theta)

arch Add an arc to a plot

Description

This function adds the arc ofB(c, r) between anglesθ1 andθ2 to a plot.

Usage

arch(c1, c2, r, theta1, theta2, col=1, lwd=3, lty=1,...)

Arguments

c1 X-coordinate of the centre.

c2 Y-coordinate of the centre.

r Radius of the ball.

theta1 Angle that forms the vector defining one of the extremes of the arc with
the axisOX.

theta2 Angle that forms the vector defining one of the extremes of the arc with
the axisOX.

col Color parameter, by default black.

lwd Line width, by default 3.

lty Line type, by default solid.

... Arguments to be passed to methods, such as graphical parameters (see
par).

See Also

plot.ahull.



THE ALPHAHULL PACKAGE 149

Examples

# Plot of the circumference of radius 1
theta<-seq(0,2*pi,length=100)
r<-1
plot(r*cos(theta),r*sin(theta),type="l")
# Add in red the arc between pi/4 and 3*pi/4
arch(0,0,1,pi/4,3*pi/4,col=2,lwd=3)

complement Complement of the alpha-convex hull

Description

This function calculates the complement of theα-convex hull of a given sample.

Usage

complement(alpha, mat.coor)

Arguments

alpha Value ofα.

mat.coor Output matrix from theinform.vor.tri function.

Details

The complement of theα-convex hull is calculated as the union of open balls and halfplanes
that do not contain any point of the sample. See Edelsbrunnneret al. (1983) for a basic
description of the algorithm. The construction of the complement is based on theDelau-
nay triangulation and Voronoi diagram of the sample, provided by theinform.vor.tri
function. The functioncomplement returns a matrixcompl. For each row,compl[i,]
contains the information relative to an open ball or halfplane of the complement.The first
three columns are assigned to the characterization of the ball or halfplanei. The infor-
mation relative to the edge of the Delaunay triangulation that generates the ballor half-
planei is contained incompl[i,4:17]. Thus, if the rowi refers to an open ball,
compl[i,1:3] contains the centre and radius of the ball. Furthermore, the compo-
nentscompl[i,19:20] andcompl[i,21] refer to the unitary vectorv and the angle
θ that characterize the arc that joins the two sample points that define the balli. If the
row i refers to a halfplane,compl[i,1:3] determines its equation. For the halfplane
y > a+ bx, compl[i,1:3]=(a,b,-1). In the same way, for the halfplaney < a+ bx,
compl[i,1:3]=(a,b,-2), for the halfplanex > a, compl[i,1:3]=(a,0,-3)
and for the halfplanex < a, compl[i,1:3]=(a,0,-4).
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Value

compl Output matrix. For each row,compl[i,] contains the information rela-
tive to an open ball or halfplane of the complement of theα-convex hull,
see Details.

References

Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R. (1983)On the shape of a set of points in
the plane. IEEE Transactions on Information Theory, Vol IT-29, No. 4.

See Also

inform.vor.tri, alpha.hull.

Examples

# Random sample in the unit square
sample<-matrix(runif(100),nc=2)
# value of alpha
alpha<-0.2
# Triangulation information
info<-inform.vor.tri(sample)
# Complement of the alpha-convex hull
compl<-complement(alpha,info$mat.info)

dilation Dilation of the alpha-convex hull

Description

This function determines if a given pointp belongs to the dilation of radiusε of theα-convex
hull of a sample.

Usage

dilation(Shull, p, eps)

Arguments

Shull Output list from thealpha.hull function.

p Numeric vector with two components describing a point in the plane.

eps Value ofε.
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Details

The dilation of radiusε of a setS is given by the pointsx such thatd(x, S) ≤ ε, where
d(x, S) = inf{d(x, s), s ∈ S}. The functiondilation determines if the given pointp
belongs to theα-convex hull of the sample by using the functionin.alpha.hull. If the
point does not belong to theα-convex hull the functiondilation computes the distance
to the boundary and establishes if the distance is lower or equal toε.

Value

A list with the following components:

in.dilation A logical value specifying whether the pointp belongs to the dilation.

eps.max Distance fromp to the boundary of theα-convex hull. Ifp belongs to the
α-convex hull,eps.max=0.

Examples

# Random sample in the unit square
sample<-matrix(runif(100),nc=2)
# Value of alpha and epsilon
alpha<-0.2
eps<-0.05
# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)
# alpha-hull
compl<-complement(alpha,info$mat.info)
ahull<-alpha.hull(shape,compl)
plot.ahull(ahull,pvor=F,pdel=F,pshape=F,new=T,col=1)
# Dilation of radius alpha
# Grid
n=100
x<-seq(0,1,length=n)
y<-numeric()
for (i in 1:n){
y<-c(y,rep(x[i],n))

}
grid<-matrix(c(rep(x,n),y),nc=2)
for (i in 1:n^2){
in.dilation<-dilation(ahull,grid[i,],eps)$in.dilation
if (in.dilation==1){points(grid[i,1],grid[i,2],pch=19,col=4)}
}
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dummy.coor Semi-infinite edge of the Voronoi diagram

Description

This function determines fictitious coordinates for the boundless extreme of asemi-infinite
edge of the Voronoi diagram.

Usage

dummy.coor(tri.obj, l1, l2, m, away)

Arguments

tri.obj Object of class"tri". Seetri.mesh in packagetripack .

l1 Index of the sample point correponding to one vertex of a triangle of De-
launay that lies on the convex hull, see Details.

l2 Index of the sample point correponding to other vertex of a triangle of
Delaunay that lies on the convex hull, see Details.

m Index of the circumcentre of the triangle of Delaunay with one edge on
the convex hull.

away Constant that determines how far away the fictitious boundless extreme is
located.

Details

When a triangle of the Delaunay triangulation has one of its edges (given bythe segment
that joins the sample pointsl1 andl2) on the convex hull, the corresponding segment of
the Voronoi diagram is semi-infinite. The finite extreme coincides with the circumcentre of
the triangle and the direction of the line is given by the prependicular bisectorof the edge
that lies on the convex hull.

Value

dum Fictitious coordinates of the boundless extreme.

See Also

inform.vor.tri.
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in.BTnEn Estimated dilation of the boundary of a set

Description

This function determines whether a point belongs to the estimated dilation of radius ε of
the boundary of a set. The dilation of the boundary is expressed as the intersection of the
dilation of the set and the dilation of its complement. Both the set and its complement are
estimated by means of theα-convex hull.

Usage

in.BTnEn(Ghull, Rhull, p, eps)

Arguments

Ghull Output list from thealpha.hull function applied to a sample of points
taken in the set of interest.

Rhull Output list from thealpha.hull function applied to a sample of points
taken in the complement of the set of interest.

p Numeric vector with two components describing a point in the plane.

eps Value ofε.

Details

Let G be a compact set in[0, 1]2 and letR be [0, 1]2 \ G. Let T denote the boundary ofG.
Based on the fact thatB(T, ε) = B(G, ε) ∩ B(R, ε) it is possible to construct an estimator
for B(T, ε) from estimators of the setsG andR. The estimators ofG andR considered by
the functionin.BTnEn are theα-convex hull of samples taken in both sets.

Value

A list with the following components:

in.B A logical value specifying whether the pointp belongs to the estimated
dilation of the boundary of the set.

eps.max The pointp belongs to the estimated dilation of the boundary of the set for
ε ≥ eps.max.
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References

Pateiro-López, B., Rodríguez-Casal, A. (2008)Length and surface area estimation under
convexity type restrictions. Advances in Applied Probability, Vol 40.2.

See Also

alpha.hull, in.dilation.

Examples

# Ellipse of centre (0.5,0.5) and radius a=0.45, b=0.25
n<-2000
c<-c(0.5,0.5)
a<-0.45
b<-0.25
alpha<-b^2/a
x<-runif(n)
y<-runif(n)
inside<-ifelse(((x-c[1])/a)^2+((y-c[2])/b)^2<=1,1,0)
sample<-matrix(c(x,y,inside),n,3)
# alpha-convex hull of the sample in G
sample.G<-sample[sample[,3]==1,1:2]
info.G<-inform.vor.tri(sample.G)
shape.G<-alpha.shape(info.G,alpha)
compl.G<-complement(alpha,info.G$mat.info)
Ghull<-alpha.hull(shape.G,compl.G)
# alpha-convex hull of the sample in R
sample.R<-sample[sample[,3]==0,1:2]
info.R<-inform.vor.tri(sample.R)
shape.R<-alpha.shape(info.R,alpha)
compl.R<-complement(alpha,info.R$mat.info)
Rhull<-alpha.hull(shape.R,compl.R)
# Plots
plot.ahull(Rhull,pvor=T,pdel=F,pshape=F,new=T,col=2)
plot.ahull(Ghull,pvor=T,pdel=F,pshape=F,new=F,col=3)
# Grid
n=100
x<-seq(0,1,length=n)
y<-numeric()
for (i in 1:n){
y<-c(y,rep(x[i],n))

}
grid<-matrix(c(rep(x,n),y),nc=2)
npunt<-n^2
# Plot in green of the dilation of radius 0.05 of the
# alpha-convex hull of the sample in G
# Add in red the dilation of the alpha-convex hull
# of the sample in R
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# Represent in blue the points in the estimated dilation of the
# boundary
eps<-0.05
for (i in 1:npunt){
in.dilation<-dilation(Ghull,grid[i,],eps)$in.dilation
if (in.dilation==1){points(grid[i,1],grid[i,2],pch=19,col=3)}
in.dilation<-dilation(Rhull,grid[i,],eps)$in.dilation
if (in.dilation==1){points(grid[i,1],grid[i,2],pch=19,col=2)}
sal[i]<-in.BTnEn(Ghull,Rhull,grid[i,],eps)$in.B
if (sal[i]==1){points(grid[i,1],grid[i,2],pch=19,col=4)}
}

in.alpha.hull Determine whether a point belongs to the alpha-convex hull

Description

This function determines whether a given pointp belongs to theα-convex hull of a sample.

Usage

in.alpha.hull(ahull, p)

Arguments

ahull Output list from thealpha.hull function.

p Numeric vector with two components describing a point in the plane.

Details

The complement of theα-convex hull of a sample is calculated by thecomplement func-
tion. The functionin.alpha.hull checks whether the pointp belongs to any of the open
balls or halfplanes that define the complement.

Value
in.alpha.hull

A logical value specifying whether the pointp belongs to theα-convex
hull.

See Also

alpha.hull, complement.
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Examples

# Random sample in the unit square
sample<-matrix(runif(100),nc=2)
# value of alpha
alpha<-0.2
# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)
# Complement of the alpha-convex hull and alpha-hull boundary
compl<-complement(alpha,info$mat.info)
ahull<-alpha.hull(shape,compl)
# Check if the point (0.5,0.5) belongs to the alpha-convex hull
in.alpha.hull(ahull,p=c(0.5,0.5))

inform.vor.tri Delaunay triangulation and Voronoi diagram

Description

This function returns a matrix with information of the Delaunay triangulation and Voronoi
diagram of a given sample.

Usage

inform.vor.tri(sample)

Arguments

sample Matrix of sample points in the plane. The dimension ofsample is n× 2,
wheren is the sample size.

Details

The functiontri.mesh from packagetripack calculates the Delaunay triangulation of a
finite number of points using Fortran functions from the library TRIPACK. Using the Delau-
nay triangulation, the functioninform.vor.tri calculates the corresponding Voronoi
diagram. For each edge of the Delaunay triangulation there is a segment in theVoronoi
diagram, given by the union of the circumcentres of the two neighbour triangles that share
the edge. For those triangles with edges on the convex hull, the corresponding line in the
Voronoi diagram is a semi-infinite segment, whose boundless extreme is calculated by the
functiondummy.coor. The functioninform.vor.tri returns the sample, the output
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object of class"tri" from the functiontri.mesh and a matrix with all the necessary
information of the Delaunay triangulation and Voronoi diagram. Thus, for each edge of the
Delaunay triangulation the output matrix contains the indexes and coordinatesof the sample
points that form the edge, the indexes and coordinates of the extremes of the corresponding
segment in the Voronoi diagram, and an indicator that takes the value 1 for those extremes
of the Voronoi diagram that represent a boundless extreme.

Value

A list with the following components:

sample A 2-column matrix with the coordinates of the sample points.

mat.info Matrix of dimensionn.edges × 14, wheren.edges is the total number of
different edges of the Delaunay triangulation.

tri.obj Object of class"tri". Seetri.mesh in packagetripack .

See Also

add.voronoi, dummy.coor.

Examples

# Simple example from TRIPACK
data(tritest)
sample<-matrix(c(tritest$x,tritest$y),nc=2,byrow=F)
# Delaunay triangulation and Voronoi diagram calculation
info<-inform.vor.tri(sample)

# Random sample in the unit square
sample<-matrix(runif(20),nc=2)
# Delaunay triangulation and Voronoi diagram calculation
info<-inform.vor.tri(sample)

inter Intersection of two circumferences

Description

This function calculates the intersection of two circumferences, given theircentres and ra-
diusc1, r1 andc2, r2, respectively.
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Usage

inter(c11, c12, r1, c21, c22, r2)

Arguments

c11 X-coordinate of the centrec1.

c12 Y-coordinate of the centrec1.

r1 Radiusr1.

c21 X-coordinate of the centrec2.

c22 Y-coordinate of the centrec2.

r2 Radiusr2.

Details

The functioninter is internally called by the functionalpha.hull.

Value

A list with the following components:

n.cut Number of intersection points.

v1 If there are two intersection points,v1 is the numeric vector whose com-
ponents are the coordinates of the unitary vector that has its origin inc1

and it’s perpendicular to the chord that joins the intersection points of the
two circumferences.

theta1 Angle that formsv1 with the radius that joins the centrec1 with an inter-
section point.

v2 If there are two intersection points,v2 is the numeric vector whose com-
ponents are the coordinates of the unitary vector that has its origin inc2

and it’s perpendicular to the chord that joins the intersection points of the
two circumferences.

theta2 Angle that formsv2 with the radius that joins the centrec2 with an inter-
section point.
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length.ahull Length of the boundary of the alpha-convex hull

Description

This function calculates the length of the boundary of theα-convex hull of a given sample.

Usage

length.ahull(ahull.archs)

Arguments

ahull.archs Output matrix from thealpha.hull function.

Details

The functionlength.ahull is internally called by the functionalpha.hull.

Value

length Length of the boundary of theα-convex hull.

See Also

alpha.hull.

Examples

# Random sample in the unit square
sample<-matrix(runif(100),nc=2)
# value of alpha
alpha<-0.2
# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)
# Complement of the alpha-convex hull and alpha-hull boundary
compl<-complement(alpha,info$mat.info)
ahull<-alpha.hull(shape,compl)
# Length of the alpha-convex hull
ahull$length
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plot.ahull Plot the alpha-convex hull

Description

This function returns a plot of theα-convex hull. If desired, it also adds the Delaunay
triangulation, Voronoi diagram andα-shape of the sample.

Usage

plot.ahull(ahull, pvor=F, pdel=F, pshape=F, new=T,...)

Arguments

ahull Output list from thealpha.hull function.

pvor Logical, indicates if Voronoi diagram should be added to the plot.

pdel Logical, indicates if Delaunay triangulation should be added to the plot.

pshape Logical, indicates if theα-shape should be added to the plot.

new Logical, indicates if a new plot is opened.

... Arguments to be passed to methods, such as graphical parameters (see
par).

See Also

alpha.hull, angs.arch, add.voronoi, plot.ashape.

Examples

# Random sample in the unit square
sample<-matrix(runif(100),nc=2)
# value of alpha
alpha<-0.2
# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)
# Complement of the alpha-convex hull and alpha-hull boundary
compl<-complement(alpha,info$mat.info)
ahull<-alpha.hull(shape,compl)
# Plot including the alpha-convex hull, alpha-shape,
# voronoi diagram and Delaunay triangulation
plot.ahull(ahull,pvor=T,pdel=T,pshape=T,new=T,col=1)
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plot.ashape Plot the alpha-shape

Description

This function returns a plot of theα-shape.

Usage

plot.ashape(ashape, pvor = F, pdel = F, new = F, ...)

Arguments

ashape Output list from thealpha.shape function.

pvor Logical, indicates if Voronoi diagram should be added to the plot.

pdel Logical, indicates if Delaunay triangulation should be added to the plot.

new Logical, indicates if a new plot is opened.

... Arguments to be passed to methods, such as graphical parameters (see
par).

See Also

objects to See Also asalpha.shape, add.voronoi.

Examples

# Uniform sample of size n=300 on the disc B(c,0.5)\B(c,0.25),
# with c=(0.5,0.5).
n<-300
m<-0
sample<-matrix(0,n,2)
while(m<n){
x<-runif(1)
y<-runif(1)
d<-(x-0.5)^2+(y-0.5)^2
if((d<=(0.5)^2)&(d>=(0.25)^2)){
m<-m+1
sample[m,]<-c(x,y)
}
}
# Value of alpha
alpha<-0.1
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# Triangulation information
info<-inform.vor.tri(sample)
# alpha-shape
shape<-alpha.shape(info,alpha)
plot.ashape(shape,pvor=T,pdel=T,new=T)

rotation.cw Clockwise rotation

Description

This function calculates the clockwise rotation of angleθ of a given vectorv in the plane.

Usage

rotation.cw(v, theta)

Arguments

v Vectorv in the plane.

theta Angleθ.

Value

v.rot Vector after rotation.

Examples

# Rotation of angle pi/4 of the vector (0,1)
rotation.cw(v=c(0,1),theta=pi/4)



Resumen en castellano

Nuestro objetivo en este resumen es destacar brevemente los principales resultados que hemos
obtenido durante este período de investigación. En este tiempo, nuestro interés se ha centrado,
fundamentalmente, en los problemas de estimación del soporte y el área superficial, que se en-
marcan dentro de la teoría general de estimación de conjuntos. La reconstrucción de un conjunto
S a partir de un conjunto finito de puntos tomados en él es un problema que ha sido abordado en
diferentes campos de investigación. Por ejemplo, en geometría computacional,la construcción
eficiente de la envoltura convexa tiene importantes aplicaciones en reconocimiento de patrones,
procesamiento de imágenes y análisis cluster, entre otros. Véase Preparata y Shamos (1985) para
una introducción a la geometría computacional y sus aplicaciones. En determinadas situaciones
es razonable suponer que el conjunto de puntos a partir del cual se pretende reconstruirS es
no-determinista. Obtener buenas estimaciones de un conjunto a partir de unamuestra de puntos
no es una tarea fácil y la resolución de este problema depende, en gran medida, de las hipótesis
del modelo. Así, si no disponemos de ninguna información sobre el conjunto de interés, no
tendremos otra elección más que considerar estimadores flexibles que nos permitan abordar efi-
cientemente la mayor cantidad de situaciones posibles. En cambio, si restringimos la familia de
conjuntos a estimar, podremos considerar estimadores más sofisticados, que se adapten mejor a
las restricciones de forma establecidas.

Formalmente, el problema deestimación del soportese establece como el problema de
aproximar el soporte de una distribución de probabilidad absolutamente continuaPX , a partir
de una muestra aleatoria simpleXn = {X1, . . . , Xn} deX. Tradicionalmente, el problema de
estimación del soporte ha sido abordado para la familia de conjuntos convexos. Así, Korostelëv y
Tsybakov (1993) cita los trabajos de Geffroy (1964), Rényi y Sulanke (1963) y Rényi y Sulanke
(1964) como las primeras referencias que tratan el problema de la estimacióndel soporte. En
concreto, Rényi y Sulanke (1963) y Rényi y Sulanke (1964) estudiaron el caso en el que el
soporteS ⊂ R2 es convexo y propusieron un estimador natural, la envoltura convexa dela
muestra. Sin embargo, la hipótesis de convexidad puede resultar demasiadorestrictiva en la
práctica y siS no es convexo, entonces la envoltura convexa de la muestra no resulta ser un
estimador apropiado. La pregunta es entonces, ¿cómo podemos estimarS si no tenemos ninguna
hipótesis sobre la forma del conjunto? En este sentido, Chevalier (1976) yDevroye y Wise
(1980) proponen estimar el soporte de una distribución de probabilidad desconocida mediante
una versión suavizada de la muestraXn. El estimador propuesto, al que nos referiremos como
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estimador Devroye-Wise, se define como

n
⋃

i=1

B(Xi, ε),

dondeε > 0 y B(Xi, ε) denota la bola cerrada de centroXi y radio ε. El problema de la
estimación del soporte se presenta en Devroye y Wise (1980) relacionado con una aplicación
práctica, la detección de comportamiento anormal de un sistema, planta o máquina. Los re-
sultados del comportamiento del estimador fueron analizados, entre otros,por Chevalier (1976),
Devroye y Wise (1980) y Korostelëv y Tsybakov (1993). Por supuesto, existen situaciones inter-
medias entre las dos citadas anteriormente, es decir, podemos asumir que el conjuntoS satisface
una condición de forma más flexible que la convexidad. En Rodríguez-Casal (2006) se estudia
la estimación de un soporteα-convexo. Se dice que el conjuntoS ⊂ Rd esα-convexo, para
α > 0, si S = Cα(S), siendo

Cα(S) =
⋂

{B̊(x,α): B̊(x,α)∩S=∅}

(

B̊(x, α)
)c

.

En la ecuación anterior,̊B(x, α) denota la bola abierta de centrox y radioα y (B̊(x, α))c su
complementario. El conjuntoCα(S) se denomina envolturaα-convexa deS y es la base para la
definición del nuevo estimador de soporte propuesto por Rodríguez-Casal (2006), la envoltura
α-convexa de la muestra. Dicho estimador es estudiado en profundidad en el Capítulo2 de esta
tesis. La hipótesis deα-convexidad, que juega un papel fundamental en nuestro trabajo, está
íntimamente relacionada con otra interesante condición de forma, la condición de rodamiento
libre. Diremos que una bola de radioα rueda libremente en el conjuntoS si para cada puntoa
de la frontera del conjunto, existe un puntox ∈ S tal quea ∈ B(x, α) ⊂ S.

Antes de continuar, nos gustaría hacer hincapié sobre algo fundamentalque hemos obviado
hasta el momento. Estamos hablando de estimadores del soporte y de determinar si dichos
estimadores se aproximan al conjunto originalS. Sin embargo, no hemos establecido ningún
criterio para evaluar dicha proximidad. Existen distintas alternativas para definir la distancia
entre conjuntos, como por ejemplo, la distancia de Hausdorff o la distancia enmedida. Nos
centramos en la definición de esta última. Así, dados dos conjuntos de BorelA y C ⊂ Rd, se
define la distancia en medida entreA y C como

dµ(A, C) = µ(A∆C),

dondeµ denota la medida de Lebesgued-dimensional yA∆C denota la diferencia simétrica
entreA y C, es decir,

A∆C = (A \ C) ∪ (C \ A).

La distancia en medida nos da una idea de la similitud en el contenido de dos conjuntos. En
particular, siSn es un estimador del soporteS, entoncesdµ(S, Sn) mide la proximidad entre
ambos conjuntos, sirviendo así como criterio para evaluar el comportamientodel estimador del
soporte.
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En cuanto a laestimación del área superficial, abordamos el problema desde dos puntos
de vista diferentes. En el primer planteamiento que comentamos, la información muestral viene
dada por una muestra de puntos tomada en el conjunto de interés. En esta situación, parece que
lo natural es estimar el conjunto mediante un estimador del soporte y calcular el área superficial
de dicho estimador. La intuición que tenemos es que, si el estimador aproxima bien al conjunto,
entonces su área superficial también aproximará bien al área superficial del conjunto, que es
el objetivo. Con este planteamiento presentamos un nuevo estimador, consistente en medir el
α-shape de la muestra. Elα-shape, véase Edelsbrunner et al. (1983), es un grafo cuyas aris-
tas son rectas uniendo puntos muestrales denominadosα-vecinos. Dos puntos muestrales son
α-vecinos si existe una bola de radioα de forma que los dos puntos están en su frontera y,
además, ningún punto muestral está en su interior.

El segundo planteamiento para abordar el problema de la estimación del área superficial con-
siste en suponer que la información muestral viene dada por puntos tanto dedentro del conjunto
de interésG como de fuera del conjunto. Asumimos entonces, sin pérdida de generalidad, que
G ⊂ (0, 1)d y definimosR = [0, 1]d \ int(G), donde int(G) denota el interior del conjunto.
La información muestral consiste en observaciones i.i.d.(Z1, ξ1), . . . , (Zn, ξn) de una variable
aleatoria(Z, ξ), dondeZ se distribuye uniformemente en[0, 1]d y ξ = I{Z∈G} es la función
indicadora deG. DenotamosXn = {Zi : ξi = 1} eYn = {Zi : ξi = 0}. El área superficial de
G se calcula a partir de su contenido de Minkowski,

L0 = lim
ε→0

µ(B(Γ, ε))

2ε
= lim

ε→0
L(ε),

siempre que este límite exista y sea finito. En la definición anterior,Γ denota la frontera del
conjuntoG y B(Γ, ε) es la dilatación de radioε de dicha frontera, es decir,

B(Γ, ε) =
⋃

x∈Γ

B(x, ε).

Por lo tanto, si definimos un estimador para la dilatación de la frontera, podremos definir un
estimadorLn para el contenido de MinkowskiL0 de la siguiente forma:

Ln =
µ(Γn)

2εn
,

siendoεn > 0 y Γn un estimador deB(Γ, εn). La clave para definirΓn es que, bajo condiciones
suaves,

B(Γ, εn) = B(G, εn) ∩ B(R, εn),

es decir, es posible construir un estimador deL0 a partir de estimadores de los conjuntosG y
R, lo cual nos lleva de nuevo al problema de estimación del soporte. Por ejemplo, Cuevas et
al. (2007) proponen estimarG y R medianteXn e Yn, respectivamente. Nos referiremos al
estimador resultanteLn como estimador empírico. De nuevo, dependiendo de las restricciones
de forma deG y R, podremos definir estimadores más sofisticados. Siguiendo la línea abierta
en la estimación del soporte, nos centraremos en la condición deα-convexidad.
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Resultados sobre la estimación de conjuntosα-convexos

En el Capítulo2 se aborda el problema de la estimación de conjuntosα-convexos. El estimador
natural en esta situación es la envolturaα-convexa de una muestra de puntos tomada en el con-
junto de interés. De manera formal, seaS ⊂ Rd un conjunto compacto, no vacío yα-convexo
conα > 0. El objetivo es estimarS a partir de una muestraXn de una variable aleatoriaX con
distribución de probabilidad absolutamente continuaPX y soporteS. Puesto que, en general,
el parámetroα es desconocido, consideraremos el estimadorCrn(Xn), donde asumimos quern

es menor o igual queα para todon. ¿EsCrn(Xn) un estimador consistente deS? ¿Bajo qué
condiciones? ¿Cuánto se aproximaCrn(Xn) aS? En el Capítulo2 damos respuesta a estas pre-
guntas. El Teorema2.5.1establece una condición necesaria y suficiente para la consistencia del
estimador envolturarn-convexa. Se prueba queE(dµ(S, Crn(Xn))) → 0 si y sólo sinrd

n → ∞.
Merece la pena comentar que la hipótesis deα-convexidad no es esencial para probar la consis-
tencia del estimador. De hecho, se puede probar que sirn → 0 y nrd

n → ∞, entonces se sigue
cumpliendo queE(dµ(S, Crn(Xn))) → 0, incluso en el caso de queS no seaα-convexo. Nótese
que las hipótesis sobrern son idénticas a las que, impuestas sobre el parámetro de suavizado
del estimador Devroye-Wise, garantizan su consistencia en probabilidad, véase Devroye y Wise
(1980).

Respecto a la proximidad entreS y Crn(Xn), estudiamos la distancia en medida entre
ambos conjuntos. Rodríguez-Casal (2006) obtuvo la tasa de convergencia casi segura para
dµ(S, Crn(Xn)), bajo la hipótesis de queS satisface las condiciones del Teorema 1 de Walther
(1999). En concreto, se prueba que el orden de convergencia esr−1

n (log n/n)2/(d+1). En el Teo-
rema2.5.2obtenemos la tasa de convergencia deE(dµ(S, Crn(Xn))). Al igual que Rodríguez-
Casal (2006), necesitamos una condición de forma adicional sobreS la cual, en particular, im-
plica la α-convexidad. Suponemos que una bola de radioα > 0 rueda libremente enS y en
Sc. Esta condición juega un papel fundamental a lo largo de nuestro trabajo ymerece algunos
comentarios. En primer lugar, la condición de rodamiento libre enS y enSc excluye la posibi-
lidad de que el conjuntoS tenga picos. Nótese que si únicamente suponemosα-convexidad, no
podemos asegurar que la frontera del conjunto es suave. Por otra parte, al asumir que una bola
de radioα > 0 rueda libremente enS estamos descartando, por ejemplo, conjuntos con puntos
aislados. En términos generales, la condición de rodamiento libre enS obliga a los puntos de la
frontera del conjunto a estar en contacto directo con el interior deS. A la vista de la importancia
de esta condición, uno puede preguntarse por qué en el título del Capítulo2 sólo hacemos refe-
rencia a laα-convexidad. Pues bien, el motivo es que laα-convexidad es la restricción de forma
que motiva originalmente la definición del estimador. Además, la envolturaα-convexa de una
muestra de puntos tiene sentido como estimador, independientemente de condiciones de forma
más restrictivas sobreS. Esta es la razón por la que hemos decidido enfatizar la importancia de
esta propiedad.

Respecto a la distribución de probabilidad, es útil suponer quePX está acotada uniforme-
mente enS. Formalmente,PX está acotada uniformemente enS si existeδ > 0 tal que
PX(C) ≥ δµ(C ∩ S) para todo conjunto de BorelC ⊂ Rd. Es inmediato comprobar que,
por ejemplo, la distribución uniforme enS está acotada uniformemente.

Una vez discutidas las hipótesis, podemos pasar a establecer los resultados más importantes
del Capítulo2. Así, seaS un subconjunto compacto no vacío deRd tal que una bola de radio
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α > 0 rueda libremente enS y enSc y supongamos quePX está acotada uniformemente enS.
En estas condiciones, el Teorema2.5.2establece que, si la sucesión{rn} satisface

lim
n→∞

nrd
n

log n
= ∞,

entonces

E(dµ(S, Crn(Xn))) = O

(

r
− d−1

d+1
n n− 2

d+1

)

.

Debemos también mencionar que el concepto de familia inevitables de conjuntos,discutido en
detalle en las Secciones2.3 y 2.4 es fundamental en el desarrollo del Capítulo2 y juega un
papel esencial en la prueba del Teorema2.5.2. Finalmente, en el Teorema2.5.3probamos que
la tasa de convergencia obtenida paraE(dµ(S, Crn(Xn))) no puede ser mejorada ya que existen
conjuntos bajo las condiciones establecidas para los cuales

lim inf
n→∞

r
d−1
d+1
n n

2
d+1 E(dµ(S, Crn(Xn))) > 0.

Estos resultados nos llevan a comparar la tasa de convergencia deE(dµ(S, Crn(Xn))), es-
tablecida en el Teorema2.5.2, con la dedµ(S, Crn(Xn)) (tasa de convergencia casi segura)
obtenida por Rodríguez-Casal (2006). Observamos que la convergencia deE(dµ(S, Crn(Xn)))
es más rápida puesto que el logaritmo del numerador desaparece y el factor de penalización
r
−(d−1)/(d+1)
n es asintóticamente menor quer−1

n .

Resultados sobre la estimación del área superficial
El Capítulo3 aborda el problema de la estimación del área superficial de un conjunto. Al pre-
sentar este problema distinguimos entre el caso en que la información muestral viene dado por
puntos dentro del conjunto de interés y el caso en el que la información muestral viene dada por
puntos tanto dentro del conjunto de interésG ⊂ (0, 1)d como dentro deR = [0, 1]d \ int(G).
Como comentamos, la primera situación se puede entender como un paso más dentro de la es-
timación del soporte. A pesar de que dicho planteamiento es más elemental e intuitivo, resulta
más difícil de abordar desde el punto de vista teórico ya que no es inmediato determinar cuándo
un punto está próximo a la frontera del conjunto. Por tanto, en el Capítulo3 nos restringimos al
caso en el que la información muestral viene dada por observaciones i.i.d.(Z1, ξ1), . . . , (Zn, ξn)
de una variable aleatoria(Z, ξ), donde, como ya comentamos,Z sigue una distribución uniforme
en[0, 1]d y ξ = I{Z∈G}. Siguiendo la notación introducida anteriormente consideramos

Ln =
µ(Γn)

2εn
,

dondeΓn es un estimador deB(Γ, εn) y εn > 0. Recordemos que la expresión deLn viene
motivada por la definición del contenido de MinkowskiL0. Así, para valores pequeños deεn,
el estimadorLn se aproxima aL0. Siguiendo con la restricción de forma estudiada, suponemos
queG y R sonα-convexos. Entonces, proponemos estimarB(Γ, εn) mediante

Γn = B(Cα(Xn), εn) ∩ B(Cα(Yn), εn)
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dondeXn = {Zi : ξi = 1} e Yn = {Zi : ξi = 0}. Una cuestión de importancia teórica es la
existencia del contenido de MinkoskiL0. Este hecho está relacionado con el comportamiento
de la funciónµ(B(Γ, ε)) y, por lo tanto, con las hipótesis sobre el conjuntoG. En cuanto al
estimador, la cuestión más relevante es siLn aproxima con exactitud aL0. De forma análoga al
problema de estimación del soporte, los resultados del Capítulo3 se obtienen bajo una condición
adicional de rodamiento libre. De nuevo, asumimos que una bola de radioα > 0 rueda libre-
mente enG y enGc. Esta condición garantiza que el contenido de Minkowski está bien definido.
De todas formas, no debemos olvidar queLn tiene sentido bajo condiciones más suaves. Por
ejemplo, laα-convexidad deG y R es suficiente para garantizar que, con probabilidad uno,
Γn ⊂ B(Γ, εn). Esta última propiedad indica queLn es sesgado, tendiendo a infraestimar el
valor deL0. Las propiedades asintóticas deLn se estudian y comparan con las del estimador
del área superficial propuesto por Cuevas et al. (2007). Los Teoremas3.3.1y 3.3.2nos dan,
respectivamente, la tasa de convergencia casi segura y la tasa de convergenciaL1 del estimador
Ln aL0. Bajo las hipótesis establecidas se prueba que, con probabilidad uno,

inf
εn

|Ln − L0| = O

(

log n

n

)
1

d+1

,

donde la tasa óptima se obtiene paraεn = (log n/n)1/(d+1). Respecto a la tasa de convergencia
L1, probamos que se puede eliminar el logaritmo en la tasa anterior y, por tanto,

inf
εn

E |Ln − L0| = O
(

n− 1
d+1

)

.

El orden óptimo en este caso se obtiene paraεn = n−1/(d+1). La convergenciaL1 del estimador
propuesto es así más rápida que la del estimador empírico propuesto por Cuevas et al. (2007),
de ordenn−1/2d.

Aspectos computacionales
Una vez que hemos discutido las propiedades teóricas de diferentes estimadores del soporte y el
área superficial de un conjunto, el Capítulo4 se centra en cómo se puede llevar a cabo el análisis
práctico de dichos problemas. El cálculo de la envolturaα-convexa de una muestra no es un
problema de solución inmediata y, por este motivo, dedicamos parte del Capítulo4 a describir
el algoritmo de implementación propuesto por Edelsbrunner (1983).

Además de la envolturaα-convexa, hemos programado el estimador de la longitud de la
frontera propuesto en el Capítulo3 para el caso particular deR2. Ilustramos el problema de
estimación del área superficial mediante un estudio de simulación en el que comparamos nuestro
estimador con el propuesto por Cuevas et al. (2007). Puesto que los resultados del estudio no
son tan satisfactorios como cabría esperar tras el análisis teórico, hemos planteado una solución
alternativa al problema de la estimación del área superficial. Dada la envoltura α-convexa de
una muestra, podemos calcular su perímetro sumando las longitudes de los arcos que conforman
su frontera. De forma análoga, se consideran otros estimadores como, por ejemplo, elα-shape
para los cuales medimos la longitud de su frontera. En el Capítulo4 se muestran los resultados



169

de un estudio de simulación que pretende mostrar el comportamiento en la práctica de este tipo
de estimadores de la longitud de la frontera.

A la vista de los resultados obtenidos, no podemos concluir que los modelos basados en la
noción de contenido de Minkowski, sean significativamente mejores que los basados en la idea
más intuitiva de medir la frontera de un estimador del soporte. Los prometedores resultados
obtenidos en este último estudio de simulación nos animan a afrontar en el futurola justifi-
cación teórica que explique el buen comportamiento observado. Así, existeuna línea abierta a
la investigación en este contexto.

Finalmente, merece la pena comentar que, como consecuencia de la implementación enR
de los estimadores estudiados, hemos desarrollado una nueva librería denominadaalphahull.
La documentación completa del paquete, incluyendo la descripción de todassus funciones, se
puede consultar en el ApéndiceC. Nos gustaría resaltar algunas de las características más desta-
cables de la librería. Además de las funciones que calculan los estimadores del soporte y de la
longitud de la frontera utilizados en los estudios de simulación, el paquetealphahull incluye
otras funciones que pueden ser de utilidad en diferentes contextos. Porejemplo, hemos progra-
mado el diagrama de Voronoi y la triangularización de Delaunay. El diagrama de Voronoi y la
triangularización de Delaunay se usan con mucha frecuencia en varios campos de investigación
y, por lo que nosotros sabemos, no existía un código depurado enR que calculase estas estruc-
turas geométricas. Por lo tanto, pretendemos que el paquetealphahull se entienda, no sólo
como una colección de funciones programadas para la realización de un estudio de simulación
aislado, sino como una herramienta útil para la investigación más allá del contexto de esta tesis.
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Notation

Xn Sample(X1, . . . , Xn), 3
PX Distribution probability function ofX, 3
Rd d-dimensional Euclidean space,5
〈·, ·〉 Inner product inRd, 5
‖·‖ Euclidean norm inRd, 5
dH(A, C) Hausdorff distance betweenA andC, 5, 6, 8
d(a, C) Distance from the pointa to the setC, 5
B̊(A, ε) openε-neighbourhood,6
B(A, ε) closedε-neighbourhood,6
⊕ Minkowski addition,7
⊖ Minkowski subtraction,7
B(x, r) Closed ball with centrex and radiusr, 7
B̊(x, r) Open ball with centrex and radiusr, 7
B Closed ball with centre0 and radius1, 7
B̊ Open ball with centre0 and radius1, 7
Ac Complement ofA, 7
int(A) Interior ofA, 7
A Closure ofA, 7
∂A Boundary ofA, 7
B Borelσ-algebra,9
µ Lebesgue measure,9
dµ(A, C) Distance in measure betweenA andC, 9
A∆C Symmetric difference betweenA andC, 9
IA Indicator function ofA, 10
Hn Convex hull of the sampleXn, 11
Cα(A) α-convex hull ofA, 12
reach(S) Reach ofS, 16
L0(A) Minkowski content of the bodyA ⊂ Rd, 20
Γ Boundary of a set,21
Ex,r {B(y, r) : y ∈ B(x, r)}, 29
Ux,r Unavoidable family of sets forEx,r, 29
Sd Unit sphere{u ∈ Rd : ‖u‖ = 1}, 31, 48
ϕu,v Angle between the vectorsu andv. ϕu,v ∈ [0, π], 31, 48
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ed Unit vector(0, . . . , 0, 1) ∈ Rd, 31, 48

Cθ
u, Cu Cθ

u = {x ∈ Rd : 〈x, u〉 ≥ ‖x‖ cos θ}, C
π/6
u , 31, 48

Cθ
u,r, Cu,r Circular sectorCθ

u,r = Cθ
u ∩ B(0, r), C

π/6
u,r , 31, 48

Rθ, R Counter-clockwise rotation of angleθ, Rπ/6, 31
PΓ x Metric projection ofx ontoΓ , 37
O Orthogonal transformation,38
ωd Measure of the unit ball inRd, 48
Γn Γn = B(Gn, εn) ∩ B(Rn, εn), 86
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α-convexity, 12–17, 127
α-extreme, 18, 111, 122, 124, 125
α-neighbours, 18, 111, 121, 122, 124
α-shape, 17, 18, 112, 120–125
ε-neighbourhood

closedε-neighbourhood, 6, 85, 86
openε-neighbourhood, 6

add.voronoi, 142,157, 160, 161
alpha.hull, 143,150, 153–155,

158–160
alpha.shape, 143, 144, 145,161
alphahull (alphahull-package),

146
alphahull-package, 146
angs.arch, 147,160
arch, 148

closing, 1, 13, 14, 135
complement, 143, 144, 149,149, 155
convex hull, 4, 10–13, 17, 19, 105, 107,

119, 120

Devroye-Wise estimator, 10, 11, 18, 20, 23,
113, 119

dilation, 7, 8, 13, 14, 21, 141
dilation, 150
distance in measure, 9, 23, 28
dummy.coor, 152,156, 157

erosion, 7, 8, 13, 14

free rolling condition, 15, 127

Hausdorff distance, 5, 6, 8, 12, 20

in.alpha.hull, 151, 155,155
in.BTnEn, 153

in.dilation, 154
inform.vor.del, 142
inform.vor.tri, 143, 145, 146, 149,

150, 152, 156
inter, 144, 157

length.ahull, 144, 159

Minkowski
addition, 6–8, 136
content, 4, 20, 24, 25, 85, 105
subtraction, 7, 8, 136

opening, 13, 14

par, 142, 148, 160, 161
plot.ahull, 144, 148, 160
plot.ashape, 146, 160, 161

reach, 16, 86, 89, 127, 131, 132
Reuleaux triangle, 35, 36
rotation.cw, 144, 162

Serra’s regular model, 15
structuring element, 6–8, 13
surface area, 4, 17–22, 24, 25, 85–103,

112–118

tri.mesh, 152, 156, 157
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