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Introduction

This thesisSet estimation under convexity type restrictiamlects the research work done dur-
ing these last years under the supervision of Prof. Alberto Rodrigaeal CFirst and foremost
I would like to thank him for his help and his effofuchas gracias por confiar en mi, por tu
dedicacion y por tu ayuda.

The title set estimatiomrefers to the subject matter of the thesis, the reconstruction of an
unknown setS from a random sample of points whose distribution is related to it. Apart from
the set itself, we are also interested in approximating a particular chartctefighe set, the
surface area. It isnder convexity type restrictiorgecause the problem of set estimation is so
extensive that giving an efficient general solution is almost unfeasibkeaditional approach
consists in assuming that the set of interest is convex. However, wigtrestrselves to a more
flexible shape condition namedconvexity, which allows to handle a larger family of sets.

The essay has been organized in the following way. First sections int&Haprovide an
overview of set estimation results. Previous research on topics sucippsrsestimation and
surface area estimation is reviewed and the notation for some basic colsdaptsduced. Last
section of Chaptet is devoted to the statement of the main results we have obtained during the
course of this research. The purpose of this chapter is to introducedbderrinto the frame-
work in which we develop our study and to present precisely our cotitifgi For a complete
discussion of the results and their proofs, the reader is referred {ot€ba and3. Chapter2
focuses on the detailed analysis of a support estimatory-tb@nvex hull estimator. Chapt&r
provides an in-depth analysis of a new estimator for the surface areaoafyaln Chapte# we
present the results of a simulation study comparing some of the estimatorsdidauprevious
chapters. Finally, we also include three useful appendices. In Appénde state and prove a
series of geometric results that help us to relatetfo®nvexity with other geometric properties.
In AppendixB we focus on the behaviour of a morphological operator, the closingaridom
sample of points with respect to closed and open balls. Finally, we havéodedea new li-
brary, namedl phahul I , for the implementation iR of the discussed estimators. Appendix
C describes the functions in the library, their usage, arguments, retuahges\and examples.

The course of the thesis does not faithfully reproduce the time sequemdsaiming the
results. In chronological order, the results in Subse@iBnl, providing the almost sure conver-
gence rate of the proposed estimator for the surface area, are theggpaitihof our research.
This work was accepted for publication in Advances in Applied Probabilitg ii-depth study
of the a-convex hull estimator in Chapteérled us to complete the analysis of the statistical
properties of the surface area estimator proposed in Chaptee Subsectiod.3.2






Chapter 1

On set estimation

1.1 Introduction

The problem of reconstructing a sefrom a finite set of points taken into it has been addressed
in different fields of research. In computational geometry, for instatheeefficient construction
of convex hulls for finite sets of points has important applications in patteogration, cluster
analysis and image processing, among others. For example, in Bigumnage analysis tools
could be used to recover the original $etn the left plot from the corrupt version shown in
the right plot. We refer td°reparata and Sham¢{s985 for an introduction to computational
geometry and its applications. In a different framework, the set of paiats fvhich we try to
reconstructS is assumed to be non-deterministic. The taeghestimatiomefers to the statistical
problem of estimating an unknown sgfrom a random sample of poinfs, = {X1,..., X,,}
whose distribution is closely related b But, what kind of sets are we talking about? We may
be interested, for example, in recovering a distribution support, its boyioda level set.
Formally, thesupport estimation problem is established as the problem of estimating the
support of an absolutely continuous probability meastxe from independent observations
drawn from it.

Figure 1.1:Original setS and corrupt version.

Korostelév and Tsybako{1993 refers toGeffroy (1964, Rényi and Sulanké1963, and

3



4 CHAPTER 1. ON SET ESTIMATION

Rényi and Sulank€1964) as the first works on support estimatioRényi and Sulank€1963
andRényi and Sulankél964) studied the case whehis a convex support in the bidimensional
euclidean space and proposed a natural estimator, the convex hullsartipteY,,. However,

if S is not convex, the convex hull of the sample is not an appropriate estimitms can

we estimateS if no assumption is made on its shape? In this settiigevalier(1976 and
Devroye and Wis€1980 proposed to estimate the support of an unknown probability measure
by means of a smoothed version of the sample The problem of support estimation was
introduced byDevroye and Wis€1980 in connection with a practical application, the detec-
tion of abnormal behaviour of a system, plant or machine. Results on tf@mpance of the
estimator were obtained, among others, Glyevalier(1976, Devroye and Wis€1980, and
Korostelév and Tsybakofd993. Of course, there are situations in between the two described
above, that is, we can assume that theSssatisfies some shape restriction, more flexible than
convexity. InRodriguez-Cas4R007), the estimation of an-convex support is considered. The
a-convexity assumption plays a mayor role in this thesis and will be studied in depiie
course of the dissertation.

Set estimation is also related to another interesting problem, the estimation of gexain
metric characteristics of the set such asvbkime or thesurface area Obviously, there are
other statistical fields which also cope with problems regarding set measuseasg for exam-
ple, the stereology. However, stereology focuses on the estimationtaicenaracteristics of
(volume, surface areafc) without needing to reconstruct the set, see, Bgddeley and Jensen
(2005, Cruz-Orive(2001/03, whereas the primary object of interest of set estimation is the set
itself. Turning to the set estimation framework, it seems natural to think thaillnene or the
surface area of a good set estimator should provide good approximafitimsse geometrical
guantities.Braker and Hsing1998 studied the asymptotic properties of the length and area of
the convex hull of a random sample of pointsRA. The more recent work bZuevas et al.
(2007 focuses on the surface area estimation problem from a different gforid@w. Assuming
no shape restriction and that we have observations from both the sé¢i@sinand its comple-
ment, the surface area can be approximated, based on the notion of Mkikamtent, handling
two support estimators. Adding the flexileconvexity condition, we propose in Sectidrba
new surface area estimator, which gives a compromise between the morekajrtion consid-
ered byCuevas et al2007) and the restrictive convexity assumption. The asymptotic behaviour
of this new estimator was analysed Bgteiro-Lopez and Rodriguez-Cag2008. A complete
presentation of the obtained results is provided in Chéepter

This chapter is organized as follows. Sectib2 introduces some basic notions used in
set estimation theory. In Sectidn3we give a brief outline of the classical support estimators
available in the literature and their properties. Subsecti@l deals with the general case,
when no assumption is made on the shape of the set of int€reSubsectiorl.3.2provides
a review of the main results on support estimation under the convexity assampttuding
the aforementioned works on the convex hull estimator. The notienarfnvexity is discussed
in detail in Sectioril.4, along with a review of the literature on set estimation under this shape
restriction. Sectiorl.5is devoted to the surface area estimation problem. Finally, in Setiton
we present the main results contained in this thesis.
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1.2 Basic concepts on set estimation theory

Like in other contexts, in order to evaluate a set estiméfgrwe need certain measure of the
distance between the estimator and the tafgetVe all are familiarized with the concept of
Euclidean distance between points in thdimensional Euclidean spa® but, what is the
distance between sets? see for example FiguiteHow can be defined the distance between
the setA4 and the setC? We might be persuaded to think that the distance is zero, since both
sets share a common border. However, it is clear that if we want to movefointa € A to

C, even to the nearest point 6f, the distance we have to cover will be positive. The feeling is
that, in order to give an adequate definition for the distance betweamd C, we should take

into account the distances from the pointsdito the boundary of” and vice versa.

Figure 1.2:0n an adequate definition of the distance between sets.

1.2.1 The Hausdorff distance

The Hausdorff distance can be defined over the space of the noneonppact subsets in a given
metric space. However, since it is enough for our purposes, we goateon thel-dimensional
Euclidean spac®?, equipped with the inner produ¢t -) and the nornj|-||. See, for example,
Edgar(1990 andMatheron(1975 for a more extensive discussion of the Hausdorff metric.

Definition 1.2.1. Let A and C' be nonempty compact subsetsR¥f The Hausdorff distance
betweend andC is defined by

dp(A,C) = max {sup d(a,C), supd(e, A)} ,
a€A ceC

where
d(a,C) =inf{|la —c|| : c € C}. (1.2)

Defining the Hausdorff distance over the collection of nonempty compdistessi ofR¢
ensures thady is a metric. By restricting the definition of the Hausdorff distance to nonempty
and bounded subsetsy is well defined. On the other hand, if we do not restrict the definition
of the Hausdorff distance to closed subsets, it could be the case thastiweced between two
sets is zero, even if the two sets are not equal.

Equation (.1) defines the distance between a pairg A and a set”. It is worth pointing
out that this distance is not necessarily equal to the Hausdorff distatwedn the sefa} and
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the set’, see Figurd..3. In fact,

dp({a},C) = max {d(a, ), igg d(c, {a})} = igg llc—all.

Figure 1.3:dy({a}, C) is not necessarily equal @(a, C).

An alternative and useful way of defining the Hausdorff distance themesoncept of open
e-neighbourhood of a set.

Qefinition 1.2.2. Let A be a nonempty compact subseR§f The opere-neighbourhood of,
B(A,¢), is defined by )
B(Aye) ={z e R%: d(x,A) < e} (1.2)

Analogously to {.2), we can define the closedneighbourhood of a set.

Definition 1.2.3. Let A be a nonempty compact subsef®¥f The closed-neighbourhood of
A, B(A,¢), is defined by

B(A,e)={z cR%: d(x,A) <e}.

Definition 1.2.4. Let A and C' be nonempty compact subsetsRff The Hausdorff distance
betweend andC' is defined by

dr(A, C) = int {s >0: Ac B(C,e)andC é(A,e)} .

Figure 1.4 illustrates how to compute the Hausdorff distance between two sets. It can be
easily proved that Definition&.2.1and 1.2.4 are equivalent. There is a third definition for
the Hausdorff distance iR¢. Its formulation is based on mathematical morphology theory.
Mathematical morphology can be defined as the theory for the analysis shdpe of spatial
structures, based on set theory, integral geometry, and lattice aldfgbian extremely powerful
image analysis methodology that has been applied to numerous scientific dietdsssbiology,
quality control, and medical imaging. For a more comprehensive presentatitims topic,
we refer toSerra(1984). Morphological operators aim to extract relevant structures of the se
under study from its interaction with another set of known shape callectsting element. The
dilation and the erosion of a set by a structuring element are the two funte&merphological
operators. They are closely related to the Minkowski addition and stiotnadefined below.
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Figure 1.4:c 4 = inf {5 >0: Ac B(C, s)}.

Definition 1.2.5. Let A, C be subsets d&?. The Minkowski additionp, is defined by
AeC={a+c:acAceC}.
The Minkowski subtractiors, is defined by
AcC={z:{z}C C A}.

For A € R,
AC ={Ac:ce C}.

Note that, according to this notatioA, ® {z} is the translation ofd by the vectorz. The
dilation and erosion operators are formally defined from the Minkowstitimsh and Minkowski
substraction, respectively. They are always performed by applystgueturing element to the
set of interest. Thus, the result of the dilation or erosion of algstthe result of the interaction
between the set and the structuring element. Dilation allows the set to expaedevdsion
shrinks the set by eroding its boundary. The way in which the set is dilatetbded depends
on the structuring element. Although, a priori, the structuring element coutahpeset, in our
context it is usual to considerdimensional balls. We denote #(z, r) and B(z, r) the closed
and open ball with centre and radius:, respectively. In order to simplify the notatidghand 3
will stand for B(0, 1) and 3(0, 1). Moreover, from now onA¢, int(4), 4 anddA will denote
the complement, interior, closure and boundarylpfespectively.

Definition 1.2.6. The dilation of a sett ¢ R? by the structuring elemeri#(0, ) is defined as
the union of open balls of radiuswith centres in4, that is,

U B(z, 7).

€A

Definition 1.2.7. The erosion of a set C R? by the structuring elemerig(0, ) is defined as
the locus of points such thatB(z, r) is included inA4, that is,

o

{z: B(z,r) C A}.
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Figure 1.5:Dilation and erosion of the set by the structuring eIemerBof(O, T).

The dilation and erosion of a sdtby the structuring eIemerBO%(O, r), see Figurel.5, fit in
with the above defined Minkowski additiot B(0, r) and Minkowski subtractiosl & B(0, 7),
respectively. It is worth mentioning that this relation cannot be general@zed structuring
elements. For the definition of the dilation and erosion of a4dty a general structuring
elementC, seeSerra(1984. As an example, Figuré.6 shows the dilation of the set by the
triangleC, and the setd @ C'. Since the triangle is not symmetric with respect to the origin,
both operations do not lead to the same result.

(a

) (b) (©)
C

A&@

Figure 1.6:(a) SetA and structuring elementt’. (b) A @ C. (c) Dilation of A by C'.

As previously mentioned, there is an alternative definition of the Hausdistéince, formu-
lated in terms of the dilation.

Definition 1.2.8. Let A and C' be nonempty compact subsetsR#f The Hausdorff distance
betweend andC is defined by

dy(A,C)=inf{e >0: AcC@®eBandC Cc A®eB}.

It is straightforward to prove that Definitioris2.], 1.2.4and1.2.8are equivalent. Note that
the opere-neighbourhood inX.2) satisfies

B(Aje)={z €R?: d(x,A) <e} = | J B(z,c) = A@eB.
T€EA
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The Hausdorff distance gives us an idea of the proximity of two sets anliisisense, it is
an appropriate tool to evaluate the performance of a set estifigtdiris desirable that

dp (S, Sn) — 0. (1.3)

However, the convergence id.@) is not sufficient in general to ensure that the estima&tor
performs well. For example, from the sets in Figliré it is apparent that the Hausdorff distance
du (A, C)is close to zero, even though we do not have the feeling that both setisées.df
we are concern, not only about the proximity of the sets, but also abesh#pe similarity, we
should ask the estimator to satisfy both3) and

i (9S,08,) — 0. (1.4)

Conditions that guarantee the convergeric8)(and (L.4) (in probability, almost surely, ...) of
some existing estimators can be found, for exampl€lnavas and Rodriguez-Ca$2004).

Figure 1.7:In greenA = B(0,1). In red a setC, visually close to4. Although both sets are
close in terms of the Hausdorff distance, their shapes are quite different.

1.2.2 The distance in measure

The distance in measure is useful to quantify the similarity in content of twoAgtan, it can
be defined in any measure space but it is enough for our purposesdideothe measure space
(R4, B, 1), whereB denotes the Boret-algebra ofR? andy, denotes the Lebesgue measure.

Definition 1.2.9. Let A andC' C B. The distance in measure betweémndC is defined by
where AAC denotes the symmetric difference betwdeand C, that is,

AAC = (A\ C)U (C\ A).
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The distance in measure is specially useful when we are interested in tieatcoithe sets
rather than in their proximity. Furthermore, the distance in measure is closefgdeo thel
functional distance since

du(A,C):/!HA—HC\dM,

wherel 4 andl~ denote the indicator functions af andC, respectively.

1.3 Support estimation

Returning to the subject matter of this chapter, let us assume that we aneagimedom sample
X, ={X1,...,X,} ofi.i.d. observations from a random variat{fewith absolutely continuous
probability distributionPy and nonempty compact suppéitc R<. The goal is to reconstruct
the set by using the available information. As usual in estimation, the problangeb sub-
stantially depending on the model assumptions. In Subseti®hwe tackle the most general
framework, when no assumptions are made on the shapelofthis situation we need to define

a flexible estimator in order to effectively estimatavhatever its shape. More sophisticated es-
timators can be considered if we are given some additional information oetthE® instance

if we know thatS in convex. In that case we can ensure that, at least, the convex hub# of th
sample is contained in the set. The convexitysaé one of the classical assumptions in the lit-
erature on set estimation. Because of its importance, we have consigeregréate to include

an independent subsection devoted to this subject. Thus, in Subseé@&ig@the estimation of

a convex sefS is discussed. The main drawback of the convexity assumption is that it rules a
large number of sets out.

1.3.1 The general case

If no assumption is made on the shapeSothen the only information we have comes from the
sample. Actually, this is the first estimator we shall consider. The estimitrdy-consistent,
that is, with probability onedy (S, X,,) — 0 (it is understood that the limit as — oo is taken).
However, it can be easily seen thgt(.S, X,,) = 1(S) > 0. As mentioned in the introduction of
this chapterChevalier(1976 andDevroye and Wis¢1980 proposed a very intuitive estimator
based on an smoothed version of the sample that achieves better restlitsNtore precisely,
let

n
S = B(Xn,n) = | J B(Xi,€n), (1.5)
i=1
wheree,, is a number depending only upan We shall refer to this estimator as Devroye-Wise
estimator, see Figure.8. Devroye and Wis¢1980 establishes thé,-consistency in probabil-
ity and almost surely of1(5). If ¢, — 0 andned — oo, thend,,(S,S,) — 0 in probability.
In fact, the result is proved not only for the Lebesgue meaguard compact sets, but for any
measure whose restriction to a general$ét absolutely continuous with respect to the distri-
bution Px. It is worth noting that the assumptions ey are identical to those imposed on the
bandwidth parameter in nonparametric density estimation, to ensure the aorsisiereover,
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we release that similar conditions also imply #jg consistency in mean of a more sophisti-
cated support estimator, tihg-convex hull ofX,,, see Chapte2. Regarding other works on the
Devroye-Wise estimatoiorostelév and Tsybakof{1993 obtained the minimax convergence
rates ofS,, by assuming that the boundary Sfsatisfies some piecewise Lipschitz conditions.
Cuevas and Rodriguez-CagaD04 are concerned with the estimation @6 with respect to
the Hausdorff metric. Although the almost sutg-consistency of,, can be straightforwardly
obtained under the assumption that— 0, consistency results of the fordy; (95, 9S,,) — 0
are not so immediate. Note in Figute8that, as:,, is smaller, the estimator becomes more and
more fragmented with holes in the midst of the sample points. In order to cortlsiststimate
08, it is useful to take larger values ef, to guarantee that C S,,. The precise result, estab-
lished byCuevas and Rodriguez-CagaD04), states that,, — 0 almost surely together with
S C S, imply the almost suré ;- consistency 0b.S,,. Another way to ensure the almost sure
dgr-consistency is by assuming certain shape restrictiafl.dn this situation it seems natural to
selectz,, such thats,, fulfills the same shape restriction &s For example, if we assume théit

is star-shaped, we can incorporate this additional information to the Dex\¥kge estimator in
such a way tha¥,, is also star-shaped. This provides a method of choasjrfgom the sample
that ensured; (05, 0S,,) — 0 almost surely, seBaillo and Cuevag2001).

(@) (b) (©)

Figure 1.8:(a) Sample in the dis#(0,0.5) \ B(0,0.2) of sizen = 300. (b) Devroye-Wise
estimator fore,, = 0.02. (c) Devroye-Wise estimator fey, = 0.05.

1.3.2 On the estimation of a convex set

When the seb is assumed to be convex there is a natural estimator, the convex hull ofrtpiesa
H, =conVXy,...,X,). (1.6)

Note that, a prioriH,, is a reasonable choice since the convex hull fulfills the convexity shape
restriction assumed a$l. Moreover,H, is the maximum likelihood estimator in the family of all
closed convex sets, s&®rostelév and Tsybakofd993. Now, how closely isS approximated

by the convex hullH,, of the sampleX,,? This problem is posed iDumbgen and Walther
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(1996. The proximity between the set and the convex hull is studied in terms of the-Ha
dorff distance in an arbitrary dimensiah More precisely, it is proved thaty (S, H,) =
O((logn/n)'/%) almost surely. Furthermore, S satisfies an additional smoothness condi-
tion, it is proved thatly (S, H,,) is of order(logn/n)?/ (4+1),

Also in connection with the convex hull estimator, there are a series of papecerned with
certain statistics of{,, such as the number of vertices, the number of facets, the volume, and
the surface area. For exampRraker and Hsing1998 studied the asymptotic behaviour of the
expected area and perimeterféf in the bidimensional case under more general conditions than
those considered birényi and Sulanké1963 and Rényi and Sulank€1964). SeeSchneider
(1988 for a extensive review of classical references in this line.

1.4 Relaxing the convexity assumption

The convexity assumption may be too restrictive in practice and the estifatgiven in (L.6),
is not the best possible choice whéris not convex. Notice thatl,, tends to fill in the space
in the midst of the observations. The result is a convex set when the drigiednad not even
to be connected. This section focuses on the introduction of a more fles&lengtion than
convexity, named-convexity.

Definition 1.4.1. A setA c R% is said to bex-convex, for > 0, if
A=C,(A),

where

Cu(A) = N (é(x,a))c (1.7)

{B(z,a): B(z,a)NA=0}
is called then-convex hull ofA.
Thea-convex hull of a se! satisfies tha€, (A) C C,/(A) for a < o/. Furthermore, it can

be proved that, under certain conditionsffseeWalther(1999, C,(A) tends to the closure of
A asa tends to zero and it tends to the convex hullofsa tends to infinity, see Figure.9.

Figure 1.9:Finite set of points and-convex hull for increasing values of
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Regarding the relation between convexity ardonvexity, if A is convex and closed then it
is alsoa-convex for alla. > 0, see Figurél.10 On the other handiValther(1999 proved that
if the interior of the convex hull is not empty, then the reciprocal is also true.

(@) (b) (©)

—*—

Figure 1.10:(a) Set convex and-convex for alle > 0. (b) Set non convex butconvex. (c) Set
neither convex not-convex for anyy > 0.

Thea-convex hull of a set is intimately related to the dilation and erosion operatansgh
the closing of the set, whose precise definition is given below. The idéadiéie morphological
closing is to define an operator that tends to recover the original shagpeeifthat has been
previously dilated. This is achieved by eroding the dilated set. Note that teimglmay not
coincide with the original set since dilation and erosion are not inverseimps. In the same
manner, once a set has been eroded, there exists in general ne ingasformation to recover
the initial set. The morphological opening tries to recover as much as possldeiginal shape
of an eroded set by dilating it.

Definition 1.4.2. The closing of a setl with respect ta3(0, ) is defined as
(A®rB)orB.

Definition 1.4.3. The opening of a set with respect ta3(0, ) is defined as
(AerB) @ rB.

As it occurred with the dilation and erosion, the closing and opening arestudt iof the
interaction between the set of interest and a structuring element. Definitidr#&sand 1.4.3
correspond with the particular case in which the structuring element is tlmquﬂé?(o, r). See
Matheron(1975 for the definition of opening and closing with respect to a general stingtu
element. Figured.11and1.12show the closing and opening of a given sktrespectively.
Closing and opening operations are increasing, idempotent, and duahtotser with respect
to taking complements, that i§A° © rB) & rB = (A@rB) ©rB)° and(A° & rB) O rB =
(Ao rB) ® rB)c. We say that a setl is morphologically close with respect IB(O r) if
A = (A& rB)erB, and morphologically open with respectif0, ) if A = (AcrB)®rB.
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A (A@rB)orB

Figure 1.11:Dilation an erosion leading to the closing df

FTNATS
4 N —_—

A AorB (AerB)@rB

Figure 1.12:Erosion and dilation leading to the opening 4f

It is easy to prove that the opening fcoincides with the points of all ballé(:c, r) which
are completely contained iA, that is,

(AeorB)orB= ) Byn). (1.8)
B(y,r)CA

Equation {.8), together with the duality with respect to the complement of opening and cjosing
leads to .
(A®rB)erB = N (é(x, r)) , (1.9)
{B(z,r): B(z,;r)NA=0}
which coincides with the definition of the-convex hull in @.7), for « = r. Therefore, the
a-convexity of a setd can be defined in terms of the closing with respeoﬁ(ﬁ, «). Thus, the
setA is said to bex-convex if
A= (A®aB) S aB.

Once we have introduced all these concepts we are in a position to reture sulfect
matter, the estimation of a sétfrom a samplet,, = {X1,..., X, }. If the setS is a-convex,
then thex-convex hull of the sample

Co(Xyn) = (X, ® aB) & aB (1.10)
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seems to be the natural estimator. The estimatot.ibd was first studied byrodriguez-Casal
(2007 under the assumption that the $ebelongs to Serra’s regular model. We refeSterra
(1984 for a complete description of this class of sets.

Definition 1.4.4. Serra’s regular model is the class of compact stthat are morphologically
open and closed with respect to the compact ba& of radiusa for somea: > 0, that is,

A=(AcaB)®aB=(A®aB)oaB.

The Serra’s regular model was studied in depthAither(1999. Indeed Walther(1999
provided a generalization of the Blaschke’s Rolling Theorem that givesact geometric char-
acterization of Serra’s regular model in termswtonvexity and free rolling conditions. Before
stating the theorem in question, we introduce the free rolling condition and somments
concerning its definition.

Definition 1.4.5. Let A C R? be a closed set. The ballB is said to roll freely inA if for each
boundary point: € 0 A there exists some € A such thate € B(x,«) C A.

It should be mentioned that the free rolling condition in Theorkerhlis not exactly the
same as the one given in Definitidm.5 In Walther (1999 it is also required thatl & aB
is path-connected in order to preserve the physical meaning of rollietyfr&his additional
requirement will not be necessary for our purposes and that's tsemeghy it is not included
in Definition 1.4.5 Next, we present Theorein4.1as it is stated iWalther(1999.

Theorem 1.4.1(Walther(1999). LetS # () be a compact and path-connected subs@&bénd
a > 0. Then, the following conditions are equivalent:

i) The conditions

S=(SeAB)® B, 0<\<aq,
S=(S®AB)SAB, 0<\<a,
hold.
i) S andS¢ are a-convex andnt(S;) # 0.
iii) A ball of radius \ rolls freely insideS and S¢ forall 0 < \ < a.
iv) Foreveryr; € [0,a], 7 € [0,a) there existd, D c R4with S = A® B = D & ryB.

v) dSisa(d — 1)-dimensionalC’! submanifold ifR? with the outward pointing unit normal
vectorn(x) atx € 05, satisfying the Lipschitz condition

In@) —n()] < L e — ], forallz,t e s.
8]

Moreover, for somer > 0 above is equivalent to

vi) S belongs to Serra’s regular model.
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The importance of Theorerh.4.1lies in the fact that it links the notions ei-convexity,
free rolling condition and Serra’s regular model and it relates geomewjgepties to analytic
concepts whose mathematical treatment is, in principle, quite different. Buimihea-convex
hull estimator, it is common in the literature to assume ghadtisfies the conditions of Theorem
1.4.1 However, for our purposes it suffices to assume that

(A1) S is a nonempty compact subset®f such that a ball of radius > 0 rolls freely in.S
and inSe,

where the free rolling condition must be understood in the sense of Defidi#oh We do not
need the sef to be path-connected nor the more restrictive free rolling condition assiimed
Theoreml.4.1 Assumption (Al) is enough to guarantee thas a-convex, see LemmaA.0.8

in AppendixA. It also guarantees the existence at each poiat 05 of a unique outward
pointing unit normal vecton(s) such thatB(s — an(s),a) C S andB(s+an(s),a) C S¢, see
LemmaA.Q.5 for the precise statement and proof. In some sense these results camdlet th
as an alternative proof for Remark 3 Walther (1999 referring to the validity of Theorem
1.4.1when the sefS is not assumed to be path-connected. Len#r@a5 will be very useful
when studying the convergence rate of ti@onvex hull estimator. Another implication of
Assumption (Al) has to do with the concept of positive reach of a set, notioned so far.
Federen(1959 defines the reach of a s8f reach(S), as the largest, possibly infinity, such
that if + € R? andd(x, S) < a, then the metric projection of onto S is unique. Federer
(1959 provides a generalization of the Steiner’s formula for sets with positigehe Recall
that, roughly speaking, the Steiner’'s formula establishes that-theensional measure of the
closedr-neighbourhood of a convex set Rf* can be expressed as a polynomial of degree at
mostd in r. Although the characterization of the sets of positive reach is beyond tipe ©f
this work, LemmaA.0.7 relates the free rolling condition and the reach. More precisely that
result states that under Assumption (Al), the reach ©f greater or equal ta. LemmaA.0.7

will be useful in Chapterg and3.

We end this section with a review of the main existing results on the behaviourof th
a-convex hull estimator. The proximity between a seaind thea-convex hull of a sample
of points taken into it is studied iRodriguez-Casg2007). If no assumption is made off,
apart for thea-convexity, it can be proved thaty (S, C,(X,)) = O((logn/n)'/4) almost
surely. Note that, although the family efconvex sets is much wider than the family of con-
vex sets, the convergence ratesdef(C,(X,), S) anddy (Hy,, S) are of the same order, see
Dumbgen and Waltheg1996§. If S is under the conditions of Theorefn4.], it is proved
that dy (S, Cu(X,)) = O((logn/n)?/ (@) almost surely. Again, the order of convergence
of di (S, Co (X)) is equal to that obtained fatx (S, H,) when S is convex and satisfies the
smoothness conditions of Theoremt.1 The same order of convergen@eg n/n)?/(+1) is
obtained fordy (05, 0C,(X,)) andd,, (S, Ca(&X,)). We must be aware, however, that the esti-
mator (L.10 suffers from an inherent limitation since, in practice, the parameiertypically
unknown. When this is the cas®,,, (&X,,) is proposed to estimatg, with r, > 0. Note that ifS
is a-convex, then it is alse,-convex forr,, < « and, therefore, the estimatof. (X,,) seems to
be a sensible choice whenevegris small enough. This can be guaranteed if we chegse 0.
Rodriguez-Cas&l2007) provides the convergence rates &y (S, Cr., (X)), d.(S, Cr, (X))
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anddg (0S,0C,, (X,)). Further details on the,-convex hull estimator are given in Chapger
where we analyse the asymptotic behaviouEad, (S, C;., (X,))).

1.5 When the target is the surface area

Until now we have discussed the problem of estimating a set from a ranaimple of points
taken into it. When studying this problem, one immediately realizes that, aparttfrerset
itself, there are geometrical characteristics that may be of interest. Edrybmembers the
perimeter and area of the square, the triangle or the circle. And almogbedsrremembers
the formulas for the volume or surface area of the sphere, for exampéseTare some of the
geometric characteristics we referred to. They provide us with importaiti@tal information
about the shape of the set and, therefore, it is useful to know thensideorfor example, in
the bidimensional case, the ratio between the perimeter and the squarefitheoarea of a set.
This measure, known in the literature as contour index, provides a scal@imvmeasurement
of boundary roughness. Its minimal valus/r, is attained by the circle and it increases as
the set becomes more fragmented. The contour index has been usededliary diagnosis
criterion in medical imaging. For example, in oncology the irregularity in the dyoofla tumor
may suggest a bad prognosis since the damage is highly disseminat€dieses et al(2007)

for more details. In this section we focus our attention on the estimation of tfacewarea of a
set. The estimation of the surface area of assigtthe Euclidean spadg? has been extensively
considered in the literature. Some of the most relevant results in this fieldnettay using
tools of nonparametric statistics, have been published in recent yeaes ik has to confront
the problem of estimating the surface area of a body from which we onlydaample of points
X, = {X1,...,X,}, many questions arises in a moment. The first and at the same time most
naive one is how to do it. One immediately visualizes the probleRrirselects those points of
the sample which are closer to the boundary of the set and adds up the détigghsegments
that join the selected points. The first dilemma we face with is how to determine whints

of the sample are closer to the boundary of the set. This has to do with the mtd&& of what

an extreme pointis. Thus, we could consider the convex hull of the safpées starting point,
recall (L.6). However, the convex hull does not always work well and it is ndiatlift to picture
situations where the perimeter Bf, systematically underestimates the real perimeter of the set,
see for example Figure.13(a), where the convex hull of a uniform sample of size- 500 in

the discB(0,0.5) \ B(0,0.25) is represented. The asymptotic properties of certain statistics of
the convex hull of a sample iR? were studied braker and Hsing1999, among others. They
obtained the asymptotic normality of the perimeteffas well as its convergence rate in mean.
In spite of the fact that the results are really significant, they are estathihthe assumption
that the set of interest is convex, which may be too restrictive in practiegedsave already
argued. The generalization of the definition of convex hull, leads to nemngtic objects
that capture the shape of the set of interest, even when the set is nekcdinese geometric
objects, such as the-shape, closely related to tlieconvex hull, have their origin in the field
of computational geometry, and are based on the weakening of the noatrefe point, see
Edelsbrunner et a[1983. Although the computational geometry framework is deterministic,
we can adapt the definitions by substituting a saniglefor a finite point set. Thus, given a
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(@) (b)

08

0.6

0.4

Figure 1.13:Estimation of the boundary of the di&0,0.5) \ B(0, 0.25) from a uniform sam-
ple of sizen = 500. (a) Convex hull estimator. Far = 0.25, (b) a-shape and (cj-convex
hull. (d) Devroye-Wise estimator fer= 0.04.

sampleX,, anda > 0, thea-shape ofY, is a polytope which is neither necessarily convex nor
necessarily connected. The precise definition-aghape relies on the notions @fextreme and
a-neighbours.

Definition 1.5.1. A sample pointX; is termeda-extreme if there exists a closed ball of radius
a, B(z, «), such thatX; lies on its boundary and(z, o) does not intersect the sample.

Definition 1.5.2. If for two a-extreme pointsX; and X; there exists a closed ball of radius
such that both points lie on its boundary and the interior of the ball do nolosecany of the
points of the sample, thek; and X; are said to bex-neighbours.

Definition 1.5.3. Thea-shape is the straight line graph whose vertexes aretlegtreme points
and whose edges connect the respectireighbours.
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Figure 1.13 (b) shows then-shape of the sample in the digg(0,0.5) \ B(0,0.25), for
a = 0.25. The value of the parameter controls the shape of the estimator. For sufficiently
large «, the a-shape is identical to the convex hull of the sample. cAdecreases, the shape
shrinks until that, for sufficiently smalk, the a-shape is the empty set. In Figutel4 it
is shown the influence of the value afover thea-shape. Even though the-shape seems
to achieve good results for adequate valuesoit also presents some difficulties. First, the
a-shape is a subgraph of the Delaunay triangulation and, therefore, itsimpiation is based
on the construction of the Voronoi diagram and the triangulation of Delaofthe sample. This
implementation is not straightforward and, for the moment, we have programisezstimator
for the bidimensional case R. Anyway, the main difficulty is related to the manner in which
the problem can be tackled from the theoretical point of view.

Figure 1.14:Influence 9f the value af over thea-shape of a uniform sample of size= 500
on the discB(0,0.5) \ B(0,0.25). (a) « = 0.01, (b) & = 0.03, (c) « = 0.07, (d) o = 1.

Another approach to the estimation of the surface area ofaaatsists of making use of the
known support estimators. Intuitively, we can think that if a given estimatoksweell as an es-
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timator of the boundarg.s, its surface area will also work well as an estimator of the surface area
of S. However, this is not always true. See, for example, Figuid (d), where the Devroye-
Wise estimator for the uniform sample of size= 500 on the discB(0,0.5) \ B3(0,0.25) is
represented, with,, = 0.04. Recall (L.5) for the definition of the Devroye-Wise estimator. In
spite of the fact that the Devroye-Wise estimator works well as an estimata séiiport and of

the boundary, when computing the surface area of the estimator the resuitst 80 good. The
irregularity of the boundary of the estimator does not affect to the Hafististance between

the original set and the estimator but it contributes to increase the surtageaa it is shown in

a very simple example in Figude15

(@) (b)

1.0

05

0.0

Figure 1.15:The Hausdorff distancéy (A, C) is the same in both cases (a) and (b).

And what about the surface area of theonvex hull of the sample;,, (X,,)? Recall .10
for the definition of the estimator. In Figuk13(c) we represent the-convex hull for the
example considered along this section, with= 0.25. The main obstacle we encounter when
we try to determine the surface area of theonvex hull of the sample is that, although (X.,)
is completely known, it is hard to identify its boundary explicitly and handle it ithiecally.

There is another alternative to the estimation of the surface area of ased, drathe notion
of Minkowski content, se#attila (1995 for a complete discussion of this topic. This approach
represents the basis of the work Byevas et al(2007) and serves us as pattern and starting
point to develop the results in Chapger

Definition 1.5.4. The surface area of a body ¢ R is given by the Minkowski content,

o u(BOAe)
P =i =0 ~ e
provided that this limit exists and it is finite, where
p(B(0A,€))

L(e) = BT
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When trying to determine the boundary of a set it seems important to knovanhothe
points that belong to the set, but also the points that do not belong to it. IntHadboundary
is somewhere in between points of the set and points of its complement. In vieefiaition
1.5.4 we realize that the problem of estimating the surface area of a set ssuit® problem
of estimating the measure of the dilation of its boundary. And this cannot be cmmectly
unless we have information of both the set and its complement. The sampling cood&lered
by Cuevas et al(2007) is justified by this idea. Thus, &t denote the set of interest. Assume
without lost of generality thaG < (0,1)? and defineR = [0,1]¢ \ int(G). The sampling
information is given by i.i.d. observation<,&;),. .., (Z,,&,) of a random variabléZ, £),
where Z is uniformly distributed on the unit squafe, 1]¢ and¢ = I{zeqy- Let us denote
X, =1{%;:§, =1} and),, = {Z; : § = 0}, see Figurel.16 For simplicity we abbreviate

(@) (b)

Figure 1.16:(a) In green the sefy. Inred R = [0,1]?\ int(G). (b) Uniform sample of size
n = 5000 on the unit square. In greefr,, and in red),,.

Ly(G) to Ly anddG to I'. In view of Definition1.5.4 a natural estimator o, is given by

, = ML) (1.11)

2ep,
being I, an estimator ofB(I’¢,). And how do we estimate the dilation of the boundary
B(I',e,)? The key consists of using the following representatio® @f’, ¢, ), valid under mild
conditions,

B(I',e,) = B(G,e,) N B(R, &y,).
Therefore, it is possible to construct an estimatod.gffrom estimators of the sets and R.
Thus, ifG,, andR,, denote estimators @F and R, respectively, let
I, = B(Gp,e,) N B(Ry, ep). (1.12)

The choice of the set estimatofs, and R,, leads us back to Sectidh3 and the comments
therein. Cuevas et al(2007) proposed to estimat@ and R empirically by means of the sam-
ples X, and),, respectively. We will refer to the estimatér, obtained this way as empirical
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estimator. Note that if we repladgg,, and R,, in (1.12 by X,, and),, thenI’, turns out to
be the intersection of two Devroye-Wise estimators. Some theoretical fiegpef the empir-
ical estimator concerning strong consistenkEy;error and convergence rates can be found in
Cuevas et al(2007. For example, they proved the universal consistency of the estimater, p
vided thatL, exists. More precisely, under standardness hypothesis preventisgttigrom
having too sharp inlets and peaks aldngif {¢,,} is a sequence of positive numbers satisfying
£, — 0 andne?/logn — oo, thenL, — Lo almost surely. Under stronger assumptions, the
L-convergence rate for the estimaiay is attained, being of order—1/2¢,

As occurred with the support estimation problem discussed in Sett8more sophisti-
cated estimators can be considered if we are given some information onttge sghapter
3 focuses on the estimation of the surface area of a edatisfying Assumption (Al), see
pagel6. It can be proved that, under Assumption (Al), the geétand R are botha-convex.
For this reason we propose to estimé&t@and R by means of thex-convex hull ofx,, and),,
respectively. Thus, let

G, = Cy(X,) and R, = Co(Vn).

The estimator,, in (1.11), obtained after substituting(C, (X},), en) N B(Co(Vn), en) for I,
is studied in depth in Chapt8r

1.6 A brief overview of the main results

The aim of this section is to briefly highlight the main results achieved in the eaifrthis
research. During this time, our interest has been mainly focused on tpers@md surface
area estimation problems introduced in Sectibrg 1.4, and1.5. As mentioned, the effective
estimation of a set is not an easy task and it heavily depends on the asssoptiom model. If
no information about the shape of the set is given, then we have no ¢dhaiteconsider flexible
estimators that cover quite different situations. More sophisticated estincatokse considered
if we restrict the family of sets to approximate. Traditionally, the support estimatioblem
has been addressed for the family of convex sets. The convexity assoimpwever, may be
too restrictive in practice and, for this reason, we concentrate on a nesiblé geometrical
condition, then-convexity.

1.6.1 Results on the estimation oft-convex sets

Chapter2 focuses on the estimation afconvex sets. Under this assumption, theonvex hull

of a sample of points taken into the set of interest turns out to be the nadtimahtor. Formally,
let S C R? be a nonempty-convex compact set with > 0. The goal is to estimatg based on

a sampleY,, from a random variabl& with absolutely continuous probability distributidfy
and supporf. Since the parameteris typically unknown, we consider the estima€gr, (X, ),
wherer,, is assumed to be lower or equalddfor all n. Is C,,, (X,,) a consistent estimator of
S? Under which conditions? How closely #sapproximated by, (X,)? In Chapter2 we
give answer to these questions. A sufficient and necessary conditioimef consistency of the
rp-convex hull estimator is given in Theoreb.1 Itis proved thait(d, (S, C;, (X)) — 0 if
and only ifnrd — oco. It is worth mentioning that the-convexity assumption is not essential
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for the consistency of the estimator. In fact, it can be proved that, if: 0 andnr? — oo, then
we still haveE(d, (S, C;, (X,))) — 0, even ifS is nota-convex. Note that the assumptions on
r,, are identical to those on the smoothing parameter of the Devroye-Wise estyiedddng its
consistency in probability, sdeevroye and Wis€1980.

Regarding the proximity betweesiandC,, (X,), we concentrate on the distance in mea-
sure between both sets. The almost sure convergence ratg(farC,., (X,,)) was obtained by
Rodriguez-CasgqP007), assuming that' is under the conditions of Theoretnd.1 More pre-
cisely, it was proved that the order of convergence;i¥log n/n)% (¢+1) In Theoren2.5.2we
provide the convergence ratelofd, (S, Cy,(X,))). As in Rodriguez-CasgR007), we require
an additional condition 0§ which, in particular, implies the-convexity. We assume that a ball
of radiusa > 0 rolls freely in.S and inS¢. This free rolling type condition plays a major role in
the proofs and it deserves some comments. First, it excludes the predahegp peaks in the
set. Note that, by merely assumineconvexity, we cannot ensure that the boundary of the setis
smooth. On the other hand, assuming that a ball of radius0 rolls freely in S rules sets with
isolated points out, for example. Roughly speaking, the free rolling conditighforces the
boundary points to be in direct contact with the interior of the set. At this mmiatmay wonder,
in view of the important role of the free rolling condition, why the title of Chaf@enly refers
to the a-convexity. Well, the reason is that tleconvexity is the condition which originally
motivated the definition of the estimator. Theconvex hull of a sample makes sense regardless
of more restrictive assumptions ¢ghand, for this reason, we have decided to emphasize this
property.

Regarding the probability distribution, it is useful to assume fhatis uniformly bounded
on S. Formally, Py is uniformly bounded orf' if there existsd > 0 such thatPx (C) >
su(C N S) for all Borel setC ¢ RY. s it straightforward to verify that, for example, the
uniform distribution onS' is uniformly bounded.

Having discussed the assumptions, we are now ready to state the main f&hdtpver2.
Then, letS be a nonempty compact subsefRsf such that a ball of radius > 0 rolls freely in
S and inS¢ and assume thaty is uniformly bounded or$. Under these conditions, Theorem
2.5.2states that if the sequen¢e, } satisfies

d

nry

lim =
n—oo logn

then B
E(d, (S, Cr, (X)) = O ( n> |

We must not forget to say that the concept of unavoidable family of sistsussed in detail in
Section®.3and2.4plays a major role in Chapté@rand it is essential for proving Theorehb.2
Finally, we prove in Theorer.5.3that the obtained convergence rateligt/,, (S, C.,, (Xy)))
cannot be improved since there exist sets under the stated conditionisiétr w

d—1

lim inf rﬁnd%lﬂf(d#(s, Cr, (X)) > 0.

n—oo

These results lead us to compare the convergence ré@glpt s, C,, (X,))), provided by
Theorem2.5.2 to that ofd, (S, C,, (X)) (almost sure convergence rate), Samlriguez-Casal
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(2007. The obtained convergence rate ffd, (S, C, (X,))) is faster since the logarithmic
term vanishes and the penalty fact@r‘d_l)/(d“) is asymptotically smaller thary, L.

1.6.2 Results on the surface area estimation

The focus of ChapteB is to address the problem of the surface area estimation. When intro-
ducing this problem in Sectioh.5 we made a distinction between the case where the sampling
information comes from points in the set of interest and the case wherertipirsg informa-
tion comes from points both in the set of interéstc (0,1)? and inR = [0,1]¢ \ int(G). The
former case can be described as a further step in support estimatiopitdrosthe fact that
this approach seems more elementary and intuitive, it turns out to be difficudinidie since it
is not straightforward to know whether a sample point is close to the bounttaChapter3
we confine ourselves to the case where the sampling information is given bybsdrvations
(Z1,&1), ..., (Zn, &,) Of arandom variabl€Z, &), whereZ is uniformly distributed on the unit
squarg0, 1]¢ and¢ = [ zeqy - Using the notation introduced in Sectitrb, we consider

1(Ln)

L. —
n 22’5”7

being I, an estimator ofB(I',¢,) ande, > 0. Recall that the above expression by, is
motivated by Definitionl.5.4 Thus, for small values of,,, L,, estimates.q, the Minkowski
content ofG. Assume tha& and R are botha-convex. Then, we propose to estim&tél’, <,,)
by

I, = B(Co(Xy),en) N B(Co(Vn),en)
whereX,, = {Z;: { =1} and),, = {Z; : & = 0}. A question of theoretical importance is
the existence of the Minkowski content. This has to do with the behaviour of the function
w(B(I',e)) and, therefore, with the assumptions on the@etRegarding the estimator, the
natural question is whether or nét, accurately approximates,. Analogous to the support
estimation problem, the results in Chap8are obtained under an additional free rolling type
condition. Again, it is assumed that a ball of radius> 0 rolls freely inG and inGe. This
condition ensures that the Minkowski content is well defined. Anyviaymakes sense under
milder conditions. For example, the-convexity of G and R is enough to ensure that, with
probability one,l;, C B(I,e,). This fact shows thak,, is biased, as it tends to underestimate
Ly. The asymptotic properties df,, are studied and compared to those of the surface area
estimator proposed b@uevas et al(2007). Theorems3.3.1and3.3.2provide, respectively, the
almost sure convergence rate and fheconvergence rate of,, to Ly. More precisely, under
the stated conditions it is proved that, with probability one,

1
logn\ &1
n )

inf L, — Lo| = O (
En

where the optimal order is attained fay = (logn/n)Y ¢+, Regarding the.,-convergence
rate, we prove that the logarithmic factor can be removed in the abovessiqreand hence,

infE|L, — Lo| = O (n—#l) .
En
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The optimal order in this case is attained fgr= n~/(¢t1), The L;-convergence of the pro-
posed estimator is, therefore, faster than that of the empirical estimatagapyCuevas et al.
(2007, which was proved to be of order /24,

1.6.3 Computational issues

Having discussed the theoretical properties of different supportsarfdce area estimators,
Chapter4 focuses on how practical analysis can be carried out. Computing-tieavex hull
is not immediate and, for this reason, we devote part of Chapterthe description of the
implementation algorithm proposed Bylelsbrunner et a{1983.

As well as thex-convex hull, we have programmed the surface area estimator discussed in
Chapter3 for the particular case d2. We illustrate the surface area estimation problem via a
simulation study in which we compare our estimator to that proposeduayas et al(2007).
Since the study did not achieve the expected success, an alternatieacppo the surface
area estimation problem is discussed. Givendhsonvex hull of a sample, we can compute
its boundary length by adding the lengths of the arcs that form its boundarglogous, we
can consider the length of theshape. A simulation study on the performance of these kind of
surface area estimators is also provided in Chafter

As a conclusion, the obtained results do not suggest that the modelsdretbedMinkowski
content are significantly better than those based on the more intuitive ideaastirmg the
boundary of a support estimator. The promising results that this last simukitidy reveals
encourage us to find a theoretical justification that explains this good ioeinavl herefore,
further research on this topic is needed.

Finally, it is worthwhile to point out that, as a consequence of the implementatiBnoiin
the discussed estimators, we have developed a new library rainpdthhul | . The complete
documentation of the package, including the description of the functionsaikalble in Ap-
pendixC. We would like to highlight here some of the most important features of the yibrar
Apart from the functions that compute the support and surface atieaaéars used in the sim-
ulation studies, thal phahul | package includes some other functions that can be useful in
different contexts. For example, we have programmed the Voronoialiagnd the Delaunay
triangulation of a given sample of points. The Voronoi diagram and theuBDalatriangulation
are widely used in many fields of research and, as far as we know,isheoea refined code in
R providing these geometric structures. Therefore, we aim foathghahul | package to be
thought not only as collection of functions to carry out the discussed simuiisitimiies, but as a
useful tool for further research beyond the context of this work.






Chapter 2

Estimation of a-convex sets

2.1 Introduction

Having reviewed the basics of set estimation, we now turn our attention todhkepr of support
estimation under the assumption@fconvexity. Thea-convexity, defined in Sectioh.4, is a
condition that affects the shape of the set of interest but which is lesgtige than convexity
and therefore, it allows a wider range of applications.

This chapter is organized as follows. We begin with a formal descriptioneofréimework
and the estimator under study, theconvex hull of a random sample of points taken in the set
of interest. In order to obtain the asymptotic properties of the estimator it will b&ulus
construct unavoidable families of sets. The precise definition of unaveidamily is given in
Section2.2. Section2.3is entirely devoted to the definition of suitable unavoidable families in
the bidimensional case. General results on the construction of such faimi€sare stated in
Section2.4. Finally, the main results on the behaviour of the estimator, regarding its temsjs
and optimal convergence rate, are proved in Se@ién

2.2 Preliminaries

Let S be a nonempty compact subsetRsf such thatS is a-convex for somey > 0. Assume
that we are given a random sample = {X,..., X, } from X, whereX denotes a random
variable inR? with absolutely continuous probability distributid®y and supportS. Then,
S = C,(S) and thea-convex hull of the sample

Ca(X,) = (X, @ aB) & aB

turns out to be a natural estimator for the SeHowever, thex-convex hull of the sample has the
drawback of depending on the unknown parameterhis difficulty can be overcome by taking
a sequence of positive numbers, } converging to zero as tends to infinity. This ensures that
r, < « for large enougm. For the sake of simplicity we assume thgt < « for all n and
define the estimator

o o

Sn = Cy, (X)) = (Xn @1 B) © 1, B. (2.1)

27
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Since with probability onet,, C S, we obtain by the properties of theconvex hull operator
that
Sp = (X, ®rpB) OB C (X, ®aB)oaB C (S®aB)oaB =8S. (2.2)

If we consider the distance in measure to quantify the similarity in conteftarid .S,,, then
(2.2 yields

(S, Sn) = p(SASy) = p((S\ Sn) U (Sn\ 5)) = p(S\ Sn)-

Before beginning the systematic study of the random varigh(s, S, ), it is convenient to make
some preliminary comments since the procedure of bounding the expectedoValy(.S, S,,)
involves a slight change in the estimator which needs to be justified. Althougtetimétidn of
S, given in @.1) arises naturally in connection with theconvex hull, the derivation of a bound
for E(d,(S, S,)) is a laborious task which can be simplified if, insteadbpfas defined inZ.1),
we consider the estimator

Sp = (X, ®rpB) ©r,B. (2.3)

Itis important to note that, although we use the same notatidor both (X,, &r, B)©r, B and
(X, ®r,B)or,B, both estimators are not necessarily equal, see FRylréiowever, we prove

A4
/ =r
1\ \
] ° | [N ° !
\ \I 1
Xl X2 r // /

Figure 2.1:For the point sett = {X}, Xo, X3}, (X ®rB)&rB =X and(X @rB)&rB =
X U{c}.

in AppendixB that, sincePx is absolutely continuous, with probability on&, ® r,B) ©r,B
coincides with(X,, @ r,B) & r,B and hence we can compuldd, (S, S,)) by using either
(2.1) or (2.3). As we have already commented, the problem of boungifag, (S, S,,)) is easier

to handle wherf,, is defined as in4.3) and, for this reason, throughout the remainder of this
chapter,S,, will refer to the estimato(X,, ® r,B) © r,, B. Then,

E(d,(5,5,) = E(u(S\S,) = E(ufa e S:a ¢ $,})
= B [ s uldo) = [ Plo g Sutda)

= /SP(Ely € B(z,my) : B(y,mn) N X, = 0)pu(dz). (2.4)



2.2 PRELIMINARIES 29

In order to boundZ.4), we make use of the concept of unavoidable family of sets, defined below

Definition 2.2.1. Letx € R%, r > 0 and&,, = {B(y,r) : y € B(z,r)}. The family of sets
U, is said to be unavoidable fd, , if, for all B(y,r) € &, ., there existd/ € U, , such that
U cC B(y,r).

As a consequence of Definitién2.], if ¢, ,., is an unavoidable family of sets féy, .. , then
{3y € B(z,ry) : B(y,rn) N X, =0} C {3U € Uy, : UN A, =0}
and then
P(3y € B(z,ry) : By,m) N X, =0) < P(AU € Uy, : UN X, =0).
Moreover, ifi, ., is a finite family,
P(3y € B(z,ry) : Bly,m) N X, =0) < PEU €Uyy, :UNX, =0)

< ) PUNX, =0
Uely vy,

= Y PVX;j=1,....nX;¢0U)
Ueldy

= ). (1—=PxO)™ (2.5)
Uely,rp,

To sum up, if we define for eache S a family 4, ., unavoidable and finite faf, ,,, then,
from (2.4) and @.5), it follows that

E(d,(S,Sn)) = /SP(Ely € B(z,ryn) : B(y,mn) N A,

0)p(dz)

< /S S (1= Py (U))" u(da). (2.6)

Ueuz,rn

From @.6) it is apparent that the problem of finding an upper boundtf@t,, (S, S,)) reduces

to the problem of finding a lower bound féty (U), for all U € U, . In view of (2.6) it would

be desirable that both the lower bound and the number of elements of the f&amijlydepend

in the simplest possible way on the pointHow do we define suitable families fér, ., ? It is
clear that, given a point € S, there is not just one possible unavoidable fartdly., and that

the setd/ C U, ,, can substantially change from one family to another. It is important to note
that the shape d¥ determines the value d?x (U). Therefore, the choice @1, ., is a crucial
point in the resolution of4.6).

As mentioned in the introduction of this chapter, Secti@riand 2.4 are devoted to the
definition of suitable unavoidable families B? andR?, respectively. We wish to emphasize
that, although the results in Secti@gr8 could have been stated directly in the general framework
R?, we have considered that the proofsRA provide the reader with a more geometric view
of the problem. A first approach to the less involved bidimensional case maglpful since
it gives insight into some special features that arise as a consequetie increase in the
dimension of the space. Anyhow, readers may prefer to omit Se2t8on their first encounter
and return for reference if required.
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2.3 Defining unavoidable families inR?

The main goal of this section is to define unavoidable families ofégts for eachz € S C R?
and find a lower bound for the probabilifgx (U), for U € U, ,,,. But, how can we define the
above-mentioned families? How does the paint S affect the definition of the familys, .,
and the probability’x (U)? In order to find a lower bound fdex (U) it is useful to assume that
the probability distributionPx is uniformly bounded or%.

Definition 2.3.1. Let Px be a probability distribution with suppoi¥ C R2. It is said thatPx
is uniformly bounded of if

36 > 0 suchthatPx(C) > ou(C' NS) (2.7)

for all Borel setC' ¢ R2.

Remark 2.3.1. If the probability distributionPx is uniform onS, condition @.7) is satisfied
withd = 1/u(S). In this case we havEx (C) = ou(C N S). Ingeneral,d < 1/u(S).

Remark 2.3.2. Let us assume thdt, ,,, is an unavoidable family of sets fal,,, . Taking
into account condition4.7), the problem of giving a lower bound féty (U), withU € U,
reduces to measuring the détn S. In particular, if U C S,

Px(U) = ou(U). (2.8)

Remark?2.3.2 gives us the key to defining suitable unavoidable families of sets. Let us
assume thal/ belongs to an unavoidable famiy, ,,, and thatU' C S. Then @.8) is satisfied.
Moreover, by the definition of unavoidable family, ¢ B(y,r,) for somey € B(x,r,) and
hence the order gf (U) will be r2 at most. In other words, the best lower bound we can obtain
for Px(U) in this context is of order2. So the question is: can we define unavoidable families
Uy, such thaty c Sforall U € U,,,, being the measure @f of orderr2? Evidently it
will depend on the point € S we are considering. It is not close to the boundary &, it
seems reasonable to think that we will be able to define largd/saitally contained inS. On
the contrary, if the point is close to the boundary ¢f it does not seem straightforward to find
that kind of setd/. For this reason, we will divide the suppditinto two subsets; the first one,
formed by points which are far away from the boundarySofand the second one, formed by
points which are closer to the boundary. Roughly speaking, for thosespowhich are far
away from the boundary, we will be able to define familiés., such that the sets < U, .,
are contained ir§, (U) does not depend an and, on top of thaty(U) is of orderr2. For
those points: which are closer to the boundary things are not that simple. In that caséliwe
have to consider different familiés, ,,, and the values aPx (U) will depend ond(zx, 95).

Proposition2.3.1gives the desired unavoidable families for the points which are far away
from the boundary of. By points which are far away from the boundary we mean those points
x € S such thatd(z,0S) > r,/2. Taking into account Definitio@.2.1, it will not be difficult
to define a suitable famildt,, ., . We need that, givep € B(z, r,,), there existd/ € U, ,, such
thatU C B(y,r,). In view of the previous comments, it would be also desirable thatas
totally contained inS and thatu(U) was of order2. Thus, we would ensure the best possible
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rate for Px(U). Note that ifx € S andd(z,0S) > r,/2, then the ballB(z,r,/2) is fully
contained inS. So, the idea is to divid&(z, ,/2) into a finite number of subsets. How? In
view of the target it seems reasonable to consider a partiti@ ofr,, /2) into circular sectors.
Why circular sectors? This choice rests upon two main reasons. First, teireeof a circular
sector ofB(z,,,/2) is of orderr2. Second, if the central angle of the defined sectors is not too
large, then the resulting family,, .., is unavoidable.

Before the statement of Propositi@r.1, we give the precise definition of the circular sec-
tors and introduce some basic notation that will be useful later. The defmigimen forR?
can be easily generalized to thHedimensional case, as it will be shown in Sectihd. Thus,
letSe = {u € R? : |lu|| = 1} denote the unit circle ifR%. Let ¢, , denote the angle be-
tween the vectors andv. It is understood thap, , € [0,7] andy, , = ... Finally, let
es = (0,1) € R2,

Definition 2.3.2. For u € Sy andé € [0, 7/2], we define the sets
CO = {z e R?: (x,u) > ||z|| cos 8}

and the circular sectors
cl . =CinB(0,r).

Remark 2.3.3. On the basis of Definitiog.3.2 it is straightforward thatcgﬂ, is the circular
sector with central angled enclosed by the radii; = rRy(u) andvy = 7R, (u), where
Ry : R? — R? denotes the counter-clockwise rotation of anfjlevhose associated matrix
with respect to the canonical basis is

cosf) —sind
sinf  cos#f '
In Figure 2.2we show an example 01‘27r.

Proposition 2.3.1. Let S be a nonempty compact subsefR3fsuch that a ball of radiug: > 0
rolls freely in S and in S¢. Let X be a random variable with probability distributioRx and
supportS. We assume that the probability distributiéty satisfies that there exists> 0 such
that

Px(C) > u(C N S)

for all Borel setC' ¢ R2.
Then, for allz € S such thatd(z, 0S) > r, /2, there exists a finite family,, ,, withm; = 6
elements, unavoidable fér, ,,, and that satisfies

Px(U) > Lir2, U € Uy,,,

where the constant; > 0 is independent of.
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@
<

Figure 2.2:Circular sectorCy) .

Proof. First consider the family

uoﬂ”n = {CZ,(!’?L/Q’ u e W}’
where)V ¢ R?2 denotes a set of unit vectors that divides the unit circle into six circutdose
with central angler/3. Figure2.3 shows one possible choice ¥ and the corresponding
family Uy, . To simplify notation somewhat, we abbreviatd’® and(JJ,{ni to C, andC, .,
respectively. Note that the definition B¥ implies that

B(O,’l“n) = U Cu,rn-
ueWw

The fact that4, ,,, is unavoidable fo€ ., easily follows from Lemma.3.2 stated below. To
see this, note that fdB(y, r,) € &, there exists € W such thay € C, . Now, by Lemma
2.3.2 Cy,, C B(y,rn) and therefore, .. o C B(y,r,). This completes the proof thag .,

is unavoidable. Thus, it remains to prove Lemgna.2 First, however, we need to introduce a
preliminary result. Lemma.3.1characterizes the points @’ and will be needed in the proof
of2.3.2

Lemma 2.3.1.Letx # 0. Then
xngﬁcpx,ugH.

Proof. Letx € CY. We have that
@] cos pou = (2, u) = [|z[| cos . (2.9)

The inequality in 2.9) holds if and only ify,, ,, < 6, since the cosine function is monotonically
decreasing ifo0, 7. O

We are now ready to state and prove Lem2@a.2 This lemma reveals that the partition
of B(0,r,) into circular sectors with central angte/3 is indeed a sensible choice, since it
guarantees that the constructed sets are unavoidable.
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@ (b)

= (58)| w- (1) w | e

B(0,7n/2)
us = (—1,0) ugz = (1,0) us ug
o= ()| we (o) “ | w

Figure 2.3:(a) The seWV = {u;, i = 1,...,6} divides the unit circle into six circular sectors

with central angler /3. (b) Familyl{ ,, = {Cﬂim, u € WH.

Lemma2.3.2.Forall w € Sy andr > 0,
Cur C ﬂ B(y,r).

yECu,'r

Proof. Let 2 € C,,. We need to show that, for ajl € C,,,, ||z — y|| < r. Assume, without
loss of generality, that andy are both non zero vectors since the result is trivial otherwise. We
have that

lz=yl? = (—yz—y) =l=1>+l* = 2{z.9) = 121> + Iyl — 2]zl ]|yl cos ¢=,y-
By the triangle inequality for angles
SOZvy S ()OZ,U + SO’U,,y‘
Sincez,y € Cy, it follows from Lemma2.3.1thaty, , < 7/6 andy, , < 7/6. Hence,

T
Pay < Prut Puy < 3
and thereforeos ¢, ,, > cos(m/3) = 1/2. In short,
1z = yll* < =l + Iyll* = =yl < max(|l=], [ly]*) < 72
O

Once we have proved tha, ... is unavoidable fo€ ,,, consider, for eaclk € S such that
d(xz,08) > ry/2, the family

uﬁﬂﬂ"n = {i‘} @UO,Tn = {{.ﬁ} S Cu,rn/27 u € W}

The familyi, ,,, obtained by translating the family, ,,, by the vectorz, is unavoidable for
Errn» @S We state in Lemm2 3.3
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Lemma 2.3.3. Letl, , be an unavoidable family fafy .. Thenid, , = {z} & Uy, = {{z} &
U, U € Uy} is unavoidable fo€, .

Proof. Let B(y,r) € & ,. ThenB(y — z,r) € &, and, sincdf,, is unavoidable fo&,,,
there existd/ € Uy, such thal/ C B(y — z,r). The proof is now complete as

{z}®U C {z} ® B(y — z,r) = B(y,r).
]

To complete the proof of Propositich3.1it remains to give a lower bound for the prob-
ability of the sets of the unavoidable family we have just defined. For eaeh/V we have
that

PX ({x} D Cu,rn/Z) > 5:“’ ({x} S Cu,rn/2 N S) = 5” ({x} 2] Cu,rn/Q) = 5” (Cu,rn/Q) .

This follows simply becaus¢r} © C,, ;. 2 C B(z,7,/2) C S sinced(z,dS) > r,/2 and the
Lebesgue measure is invariant under translations, see Rigurloreover,

1 (Cuy2) = %M(B(O,rn/2)) — éﬂ (%”)2

and then
Tn

1 2

To summarize, we have shown that
Px(U) > Lir2, U € Uy,

for Ly = d7/24 > 0 and the proof of PropositioR.3.1is complete.
O

Therefore, giver: € S with d(z,dS) > r, /2, Propositior2.3.1provides, independently of
x, a lower bound for the probability of all the sets in an unavoidable famil¥fqr,. The given
family consists of circular sectors with radits/2 and central angle /3. It is important to note
that the collection of unit vectoid’ from which the circular sectors are defined is not unique. In
particular, any rotation ofV results in a new collection of unit vectors that could also be used to
define a new unavoidable family with the same properties as the one consid&mposition
2.3.1

Before proceeding to the definition of unavoidable families of sets for pairgsS with
d(xz,05) < r,/2, we wish to emphasize some aspects of this kind of families. So far we have
considered circular sectors with central ang}. Which is the role of this angle? Could we
have chosen circular sectors with a larger amplitude? And another kiredssf ©f course, we
could have defined larger sets provided that they are unavoidableokus which lie far away
from the boundary we have proved that it is enough to consider cirsetors with radius,, /2
and central angle /3. Using the same argument for pointsc S such thatp = d(z,05) <
rn/2 we only could infer thatB(x, p) C S and hence the lower bound for the probability of
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Figure 2.4: For = € S under the conditions stated in Propositich3.1, we have that
{r}® Cy,, 2 C B(x,m0/2) CS.

these circular sectors would be of orgédr Can we improve this bound? The answer is yes. We
can find larger unavoidable sets. To see this, assume without loss aligrdatz = 0 and
divide B(0, r) into a finite number of secto@ﬁ,r with & > 0. Then for fixedu,

U= ﬂ B(y,r) (2.10)

yeCy .

is the largest set contained B(y, r) for all y € C{fﬂ,. But, what is its measure? Obviously it
depends o. For example, iy = 7/2 then we divideB(0, r) into two circular sectors with
central angler. In that case, it can be easily proved that= {0}. Smaller values of result in
larger setdJ. In particular, Lemm&.3.2shows that, fixed = 7 /6, the set in 2.10 contains

at least one circular sector with central ang}é. In Propositior2.3.2we show that for points

x € Swith p = d(z,05) < r,/2 andf = 7/6 we can give a lower bound faPx (U) of
orderr}/gp:”/? Note that this bound is better than the one we can obtain for circular se€tors
B(z, p). Hence, Propositio8.3.2provides the second key result in this section. At this point it
is worth discussing some of the properties of the sets

() B(y,r), withu € S,, andr > 0. (2.11)
y€Cu,r

As will be emphasized later, these sets are known in the literature as Reuleagte, see
Figure2.5. They solve the problem of finding unavoidable families for the bidimensicasz.
Our first goal was to generalize this concept to théimensional case. However, as will be
seen in Sectiof.4, the argument ifR¢ is somewhat different since it becomes tough to handle
with the intersection inZ.11) whend > 2. Note that it is fundamental not only to define large
unavoidable sets but also to measure them. This causes technical diffiaslties dimension
increases. Anyway, an in-depth study of the €17 in R? may be helpful since it offers a
comprehensive overview of the problem. The following result tells us tlesetisets are quite
simple for the bidimensional case.
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N

Figure 2.5:Reuleaux triangle.

Lemma 2.3.4.Givenu € S, we have

M Bly.r) = B(0,r) N B(v1,r) N B(va,7)
y€Cu,r

wherev; = rR(u) andvy = 7R~ (u), R : R? — R? being the counter-clockwise rotation of
angler /6.

Remark 2.3.4. As previously discussed, the s8(0,7) N B(vy,7) N B(va,7) in R? is the
so-called Reuleaux triangle. Formally, the Reuleaux triangle is defined &oraquilateral
triangle with sides of length It is constructed by drawing the arcs from each polygon vertex
of the equilateral triangle between the other two vertices. Thus, the Reufeangle is the set
bounded by these three arcs. An important property is that it is a setrdftant widthl, see
Figure 2.6. It is known that the diameter of a set of constant widit preciselyl. SeeBenson
(1966, Croft et al. (1997, Eggleston(1958, and the references cited therein for a detailed
development of these concepts.

Proof. Itis straightforward to verify

ﬂ B(y,r) € B(0,7) N B(v1,r) N B(va,r) (2.12)
y€Cu,r

since, by definition) € C,, , andvy,v2 € C,, -, as it can be deduced from Remax8.3 Let us
now consider the second statement. ket B(0,r) N B(vy,7) N B(ve,r) andy € Cy,.. We
need to show that

o =yl <7 (2.13)

It follows from (2.12) thaty € B(0,r) N B(v1,r) N B(ve,r) and hence, since the diameter of
the Reuleaux triangle is (2.13 holds.
O
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X

Figure 2.6:Sets of constant width.

We now concentrate on the pointswhich are close to the boundary 8f Recall that by
points which are close to the boundary$fve mean those € S such thad(z,0S) < r,/2.
As previously described, we shall consider in this context unavoidatdengich are larger than
the circular sectors used for points away fréxfi. The unavoidable setg we shortly define
guarantee a lower bound fdry (U) of orderr}/2d(x,&5)3/2. Proposition2.3.2 makes this
ideas precise.

Proposition 2.3.2. Let S be a nonempty compact subsefR3fsuch that a ball of radiug: > 0
rolls freely in S and in S¢. Let X be a random variable with probability distributioRy and
supportS. We assume that the probability distributiéy satisfies that there exists> 0 such
that

Px(C) > éu(CnNS)

for all Borel setC' ¢ R2.
Then, for allz € S such thati(z, 0S) < r,/2, there exists a finite family,, ,, withm, = 6
elements, unavoidable fé}, ,,, and that satisfies

1
Px(U) > Lyrzd(z,08)2, U € Uy,
where the constarft; > 0 is independent af.

Proof. Letz € S such thati(z, 0S) < r,/2 < a. We denote = d(z,05). By LemmasA.0.7
andA.0.5there exists a unique poiftrx € 9S and a unique unit vector = n(Pprx) such that

B(Prx —an,a) C S
and therefore, given an unavoidable fanidy,.,,
Px(U) > ou(UNS) > éu(UNB(Prez—an,«)), U € Uyy,. (2.14)

Note that this simplifies the proof since 8.14) it follows that we just need to define a suitable
family U, ., and boundu(U N B(Prx — an,a)) for U € U, ,,,. Let us consider a composite
function T formed by first applying the orthogonal transformation: R> — R? such that
O(e2) = —n and then applying the translation by the vectorsee Figure.7. In particular
T(0) ==, T((a - p)e2) =z — (a — p)n = Ppz — om, and

T(B((a — p)ea,a)) = B(Prx — an, ).

Then, letdy ., be an unavoidable family faf ,.,. The following result holds.
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B((a - plez, @)

Figure 2.7:For the function?’, T(B((« — p)e2, o)) = B(Prz — an, «).

Lemma 2.3.5. Letl, be an unavoidable family faf , and letO : R? — R? be an orthog-
onal transformation. TheRO(U), U € Uy, } is also an unavoidable family fdf ,..

Proof. Let B(y,r) € &.,». Theny € B(0,r) and using tha® is an orthogonal transformation,
we have thaO~!(y) € B(0,r). Asly,, is an unavoidable family fof, ., there existd/ € Uy
such that/ ¢ B(O~(y),r). The result is now immediate since

O(U) € O(B(O™(y),r)) = Bly, ).
O

What Lemma2.3.5asserts is that the orthogonal transformation of an unavoidable family
for & ,,, results in another unavoidable family 64,.,. On the other hand, Lemn#a3.3estab-
lished that the result of the translation of an unavoidable family£§gr, by the vectorr is an
unavoidable family fo€, ,.,. As an immediate consequence, we obtain that

Upr, ={TWU),U €Uy, }
is unavoidable fo€, ., . Furthermore,
u(T(U) N B(Pra — an,a)) = u(U N B((a — p)ea, a)),

as the Lebesgue measure is invariant under translations and orthtgmsébrmations. Thus,
the problem reduces to defining an unavoidable fabdily, for & ,,, and finding a lower bound
for u(U N B((a — p)ez, o)) forall U e Uy,y.,,.

Before continuing the proof of Propositi@3.2 it may be useful to make some comments
concerning the measure of the s&ts) B((« — p)es, ). Note that when defining unavoidable
sets for& .., the main difficulty in giving a lower bound fou(U N B((a — p)e2, a)) arises
with those points which lie far away in the direction of the vectes. In fact,

i r(By.r) 0 B((a — ples,)) = p(B(=ruez. 1) 1 B(0r — ples, )
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sincey = —rpeo represents the point where the distance between the centres of both balls
attains its maximum and, as a direct consequence, the intersection its minimunil. tfeca
by the definition of unavoidable family, for eagh € B(0,r,) there existdJ € Uy, such
that U C B(y,r,). So, it is more involved to find unavoidable séfswith large enough
w(U N B((a — p)es, a)) for points close to-r,e2. This motivates dividing3(0, r,) into two
subsets as follows

B(0,7y,) = Gy, UF,,,

where

1
G, = {v e BO: hes) =~ I }

and
1
Fo={ve BO) e <5}

Figure2.8shows the set§,, andF,, . Roughly speakingf,, contains the pointg € B(0,r,)
for which B(y,r,) N B((« — p)es, «) is small. Therefore, the unavoidable s&tsn this case
should be carefully selected. On the contr&y, contains the pointg € B(0,r,) for which
B(y,r,) N B((a — p)ea, ) is larger. For these points the sétxan be circular sectors. Propo-
sition 2.3.3shows thap(U N B((« — p)ez, «)) is then large enough.

B(0,7n)

Grn,

/7r/6

Fr

n

Figure 2.8:G,,, andF,,.

Proposition 2.3.3. There exists a finite set of unit vectang’ c S, such that, for ally € G, ,
there exists, € W9 such thaty € C,,,,, C B(y,r,) and

1l 3
1(Cur, N B((r = p)eg, ) > LIri p2,
whereL¢ > 0 is a constant.

Proof. Let us consider the set

WY = {(1,0), (—1,0), (1/2,v3/2), (=1/2,+/3/2)}. (2.15)
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It is straightforward to verify, see Figu&9, that

Grn = |J Cupra-

uew9

Therefore, for ally € G, there exista: € WY such thay € C,,,,,. By Lemma2.3.2it follows
thatC, ., C B(y,r,). We need to measurg, ,, N B((a — p)ez, a) for u € W9. Note that at
least half of the set’,, ., is contained in the halfplanBy = {z = (z1,22) € R? : x5 > 0}
and hence it is sufficient for our purposes to concentrat€',py) N Hy.

Figure 2.9:Unit vectorsW?9 = {(1,0),(—1,0), (1/2,v/3/2),(—~1/2,/3/2)} and C,,,,, for
u € WY.

Let v = /p(2a — p). By the Pythagorean theorem, it is straightforward to see ithat
represents the distance to the origin from the points suchtBéta — p)es, o) intersects the
axisOX, see Figur.10

Lemma 2.3.6.
B(0,v) N Hy C B((a — p)ea, ).

Proof. Letz € B(0,v) N Hy. We have that

lz — (@ = pleal* = |z + (e = p)ezl® — 2(a = p) (x,¢2)
< V4 (a—p)?

= 042.

The first inequality follows frome € H, which implies that(z, e2) > 0. The second equality
follows immediately from the definition of.
O

Lemmaz2.3.6yields the following result. For. € W9

Curn NB((a—plez, ) D Cyu,, NB(0,v)N Hy
= Cyr, N Ho,
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@ (b)
B((a — plez; @) B((a — p)ez, )
mm\ B, /ola =) 1
o 0

Figure 2.10:(a) v = v/p(2a — p). (b) B(0,v) N Hy C B((a — p)ea, ).

wherer,, = min(v, r,,). Therefore,

1
#(Cur, N B((a = plez, @) = p(Cur, N Ho) 2 51(Curr,) = 1572 = om0/,

The second inequality is a direct consequence of the definitiohGfsee Figur®.11, whereas
the last one follows from the fact that < r, < «. This completes the proof of Proposition
2.3.3 with LY = 7/12 > 0 constant.

O

In view of Propositior2.3.3we define, forz € G, , the family

ug

0,7n

= {Cu,rnau € Wg}a

formed bymY = 4 elements. We now turn to the points#, . The aim is to define for those
points a finite familyuof:rn, such that, for ally € F, , there existd/ € Z/{(frn that satisfies
U c B(y,r,) and

1
w(U N B((a = plea,a)) > LZrEp2, YU €U, . (2.16)

At this point, it may be useful to make some comments concerning the main ddéerbetween
G, andF,, . One might be tempted to proceed as beforefgrand define the set of unit vectors

WP = {(-1/2,-V3/2),(1/2,—V3/2)}.

Again we would have that, see Figuzel2(a)

F’/‘n - U Cu,rn-

uew”r
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B((a = plez,a)

B(O l/) N Ho

Figure 2.111n gray C,, ., for u = (1,0) andu = (1/2,/3/2). In blackC,, ., N B(0,v) N Hy.
We have that(C,, ,, N B((o — p)ea, o)) > 7%3, for 7, = min(v, ).

If we repeat the sketch of the proof {6y, and defindJ to be the circular sectois,, ,.,, for
u € WY, we could no longer guarantee the lower bound2ri@. Note that the intersection
Cur, N B((a — p)ea, a) for u € W7 is considerably smaller than far€ W9. In fact, it can
be easily proved that, far ¢ W7,

#(Cur, N B((a = plez, a)) < V3p?,

as it is shown in Figur.12 (b). Therefore, we need to consider different détsWe have
previously discussed the possibility of defining unavoidable sets, largardincular sectors.
For a fixed unit vectot:,
U= (1 By.r) (2.17)
yE€Cu,ry,

is the largest set such thét ¢ B(y,r,) for all y € C,,,. Figure2.13showsC,,, for an

u € W7 and the corresponding s&t defined in .17. Observe that/ N B((a — p)es, )

is clearly larger thart”’, ., N B((o — p)ez, ). The difference between both intersections will
play a fundamental role in obtaining the lower bound2nl@. In fact, it is not necessary to
consider the wholé&/ as defined inZ.17). For our purposes it is sufficient to measure a portion
of U N B((ax — p)ea, ). We shall consider sets as the one represented in gray in Figlte

Its measure is large enough to satistyl). We give the precise definition of this kind of sets
in Proposition2.3.4 that solves the problem for the pointsi .

Proposition 2.3.4. There exists a finite family of SG%FM such that, for ally € F,, , there
existsU € U, suchthat/ C B(y,r,)and

3
2

Pz,

Sl

WU N B((a — plez,a) = Lr

with L7 > 0 a constant.
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(@ (b)

B((a — pe2,a)

Figure 2.12:(a) W» = {(-1/2,—v/3/2),(1/2,—v/3/2)} and C,,,,.,, for u € W”. (b) For
u € WF, Cy,r,, N B((a — p)e2, @) is contained in the rectangle of heighand base/3p.

Proof. First, let us consider the set
B((a — p)eg, ) N B(—rpea, ry),

which corresponds to the intersection between two balls of radmdr,,, respectively, being
a + r, — p the distance between their centres, see Figuté (a). The values of4, hy and
A in Figure2.15(b) can be deduced from the Pythagorean theorem. They satisfy theifajlo

equations
(rn —h1)2 + A2 =712,
{ (= h2)? + A% = a?,
hi+ ha = p.

By solving the system,

p(20 — p) p(2rn — p) / 5
hy = hoy = ,and A\ =/2r,hy — h3.
YT 2t m—p) 7 2@+ —p) an it

We now define the set
C(hy) = {x €R?: —hy < (x,e3) <0} N B(—=rpez, ).

Lemma2.3.7provides a lower bound for the measureCf; ).

Lemma 2.3.7. Given the previous séX(h, ), then

Proof. We have that

h1
p(eh) = [ 22y =Py (2.18)

0
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(@) (b)
B((a — plez; o) B((ae — p)ez, o)

v=(3-%) o= (1-%)

Figure 2.131@) Cy s, Withu = (1/2,-V/3/2). (0) e, B(Y:7n)-

Fory € [0, h1] we have thay < r,, since by constructioh; < p and by assumptiop < r,, /2.
Hence2r,y — y? > r,y and

h1 4 1 3
w(C(hy)) 2/0 24/Tnydy = grﬁhf.

Moreover,h; > p/2, sincer,, < « and this completes the proof.

O]

Remark 2.3.5. Note that the exact value of the integral ;118 can be explicitly computed since
it coincides with the area of the circular segment defined by the chorgdimetthe intersection
points of B((«v — p)ea, a) N B(—rpe2, 7). Thus,

Mﬂh»:ﬁw&w(m;hv—%m—h%@mh—ﬁ.

At this point we have defined the s&th;), whose measure verifies the statement of Propo-
sition 2.3.4 Next lemma shows th&l(h;) is contained inB((« — p)eg, ).

Lemma 2.3.8.
C(h1) C B((a = pez, ).

Proof. Letz € C(hy).
lz = (o= pleal® = [lzl” + (= p)> = 2(c = p) (w, €2) . (2.19)
By definition,z € B(—ryes, r,) and therefore

2] < =21 (2, 2).
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o

- ()

Figure 2.14:The dashed area correspondslfo= (1, ¢, . B(y, ) withu = (1/2,—/3/2).

Furthermore, by definitionz, e2) > —hy. Turning to .19 we get

le = (= pleal? < 2rnha+ (@ — p)? +2a — )y
= 2(rp+ o —p)hi + (a —p)°

= pa—p)+(a—p)?
2

= .
O
It follows from Lemmas2.3.7and2.3.8that
u(Ch) N B((a — ples, ) > Lrd pb. (2.20)

In order to complete the proof, it remains to define the far?b[gyn mentioned in the statement
of Proposition2.3.4 In view of (2.20), it seems natural to dividé(h, ). Let us first consider the
following partition of R?.

R? = {z = (x1,29) €ER?*: 21 > 0} U {z = (21,20) € R*: 1 <0}

We denote); = {r = (z1,22) € R?: 27 > 0} andQs = {z = (z1,72) € R? : 1 < 0}.
Then,
an = (Ql mf?"n) U (Q2 men)

and, in the same manner,
C(h1) = (Q1NC(h1)) U (Q2NC(h1)).
Lemma 2.3.9.for all y € Q; N F,., we have that

Qi ﬂC(hl) C B(ya Tn)a 1= 172
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(@) (b)

_ _pr(2a—p)

2(atrn—p)
}h27 p(2rn—p) Ip
2(at+rn—p)

)

Figure 2.15:(a) The dashed area correspondsBf(a — p)ea, ) N B(—rpez2, ). In gray
C(hy). (b) Values ofy, hy and .

Proof. Letz € Q1 NC(hy). First, it can be easily proved that
Ql N frn == Cu,rna
with v = (1/2, —+/3/2). What we need to prove is

T € ﬂ B(y,ry).
y€Cu,rp

It follows from Lemma2.3.4that

(| B(y.rn) = B(0,7) N B(v1,m) N B(va, ),
yECu,rn

wherev; = r,R(u) = rp (\/5/2, —1/2) andvs = r, R~ (u) = —r,e2. We have by definition
thatz € B(vg,7,). Moreover,

|z)|®> < A2+ h2 = 2r,hy <12,

sinceh; < p < r,/2. Note that the last inequality justifies the choicepof r,, /2. And,

2 2
\/ng Tn\ 2 \/§Tn Tn\2
e —wr|? = (371_ ) () < () 4 (B) =2

sinced < z; <A < \/§rn/2 and—h; < z9 <0, whereh; < p < r,/2. Thus, we have shown
that

x € B(0,7,) N B(v1,715) N B(ve,ry)
and the lemma is proved fép; N C(h1). The proof forQ2 N C(hy) is analogous.
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In view of the previous results we define, fore F, , the family
U, ={QiNC(hy), i = 1,2},

formed bym” = 2 elements. It follows from Lemma.3.9that, for ally € F, , there exists
i € {1,2} suchtha); N C(h;) C B(y,r,). Moreover, by Lemma&.3.7,

2

< (C(h)) = 3 w(@s N C(hn)).

i=1

1
Lrip

The symmetry of the sét(h,) with respect to the axi®Y implies that the orthogonal transfor-
mationO : R? — R? such thatO(z) = O(x1,z2) = (—x1, x2) transformsQ; N C(hy) into
Q@2 N C(h1) and then both sets measure the same, that is,

H(Q1 NC()) = Q2 NC(In)) = Zu(Cln)).
By Lemma2.3.8we further have that, for= 1, 2
Qi NC(h1) € C(h1) € B((a — p)ea, )
and hence
u(Qi NC(h) N B((a — plez, @) = p(@s N C(h)) = L v b,

whereL” = \/2/6. This completes the proof of Propositi@r8.4

Now, we define
Uoy, = U, VU,

0,7n

and, as we mentioned at the beginning of Proposii&n2,
Upr, ={TU), U €Uy, }

is a finite family withms = m9 + m” = 6 elements satisfying that, for eathe U r,

1

Px(T(U)) > Su(T(U) N B(Pra — an,a)) = $u(U N B((a — p)eas @) > Lard p?,

whereL, = §min(LY, L”). This completes the proof of Propositi@rs.2
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2.4 Defining unavoidable families inR<

The approach to the general ca&€will be much more involved than if®? even though the
sketch of the proofs and the basic ideas still hold. In the same way &2 feve shall consider
two different situations in order to define unavoidable families and give arltwound for the
probability of the sets in those families. The argument for the points which are far away
from the boundary iR¢ is analogous to that foR2. Recall that inR? it was sufficient to
consider circular sectors of radius and central angle /3. By Lemma2.3.2the choice of the
central angler/3 guarantees that the circular sectors are unavoidable. Now we shsitleon
the generalization to the multidimensional case of the circular sectdgs.inWhat, however,
is more complicated to handle is the case of the pointS which are closer to the boundary.
We have discussed that for points which are close to the boundaky inwas not sufficient
for our purposes to consider circular sectors. In the previous sesgomtroduced then the
Reuleaux triangles to solve the problem. But, unfortunately, we cannet@éeze the concept of
Reauleaux triangle to thedimensional case so the main difficulty in this section is constructing
sets both unavoidable and large enough for points which are close touhdd®g.

Thus, the main theorem of this section rests upon two important results. Fopthdttion
2.4.1again defines a finite family of unavoidable sets §or., whenz € S andd(z,0S) >
r,/2. The result also gives a lower bound for the probability of such setishws independent
of z. In the same manner, Propositidrt.2defines a finite family of unavoidable sets &y,
and gives a lower bound for the probability of such sets whenS andd(z,05) < r,/2. In
that case the probability depends on the distance fedmthe boundary of the set. Moreover,
the number of sets that form the unavoidable families is independanindboth situations.

As we have already comment, we shall work with thdimensional generalization of the
bidimensional sectors. Hence, before proceeding to the results weliogrdide precise defini-
tion of these sets and some useful notation. From now oi§glet {u € RY : |ju|| = 1} be
the unit sphere iR?. Let ¢u,n denote the angle between the vectorandv. As inR?, it is
understood thap,,, € [0, 7] andy, , = ¢y, Finally, leteq = (0,...,0,1) € R? and letw,
be the measure of the unit ball Rf.

Definition 2.4.1. For u € Sy andf € [0, 7/2], we define the sets
Cl = {z e RL: (z,u) > ||z cos b}
and the generalized circular sectors

Cl . =CinB(0,r).

Figure2.16shows an example @f? in R3,

As we said before, Propositidh4.1 defines unavoidable families for those points which
are far away from the boundary 6fand gives a lower bound for the probability of such sets.
The proofs of Propositio@.4.1and2.3.1are essentially the same, apart from some elementary
results, which were straightforward in the bidimensional case, but no¢igeheral case. On the
other hand, some of the resultsRf follow either directly from or similarly to the corresponding
results inR2. For this reason we will skip some of the proofs throughout this section.
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Figure 2.16:CY in R®.

Proposition 2.4.1. Let S be a nonempty compact subsefdfsuch that a ball of radiug: > 0
rolls freely in S and in S¢. Let X be a random variable with probability distributioRy and
supportS. We assume that the probability distributiéty satisfies that there exisés> 0 such
that

Px(C) > du(C'N S)

for all Borel setC' ¢ R<.
Then, for allz € S such thatd(x,0S) > r,/2, there exists a finite familf,, ,, with m;
elements, unavoidable fér, ,,, and that satisfies

Px(U) > Lire, U cl,,,,
where the constants; and L; > 0 are independent of.

Proof. The casel = 1 is handled separately as it is simpler. Fore R under the stated
conditions let us consider the unavoidable family

{lx = rn/2,z], [z, 2 + /2] }.

The result holds fof.; = §/2. The casel = 2 was proved in PropositioB.3.1 Let us then
assume that > 3. It may be noted that the proof remains valid for the bidimensional case,
although Propositior2.3.1is simpler. First, we need to define a finite set of unit vecidts
that enables us to divide the b&t(0, r,,) into generalized circular sectors of central ang/8.
Recall that inR2, the family W was explicitly defined. However, for the general c@kthe
family is found by an indirect method. Lemn2a4.2states that, sincg, is compact, we can
coverB(0,ry,) by finitely many generalized circular sector with positive central anglet, Fes
state Lemma.4.1, whose proof is identical to that of Lemn2a3.1in R?.

Lemma 2.4.1.Letx # 0. Then,

IE€C3<:>SO:):,U,§9
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Lemma 2.4.2. Letd > 0. There exists a finite family of unit vectong such that
U ’lL [
uEWy

forall » > 0.

Proof. Let us first consider the sphe$g. It can be easily proved thdint(C?), u € Sy} is an
open cover 08, since for eachu € S; we have thai. € int(C?). By the compactness &,
there exists a finite familyVy C S, such that

saC | int(cy). (2.21)
uEWy

Now, letz € B(0,r). Forz = 0 itis clear thatr € CY for all u € Wy. Forz # 0 let us
consider = z/ ||z|| € S By (2.21) there exista: € Wy such that € CY. Sincep, ,, = pyu
it follows from Lemma2.4.1thatz € C?. Therefore,

Bo,r)c |J ¢inBO,r)= | C

uEWy uEWy

By definition ofCiT it immediate follows thaﬁgﬂ, C B(0,r) for all u € W,y and the proof is
complete.
O

Fix 0 = 7/6 and then, by Lemma.4.2 there exists a finite family of unit vectodd/,.

such that
B(0,r,) = |J ¢S,
UEWW/G

Recall that, in order to simplify the notation, we writg, C, ,,, and)V to refer toC’T/G, Cﬂi
andW;, s, respectively. GiverB(y,r,) € &, , there existas € W such thay € Cy,,. In
the same manner as Lem®@a.2in R?, Lemma2.4.3shows thaC,, ., C B(y,r,). Since the
proof of Lemma2.4.3is based on the triangle inequality
T
sz,y R Sou,y > 3

which remains true for arbitrary dimension, see Figite/, we skip the details.

Lemma2.4.3.Forall u € S;andr > 0,

CurC ()

yECu,r

Therefore, we define the family

U(]mn = {Cu,rn/% u < W}
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Figure 2.17:Triangle inequality inR3. We have thap, . < vy + Pu.--

Lemma?2.4.3shows thaty, ,, is an unavoidable family fo€,,,. Now, forz € S such that
d(z,0S) > r,/2 we define

um,rn = {x} @uﬁ,rn = {{37} D Cuﬂﬂn/g, u € W}

It follows from Lemma2.4.4that the familyl4, ,,, is unavoidable fo€, ,,. As in the bidimen-
sional case, the translation of unavoidable families gives unavoidable familie

Lemma 2.4.4.Letl, , be an unavoidable family faf, .. Then the familys, , = {z} & Uy, =
{{z}® U, U € Uy, } is unavoidable ok, .

Proof. Analogous to the proof of Lemni&a3.3

Finally, for eachu € W

Px ({1'} ©® Cu,rn/Q) > op ({.CC} ©® Cu,rn/2 N S) =op ({:L'} ©® Cu,rn/2) =op (Cu,rn/Q) :

The last inequality is obtained by using th&tz, 9S) > r,/2 and that the Lebesgue mea-
sure is invariant under translations. Moreover, it follows from Len#ab2that we can cover
B(0,7,/2) by a finite numbern; of generalized circular secto(s, ,., /5, all of them with the
same measure. Therefore,

1 1 Tn d
1 (Cupn2) 2 (B0 10/2)) = v (5) (2.22)
and, , )
rn
Px ({x} S Cu,rn/2) > 5m71wd (?) .
To sum up,

Px(U) > Lire, U cl,,,,
beingL; = dwq/(2%m,) and the proof of Propositio?.4.2is now complete.
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Remark 2.4.1.In Proposition2.3.1in R? we covered3 (0, r,,/2) by six nonoverlapping circular
sectorsC, ., /> With central angler /3. Thus,

H(Curj2) = H(BO,7/2).

However, we cannot guarantee a similar result in general dimensigrLddhma2.4.2we can
coverB(0,r,/2) by a not easy to compute finite number of generalized circular sectorseou
cannot ensure that they are nonoverlapping sectors. This explaing2a2?) is an enequality.

Once we have proved Propositignt. lit remains to explain what happens wher S and
d(z,0S) < r,/2. As we mentioned when dealing with the problemRif, it is not sufficient
to consider circular sectors as unavoidable sets. Propogitibf below defines unavoidable
families for those points which are close to the boundary aihd gives a lower bound for the
probability of the sets that form the family. Although the sketch of the proodim®st identical
to that of Propositior2.3.2we need some extra auxiliary results to handle the more general case
of R%.

Proposition 2.4.2. Let S be a nonempty compact subsefdfsuch that a ball of radiug: > 0
rolls freely in S and in S¢. Let X be a random variable with probability distributioRy and
supportS. We assume that the probability distributié satisfies that there exists> 0 such
that

Px(C) > du(C'N S)

for all Borel setC' ¢ R?.
Then, for allz € S such thatd(x,0S) < r,/2, there exists a finite familf,, ., with mo
elements, unavoidable fér, ,,, and that satisfies

da—1 d+1
2

Px(U) > Lory? d(:c,é)S) , Ue Z/{xﬂ«n,

where the constants, and L, > 0 are independent of.

Proof. Letz € S such thatl(z, 0S) < r, /2. We denote = d(z,0S5). The proof ford = 1 is
immediate. Consider the unavoidable family

{[z = p, ], [z, 2 + p]}

and the result holds fat, = §. The casel = 2 was proved in PropositioR.3.2 Let us assume
thatd > 3. Again, the proof remains valid for the bidimensional case. ARinthe rolling
condition in.S simplifies the proof. Using the same notation, Rtz be the metric projection of
z ontol” = 0S andn the outward pointing unit normal vector Byz. It is enough to define an
unavoidable family/,, ., and find alower bound fqi(U N B(Prxz — an, «)) forallU € U, ...
Now, suppose that we are able to define a suitable unavoidable fayjily. Consider the
composite functior?” formed by first applying an orthogonal transformation: R¢ — R?
such thatD(e;) = —n and then applying the translation by the vectotn particular?’(0) = x,
T((a—p)eq) =x — (o« — p)n = Prz — an and

T(B((a — plea, ) = B(Prz — an, ).
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Then
w(T(U) N B(Prz —an, o)) = p(U N B((a — p)eq, a)),

since the Lebesgue measure is invariant under translations and orthtrgosformations. It
suffices to give a lower bound fe(UNB((a—p)eq, o)) for U € Uy ,,,, Since as in Lemma.3.5

we can prove in thel-dimensional case that the orthogonal transformation of an unavoidable
family for & ,., results in another unavoidable family {84 ,.,. This argument is made rigorous

in the following lemma. We skip the proof since it is identical to that of Len#h$a5in R2,

Lemma 2.4.5. Letl, , be an unavoidable family faf, . and O : R? — R% an orthogonal
transformation. TheRO(U), U € Uy, } is an unavoidable family fof .

Therefore, it suffices to consider
Uyr, ={TU), U € Uy, }

which, by Lemmas2.4.4and2.4.5 is also unavoidable fof, .. We will, thus, concentrate
on the definition of a family4, ,,, unavoidable fo&, ,,. We need to boung(U N B((a —
peq,a)) for U € Uy ,,,. Recall from PropositioR.3.2the comment on the measure of the sets
U N B((« — p)eq, o). Once again, when defining unavoidable setsfgr, and giving a lower
bound foru(U N B((a — p)eq, o)), one must be careful with those points that lie far away in
the direction of—e,. For this reason we divid8(0, ,,) as follows:

B(0,7y,) = Gy, UFy,,
where 1
G = {ve B wea =3 Iul)

and 1
Foo={ve B e <511}

Figure2.18represents the sefs, andF,, in R3.

Proposition2.4.3solves the problem for the poingse G, . This result shows that we can
construct a finite unavoidable famMg,,n, such that for ally € G, there existd/ € Ug,,n such
thatU C B(y,r,) and

d—1
WU N B((a = plea, ) = L9ra® p'5, YU €U, .

Before presenting the proof of Propositiart.3we would like to briefly comment on the main
differences between the general case and the bidimensional oneppesitton2.3.3 The first
step in the proof of PropositioR.3.3 consisted of covering,, by four circular sectors with
central angler/3. These circular sectors were determined by the family of unit vedtdfs
given in 2.15. Moreover, the position in the plane of the circular sect@s, , with u € WY
(see Figure.9) guaranteed that

1
#(Cuura M Ho) 2 51(Cup) = 15 (2.23)
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Figure 2.18G,, andF,, in R3.

Note that the key to obtainin@® (23 is that(u, e;) > 0 for all u € W¥Y. However, this is not
true in general dimension since it is not possible to cayerby generalized circular sectors
Cu,r,, such that'u,es) > 0. For this reason we have to relax this condition. Thus, several extra
auxiliary results are needed for the proof of Proposifiah3

Proposition 2.4.3. There exists a finite family of unit vectdrg¥ such that for ally € G,.,, there
existsu € WY such thayy € C,,, C B(y,r,) and

1(Cu, N B((e — p)eq,a)) > LIr® p' 2,
with LY > 0 constant.

Proof. First let us prove thag,, can be covered by a finite number of generalized circular
sector’,, .. This result is an immediate consequence of Len2ma2, sincegG,,, C B(0,1,).
However, in order to guarantee that the measur€',0f, N B((a — p)eq, ) is large enough,
the family of unit vectors/V¥9 cannot be chosen arbitrarily. Lemr@iad.6states that, for fixed

v € (0,7/2], we can covel,, by a finite number of generalized circular sect6ls,, such
that (u,eq) > —sin~y. This additional property refers to the position in the space of the sets
Cy,r, that form the covering. For small values pf that is, for pointsz which are close to
the boundary of5, the ball B((a« — p)eq, «) is practically totally contained in the halfspace
Hy = {x = (x1,...,14) € RY: x4 > 0}. For this reason, in order to obtain large values
of u(Cy,r,, N B((a — p)eq, v)), we also need the se€s, ,,, to be contained i, or at least

a considerable portion of each s&} ,,,. Hence, the goal is to covél,, by setsC,, . with

the smallest possible, .,. In order to ensure this, we restrict ourselves to those S? such
that (u,eq) > —sin~y. We shall see after Lemm&4.6that anyy € (0,7/6) can be used to
construct the desired covering.

Lemma 2.4.6.Let0 < v < 7/2. There exists a finite set of unit vectdt®’ () c S¢, such that
for all u € W9 () we have thatu, e;) > — siny and

grn - U Cu,rn .

u€W9 (v)
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Proof. Let us first consider the set
Dg={y eR": |yl =1, (y,ea) = —1/2}.
Figure2.19shows the seDg in R3. We shall prove that
{int(Cy),u € Dy}
is an open cover dbg, where
Dy ={ueR%: |ju] =1, (u,eq) > —sinv}.

Then, lety € Dg. First, if (y,eq) > —sinvy, theny € int(C,) foru = y € D,. Let us now
suppose thaly, e;) < —sin~. Sincey € Dg we have that

(2.24)

Let v be a unit vector in the plane passing through the origin and determined bgdtarse,
andy, such thatu, e;) = —sin~y. That s,

u = ay + bey,
wherea, b € R satisfy the following system of equations

<ua €d> =a <ya €d> +b=— Sinfﬂ
[ul|? = a® + b + 2ab (y, eq) = 1.

We obtain, by solving the system and using thatk,) = cos ¢y.c, = Yd,

1 — sin? CcoS
b= —siny —acospy., anda ==+ 27::i: - il .
l—yd SN Yy e,

Note that 2.24) guarantees that the obtained solutions are well defined. If we choose

cosy

. )
SN Py ey

then

Cos 7y . Cos 7y
u=ay+beg=———y+ | —siny — ————cospye, | €
SIN Yy ey SIN Yy ey

Figure2.19(c) shows the vectar defined fromy € Dg with (y, e;) < — sin~. By construction,
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u € D,. Moreovery € int(C,), since

(y,u) = (y,ay+ beq)
= a+bcospye,

2
cos } oS oS
= 77 —siny cos @y e, — M
Sin @y ¢, Sin @y e,
_COS7y — SInySin py e, COSQy e, — cos? Py,eq COSY
Sin @y e,
_ cosy sin? py ¢, — sinysinpy ¢, oS Yy e,
Sin @y e,
= COS7YSINYy e, — SINY COS Py ¢,
= sin(py.e, —7)
> cos7/6.
The last inequality is a direct consequence of
m < < 27 < 27
5 SPyea =TS 3 TS g

Therefore{int(Cy,),u € D} is an open cover dPg. SinceDg is compact, there exists a finite
family of unit vectors¥(v) c D., such that

Dgc | J int(Cy). (2.25)
u€W9 ()

Now, lety € G,... If y = 0theny € C, for all u € WY(y). Fory # 0 we have that
v =1y/|lyll € Dg and by @.25 there exists; € WY(y) such that € C,. This immediately
yields thaty € C,, sincep, ., = ¢, . Hence,

Gr, =G, NBO,r) C | J CunBOm)= |J Cunr
ueW9 () ueW9 ()

and the proof is complete.
O

As we have already mentioned, Lem@d.6plays an important role in the proof of Propo-
sition 2.4.3 First, because it follows from this result that it is possible to c@yerby a finite
number of setg’, ,,,. Second, Lemma.4.6gives us the key to defining the unit vectors from
which the sets”, ,,, are constructed and those unit vectors satisfy that;) > —sin~y. It
is worth commenting at this point the important role~of In Section2.3 we saw that for the
bidimensional case, Lemnfad.6remains valid even fofy = 0. In fact, it suffices to consider
W9 (0) = WY, beingW¥ the family defined in2.15. It can be easily proved that for all
u € W9(0) we have thatu, e;) > —sin0 = 0 and thatg,,, coincides with the union of sets
Cu.r, With u € W9(0) (see Figure2.9). However, wheni > 2 Lemma2.4.6is not true for
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@) (b) ©

Figure 2.19:(a) Dg in R3. In the dashed aredy, e¢;) > —sin~. (b) Intersection ofDg with

the plane defined by; andy. (c) Fory € Dg with (y,e;) < —sin~y consideru in the plane
defined fore; andy such that(u, e;) = —sin~.

v = 0. For instance, ifR? it is not possible to cover the poinfg € G, : (y,eq) = — ||y]l /2}
by a finite number of generalized circular sectots,,, such that(u,e;) > 0. We would need
an infinite number of sectors to cover the §gt. To avoid this difficulty, we choose > 0.

If v is small enough, a considerable portion(@f,,, will be contained inH,. As in the
bidimensional case, it suffices to consider that portion in order to giveer lbound foru(U N
B((a — p)eg, ) for U = Cy.r,, u € W9(7). Letv = \/p(2a — p). Then,v represents the
distance to the origin from the poinis = (z1,...,z4) such thatr € 9B((« — p)eq, @) and
xq = 0, see Figure.20

Lemma 2.4.7.
B(0,v)N Hy C B((a— p)eg, @).

Proof. The result is proved analogously to Lemra.6 using that forz € B(0,v) N Hy,
(x,eq) > 0.
O
Lemma2.4.7establishes that

Curn N B((a — peq,a) D Cyyr,, N HyN B(0,v) = C, ,, N Ho,

wherer,, = min(v, r,,). Recall that inR? the intersectior,, N H, contains at least one circular
sector with central angle/6 and hence

1
#(Cu,r, N Ho) = §ﬂ(Cu,Tn)'

This was enough for our purposes in the bidimensional case. The acivd§ working in
R? is that one cannot immediately infer the position in the space of theCsgts and the
measure o, .. N Hy. We shall see in Lemma.4.8that if u satisfie(u, eg) > — sin(7y), with
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(b)

58

Figure 2.20:(a) Value ofv. (b) Elements in Lemm&4.7in R3,

0 <~ < w/6, thenC, N Hy contains a generalized circular seoﬁﬁ, wheref) = 6(v) > 0
Therefore,

M(Cu,fn N Hp) > C('Y)N(Cu,‘rn)a u € Wg( )-
Lemma 2.4.8.Let0 < v < 7/6. For eachu € S, such that(u, e;) > —sin~y there exists a

unit vectorz such that
Cg c Cy, N Hy,

where
Proof. Let u € S, such that{u,ey) > —sin~y. If u = ¢4 the result follows easily by taking

u = u. If u# eq, choosel € Sy in the plane passing through the origin and determined by the

5t
Sou,u - 2 .

vectorsu andey such that the angle betweérandu is
u = au + begy,

That is,
wherea, b € R are the solutions of the following system of equations.

(U, u) = a+b(u,eq) = cos pya,
|a)|* = a2 + b2 + 2ab (u, eq) = 1.

We solve the system and, by using thate;) = cos ¢, ,, we obtain

1 —cos?¢,q sin oy, &
b=+ gpu’; = +— Pu,i and a = cos @y, — bcos gy e,
1-— <u, €d> SHL Pyeq
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If we choose .
_ sinpyug
S e,
then
- sin i sin i
U = (cos Pu i — ﬂ cos gomed) u+ .7%6 (2.26)
SN Yy e, SN Yy e,

Figure2.21shows the vectoii. Let us prove that’? c C,, wheref = (7/6 — v)/2. Then,
letx € og. It follows from Lemma2.4.1thaty, ; < 6 and by constructiop; ,, = (7/6+7)/2.
Then, by the triangle inequality for angles, we have

s ™

s 7 stY_ T

2 T2 T

and thenr € C,,. Let us now prove tha(fg C Hy. Again, letx € Cg. By the triangle inequality
for angles,

Pru < Px.a + P <

57

Px.eq < Pri + Pied < + Piied- (227)

Moreover,cos ¢; .q = (1, ed) and by @.26) we have

(i,eq) = (au+ begq,eq)

= acos@ye, +b

. 2 .
_ S Py, 5 COS™ Py ey S Py, 4
= COS Q5 COS Py eq — +

SIn @y e, Sin @y e,
. 2
B sin ¢y, (1 — cos” Yu.e,)
= COS Py,i COS Pye, + g
SIn @y e,

= COS Py g COS Pye, + SIN Py 5 SIN Py ¢,

= cos (Pu,i — Puey) -

If QDUJTL 2 Spu,eda
5T 0
’80“7{‘ o S0“76d| = Pui — Pueq < Pui = : 2 - % + 19°
If Pu,ii < Pu,eq
sty 7 §t+ b
(Pui = Pucal = Pues = Pun = Pues — 5= S5 HY - 5T = % +1
where the last inequality is a consequencéwok,;) > — sin~y. Therefore,
¥ 5w
‘Sou,ﬁ - Spu,ed’ < 5 + E

and, turning to2.27), we obtain that

57 v b5 mw
2 2 12 2’

Pzx,eq <
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That s,
(z,eq) = ||| cos pz,e, >0

and thenC? C Hj,.

(@) (b)

€d fud

CunHO m \ %Jrfy
/ - -

Figure 2.21:(a) SetC,, N Hy for u € S? satisfying(u, eq) > —siny with0 < v < 7/6. (b) In
Lemma2.4.8we define the vectar in the plane passing through the origin and determined by
the vectors: andey such thatp,, ; = (7/6 +~)/2 andC¢ c (C, N Hy).

Note that the choice of in the interval(0,7/6) is the key to guaranteeing that has
positive central angle. Fix € (0,7/6). It follows from Lemma2.4.6that we can coveg,,
by a finite number of generalized circular sectofs,,, such that for ally € G, there exists
u € W9 = WY(y) with (u,eq) > —sin~y such thaty € C, ... Moreover, Lemma&.4.3yields
thatC, ., C B(y,r,). By Lemmas2.4.7and2.4.8we have that, for eacfy,, ,,, with u € WY,

Cur, NB((a—pleg,a) DO Cyp, NHoNB(O,v)
> Cf, nB0,v)
= ¢

wherer,, = min(v, r,). Then, by Lemm&.4.2

W(Cur O B((a = pleaa)) > p(CL) > —u(BO, 7). (2.28)

m
Recall that according to Lemnia4.2the ball B(0, 7,,) can be covered by a finite number
of circular sectors. It remains to find a lower bound for the measuf&(6fr,,). By using that
rn, < aandp < r,/2, we have that

d
2

1 (B(0,v)) = wap? (20 — p)? > wap
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On the other hand, singe< r,,/2, we also have that

d da+1 d—1 d+1  d=1
M(B(Oarn)) = wqry = warn? rp? > wep 2 rp

Turning to .28 we deduce that

11(Cur N B((a — p)ea, @) > LIp 7 1,2,
whereLY = wy/m > 0 is constant. B

Therefore, we have solved the problem for those pajrtsg,,, . The unavoidable family of
setsl(§, we shall consider is
Ugrn ={Cuyr,,u € Wg},

beingmY the number of elements of that family, determined by the number of unit vectors in
W¥Y. We now concentrate on the points ,, . Recall that

1
Foo={v e BO.) e <511}

The aim is to define a finite family of sdt%frn, such that for ally € .., there existd/ Z/{(fm
such thatV ¢ B(y,r,) and

d—1
2

-1
n(U N B((a - plea, ) > LFr? pF, YU € U, .

As in the bidimensional case, the generalized circular se€igrs are no longer appropriate
to form the unavoidable familw({r". For example, consider the poigt= —rpeq € F,,
and the generalized circular secr.,,,. Theny € C_.,,, C B(y,r,). The intersection
C_cyr, N B((a — p)eg, @) is small, as it is shown in Figur222in R3. In fact, it can be easily
proved that

H(Ceyr, N Bl(c— p)eas @) = O(p).

Even though we could have considered different circular sectorg fer—r,e,, we need that
Cu,r, C B(y,ry). This fact determines the position in the spac€'pf., in such a way that the
measure o’ ., N B((a — p)eq, @) would not be much larger th&t_., ., N B((« — p)eq, o)
and hence not large enough for our purposes. We need to defitieeakind of sets foy € F, .
Proposition2.4.4provides a solution to this problem.

Proposition 2.4.4. There exists a finite family of sdt{{rn such that, for ally € F, , there
existsU € Z/{({,,n such that/ ¢ B(y,r,) and

d—1 444

w(UNB((a—peg,a)) > LT r,? p 2,

with L7 > 0 a constant.
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B((a = pleq; @)

Figure 2.22:SetC_,, in R®. The volume of the represented cylinder of hejgistor(pv/3/3)2.
The cylinder contains the sét ., ,, N B((a — p)eq, «). The radiuspy/3/3 is derived from the
Pythagorean theorem.

Proof. The sketch of the proof is the same as that of ProposiZi@4 First, we shall de-
fine a set whose measure is large enough for our purposes. Thehalleanstruct a par-
tition generated by a finite number of subsets, all of them with the same measgresat-
isfying the conditions to form an unavoidable farmhyf,,n. Let us consider as reference set
B((a — p)eq, @) N B(—rpeq, ). We define

C(hy) ={z e RY: —hy < (x,eq) <0} N B(—rpeq, ™), (2.29)
where
b = Pa—p)
1 —_
2(a+1n —p)
is the distance from the hyperplade = (z1,...,z4) € R? : 24 = 0} to any point of

OB((a — p)eg, ) N OB(—rpeq, ). Its value is computed from the Pythagorean theorem (re-
call Propositior2.3.4). In Figure2.23the setC(h,) is represented for the particular caserot
Lemma2.4.9gives a lower found for the measure@fh, ).

Lemma 2.4.9. We have that
d=1 gi1

w(C(hy)) > Lrp® p = .

Proof. Letus consider the translation by the vedige,. Itis straightforward to see thé{h;)®
{hled} = Co(hl), where

Co(h1) ={z = (z1,...,2q) € R?: 0 < (x,eq) < hi} N B(—(rn, — h1)eq,rn).

Moreover, since the Lebesgue measure is invariant under translatiemsyve thag(C(h1)) =
1(Co(h1)). For0 <1 < h; we define the set

Co(hl,l) = {$ = (.1‘1, C ,$d_1,l) LT e Co(hl)}
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B((a - plea, @)

B(_T'nech Tn)

Figure 2.23:The dashed area correspondsBg(a — p)eq, ) N B(—rpeq, ) in R3. In gray
it is represented (h1 ).

It can be easily seen thég(h,1) is the ¢ — 1)-dimensional sphere with centie; and radius
r(l), where

=12 —(rn—h1 +1)2=/2r,(h1 — 1) — (h1 — )2
Then, by using that the Lebesgue measure is a product measure,

h1 h1
u(C(h)) = /0 a1 (Colh, 1)dl = wa_s /O r(1) L,

wherey_1 denotes théd — 1)-dimensional Lebesgue measure. Therefore,
WCh) = wa 1/ (@ra(hy — 1) — (b — %) T dl

dl
= Wi-1 2rnt—t 2 dt

I
Z/duu

d+1

d+1
We have used the change of variables formula withh, —I. Fort € [0, h1] we get that < r,,,
since by constructioh; < p < r, /2. Moreover, since,, < « we have that

pRa—p) _p

hy = P
! 2a+r,—p) 2

and then
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O]

Lemma2.4.9asserts that the measuref; ) is large enough for our purposes. The fol-
lowing lemma generalizes Lemn2a3.8

Lemma 2.4.10.
C(h1) C B((a— p)eg, ).

Proof. The proof is analogous to that of Lemn2a3.8 Again, the result can be proved by
using that, ifz € C(h;) thenz € B(—rpeq,m,) and hencel|z||* < —2r, (z,eq), where
(x,eq) > —hy. O

Lemma2.4.10plays an important role since it guarantees t@t;) intersectsB((« —
p)eq, «) in alarge set. To sum up, we have proved that, by Lenin&9and2.4.1Q
=1 a1
p(C(h1) N B((a = pleg,a)) = Lra® p's .
However, it still remains to determine which sets form the finite farmfj;n mentioned in the
statement of PropositioR.4.4 Using the same arguments as in Proposiiah4 we divide
the setC(h,) into a finite number of components, all of them with the same measure. They
should also fulfill the conditions to form the family, . Recall that in the bidimensional
case we considered the partiti® = Q, U Q2, whereQ, = {z = (21,22) € R? : z; > 0}
and @y = {z = (71,22) € R?: 27 <0}. Based on this partition we divide@(%) into two
subsets. These two subsets were proved to measure the samé(ginceés symmetric with
respect to the axi® X . How can we divideZ(h;) in R? How do we construct a partition in a
finite number of sets, all of them with the same measure? We next state an inhpodayeneral
result that provides a finite partition &?. An immediate consequence of this general result is
that it gives us the key step toward the definition of finite partitions of angestudfR?.

Lemma 2.4.11.Letf > 0. There exists a finite family of unit vectargy C S;_1 such that
R = | @,
uEWy

where, for eacht € Wy C Sy_1,

Q0 = {3:: (21, 24—1,2q) € RY: (21,...,24-1) 603 CRd_l}.

u

Proof. Since the unit sphere iR?~! is compact we get, by the same arguments as in Lemma
2.4.2 thatR%~! can be covered by a finite number of sét§ with § > 0. LetW, C S;_; be
the finite family of unit vectors that determine those s&fs We have that

R =] cn.

Now, R¢ = R?-! x R and

RY = U {x = (:rl,...,md,l,xd) S R : (xl,...,xd,l) S Cz C Rd_l} = U QZ
uEWy uEWy
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@ (b)

Q4 Q% N B(0,7n)

Figure 2.24:(a) Example of? in R3. (b) Q% N B(0,r,) in R3.

O

Figure 2.24 represents a s€@? in R3. As mentioned, Lemma.4.11gives us the key to
constructing partitions of subsetsRf. In particular,

Frn=|J QN F,.

uEWy

Fix 0 = w/6. As we will see, such choice df is arbitrary in some sense. In fact, the
following results remain valid for different values 6f He have chosen the valde= 7/6
because it allows us to continue with the same notation. Thus, we Wiitnd ()., to refer
to Wy and Q;‘l for # = 7/6 as defined in Lemma.4.11 Note that the set§); and Q- in
Proposition2.3.4 coincide, returning to the notation of Lemrad.11for d = 2, with ), and
Q_1, respectively. Let us consider the partition

C(h) = | J Qunc(i). (2.31)

ueWw

Lemma2.4.16 corresponding to Lemm2a.3.9in R?, states that the partition given i2.8J)
provides an unavoidable family of sets. Lem@d.17proves that the set§, N C(h;) with

u € YW measure the same. First, however, we require several preliminary remdted in the
proof of Lemma2.4.16 Lemmas2.4.12and2.4.13prove that, botit’ (2, ) andF,,, are contained
in B(0,r,) N B(—rpeq, ). ON the other hand, Lemnta4.14establishes that the distance
betweenz,y € B(0,r,) N B(—ryeq, ) such thate lies on the boundary aB(—r,e4, r,,) and

y lies on the boundary aB(0, r,) is lower or equal ta-,, whenever: andy fulfill

211+ zaryanr > Byl — 22yl - o2, (2.32)

for somes > 1/3. In spite of the fact that it seems to be an artifitial condition, Len2dal5
shows that in particulat;, y € @, fulfill the restriction .32 for g = 1/2.
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Lemma 2.4.12.
C(h1) C B(0,r,) N B(—=rneq,m).

Proof. The lemma will be proved if we can show th@&th,) C B(0,r,). Letz € C(hy). Since
x € B(—rpeq, ), We have that

|z + 7“ned||2 = ||33H2 + 7‘121 + 21y, (z,eq9) < ri,
Then, by the definition of (h;) and the fact thak; < p <1,/2,

HxH2 < =21y (z,eq) < 2rphy < r?l.

O
Lemma 2.4.13.
Fr, C B(0,ry,) N B(—=rpeq, ).
Proof. We have to show thak,, C B(—ryeq, ). Lety € F,... We have that
ly + raeall® = lyl® + 7 + 2ra (g, ea) < llyl* + 7y = o Jyll < max(|ly)*,r7) < 77
O

Observe that if: € C(hy), then|jz — (o — p)eg||* < o? by Lemma2.4.10 Moreover, it
follows from Lemma2.4.12that ||z||* < 2 and||z + r.eq|® < 72 . If y € F,,, Lemma2.4.13
yields that]|y[|* < r2 and||y + rpeq||* < r2.

Lemma 2.4.14.Letz,y € R? such that
) [l2l® < 72, o) = —2rnza,

i) lyl* =72, lyll* < —2ruya,

i) a1y zacayaos = By ol — a2y /Iyl — o3 forany s > 1/3.

Then,
2 2
lz —yll” <7y

Proof. Let z andy be under the stated conditions.
2 2 2 2 2
lz = ylI* = [lz[I” + [lyll” = 2(z,y) = =2rpza +r;, — 2(2,y) = 7 — 2((2,y) + Tna) -
We denoteE (z,y) = (x,y) + rpzq. Then,

lz —ylI* <3 & Blz,y) 2 0.
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By iii), we obtain
E(z,y) = ziy1+...+2i-1Ya—1 + Ta¥d + TnTd
> 0y/ll2ll® — a2/ Iyll® = o2 + 2alya + 1)
= ﬁ\/—?rnxd - wﬁ\/?“% —Yi +2a(Ya +n)
= BV 2rpu — u2\/2rv — v — .

The last equality follows from the change of variables formula with —z, andv = y4 + 7.
Now, i) yields
0< Hac||2 = rpxg <712

and hencé < u < r, /2. Similarly, by ii)

lyll* = r7 < —2raya

and, thereforey, < —r,,/2. Moreover,|y||* = r2 yieldsy2 < r2 and, in particularyy > —r,.
Finally,
—1rp < yqg < —1rp /2.

Then,0 < u < r,/2and0 < v < r,/2. By using that3 > 1/3 we complete the proof since

E(z,y) > BV2rpu—u2/2rv — 02 —w
= BV u2r, —u)\u(2r, —v) —ww

> B /u?ﬁ /U?ﬁ -
3

= ;n Vuv — uw

> % UV — U

> VJuvvuv — uv

= 0.

Lemma 2.4.15.Letu € W C S4_1. Forall z,y € Q,, we have that

1
et waagaas > 5\ Il — a3y lol? — o3
Proof. Let z = (z1,...,2q), ¥y = (Y1,...,Y4) € Qu- We denotexr_4 = (z1,...,24-1)
andy_4 = (y1,-..,yq—1) the (d — 1)-dimensional vectors obtained after removing the last

component of the original vectors. Then

iYL+ -+ Tg1Ya-1 = (T-d Y-a) = [2-dll [ly-all cos pa_yy_,-
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Sincez,y € Q., we have that_,4,y_4 € C,, € R*! and hence

T 1

COS Pz 4y g = COS(Vp 4w+ Py 4u) > COS 3= 73

The result is a straightforward consequencéaf || = \/|z[|> — z2. We complete the proof
of the lemma by applying the same argumentg.to
O

Note that the proof of Lemm2.4.15makes clear that the choice tiefining the set§)? is,
in some sense, arbitrary. In fact, by proceeding in an analogous maerean deduce a more
general result. For alt, y € QY, with § < %“/3) we have that

1
wign -z 2 5yl = 23yl - o3 (2.33)

Note that .33 is exactly the same as condition iii) of Lemr2a4.14 Even so, the choice
6 = /6 is enough for our purposes.

Now we are ready to prove that the sé&s N C(hq), with u € W, satisfy the conditions to
form the familyu(f,,n we are trying to define for two reasons. First, the 7 /6 is small enough
to guarantee that), N C(h1)) C B(y,r,) forally € Q, N F,,, see Lemm&.4.16 Second,
the partition in 2.31) is such that all set9,, NC(h1) with u € W measure the same, see Lemma
2.4.17

Lemma2.4.16.Letu € W C S4_1. Forally € Q, N F,,,
Qu N C(hl) C B(Z/yrn)'

Proof. Lety € Q, N F,,. We define
_ Y
Y =Tpr.
Iyl

Therebyy* = (yi,...,y;) satisfies:
) [ly*I* =77
i) y* € 7.
i) y* € Qu.
Then, by i), i) and Lemm&.4.13we deduce thaty*||* = r2 and||y*||* < —2r,y;.
Letz € Q, NC(hy), with ||z|* = —2r,z4. Figure2.25represents a s€), N C(h;) in R3.
It follows from Lemma2.4.12that ||z||* < r2. By the definition ofz and by iii) we have that

z,y* € @, and hence, by Lemm2.4.15 we can conclude that all the hypothesis of Lemma
2.4.14are fulfilled. Therefore,

[l =[] <o
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Thatis,y* € B(x,ry,) forall z € Q, NC(hy), with ||z]|* = —2r,z4. Moreover, it follows from
Lemma2.4.12that0 € B(x,r,) for all z € Q, N C(hy), with ||z||* = —2r,z4. By using that
B(z,r,) is convex and that the poiptlies on the segment that joins 0 wigfi, we have that

y € B(x,r,) forall z € Q, N C(hy) with ||z]|* = —2r,zq4. (2.34)
Now, letz € Q, N C(hy) arbitrary. Then

« T+ rpeq

= ————Tp — Tpe
|z +rpea] ©

satisfies:
i) [Jz*||]® = —2rah

i) «* € C(h1). To prove this note first that i) yields* € B(—ryeq,7,). Moreover,
<

(x*,eq) < 0. The remainder of the proof consists of showing thét e;) > —hy. Thus,
T+ Tpeq Tn
x5 eq) = (1, —Tped, ed) = ————({x,eq) +1n) — Th.
o s A Py M B s

Sincez € C(h1), we have thaf|z + rpeq|| < r, and hencqm > 1. Moreover,
(z,eq) +1p > —hy + 1, > 0. That s,

(x*,eq) > (x,eq) +rn — 1y = (x,eq) > —hy.

iii) z* € Q.. We need to show that" ; = (z7,...,2}_,) € C,. By using that

z* $+rn€dr e n x—l—( " 7“>€
o+ rmeqll " " |z + rnedll o+ reqll ")

we have that
T'n

l‘*_ = T _.
L e T
Sincex € Qu,

* _ Tn
<x7d,u> - H36+7"n€dH <x*dvu>
T'n

|| cos

|z + rheql| 6

% T

= | cos .

Thenz* € Q, N C(hy) with ||z*]|* = —2r,24 and by .34 we have that* € B(y,r,) for

ally € @, N F,,. Itfollows from Lemma2.4.13that—r,eq € B(y,r,) forally € Q, N F,,.

Moreover, z lies on the segment that joins® with —r,ey4. In fact, we shall see that =
azx* — (1 — a)rpeq With a € [0, 1]. By the definition ofz*, it follows that

bt (et
n Tn
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where
—
asz € C(hy). Finally, sinceB(y, r,) is convex, we have that
x € B(y,rp) forally e Q, NF;,.
To sum up, we have proved that
Q. NC(h1) C B(y,ry) forally € Q, N F,,,.

This completes the proof of Lemnza4.16 O

Figure 2.25:Example of sef),, N C(h1) in R3,

We are now ready to complete the proof of Proposifioh4 In view of the previous results
we define the finite family

U, ={QuNC(h1),u € W C Sq_1}.

Sincey € F, , there exists, € W such thaty € Q, N F,.,. Lemma2.4.16yields Q, N
C(h1) C B(y,r,). Moreover,

C(h) = U QuNC(h)
ueW
and, by appealing to Lemnta4.9 we get
Lra® p 5 < p(C(h)) < Y p(Clh1) N Qu). (2.35)
ueWw

Next we prove that the se€, N C(h,) measure all the same, independently.af WV .
Lemma2.4.17.Forall u,v € W,

1(Qu N C(h1)) = p(Qu N C(h1)).
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Proof. Letu,v € W. Consider the orthogonal transformation
O_g: R — RI-1

such thatO_;(u) = v. Consider the function

O0:RY — RY,
whereO(z) = O(x1, ..., z4-1,%q) = (O_4(z_q),zq). The functionO is also an orthogonal
transformation. We have that
O(C(h1)) = C(h). (2.36)

Let us first prove tha®(C(h1)) C C(hy). Consider the vecta®(x) with = € C(hy). Then
O(x) € B(—rpeq, ), Since

10(x) + rpedl]? = |O—a(z—a)||* + (wa+70)? = lz—all® + (@4 +70)? = || + rneq|* < 72,

Moreover,—h; < (O(x),eq) < 0, since(O(z),eq) = x4 andx € C(hy) and hence)(z) €
C(h1). Next we prove tha€(hi) C O(C(hy)). Letz € C(h1). We have that = O(O~}(x)),
whereO~! denotes the inverse orthogonal transformation. We shall se©thqtr) € C(h;).
First, O~1(z) € B(—rpeq, ) @S

1071 (@) + red||” = |O~L@_a) ||+ (@atrn)? = |2_al >+ (@at70)® = |7 + rnea]* < r2.

We have used thaﬁ):é, inverse of0_, is also an orthogonal transformation. Moreowvér; <
(O~ Yz),eq) < 0since(O (), eq) = zq andz € C(hy). ThenO~!(z) € C(h1) and the
proof of (2.36) is complete.
Now, we see that
O(Qu) = Qu. (2.37)
Consider the vecto©O(z) with x € Q,. ThenO(z) = (O_4(r_4),zq), Wherez_; =
(z1,...,24-1) € Cy. We have that

(O_a(x-a),v) = (O-d(z—a), O-a(u)) = (x—g,u) = |lz— d||COS* 10- (»’Ld)HCOS%

and henc®(z) € Q.. Letz € Q,. We can writer = O(0~(x)) = (O_(z_4), z4) and

(O~ (@—q),u) = (0" Y(w_4), O4(v)) = (2_4,0) = |w_al cos - 5= = |0 g(z—a)|| CObg
We have used thz{ﬂ:i, is also an orthogonal transformation. Thérm!(z) € Q, and hence
@y C O(Qy)- This completes the proof 02(37).

Finally, givenu,v € W, we have shown that there is an orthogonal transformafiauch
that O(Q, N C(h1)) = @, N C(h1). Since the measure remains invariant under orthogonal
transformations we get that

1w(QuNC(h1)) = p(O(QuNC(h))) = p(QuNC(h)).
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Turning to equation4.35 we can conclude that, for all € W,

d—1 444

1
,UJ(QU mC(hl)> > FLrnQ p 2,

wherem” represents the number of elements that fosmLastly, by Lemma2.4.10it follows
that

QuNC(h1) CC(h1) C B((a—p)eq, @)
and

d—1 ;49

p(QuNC(h1) N B((ar = plea, @) = (QuNC(h)) = LTr® po,
completing the proof of Propositidh4.4

O
We finish the proof of Propositio®.4.2by defining the family
Uor, =US, VUL, .
Then,
Uz, ={T(U), U € Uor, }
is a finite family withmgy = m9 + m” elements satisfying that, for eathe Uy ., ,
Py (T(U)) = 6u(T(U) 0 B(Pra — an, a)) = 6u(U N B((a - plea, a)) = Lora? p*5,
whereLy = §min(LY, L7). O

2.5 Main results

The aim of this section is to present the achieved results on the consistehcgravergence rate

of the estimatolS,, defined in 2.3). The concept of unavoidable family, discussed in Sections
2.3and2.4for the particular case d&? and the general case Bf, respectively, plays a major
role in the development of this section. Propositidis land2.4.2and their counterparts in the
bidimensional case are the key results in deriving the convergencef fétd,q.S, S,,)), which

is given in Theoren®.5.2 the main result of this chapter. In Theoré®.3we show that the
obtained convergence rate cannot be improved. Finally, some genesialatbout unavoidable
families will be particularly useful for proving the consistency of the estimastablished in
Theorenm?2.5.], below.

Theorem 2.5.1.Let S ¢ R be a nonemptyr-convex compact set with > 0. Let X be
a random variable with probability distributioy and densityf whose support is5. Let
X, = {Xi,...,X,} be arandom sample frodi and let{r, } be a sequence of positive terms
which do not depend on the sample such that «. Then,

lim E(d,(S,S,)) =0

n—oo

if and only iflim,, .. nré = oo.
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Proof. Recall that, according to the definition of the estimaigrin (2.3) and by @.4),

E(d,(S, Su)) = E(u(S \ 1)) = /S P(3y € B(z, 1) : Bly,rs) N Xy = D)u(d).

Let us first assume théitm,, o m“g = o0o. We shall see that, for almost alle R,
lim P(3y € B(z,ry,) : B(y,rn) N X, =0) =0. (2.38)

Note that if .38 holds, then by the dominated convergence theorem

lim E(d,(S,S,)) = lim [ P(3ye B(z,ry): By,rn) N X, = 0)u(dx)
n—oo n—oo S
= / lim P(3y € B(x,ry) : B(y,rn) N X, = 0)u(dz)
Sn—’oo
— 0. (2.39)

For eachr € S let us consider the familt, ,,, = {U,};Tn,u € W}, whereW is the finite family
of unit vectors given by Lemm2.4.2for § = « /6 and for eachu € W, U}/, = {2} ® Cy, IS
the translation of the s€t,, ,., by z. Thenl/, .., is a finite unavoidable family fof,. ., as can be
deduced from Lemma&.4.2 2.4.3and2.4.4 Denote bym the number of sets @f, ,,,, which
coincides with the number of unit vectorsf. Then, using the same argument asArl we
have that

P(3y € B(z,rn) : B(y,ra) N Xy =0) < ) (1= Px(U¥, )" (2.40)

uew

In order to give a lower bound fdrx (U3, ) in (2.40 it will be useful following general version
of the Lebesgue density theorem. Sam/roye(1983 for the proof of the lemma.

Lemma 2.5.1(Lebesgue density theoremevroye(1983). If f is a density inR? and A is a
compact set oR? with p(A) > 0, then

1
lim / fy)dy = f(x), almost allx.
h—0 pi(hA) {z}®hA @) (=)

Lemma2.5.1gives us the key to bounding the probability of small compact sets in a neigh-
bourhood of the point, from the value of the density inand the Lebesgue measure of the set.
Thus, let us consider the compact 6gt; andh > 0. We have that

{z}®hCy1 ={z} @ Cyp = U;fh.
It follows from Lemma2.5.1that for almost alls, there exists, such that for allh < h, we

have #a)
U X
PX( a:,h) = - f(y)dy > ?M(Cﬂ,,h)- (241)
x,h
For eachw € Nleth,, = hy, ; = min(ry, hy). ThenU;ﬁhn c U;,, and we can applyX4]) to
conclude that
f(@) p(B(0, hn)) — f(x) wahih

H(Cuvhn) Z 2 m = 9 m = Lxh(T:lL’

Px(Ugy,) 2 Px(Ugy,) 2

z,rn) = z,hn
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where, ifz € S, L, = % > 0. Returning to 2.40 we have
P(3y € B(z,r,) : B(y,m) N &, = 0) <m(1 — Lyhd)" < me~"Lehn

The last inequality follows from the fact thét — z)™ < e™"#, for z € [0, 1]. Note that we can
guarantee thak,h < 1sinceL,hl < Px(U%, ). Then

lim P(3y € Bla,ra) : By, 1) 1 X, = 0) < lim me"Lh%,

n—oo n—oo

Finally, the definition ofz,, and the assumptidiiim,, .., nré = oo yield lim,, .o, nL,h% = oco.
As a consequence,
lim P(Jy € B(z,ry) : B(y,m) N X, =0) =0, for almost allz € S,

n—oo

which yields @.39.
We now prove the converse assertion. Thus, let us assumgrthat. E(d,(S, S,)) = 0.
Note that

P(Ely € B(xaTn) : B(yaTn) nNx, = 0) > P(B($,Tn) N, = Q))
= (1—Px(B(x,m)))". (2.42)
If the sequencénr?} does not converge to infinity as — oo, then we may find a bounded
subsequenc{ankrfﬁk}. Therefore, there exist®/ > 0 such thatnkrfik < M for all n, and as an

immediate consequentieny, . rﬁk = 0. In this case Lemma.5.1ensures that, for almost all
x, for large enouglt,

H@@%MZL( )y < 2 @p(BO ) = 2f @t = Lurt,. 249)

where nowL, = 2f(z)wy. In order to simplify the notation let
Lpn(x) = P(Ely € B(Q}, 7“”) : B(y7rn) nx, = Q))
and consider the subsequer{dg,, (x)}. We now combineZ.42) and .43 to get

liminf¥,, (r) > liminf(1 — Px(B(z,my,)))""

k—oo k—oo

> liminf(1 — Lxrflk)”k
k—o0

—nyLyr?
> liminfexp kT
k—oo 1-— LxT‘gk

> e LM, (2.44)

We have used thgtl — z)" > exp(—nz/(1 — z)) for z € [0,1). The case wher = 0 is
straightforward and foe € (0,1) write (1 — z)” = exp(nlog(l — z)) and use the fact that
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log(1 — z) > —z/(1 — z). The last inequality holds sindémy,_... 72 = 0 and{nyrd } is
bounded by\/. By the Fatou’s Lemma an@ 44 we obtain

klim E(du(S,Sn,)) = lim [ ¥, (x)u(dx)

k—oo Jg

= lign inf/ Uy, (x)p(dz) > / likm inf &, (z)p(dx) > 0,
—o Jg § koo
which is a contradiction since we are assuming thaf,_... E(d,(S, S,,)) = 0 and hence every
subsequence &(d,, (9, S,,)) must also converge to zero. So, the sequéne } must converge
to infinity and this concludes the proof of the theorem.
O

Remark 2.5.1. By definition,d,, (S, S,,) = u(S\ Sn) + (S, \ S). Thea-convexity assump-
tion of Theoren2.5.1ensures thab,, C S and, thereforeu(S,, \ S) = 0. Anyway, if the se$ is

not assumed to be-convex, a similar consistency result can be stated under an extratcmd
on the parameter,,. It can be proved that, ifr,} is a sequence of positive terms such that
limy,— o0 7, = 0 @andlim,, oo nrd = oo, thenlim, .o E(d,(S, S,)) = 0. Without going into

details, the proof follows easily from
E(dyu(S,5n)) = E(u(S \ Sn)) + E(u(Sn \ 5))- (2.45)

Note that the first term in the right-hand side @45 was studied in Theore@.5.1and that
the a-convexity assumption is not needed to guaranteelihat .. E(u(S \ S,)) = 0 for a
compact sefS. For the second term in the right-hand side 8f45 we haveE(u (S, \ S)) <
w(S & r,B) — u(S) since, with probability oneS,, C (S @ r,B). The Lebesgue dominated
convergence theorem ensures that,, .. (S @ r, B) = p(S) if limy, o0 7, = 0.

Having obtained the consistency of the estimator, we now focus on thergemee rate
of E(d.(S, Sn)). As mentioned in Chaptet, Rodriguez-Casa2007) obtains, under similar
conditions onS, the almost sure convergence ratelgfs, S, ). A more detail comparison of
these results is given in Remals.2 after the statement Theore2rb.2 below.

Theorem 2.5.2.Let S be a nonempty compact subsefRsf such that a ball of radiusy > 0

rolls freely in S and in S¢. Let X be a random variable with probability distributioRx and
supportS. We assume that the probability distributiéty satisfies that there exisés> 0 such
that Py (C') > du(C N S) for all Borel subseC' C R?. LetX, = {X1,...,X,} be arandom
sample fromX and let{r, } be a sequence of positive numbers which do not depend on the
sample such that, < «. If the sequencér,,} satisfies

lim = oo, (2.46)

then .
E(d,(S, S,)) = O <rn “n‘il) : (2.47)
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Remark 2.5.2. Rodriguez-Casa(2007) proves that, ifS is under the conditions of Theo-
reml.4.1and {r,} is a sequence of positive numbers satisfyiBgt§), thend,(S,S,) =
O(r;* (log n/n)?/(4+1)), almost surely. The convergence ratéd,, (S, S,,)) obtained in The-
orem?2.5.2is, therefore, faster than the almost sure convergence ratg, @, S,,). Note that
the logarithmic term vanishes i2 @47). Moreover, the penalty factot, (d=1)/(d+1) ;
ically smaller than-, *.

is asymptot-

Proof. Recall that, if we define for each € S a family 4, ,, unavoidable and finite fof, .,
then

E(d.(S,S.)) = / P(3y € B(x,ry) : B(y,rn) N X, = 0)u(dx)

< (1-P "u(dx)
< /s Z exp(—nPx (U))u(dz).

Uelz,ry,

The last inequality follows by applying that — z)" < e "%, for z € [0, 1]. We divideS into
two subsets

S

{xGS: d(z,08) > %}U{xES: d(z,08) < ?n}

and then

E(du(S, Sn)) < /5 > exp(—nPx (U))u(dx)

Uy r,,

- /{ IR SR T IR

2 }UEM“””

! /{xGS d(2,08)< Y exp(-nPx(U)u(dr).  (2.48)

2 } Uely,ry,

For thoser € S such thati(z,0S) > r,/2 we make use of the famili€s, ,,, given in Propo-
sition 2.4.1 Recall that Propositio@.4.1ensures the existence of suitable finite familigs.,,
and provides a lower bound on the probability of the §&tthdependent of. Thus,

/{ > exp(-nPx(U)ulda)

z€S: d(x,85)>r7"} Ueu
T, TN

</ my exp(—nLyrd)u(de)
{zes: d(x,08)>1%}

~0 (e le"fi) : (2.49)
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wherem; denotes the finite number of elementd4f,,. Note thatm, is also independent of
x. Now, for thoser € S such thati(z,9S) < r, /2, we may consider the unavoidable families
U, r, given in Propositior?.4.2 Letmy be the number of elements&f ,,,. We have that

" exp(—nPx(U))pu(da)

Uz, rp,

a1 d+1
Mg exp <—L2nrn2 d(xz,08) 2 ),u(dx)

/{wES: d(,08)<2} 1

<

AIES: d(x,@S)g%}

- / o(T () p(dz),
T-1[0,rn/2])
d=1 441

where7 : S — R is defined as/ () = d(z,0S5) andg(z) = mgexp(—Lanr,® z 2 ). It
follows from the change of variables formula (see Theorem 16. Rlllfigsley (1995) that

/ o(T () u(der) = / 4(0)nT " (dp)
T-1([0,rn/2]) [0,rn/2]

wherep = 7 (x) andu7 ! is the measure oR defined by
HT~H(A) = w(T~H(4)),
for A c R. The measur@7 ~! is characterized by
F(z)=p{z e S: d(z,08) < z}.

Under the stated conditions it can be proved that)fer z < «, F'(z) is a polynomial of degree
at mostd in z, seeFedere (1959. Therefore, it is a differentiable function afd(z) is bounded
on compact sets. In short, we obtain

/ 9(p)nT ' (dp)
[0,rn /2]

d—1

= / Mo exXP <—L2nrngpr“2r1> F'(p)dp
[0,rn /2]

%L d—1 411
<K/ Mo €xXp <—L2nrn2 pz |dp
0

L2 rd d—1
= Al mgil T‘_mn_diﬂe_vvil;ﬁ—fdv
0 di172/(d+1)""
2 2
a1,
=0 <rn a n_d+l) , (2.50)
d—1

where we have used the change of variables formuta Lgnrn?p% and also the fact that

I eyt dy < oo, Turning to the computation dt(d, (S, S,)) in (2.48), it follows from
(2.49 and @.50 that

_d=1
E(d,(S, Sn)) = O e L 4 g, = ait ) (2.51)
m
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Now if (2.46) holds, then for alll\/ > 0 there existsV € N such that
nrd > Mlogn,

for all n > N and hence
e—Llnri § e—L1Mlogn — ’I’L_LIM.

As a consequence

—Linrg —LiM d—1
: € " : n . 2
lim sup —— <limsup ——~—— = limsupr; " (@ —IM) 0, (2.52)
n—00 - 2 n—o0

Tn A+l T @t n—oo Tn A+l T @t

for large enoughV/. Remember that,, is bounded«,, < « by assumption). We now combine
(2.5 and @.52 to obtain
+1n—di1> ,

which completes the proof. O]

Q.‘&
|

_d-1 _
E(d,(S. 50)) = O (eLl"’”ﬁ +7n n) ¢ (

Finally, next lemma shows that the obtained rate in Theddn®2cannot be improved since
there exist sets under the stated conditions for which

da—1

lim inf rﬁnﬁE(dy(S; Sp)) > 0.

n—~o0

Theorem 2.5.3.Under the conditions of TheoreP5.2 there exist set§ for which

d—1

lim inf rﬁn%ﬂﬂ(d#(sa Sp)) > 0.

n—oo

Proof. Let S = B(0, «) and assume that the distributiéty is uniform onS. Our aim is to find
a lower bound foif(d,, (S, Sy,)). Thus,

E(d,(S,S,)) — /SP(Ely € B(w,ry) : By, m) 0 Xy = 0)u(dz)

> P3y € B(x,ry) : B(y,rn) N A, = 0)u(dx).

~/{$€S: d(x,BS)g%}
For eachr € S such thati(x,0S) < r,/2letn =z/|z| and
= (a+ry,—d(z,09)n = (||z| +rn)n. (2.53)

In Figure2.26we show an example of the definition ®in the particular case d&?2. Note that
Z € B(x,r,) and hence

P3y € B(x,ry) : B(y,rn) N X, =0) > P(B(Z,1,) N X, =0) = (1 — Px(B(Z,1,)))".
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T B(Z,rn)

B(0,a)

Figure 2.26 Givenz € B(0, «) suchthati(x, 0S) < r, /2, we defin& = (a+r,—d(x,dS))n.

In short,

E(du(S, Sn)) > /{mgs; i as)<m} (1 — P)((B(irn)))nlu(dgg)7 (2.54)

wherez is given by @.53. First we shall see thd®x (B(z,r,)) < 1/2. Remember that, under
the assumption of the uniform distribution 8 we have

p(B(&,m) N S)
1(S) '

Px(B(Z,ry)) = (2.55)

Let us consider an orthogonal transformatidn R? — R? such thatO(n) = —e,4. Then
O(B(z,r,)NS) = B(—(a+ryp — d(z,05))eq, ) N B(0, a).
It is easy to see that
B(—(a+rp —d(x,05))eq,mm) C {z € R : (z,eq) <0}

and, since the Lebesgue measure is invariant under orthogonabtrmaasbns, we have

w(B(Z,ry) NS) w(B(—(a+ 1y —d(z,08))eq, ) N B(0, a))
p({z € RY: (z,eq) <0} N B(0,))

%,u(B(O, a)). (2.56)

IN

Combine 2.59 and .56 to get

(2.57)

N

Px(B(Z,1y))

IN
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We return to 2.54) to obtain that

E(dy(S,S0) > (1= Px(B(#,7.)))"(dz)

/{zES: d(x,08) <2}
/ exp < —nPX(B(ac: Tn))
{z€S:d(z,05)<ry,/2} 1- PX<B(:E? Tn))

v

) ute)

> exp (—2nPx (B(Z,rn))) p(dx).  (2.58)

/{;L’ES:d(x,(?S)Srn/2}
We have used again the fact tHat— z)" > exp(—nz/(1 — z)) for z € [0, 1) together with
(2.57). In view of (2.58 we need again an upper bound Bk (B(Z,r,)). The bound in
(2.57) will be now too rough for our purposes and so we shall see that it eashbrpened.
Let us now consider the composed function formed by first applying teeqars orthogonal
transformation® : R? — R? such thaiO(n) = —e, and then applying the translation by the
vector (o — d(z, 05))eq, see Figure.27. Using again that the Lebesgue measure is invariant
under orthogonal transformations and translations we have that

w(B(B(Z,r,) NS)) = p(B(—rnedq, ™) N B((a — d(x,05))eq, a)).
The setB(—rpeq, ) N B((a — d(z,05))eq, ) is the intersection of two balls with radiutg

() (b) (c)
o O{(a — d(z,95))e2}

IS

B(0,«)

B(_Tn€27 Tn)

Figure 2.271(a) B(Z, r,)NS. (b) Result of applying an orthogonal transformation R? — R?
such thatO(n) = —eq. (c) Translation by the vectdix — d(x, 0S))es. In black.A(hs) and in
grayC(hy).

anda such that the distance between their centres is equalto,, — d(x, 0S). Recall that this
set appeared for the first time in Propositidd.4 Following the notation used previously,

B(=rneq, ) N B((a — d(x,0S5))eq, ) = C(h1) U A(ha),
whereC(hq) is given by @.29 and
A(hg) = {z € R : —(hy 4 hg) < (z,eq) < —h1} N B((a — d(z,d5))eq, av).
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Recall that the values &f; andhs were easily deduced from the Pythagorean theorem by solving

the system
(rn = m)?+ X2 =2,
(@ — h2)? + A2 = a?,
hl + hQ = d($,85)
Thus,

d(xz,05)(2a — d(z,095)) _ d(x,05)(2r, — d(z,08))
2a+r,—dz,08)  °  2a+r—dz08)

1 p—
SinceC(h1) and.A(hs) are disjoint, up to a zero measure set, we have
p(B(=rnea,7n) N B((a — d(z,05))eq, ) = p(C(h1)) + u(A(h2)).  (2.59)

First, in order to find an upper bound iB.59), we shall see thgi(A(hz2)) < u(C(h1)). It can
be easily proved that(.A(hs)) = pu(Ao(h2)), where

Ao(he) = {z=(21,...,29) €RY: 0< (2,e4) < ho} N B(—(a — hy)eg, a).

Note thatAy(h2) is obtained after applying an orthogonal transformation and a translation to
A(h2). Using a similar argument as in the proof of Lemehd.9let 0 < | < hy and define the
set

Ao(ha, 1) = {z = (z1,...,1) e RY: z € Ay(hy)}.
Then
ho
i(Aoha)) = /0 a1 (Ao (ha, 1)dl

where 141 denotes thed — 1)-dimensional Lebesgue measure adg|(hs, () refers to the
(d — 1)-dimensional sphere with centte; and radiuss((), being

s(l) = Vo2 — (o — hg + 1)2.

Therefore,
ha
(A(hs)) = was / s (2.60)
0

Recall from Lemma.4.9that

h1
H(C(h)) = was /0 r(1)4dl, (2.61)

wherer(l) = \/r2 — (r, — h1 +1)2, for 0 < I < hy. In view of (2.60 and @.61) and since
he < hy, if we are able to prove tha{l) < r(I) for 0 <[ < hy, then

ha ha h1
w(A(hg)) :wd_l/o S(l)dldlgwd_l/o r()4dl gwd_l/o r()4tdl = p(C(hy)).
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Asr(l) > 0ands(l) > 0it suffices to show that(()? < r(1)? or, equivalentlyy(1)2—s(1)% > 0.
By constructionr(0)? = s(0)? = A\%. and an easy computation shows th@h? — s()? is an
increasing function. Indeed,

r()2 = s(1)? = 2l(oc — rp + h1 — hy) + (h3 — h? 4 2r,hy — 2ahy) (2.62)
and the derivative of2.62 with respect td satisfies
Z(a—rn+h1—h2)20,

sincer, < a andhy < hy. Therefores(l) < r(I) for0 <1 < hg andu(A(h2)) < pu(C(hy)).
Now. if we return to the equatior2 (59, we get

H(B(#, 1) 1 S) < 2u(C(h1)). (2.63)

We will thus concentrate oé(h;). Lemma2.4.9provided a lower bound for the measure of
C(h1). However, we now need an upper bound¢€(h1)). Proceed as in the proof of Lemma
2.4.9t0 get

d—1
2

h1
w(C(hy)) = wd_l/o (2rnt7t2) dt,

see £.30. It is immediate tha®r,t — t? < 2r,t, for0 < t < h; and hence

di1 =1 d+1

" o Wd—1 o4t 55 5
u(C(h1)) < wa—1 i (2rat) T dt = S22 Tyt

Sincehy < d(z,0S), we have

u(C(h1)) < (2.64)

Combine 2.63 and @.64) to obtain

w(B(Z,ry) N S) <

As a consequence,

- 1 wg_1 443 41 dt1 a1 dt1
Px(B(#,7)) < —— 2% 1,2 d(x, = Lry? d(, .
x ( (fw"))_ﬂ(s)d+1 2 ry? d(z,08) 2 rn? d(z,08)

Finally, if we apply the latter bound t@2(58, then we have that

E(du(S,50)) =

d—1 d+1
/ exp (—2nLrn2 d(:):,(?S)2> p(dx)
{z€S:d(z,05)<rn/2}

- / o(T () u(de),
T-1([0,7/2])
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d—1
where7 : S — R is defined as/ (z) = d(z,05) andg(z) = exp(—2nLry,? z%). By the
change of variables formula (see Theorem 16.1Rithhgsley (1995)

/ o(T () u(der) = / 4(0)nT " (dp)
T-1([0,rn/2])

[O,T’n/Q]

wherep = 7 (x) andu7 ~! is the measure oR defined by

for A c R. The measur@7 ~! is characterized by
F(z)=p{z e S: d(z,05) < z}.

We know fromFederel(1959 that F'(z) is a polynomial of degree at magin z. In fact, in this
particular case, for < a, F(z) = wg(a? — (o — 2)9). ThereforeF is differentiable and

E(d,(5.5,) > / a(p)uT " (dp)
[0,rn /2]
/2 d=1 g4y
- / exp <—2nLrn2 p 2z
0

"n/2 d=1 441
= / exp (2nLrn2 p2) wad(or — p)4dp.
0

Itis immediate to show that far < p < r,,/2 the functionF”’ (p) = wqd(a—p)?~ is decreasing
with F'(p) > F'(r,,/2) = wad(a — 1, /2)471 > wad(a/2)?~1. Therefore

rn/2 a-1 d—1
E(du(s, Sn)) > / exp <2nLrn2 pd;1> wdd <%> dp
0

2nL

an d—1 2(d+1)/27"% 1 —42 2 1-d

= wgd (—) T ey ) i  @e Yvartido
2 A i1 (o 7)2/(d+D)

2nL d
a\d-1 1 —41 2 @z 1-a
f— J— - d+1 d+1
wdd( ) d+1(2 T e “vdtidv.
2

~
N—
9
~
=
U
+
—
=
<)

d—1

We have used the change of variables formula with 2n Ly, > p%. Therefore

2nL
o Y2 o wed(a/2)TY fr@EnET ) 1ed
a1 v
hr{n inf r; "' na+TE(d,(S, Sy)) > hnm inf —d'gl (L)@ /0 e Yvaridy.

Sincenré — oo, we have

lglrrigfrﬁ“nﬁE(dy(S, Sn)) = ;ﬁ(;i)/z/)(m/o e Yyt dy > 0.
2

This completes the proof of the theorem. O
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Remark 2.5.3. We conjecture that

d—1
lim inf P T E(d, (S, Sp)) > 0

for any setS under the conditions of Theore5.2 The proof relies on the following “local
convexity” property, which we thinK fulfills. We say tha¥t is “locally convex” in B(s, 7) N 0S
for s € 9S andr > 0 if there existg > 0 such that for alt € B(s,7) N9, the setB(t,e) NS
is contained in the halfspacgr € R? : (x —t,n(t)) < 0}. Note that this local convexity
property holds for any € 95, 7 > 0, ande > 0 whenS is a ball of radiusa as in Theorem
2.5.3



Chapter 3

Surface area estimation

3.1 Introduction

The surface area estimation problem was briefly introduced in Chapiethis chapter we pro-
pose an in-depth study of a new estimator for the surface area, bateslrstion of Minkowski
content and on the-convexity assumption. We have structured this chapter as follows. h Sec
tion 3.2 we introduce the estimatat,, along with a brief discussion of the sampling model
and the assumptions. In Secti@mM the asymptotic behaviour of the proposed estimator is
analysed. More precisely, the almost sure convergence rate ard tb@nvergence rate are
provided in Subsection3.3.1and3.3.2 respectively. The results in Chaptewill be useful in
order to derive thd.;-convergence rate. The results in Subsec8dhlcan be also found in
Pateiro-Lopez and Rodriguez-Cag2008), accepted for its publication in Advances in Applied
Probability.

3.2 The sampling model and the estimator

As has been argued, the notion of Minkowski content serves us @sgtaoint for defining a
suitable surface area estimator. The assumptions of the model are motiyatediéfinition.
Thus, letG' be a nonempty compact setltf and assume, without lost of generality, tidatc
(0, 1)4. The Minkowski content of7, recall Definition1.5.4 is given by

_ _ o m(B(9GE)
Lo = Lo(G) = lim — 5y~ lm L(e), (3.1)
provided that this limit exists and is finite, being
L(e) = u(B%iG’s))‘ (3.2)

Note thatB(0G,¢) in (3.2) represents the closedneighbourhood of the boundafyG and
that, in order to estimat8(JG, ¢), it would be desirable to have information from bathand
R =1[0,1]%\ int(G) sincedG is somewhere in between points of the set and points of its com-
plement. For this reason the sampling information is assumed to be given by isetvations

85
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(Z1,&1),-..,(Zn, &) of arandom variabléZ, £), whereZ is uniformly distributed on the unit
squarg0, 1]? and¢ = I{zecy- Let us denote byx and Py the conditional distributions of the
observations irG and inR, that is, the distributions ok = Z|{¢{ = 1} andY = Z|{{ = 0},
respectively. It is not difficult to prove thatx and Py are both uniform or{z and R, respec-
tively. Let {e,} be a deterministic sequence of positive numbers which converges toszero a
tends to infinity. We propose to estimaig by means of

1(L)

L, = , 3.3
2. (3.3)

being I, an estimator oB(0G, ¢,,). We saw in Chaptet that the problem of estimating
can be tackled as a problem of set estimation, since, assuming the mild coitit@h= G,
B(0G, ¢,,) can be written as the intersectiéh{G, ¢,,) N B(R, €,,). Thus, ifG,, andR,, estimate
G andR, respectively, then

I, = B(Gm 5n) N B(Rm En) (34)

estimatesB(0G, ;). Continuing with the theme af-convexity discussed in Chapt&r this
chapter deals with the case whereand R are botha-convex. In this situation we propose
to estimateG and R by means of thex-convex hull of the samplegd),, = {Z; : ¢, = 1} and
Y ={Z; : & = 0}, respectively. Therefore, let

Gn = Co(Xy) = (X, & aB) © aB, (3.5)
Ry = Co(Vy) = (Vn @ aB) © aB, (3.6)

and letl;, be the estimator obtained after replaciBgy and @.6) in (3.4). Thus, the estimator
L, in (3.3 is now completely defined. Before proceeding to the analysis of the piepef
L,, it is convenient to make some comments on its definition. Fi¥gtand R,, in (3.5 and
(3.6) do not coincide exactly with the set estimators studied in Chahtsee 2.3) where the
estimator with closed balls was defined. Anyway, remember that in App@&hdig prove that,
with probability one, both definitions are equivalent and hence, it maketfieoence whether
we consider the estimator defined with open or closed balls. Consid&iBghglped us to
obtain the theoretical properties of theconvex hull estimator and for that reason we used it
in Chapter2. However, in the case df,, the definition in 2.3) does not facilitate the proofs
and we have decided to work witB.6) and (3.6) since they reliably reproduce the definition of
a-convex hull. Anyway, we recall here LemnBa0.9since we will refer to it when computing
E(L,).

Second, in view of3.2) we would like to make a remark on the behaviour of the function
w(B(0G,¢€)). In Chapterl we commented thatedere(1959 provides a generalization of the
Steiner's formula for sets with positive reach. There, it is establishedhbat-dimensional
measure of the closedneighbourhood of a set with positive reachRfi can be expressed as
a polynomial of degree at modtin ¢. The positive reach of a set is closely related to the free
rolling condition. In AppendixB we prove that ifG is a nonempty closed set B such that a
ball of radiusa > 0 rolls freely inG and inG¢, thendG' has positive reach. Therefore, under this
rolling condition we may use Federer’s theorem to concludeithB{0G, ¢)) coincides locally
with a polynomial of degree at mogtin . From the Lebesgue density theorem and the rolling
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condition it can be proved that(0G) = 0. It follows from this fact and from the polynomial
representation qi(B(0G, <)) that the limit in 8.2) exists and, as a consequence, the coefficient
of ¢ in the polynomial must coincide witBZ,. This property has useful implications. For
example, we can conclude thdi(e,,) — Lo| = O(ep).

Finally, we would like to note thatz and R do not play completely interchangeable roles
even though they are boit-convex. In AppendixA we list some useful results under the
assumption thaz is a nonempty closed set such that a ball of radiuslls freely inG and in
G¢. In LemmaA.0.4 we prove that in those resul can be replaced bgc. However, it is
important to emphasize th& is not equal taz¢. For example, we cannot ensure that a ball of
radiusa rolls freely in R, see Figure.1 Note thatd R does not coincide witdG, since it also
includes the boundary ¢, 1]%. Even so, Assumption (A1) in page applied to the sef will
be enough for our purposes.

Figure 3.1:G in green andR in red are botha-convex. A ball of radius: rolls freely inG and
in G¢. A ball of radiusa does not roll freely inR.

3.3 Asymptotic behaviour of L,,

In this section we present the main results regarding the behaviour oftthes L,, defined

in (3.2 with G,, andR,, as given in 8.5 and 3.6). First, we proof Theorer.3.1, which gives
the almost sure rate of convergencelgfto Ly. Under the same conditions, Theorén3.2
gives us thd.;-convergence rate df,,. From now on and for the sake of simplicity, we use the
notationI” = 9G.

3.3.1 Almost sure convergence rate

Theorem 3.3.1.LetG c (0,1)? be a nonempty compact set. Assume that a ball of radiss)
rolls freely inG and inGe. Then, with probability one,

logn)@l}rl

n

inf L, — Lo| = O (
En
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and the optimal order is attained fer, = (logn/n)/(@+1),

Remark 3.3.1. In Cuevas et al(2007) a similar estimator to the one studied here is proposed.
There, it is considered the estimatby, defined in 8.2) with G,, = X,, andR,, = ). Its almost
sure consistency andl;-convergence rate are provided, but not the almost sure conwegge
rate. In order to compare both estimators we refer to TheaBeBr2where thel;-convergence
rate for the estimator proposed in this chapter is provided.

Proof. We follow the ideas of the proof of Theorem 3 Rodriguez-CasgR007. The proof
is based on Propositiorn3.3.1, 3.3.2and 3.3.3 Proposition3.3.1 establishes that if" C
B(Z¥,20,) N B(ZY,20,), whereZ¥ = {Z, € X, : d(Z;,") < g2} andZ) = {Z; € Y, :
d(Z;, I') < 02}, thenB(I',e,)\ I, is contained in the dis®,, = B(I',e,) \ B(I',e, — K02)
for large enoughk’. Proposition3.3.2relies onu(D,,) = O(0?) to find a bound fotL,, — Ly
depending only om,, andg,. Finally, in Proposition3.3.3we determine the order qf,, for
which, with probability one, we have th&t ¢ B(Z:¥,20,) N B(ZY,20,) for large enough,
that is, p,, satisfies

P (I C B(Z;Y,20,) N B(Z),20,) eventually) = 1.

Theorem3.3.1is a straightforward consequence of these three results.

Proposition 3.3.1. Let G be a set under the conditions of Theor88.1 Then the following
results hold.

i) With probability one,l’,, C B(I',e,).
i) Letus assume that, — 0 satisfieso?e,,! — 0 and that

P (I ¢ B(Z,200) N B(ZY,20,) eventually) = 1,

whereZ¥ = {Z; € X, : d(Z;,") < 2YandZY = {Z; € Y, : d(Z;,T") < 02}. Then,
if K > max (2,8/«a), we have that

P (B(I'ye, — Ko}) C I, eventually) = 1.

Remark 3.3.2. The proof of i) remains true under milder conditions. It is only needetlttiex
setsG and R are botha-convex. Thev-convexity ofG and R follows easily from Assumption
(Al) as we mention in the proof below.

Proof. Under the conditions of the propositia@,andG¢ are bothn-convex, see Lemma.0.8.
It can be easily seen that, as a consequeRas, alsoa-convex. Since, with probability one,
X, C Gand), C R,

Gn,=Cu(X,) CCy(G) =G and R, = C(Vy) C Co(R) = R.
Thus, with probability one,

I, = B(Gmgn) ﬂB(Rnaf‘:n) C B(G, 5n) ﬁB(R,En) = B(F75n)a
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which concludes the proof of i). On the other hand, the proof of ii) will besfied if we show
that
P (I C B(Gn,K02%) N B(R,, Ko}) eventually) = 1, (3.7)

since ifI" € B(G,, Ko2) N B(R,, Ko?) ande,, > K2, then

B(Ie, — Kp2) C B(B(Gn,K02)NB (Rn,Ko2),en — Ko2)
C B(Gyp,ep) N B(Rp,en) = In.

In order to prove .7) it is suffices to show that with probability one, for large enough
rg=1—Ko’n(z) € G, and zp = = + Kon(z) € R, (3.8)

forall x € I', wheren(x) is the outward pointing unit normal vectoratsee Lemma\.0.5.

To prove 3.8 we need to show that; cannot be contained in an open ball of radius
which does not meet the samplg. In the same manner, we need to prove thatcannot be
contained in an open ball of radiusvhich does not meet the samplg. The situation in which
the centre of the ball is close #0is analysed in Lemma.3.2 This lemma yields the result for
zq. Forxzg we have also to analyse the situation in which the centre of the ball is far from
This case is studied in Lemn&3.3 Finally, in Lemma3.3.4both results are used to establish
the precise conditions under whicB.§) is satisfied. PropositioB.3.1is a consequence of this
result. We begin with a geometric lemma, needed to prove Letfha

Lemma 3.3.1. Let G be a set under the conditions of Theor&mB.1andy € R such that
d(y,I') = o — k where0 < x < a. Then, for allz € RE withd(z, I') < x/2 and ||z — y|| > o
we have that
oK
le = Pryll = /5
wherePpry is the metric projection of onto I".

Proof. This lemma is similar to Lemma 1 iRodriguez-Casal2007) and its proof is almost
identical. Lety € R% be a point such that(y, I") = o — s, where0 < x < «. The result is
trivial for k = 0. Hence, let us assume that> 0. Since reacfi’) > «, we denote byPry
the unique metric projection afonto I, see Lemma\.0.6. Letn be the outward pointing unit
normal vector ai’ry, see Figure3.2

First, we assume that € G. Then, LemmaA.0.1 ensures thay = Pry — (o — k)n. Let
t = Ppy + an. Then, forz € R? with d(z, I') < /2 and||z — y|| > a,

o® < e —y|* = & = Pry + (a — w)nl|* = [lz — Pry||*+(a—x)*+2(a—~x) (& — Pry,n),
K\ 2
(a=%) <l —tl> =l = Pry — an|® = lo = Pry| + a* = 2a ( — Pry,n).
The second inequality is consequencel@f, I') < /2 andd(t, ") = . Then

lz = Pryl|* + 2(a = k) (x — Pry.n) > 2ar — &%,
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2
o = Pry|* = 20 (@ = Pry.n) = —ar + -
Multiplying the first inequality by and the second byx — <) and adding, we have that

—(04—/<c)ou<c—|—(oc—/<;)%2 B a%—i—(a—n)%z

200 — K - 200 — K

202K — ak?

aKr
o — Pryl® = > =,
where the last inequality is a consequencé ef x < a. o
Fory € G° we can apply the previous result@. In this casey € G¢ andI is also the
boundary ofG¢, see Lemma\.0.2.

Figure 3.2:Main elements considered in the proof of LenBr& 1

Lemma 3.3.2. LetG be a set under the conditions of Theor8r.1and let us assume that
I' C B(ZY,20,) N B(ZY,20n),

whereZ} = {Z, € X, : d(Z;, ") < g2} andZY = {Z; € Y, : d(Z;, ") < 02}. Then, for all
y € R? such thatd(y, I') = o — x with max(2,8/a)0? < k < a,

B(y,a) N X, # 0 and B(y,a) N Y, # 0.

Proof. Lety € R? be a point such that(y, I') = a — x with max(2,8/a)e2 < k < a. We
denote byPry the metric projection of) onto I'. Sincel’ C B(Z,20,), there exists:, €
Z¥ such that|z, — Pry| < 20,. Furthermored(z,, I') < 02 < k/2. If ||z — y|| > «, then

Lemma3.3.1yields that
(67
|2z — Pryll > \/ 5 > 20p,

which leads to a contradiction. The last inequality is a consequeme?oﬁg,%/a. Therefore
|zz — y|| < e @andB(y,a) N A, # 0. Analogously, it can be proved th&X(y, «) N Y, # 0.
O
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Before stating Lemma.3.3it is necessary to introduce some notation. Since we are assum-
ingG c (0,1)%, forallz € G
d(z,R%\ (0,1)4) > 0.

The functiond(-, R%\ (0, 1)) is continuous and therefore it reaches its minimum in the compact
set@. Let us denote by this minimum, that is,

e= mig d(z,R%\ (0,1)4) > 0. (3.9)

xre
Note thatB(G, e) C [0,1]%.

Lemma 3.3.3.Letz € R? be a point such thai < d(z, G) < e/2 and lety ¢ [0, 1] such that
x € B(y, o). Then there existg, € R for whichB(zp,e/4) C B(y, a).

Proof. The function
d(\) = d(Az + (1= Ny, G), 0< A<,

is continuous. Since ¢ [0, 1]¢, we have thatl(0) = d(y, G) > e. Furthermore
d(1l) =d(z,G) < e/2.

Bolzano’s Theorem ensures that there existsn the segment with endpointsandy such that
d(z0, G) = 3e/4. Moreover,zy € R sincezy € B(G,e) C [0, 1]9 andzg ¢ G, see Figure.3.
Now, let us prove thaB(zp,e/4) C B(y,a). Letz € B(zp,e/4). We have that

(&
Iz =yl < Iz = zoll + l20 = yll < 7 +llz0 — ll-
Sincezg lies on the segment with endpointandy,
Iz0 = yll = [z — gl — [l — ]| -

Fromd(zo, G) = 3e/4 andd(z, G) < e/2 it follows that||z — zo|| > e/4 and, therefore,

e
lz0 = yll = llz = yll = lla = 20l| <a = 7.

Thus,

e e
—yll < = —— =
o=yl < S+a-S=a

Lemma 3.3.4. Let us assume thdt C B(Z:,20,) N B(ZY,20,) and K g2 < min (e/2, @),
where K > max(2,8/a). Let us also assume thaly(X,,G) < « anddy(V,, R) <
min(e/4, «). Then, for allz € I,

- Ko’n(z) € G, and z+ Ko2n(x) € Ry,

wheren(x) is the outward pointing unit normal vector at
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[0,1)?

Figure 3.3:Main elements considered in the proof of LenBr#&3

Proof. Letx € I' andzg = = — Ko2n(z). The pointzg belongs toG,, if any open ball of
radiusa that contains the point; meets the samplé,,. Thus, lety € R? be a point such
thatzg € é(y, a). We want to show thaé(y, a) N A, is not empty. This is straightforward
wheny € G, since by assumptiody (X, G) < «. Now, let us suppose thgte G°. Since
zq € By,a) NG (K2 < o), thend(y, I') = a — x, wherex > K ¢2 > max (2,8/a) 2. By
Lemma3.3.2 we have thaf3(y, o) N X, # 0.

Now, letzr = = + Ko2n(z). As before, in order to prove that; belongs toR,,, we need
to show thaté(y, «) N Y, is not empty, for any € R such thatry € f?(y, «). Again, this
is straightforward wheny € R, sincedy (Y, R) < a by assumption. Now, let us assume that
y ¢ R. There are two possibilitieg; € G ory ¢ [0, 1]%. For the first one, asg € B(y, a) N G*
(Ko? < a), we have thatl(y, I') = a — k, with & > K02 > max (2,8/a) 2. Lemma3.3.2
implies thatB(y, a) N Y, # 0. Finally, if y ¢ [0,1]%, by the definition ofzx, we have that
d(rr,G) = Ko> < e/2. Then Lemma3.3.3establishes that there exists € R such that
B(z,¢e/4) C B(y,a). Sincedy (Yo, R) < e/4, we have thaB(zo, e/4) N Y, # 0. Thus, we

o

have thatB(y, o) N Y, # 0. O

The proof of Propositior8.3.1is now complete since the conditions of Lem®\.&8.4are
satisfied with probability one for large enough
O

Now, we are ready to prove Propositi8r8.2 which gives a bound for the distanide, — Lo
by splitting it into abiasterm|L(e,,) — Lo| and avarianceterm|L,, — L(s,)|. Recall thatL,
L(e,) andL,, are defined in equation8.¢), (3.2 and @.3), respectively.

Proposition 3.3.2. Under the conditions of Propositidgh3.1we have that, with probability one,

0> 0>
L — Lo| < |L(en) — Lo| + O <6”> = O(en) + O <”>

n
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and
inf |L,, — Lo| = O(on). (3.10)
En

Proof. We have that
|Ln — Lo| < |Ly — L(en)| + [L(en) — Lol.

In Section3.2we discussed thaf.(e,,) — Ly| = O(e,,). On the other hand, Propositi@n3.1
yields
P(B(I'e, — Ko?) C I, C B(I',e,,) eventually) = 1.

Then with probability one, for large enough

Ly — L(ey)| = MBWen)  pll) _ p(Bien) = p(B(Ten =~ Kep)
2571 2571 an

In the following lemma the convergence rate of the last term in the previousaliggis deter-
mined.

Lemma 3.3.5.Assume thaf'(¢) = u(B(I,¢)) is differentiable in a neighbourhood of zero and
that the derivativeF” is continuous at zero. Then

lim #(Dn) =
n—00 QKQ%

0

whereD,, = B(I',e,) \ B(I',e, — Ko2).

Remark 3.3.3. In Lemma3.3.5we assume that the functidi(e) = w(B(I¢)) is smooth in
a neighbourhood of zero. This holds in particular for the boundBrgf a setGG such that a
ball of radius« rolls freely inG and inG¢. In that case, it can be proved that satisfies the
conditions of Theorem 5.6 irederer(1959, see Lemm#.0.6 As we have already observed
this result ensures that'(¢) coincides locally, forr: € (0, «), with a polynomial of degree at
mostd. Therefore Lemma.3.5is enough for our purposes.

Proof. For large enough (sinces,, o, — 0 ando?¢, ' — 0) we have that

M(Dn) _ :LL(B(F’ 5n>) —M(B(F,E—Zn—KQ%))
2K 02 2K 0}
_ F(en) — Fen — KQ%) _ F/(gn)KQ% _ F/(gn)
2K 02 2K 02 2

where we have applied the Mean Value Theorem, bejregpoint in the intervale,, — K 02, ¢,,).
SinceF” is continuous at zero,

/
n—00 ZKQ% 2

= LOa

where the last equality is a consequence3of)(
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By Lemma3.3.5 with probability one,
2
L, — L(n)| = O <9") .
En
Therefore, with probability one,

o, o
Ly — Lo| < |L(en) — Lo| + O <€n> — O(en) + 0 (n) .

n

Now, if we make equal the convergence orders of both terms on the rEgiutgide, then3.10
holds fore,, = 0,,. This completes the proof of Propositi8r8.2 O

As we mentioned at the beginning of the proof of TheoB&81, in the following proposition
we determine the rate far, which guarantees that, with probability oné,c B(Z,20,) N
B(ZY,20,) for large enough.

Proposition 3.3.3.1f ¢ > 0 is large enough then

P (I C B(Z ,20n) N B(Zy, 20,) eventually) = 1,

1
(clogn)dH
On = )
n

ZX¥ ={Z; € X, :d(Z;,T) < o>}, andZY = {Z; € Y, : d(Z;, ") < 02}.

where

Proof. Theorem 1 oDimbgen and Walthd1996 establishes that, far, > 0,

P(I' ¢ B(ZY ,200)) < 0, I1(G, ZY  00), % = X,D,
wherell (G, Z¥ , 0,) = sup,er P(B(z,0,) N ZZ = §). By the Borel-Cantelli lemma, it is
enough to prove prove that

D 0, I(G,ZY on) <00, U =X,). (3.11)
n=1

Letx € I'. SinceZ is uniformly distributed or0, 1] we have that, fop? < e (recall equation

(3.9),
P(B(z,00)NZY =0) = P(Zi ¢ B(z,0,)NB(I,02)NG,i=1,...,n)
= (1—p(B(=z,00)NB(I,03)NG))"
< exp (—nu(B(x, 00) N B(I', 07) N G)) .

Likewise,
P(B(z,00) N ZY = 0) < exp (—nu(B(z, 00) N B(I,02) N R)) .

Lemma3.3.6 stated below is proved iRodriguez-Casa2007). It gives a lower bound for
w(B(x, 0,) N B(T, 02) N G) andu(B(z, 0,) N B(I, 02) N R) for large enough.
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Lemma 3.3.6.If G is under the conditions of TheorerB.1, then there exist constanisg > 0
such thatye € [0, 3], Vz € I,
w(B(z,e) NB(I,e?)NG) > v and pu(B(z,e) N B(I,e%) NGe) > yedtL.
It is easy to prove that if,, is small enough, for exampl€ < e, then
p(B(z, 0n) N B(I', 07) N R) = u(B(x, 02) N B(T, g,) N G°)
and, therefore, by Lemn&3.6
P(B(x,0n) N Z:f/ =0) <exp (—n'ygzﬂ) ., U =X).

It is not hard to prove that for large enough(3.11) is satisfied. Thus, the proof of Proposition
3.3.3is complete. O

Theorem3.3.1is a straightforward consequence of Propositi®i¥], 3.3.2and3.3.3 [

3.3.2 L,- convergence rate

Theorem 3.3.2.LetG C (0,1)? be a nonempty compact set. Assume that a ball of radiss)
rolls freely inG and inGe. Then,

infE|L, — Lo| = O (n—#l)
En

and the optimal order is attained far, = n~1/(d+1),

Remark 3.3.4. The L;-convergence rate for the estimator b based on the empirical ap-
proximation of B(I', ,,) proposed byCuevas et al(2007) is n~ /(%) which is worse than the
L-convergence rate !/ (4+1) attained by the estimator proposed in this chapter. The main rea-
son for this improvement is that smoothing the samgleand),, allows us to choose smaller
radiuse,, of ordern=1/(¢+1) |n Cuevas et al(2007), the order of the optimad,, wasn /(9.

Proof. We have that
|Ly, — Lo| < |Ln, — L(gp)| + |L(en) — Lo . (3.12)

It follows from Propositior3.3.1that, with probability onel’,, C B(I,e,). As a consequence
L, < L(e,) and henceL,, — L(s,,)| = L(ey,) — L,. Taking expectations irB(12 we get

E ’Ln - L0| < L(En) - E(Ln) + ‘L({‘:n) - LO‘ . (313)

Under the stated conditions(e,,) — Lo| = O(e,,). Now, by the definition of,,,

B =& (")) = 5o ([ Tenn(eo)

1
E (Iper, ) pulde) = —— / P(a € Tp(da),
B(Ien)

1

- E 2en
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where we have used again that, with probability aiec B(I, ;). Then,

(L)) = —— (1= P(x ¢ 1) plde)
2en JB(Len)
 uB(le) 1
- a2 L P g D)
1
= L(e,) — %, /B(F,En) P(x ¢ I,)u(dz).
Therefore,
(L) - Len)l = 5 [ 1 P Tt (3.14)

It follows from (3.4) that

P(x ¢ I,) = P(z¢ B(Gnen)NB(Ry,en))
= P(ZL' S B(Gnagn)c U B(ngn)c)
< P(x ¢ B(Gn,en)) + P(x ¢ B(Rn,en))

and hence the left-hand side B.{4) can be bounded above by two integrals. To be precise,

[E(Ln) — L(en)| < QL P(x ¢ B(Gp,en))(dz)
n JB(Len)
+o Pla ¢ B(Ra,e0))pldo)
2en JB(ren)
= (I)+ (II). (3.15)
First, let us consider the term
1
n=-5- o P BGn (i) (3.16)

Letx € B([,e,) ands € I" such thal|x — s|| = d(z, I"). Define
rg =T — 5n77(5),

beingn(s) the outward pointing unit normal vectoratsee Lemma.0.5. Under the stated con-
ditions the vector)(s) is unique. Moreover, ifl(x, I') < « the points € I" such that|z — s|| =
d(x,I) is also unique, see Lemm#a0.7. LemmaA.O0.5ensures thaB(s — an(s),a) C G and
hencexg € G for ¢, < a, see Figure.4. Furthermore,

x ¢ B(Gp,en) = xg=2—en(s) & Gn

which yields
P(x ¢ B(Gn,en)) < P(zg ¢ Gr).
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[0, 1]

Figure 3.4:The dashed area corresponds wWit{I", ¢,,). In Theoren3.3.2we define for: €
B(I',ey,) the pointszg = = — e,n(s) andzg = = + ,1(s). For large enough, z¢ € G and
rp € R.

Replace into3.16) to get

1

(<5 /B . Pl & Guptda), (3.17)

In Chapter2 we bounded probabilities like the one that appears3idid), see 2.4) and
(2.5. However, the estimator was not exactly the samé&asince it was defined with closed
balls, recall 2.3). We prove in AppendiB that it makes no difference whether we consider the
estimator defined with open or closed balls, since with probability one both estiaratequal.
Therefore, the results in Chapt&can also be applied here. Following the same steps &s9n (
if we define a finite family4, ., . unavoidable fo€, we have that

G,

Pzg ¢ Gn) < > PUNX,=0) (3.18)
Uy a

Consider, forA C R¢, the random variablé(A4) = >, Iiz,ca,¢,=1)- Itis easy to see that
¢(A) has a binomial distributio®3(n, p 4) where

pa=P(Z e A{=1)=P=1)P(Zc Al§ = 1) = u(G)Px(A).

Then,
PUNX, =0)=PEU)=0)=(1-uG)Px())"
and replacing?(U N X,, = () in (3.18 we get

Plig#Gu) < Y (1-u(G)PxU)" < Y exp(-nuG)Px(D).  (3.19)
Uls g a UUa o
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In short, we need to define a suitable unavoidable familytfor, and give a lower bound for
Px(U). Remember that the definition of a suitable unavoidable family¢for, depends on
the distance from the points to the boundary”. This distance is easy to compute since, if
2e, < «, then

d(zg,I') = d(x — epn(s), ') = { Ztgg:?; :: i ; g7

From the latter,
en—d(z, I') < d(zg,I') < 2¢,.

Therefore, we can mak&z ¢, I') as small as desired for large enoughLete,, < a/4. Note
thatG , Px, andz satisfy the conditions of Propositié4.2 since we are assuming that a ball
of radiusa rolls freely inG and inG¢, Py is the uniform distribution orfy, andzg € G with
d(zg,I') < a/2'. By Propositiorn2.4.2 there exists a finite famildt,,, /2 with mo elements,
unavoidable fo€,, ,/» and that satisfies

d—1
a\ 2 d+1
Px(U) 2 Ly (5) 7 daa, D)5, U €Usgapo

whereLs > 0is a constant. Turning t@(17) and 3.19,

1 (6% % d+1
< a_ — _ arl
(I) < 2 Jniren) Mo exp< nu(G) Lo <2> d(zg,I") 2 >M(d$)
! a5t
< o - JR— _ =1 =
T 260 JB(Ien) " eXp< ni(G) Ly <2> (en —d(x, ")) 2 >u(da;)
1
= 2, gnld(z, I')) p(dz),
En B(len)
a1 da+1

beingg, (z) = moexp(—nu(G)Ly (§) 2 (en—2) ). Itfollows from the change of variables
formula that

En
[ aldte.Putde) = [ on(olnT o)
B(Ien) 0
beingp = d(x, I') andu7 ~! the measure oR characterized by
F(z)=pf{z eR?: d(z, 1) < z} = p(B(T, 2)).

As we have seen, fdr < z < «, F(z) is a polynomial of degree at mogtin z. Therefore, it is
a differentiable function and”(z) is bounded on compact sets. In short, we obtain

1)< 5 /0 9alp)Fp)dp < 5K /0 " gu(p)dp. (3.20)

We apply PropositioR.4.2with r,, = a.
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By the change of variablgs= ¢,, — p we obtain

/Oa” gn(p)dp = /05" s exp <n,u(G)L2 (%) = (en — p)d.gl> i

= /Oen Mg exp <—n,u(G)L2 (%)T t

d—1

Letu =nu(G)La (%) 2 t“5". Then,

|
—
Y
m‘+
N———
IS
o

En d—1
/ Mg exp (—nu(G)LQ (%) : thzrl> dt
0
/W(G)Lz(g)d?lsjgl 1 (Oé)—ilﬂ s 1_dd
= mo — n~dtie “ydtiduy
o (G L) \2
=0 <n_%) .
Finally, replace in 8.20 to get
2
(I)=0 (q%‘m) . (3.21)
It remains to study the term
1
(=5 [ Pl ¢ Bluz)uldo)
€n JB(Ien)

Again, letz € B(I',e,) ands € " such that|z — s|| = d(z, I"). We define
TR =T+ enn(s).

For large enough we have that:p € G¢, see Figure3.4. Note that Lemma\.0.5 ensures that
B(s + an(s),a) C G¢. Therefore, it suffices to considey, < « in order to guarantee that
xr € G¢. Moreover,

x ¢ B(Rp,en) =z =x+¢enn(s) ¢ Ry,

and hence
P(x ¢ B(Ry,en)) < P(xr ¢ Ry).

As we explained before, the definition of unavoidable families helps us tafingpper bound
for P(zr ¢ Ry,). Thus, ifi,,  is a finite and unavoidable family f@t,,, ., then

1
1) < g [ Plng Rt
! S° (1= w(R)Py (U))" ()

220 JB(ren) ydy
TR,

1
5 > exp(—nu(R) Py (U))p(d). (3.22)
En JB(Ien) Uy py o
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We obtain 8.22) using the same arguments as3nl@ but definingé (A) = > 1" Tr7.c 4 ¢,—0}-
Now, if 2¢,, < «a,

d(zg, I') = d(z +eun(s), I') = { i:t%:g :I ; i g

Therefore,
en—d(x, ') < d(zg,I') < 2, (3.23)

andd(zg, I") can be as small as desired for large enougHowever, in this situation we cannot
directly apply Propositior2.4.2in order to define unavoidable families. As we have already
discussed in SectioB.2, the setk does not satisfy Assumption (Al). We need the following
auxiliary result.

Lemma 3.3.7.LetG c (0,1)% be a nonempty compact set. Assume that a ball of raglits0
rolls freely inG and inGe. Let0 < oy < a and

S:B(F,ao)ﬂ@.

ThensS is a nonempty compact set such that a ball of raditis> 0 rolls freely in S and in S¢,
beinga* = min(ap/2, o — ayp).

Proof. It can be easily seen th&tis a nonempty compact set. Note thais defined as the
intersection of compacts sets. In order to prove the result we shall deetihf of radiusy /2
rolls freely in S and a ball of radius: — o rolls freely in S¢. In Figure3.5we show the main
elements considered in this result. First, we need to deteréifin&Ve have that

S = I'U (0B(I', ap) N G©). (3.24)

Equation 8.24) can be easily deduced using the definition of boundary of a set, Lelnng
and basic properties on the behaviour of the closure of the finite unictsf s

9S = B(I,a0) NG N (B(I,ap) NGe)e
(B(I', a) N G%) N (B(T, ap)¢ U G)

(B(I',a9) N G°) N (B(I, a9)¢ U G)

(B(I',a9) N B(I, a9)¢ N G) U (B(T, ) N G N G)
(OB(I,ap) NGE) U T.

Moreover, we shall see that
OB(I'y o) = {z € RY: d(z,T) = ap}.

SinceB(I',ap) = {x € R?: d(z,I") < ag} and the functioni(-, I) is continuous, it follows
easily thatd B(I',ag) C {z € R? : d(x, ') = ap}. On the other hand, it is not difficult to
prove that, by the free rolling condition i@ and inG¢ and sinced < oy < a, {z € R? :
d(z,I") = ap} C OB(I, ap). Therefore, we have

OB(Iap)NGE={x € G¢: d(x,T) = ap}, (3.25)
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To summarize,3.24) and .25 characterizé).S. Now we are ready to complete the proof.
Lets € 0S. We shall see that there exists= S such thats € B(z,a0/2) C S. By (3.24 and
(3.25, we must consider two different situations.

i) Suppose that c I'. The free rolling condition iy and inG¢ guarantees that there exists
n(s), such that € B(s + an(s),a) C G¢. Define

r=s+ %77(3)
2
and then
s € B(z,a0/2) C B(s + an(s),a) C G-.

Moreover,B(z, ap/2) C B(I',ap) since for ally € B(z, ap/2) we have

Qg Qg
dy, 1) < lly = s < lly =l +llz = sl < 5+ = = a0.

In short,s € B(x,ap/2) C S.

ii) Now suppose that € OB(I',ag) N G¢. By (3.29, d(s,I") = ap. LemmaA.0.7 estab-
lishes that there exists a unique pair I" such that|s — t|| = «p. Moreover, by Lemma
A.0.1, s = t + agn(t), beingn(t) the unique unit vector such th&(t + an(t), a) C Ge.
Again, if we define

Qg

(7))
r=s 2?7() +277(),

then we get € B(z,a0/2) C S.

It remains to prove that a ball of radius— o rolls freely in.S¢. Note that, since a ball of radius
ap/2 rolls freely in S, it follows from LemmaA.0.2 thatdS¢ = 9.S. Moreover

S = (B(I',ap) N Ge)¢ = B(I, ap)° UGS = B(I, a0)¢ UG = B(I, ap)¢ U G.
Letz € 9S¢. Again, we must consider two different situations.
i) If s e I, then

s € B(s—an(s),a — ag) C B(s —an(s),a) C G C Se.

i) If s € dB(I,ap) NG<, we have proved that(s, I') = o and there exists a uniques I’
such that|s — t|| = «ap. Let

r=s+ (a—ag)n(t) =t+ an(t).

Thens € B(z,a — ap) and it is straightforward to verify thd(z, o — ap) C S°.

The proof is complete. O
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_____

[0, 1]

Figure 3.5:In greenG. A ball of radiusa rolls freely inG and inG<. Ingray S = B(I', ap) NG,
wherea < . A ball of radiusag /2 rolls freely in S. A ball of radiusa — g rolls freely in Se.

Turning back to the proof of Theoref3.2 recall the definition ot given in 3.9) and let
ap < min(e, ). By Lemma3.3.7, S = B(I', ) N G¢ is a nonempty compact set such that a
ball of radiusa* > 0 rolls freely in.S and inS¢, beinga* = min(ag/2, a —ag). Lete, < o* /4
and then the following results hold.

i) S C R, since by assumptiong < e.
i) xr € S. Note thatrr € G¢ sincee,, < a andd(xg, I') < 2, < ag.
i) d(xg,08) =d(zgr,I") < a*/2. We prove this equality by using that
d(zg,0S) = min(d(zr, I'),d(xr, 0B(T, apg) N G°)).

Suppose that(z g, I') > d(zg, O0B(I", ap)NG) = ||zr — z||, with 2 € dB(I, ap) NGE.
We shall see that this yields a contradiction. Singe= x + ¢,,n(s) with s € I, we have
that

d(z, ') < ||z = sl < [lz = zgll + lzr = s]| < 2d(zR, ') < 4e, < @™ < ay,

where we have use®@23. However, by 8.25, d(z,I") = «y. Therefored(xzr, dS) =
dzg, I') < 2e, < /2.

To summarize, we have defined a nonempty compac$ set R such that a ball of radius
a* > 0 rolls freely in S and inS¢. Moreover,zg € S with d(zg,dS) = d(zg,I") < a*/2,
for large enoug. Let us consider the random variab¥g; with uniform distribution onS.
Then, by PropositioR.4.2there exists a finite family/,. , .~ with m, elements, unavoidable for
Erp.or and that satisfies

uns d—1
Py (U) = M(,U(S)) > Lya* 7 d(ag, )5,



3.3 ASYMPTOTIC BEHAVIOUR OFL,, 103

forall U € U, o+, beingLy, > 0 a constant. We prove in Lemn®a3.8thatlf, , - is also
unavoidable forg,,, , sincea® < a. Use thatY is the uniform distribution on? and that

S C Rto obtain that, for alll € Uy, o+,
p(UNR) _ pUNS)  p(S)
Py (U) = > = Px.(U) >
A TO R TR

Turning back to 8.22 we obtain

1 pd=1 dt1
(IT) < /B(F )mQ exp (*HM(S)LQQ > d(zp,I') 2 >,u(d:p).
sEn

p(S) o st af1
L ns.
(R) 200" 2 d(va ) 2

=

— 2e,

Analogous to the term (1), we get

(I1) = O(e \n~ @), (3.26)
Replace 8.21) and @.26) into (3.15 and then
[E(Ln) = L{zn)| = O(ey 'n” 7). (3.27)

Now, going back to%.13 and using 8.27) and the fact thatL(e,,) — Lo| = O(e,), we get that
E|Ly — Lo| = O(e;, ' n™#7) + O(en).
Making equal the convergence orders of both terms in the right-handvsidétain the optimal
convergence order fd& |L,, — Lo|. Therefore, fo,, = n~1/(¢+1)
E|L, — Lo| = O (n‘ﬁ) .
The proof of Theoren3.3.2is complete. O

Lemma 3.3.8. Letl/, ., be an unavoidable family fd&, ,,, withry > 0. Thenlt;, ,,, is unavoid-
able for&, ., forr > ry.
Proof. Lety € B(z,r). If |y — z| < ro, then by definition of unavoidable family fd, .,
there existd/ € U, ,, such that

U C B(y,r0) C B(y,r).
Suppose thaty < ||y — z|| < r and define
Yy—x
ly — =

Then, there exist§/ € U, ,, such thaty C B(y*,r9) C B(y,r) since, for allz € B(y*, o),
we have that

yx =T+ 10 € B(z, ).

Iz =yl < llz =yl +lly" =yl <o+

— T
T+ royi - yH
ly — =l

To
ot (1—) ly =zl = ly— <l <
e

This completes the proof of the lemma. O






Chapter 4

Implementation issues and simulation
results

4.1 Introduction

In the previous chapters we have discussed the support and sarécestimation problems
from a theoretical point of view. We now turn our attention to how practicallysis can be
carried out in thdk computing environment.

Some of the estimators defined in Chaptesuch as the Devroye-Wise support estimator,
are easy to understand and implement. The implementation aftlo@vex hull, however, is not
so immediate and some effort is required in order to compute it efficieBtglsbrunner et al.
(1983 proposed an algorithm to construct heonvex hull of a finite set of points iR2. The
algorithm is based on the closed relationship that exists between this comstcuDelaunay
triangulations. Following the methodology describedHxelsbrunner et a[1983, we have
programmed the-convex hull of a sample. To be precise, we have programmed the complemen
of the a-convex hull of a sample, which can be written as a union of open balls @ffpldnes.
Many times, however, our interest lies in the surface area of a set daoumength inR?)
rather than in its support. Given tlhieconvex hull of a sample we can compute its boundary
length by adding the lengths of the arcs that form its boundary. Anothertavastimate the
boundary length of a set is by using theshape of a sample of points taken in it. The notion
of a-shape, briefly discussed in Chapfetis derived from a generalization of the convex hull
definition. This construct is also closely related to the Delaunay triangulaimhan algorithm
for determining thex-shape of a finite set of points is given ludelsbrunner et a(1983. We
have also implemented this algorithmi An alternative perspective to the boundary length
estimation problem relies on the notion of Minkowski content. Based on thismatid on the
a-convex hull implementation, we can compute the boundary length estithatdiscussed in
Chapter3. Note thatL,, is defined from thex-convex hull of two given samples. Therefore,
we consider in this chapter two different approaches to the boundagthlestimation problem,
depending on the available information. If the information comes from a sanfipleirats in
the set of interest, then we estimate the boundary length of the set via the teeifree support
estimator such as the-convex hull estimator or the-shape estimator. If we are provided with
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a sample of points in the set and in its complement, then we estimate the boundahydeng
the set via the Minkowski content. We shall refer to these two differerditsins as one sample
approach and two sample approach, respectively.

This chapter is organized as follows. Sect@ starts by discussing some computational
issues in then-convex hull estimator. A brief overview of the Voronoi and Delaunag-ge
metric structures is included along with the description of the implementation algouithine
a-convex hull. Sectiod.3is devoted to the boundary length estimation problem, more precisely
to the two sample approach. We present the results of a simulation study ostithater L,,
defined in ChapteB. Section4.4is devoted to the one sample approach, stressing-tsteape
estimator. All the programmed functions have been put togeth& jpackage format. The
resulting library of functions, namead phahul | , is intended to provide a means of better un-
derstanding the different estimators discussed throughout this dissert&tedails on how to
use the package and short scripts to execute some basic examplesréed msag the chapter
in typewriter font. More extended documentation of the package is availaBlgdandixC.

4.2 Programming thea-convex hull

Let S be a nonempty compact subset®f and letX,, = {X;,..., X,,} be a random sample
from X, whereX denotes a random variable with suppSrt Remember that, fott > 0, the
a-convex hull ofx,, is given by

Cu(X,) = N (é($,a))c. (4.1)

{B(z,0): B(z,a)NX,=0}

Edelsbrunner et a(1983 defined a similar construct, thehull of a finite set of points, for an
arbitrarya € R. According to the terminology used IBdelsbrunner et a{1983, thea-convex
hullin (4.2) coincides with the-1/«a-hull. By DeMorgan’s law, the complement 6§, (X,) can
be written as the union of all open balls of radisvhich contain no point oft,,, that is,

Co(X,)S = U B(z, a). (4.2)

{B(z,a): B(z,a)NX,=0}

This representation of’,(X,,)¢ provides a means of computing theconvex hull. Thus,
the problem is to determine the union of the open ballsdi2)( The solution to this prob-
lem is closely related to the Voronoi diagrams and Delaunay triangulations.prévéde a
brief introduction to these geometric structures which are further disgéuss&urenhammer
(1997, Aurenhammer and Kleiif2000, andMgller (1994, among others. A tessellation or
mosaic of thel-dimensional Euclidean spad¥ is a subdivision oR¢ into d-dimensional non-
overlapping sets. Depending on the situation, these sets are called gadtals;rregionsetc
The Voronoi diagram is one of the most attracting tessellations since it gomddels for many
natural phenomena and has numerous mathematical and statistical applicatdsfine the
Voronoi diagram of a sampl&,, in R2. This definition can be straightforwardly generalized to
the d-dimensional Euclidean space and to a deterministic finite set of points.
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Definition 4.2.1. The Voronoi diagram of, is a covering of the plane by regionsV;, where
fori=1,...,n,

Vi={r eR?: |z — X;|| < ||z — X;| forall X; € X,}.

Remark 4.2.1. Definition 4.2.1 corresponds with the closest point Voronoi diagram defined
by Edelsbrunner et al(1983, who distinguishes between closest and furthest point Voronoi
diagram.

For each sample poink;, the setV; consists of all points ilR? which haveX; as near-
est sample point. The cellg are closed and convex and they can be proved to have disjoint
topological interiors. The cell; is unbounded if and only iX; is a point which belongs to the
boundary of the convex hull of,,. OtherwiseV; is a nonempty convex polygon. Figutel (a)
shows the Voronoi diagram of a uniform random sample ofgize30 on the unit square. Each
regionV; contains the poin;. The dashed lines represent the semi-infinite line segments of
the unbounded Voronoi cells. Two sample poiAtsand X ; are said to be Voronoi neighbours
if the cellsV; andV; share a common point.

Another interesting structure, closely related to the Voronoi diagram, is ¢éteeubDay trian-
gulation.

Definition 4.2.2. The Delaunay triangulation at’, is defined as the straight line dual to the
Voronoi diagram ofY,, that is, there exists a straight line edge betweégrand X ; if and only
if V; andV; are Voronoi neighbours.

Figure4.1 (b) shows the Delaunay triangulation of the above-mentioned uniformorand
sample. Each Delaunay cell is a triangle whose vertices are sample pointhasel circumcen-
tre coincides with a Voronoi cell vertex, see Figdr Observe that the Delaunay triangulation
constitutes a tessellation of the convex hulAgf.

There is a one-to-one correspondence between the Voronoi diagrdrine Delaunay tri-
angulation. The algorithm for the construction of the Voronoi diagram sethan this duality.
Edelsbrunner et a(1983 underlines the fact that both the Voronoi diagram and the Delaunay
triangulation can be constructed@nn log n) time. Moreover, the Voronoi diagram can be con-
structed from the respective Delaunay triangulatio®im) time and vice versa. Lemm&a2.1
stated below is the key result that relates the problem of compatirig’, )¢ in (4.2) with the
Voronoi diagram and Delaunay triangulation. &&kelsbrunner et a{1983 for the proof.

Lemma 4.2.1. Leté(x, r) be an open ball which does not contain any point of a sample
Either B(x, r) lies entirely outside the convex hull &f, or there is an open ball which contains
B(z,r) but no points oft;,, and which has its centre on an edge of the Voronoi diagrasi,of

Note that by Lemma.2.1, the union of open balls ird(2) can be reduced to the union of
open balls with centres on the edges of the Voronoi diagram which doomdaio any point
of the sample and whose radii are greater or equal.td@his fact considerably simplifies the
problem of computing4.2). Anyway, the union of open balls with centres on the edges of the
Voronoi diagram which do not contain any point of the sample and whendieare greater or
equal tox is still too complex. How can we compute these sets? Let us consider the fajlowin
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(@) (b)

Figure 4.1:(a) Voronoi diagram of a uniform random sample of size- 30 on the unit square.
The dashed lines represent the semi-infinite line segments of the urdolovornoi cells. (b) In
blue the Delaunay triangulation dual to the Voronoi diagram.

Figure 4.2:Uniform random samplet,, of sizen = 10 on the unit square. In green Voronoi
diagram ofX,,. In blue Delaunay triangulation. Each Delaunay cell is a triangle whose ver

tices are sample points. The circumcentre of each Delaunay triakighe; X, coincides with a
Voronoi cell vertex.

two possible situations. First, Iéf; and X; be two Voronoi neighbours such that the céfls
andV; share a common closed line segmgnb], see Figuret.2 It follows from the duality
between the Voronoi diagram and the Delaunay triangulation that the uhmpea balls with
centres on the edde, b] which do not contain any point of a sample is equal to

B(a, la— X)) U B, [Ib — X)),

see Figuret.3 Therefore, the existence of an open ball with cemtom [a, b] and radiusy such
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that B(z, o) N X,, = 0 will depend on the values — X; | and||b — X;].

Y BB Ib- X
Ve B

Figure 4.3:Consider the sampl&, in Figure4.2 The pointsX; and X; are Voronoi neighbours
such that the cell¥; andV; share a common closed line segment]. The union of open balls
with centres on the edge, b] which do not contain any point &f, is equal toB(a, [la — X;[|)U
B(b, |[b— Xil).

Second, letX; and X}, be two Voronoi neighbours such that the céllsandV;, share a
common semi-infinite line segmefat, +c0) , see Figurel.2 Now, the union of open balls with
centres on the edde, +oo) which do not contain any point of a sample can be written as

B(a, |la — X)) U H(X;, X),

where H (X, X;;) denotes the open halfplane defined by the straight line thradgand X,
see Figuret.4. The existence of an open ball with ceniren [a, +00) and radiusy such that
B(z,a) N &, = 0 will depend on the valuéa — X

All these considerations have been taken into account in the programmthg obmple-
ment of thea-convex hull. As the number on edges in the Voronoi diagram is linear see
Edelsbrunner et a(1983, is follows thatC,, (X, )¢ can be written as union @(n) open balls
and halfplanes. Note that for each edge of the Voronoi diagram, the ahiopen balls with
centres on it and radius which do not contain any point of,, can be written as the union
of at most four open balls or halfplanes. To summarize, the algorithm fordhstruction of

Co(X,)¢ is as follows.
1. Construct the Voronoi diagram and Delaunay triangulatioft,of

2. For each edge of the Voronoi diagram determine the union of openvigligentres on
it and radiusy which do not contain any point o¥,,.

3. OutputCy, (X,)°.

OnceC, (X, )¢ is constructed we can decide whether a given poifi’dfelongs to the-convex
hull or not, by checking if it belongs to any of the open balls or halfplanasftdrm the comple-
ment of thea-convex hull. Moreover, the boundary 6f,(X,,) can be completely determined
and hence, we can also measure the perimetét, ok, ).
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Figure 4.4:Consider the sampl&, in Figure4.2. The pointsX; and X}, are Voronoi neighbours
such that the cell3; and Vj, share a common semi-infinite line segment-cc). The union

of open balls with centres on the edge+oo) which do not contain any point of,, can be

written asB(a, ||a — X;||) U H(X;, Xp).

We next show an example on how to use éhghahul | library to compute thex--convex
hull of a uniform random sample of size= 30 on the unit square. The following commands
generate the sample and return the corresponding Voronoi diagrabedaughay triangulation.
We also produce a plot of the resulting geometric structures.

> |ibrary(al phahul I')

> sanpl e<-matri x(runif(60), nc=2)

> info<-informvor.tri(sanple)

> pl ot (sanpl e[, 1], sanmpl e[, 2])

> add. voronoi (i nfo$mat . i nf o, col =3)

> plot(info$tri.obj,add = T, col =4)

The functioni nf or m vor . tri invokes internal functions from thERI PACK package. The
TRI PACK is a Fortran 77 software package that employs an incremental algorithmdtract
a constrained Delaunay triangulation of a set of points in the planeReaka(199. We
have programmed the Voronoi diagram from the Delaunay triangulatiomestiyTRI PACK.
The matrixi nf o$mat . i nf o contains all the information relating to the Voronoi diagram and
Delaunay triangulation of the sample.

> info$mat.info[1l:5,]

11 112 | 21 | 22 nil
[1,] 0.7348463 0.5473715 0.7333052 0.7953018 0. 7869268
[2,] 0.9059224 0.6084090 0.7348463 0.5473715 0. 7869268
[3,] 0.8693576 0.5464288 0.7348463 0.5473715 0. 8026671
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mL2 ne1 m22 dunl dun? 11 12 nl n2
[1,] 0.6716652 0.6892330 0.6710579 0 0 15 28 1 39
[2,] 0.6716652 0.8026671 0.6275482 0 0 115 1 2
[3,] 0.6275482 0.8017665 0.4990455 0 0 4 15 2 13

For each row of nf o$mat . i nf o, the columnd 1, | 2, nl, andn? store the indexes
of two Voronoi neighbour sample points and the corresponding verticéeshared Voronoi
edge, respectively. Their coordinates are given by the first eightroes. Finally,duni and
dun? indicate whether the vertices of the Voronoi edge are infinite or not, thatisther the
shared edge is a closed line segment (lwhthil anddun® equal to zero) or an semi-infinite
line segment.

> al pha<-0. 15

> conpl <-conpl enent (al pha, i nfo$mat . i nf 0)

> shape<- al pha. shape(i nf o, al pha)

> ahul | <-al pha. hul | (shape, conpl)

> plot.ahull (ahull, pvor =T, pdel =T, pshape=F, new=F, col =2)

Figure 4.5:Uniform random sampl&’,, of sizen = 30 on the unit square. In red the boundary
of Cy (X)) for @ = 0.15. The boundary is determined by arcs of balls of radiuthat hit the
sample (dashed balls) and isolated sample points.

The functionconpl ermrent returns the open balls and halfplanes determining the com-
plement of thew-convex hull for a given valuer > 0. In order to plot the boundary of the
a-convex hull, we need to determine which of the balls with radius the complement hit two
Voronoi neighbour points. This is closely related to the concept-néighbours, recall Defini-
tion 1.5.2 The functional pha. shape returns, among other arguments, thi@xtremes and
a-neighbours of the sample. The functiahpha. hul | returns the boundary of the-convex
hull and its length. By using the information provided by the functidrpha. shape, we
characterize the boundary of theconvex hull by arcs of balls of radius that hit the sample
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and isolated sample points when this is the case, see Mgbir&he perimeter coincides with
the sum of the lengths of the arcs that form the boundary. For examptbegfdiscussed sample
anda = 0.15, we have

> ahul | $l engt h
[1] 4.900739.

We can also determine whether a given poiriRfnbelongs to thex-convex hull or not by means
of the functioni n. al pha. hul | .

> in.al pha. hull (ahull,c(0.5,0.5))
[1] FALSE

> in.al pha. hull (ahull,c(0.2,0.5))
[1] TRUE

Finally, the functionpl ot . ahul | produces a plot of the boundary of theconvex hull. If
desired it also adds the Voronoi diagram, the Delaunay triangulation ar-#rape oft,, to the

plot, see AppendixC for more details on the use of these functions. An in-depth study of the
a-shape is given in Sectiof.4. In Figure4.6 we show then-convex hull of X, for different
values ofa. Itis clear from the plots that', (X),) changes considerably depending on the value
of «. We discuss the choice ofin Sectiord.4.

(@) (b) (©)

Figure 4.6:We plot in red the boundary of theconvex hull of a uniform random samplg, of
sizen = 30 on the unit square. (ay = 0.13. (b) « = 0.2. ()« = 0.3.

4.3 Boundary length estimation: the two samples approach

Let G C (0,1)% be a nonempty compact setlk?. In this section we present the results of a
simulation study comparing the behaviour of two boundary length estimatore &drim

I
L, = M( n),
2e,
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wherer’, is an estimator o3(0G, ,,). In this situation the sampling information is assumed
to be given by i.i.d. observation1,&1), ..., (Z,, &,) of arandom variabl€Z, &), whereZ is
uniformly distributed on the unit squaf@, 1]* and¢ = I;zcqy. Let X, = {Z;: & = 1} and
Yo ={Z; : & = 0}. First, we consider the estimatéy, proposed byCuevas et al(2007), that
is, with

Iy = B(Xy,en) N B(Vn,en)-
We shall denote this estimator "V sincer’, is defined as the intersection of two Devroye-
Wise estimators. Second, we consider the estimatowith

Iy = B(Co(Xy),en) N B(Co(Vn), en)-

We shall denote this estimator By sincel’, is defined from thex-convex hull ofx;, and),.
Before presenting the simulation study, we briefly comment on some aspdhtsiofplemen-
tation of both boundary length estimators. The main difference bet&&&h and LS resides

in the construction of ;,. Oncel’, is obtained, the procedure for computingl’;,) is similar.
Cuevas et al(2007) comment on the difficulty to give the exact valueigfl},) and suggest the
possibility of approximating:(7,) by using the Monte Carlo method. Thus, following the no-
tation inCuevas et al(2007), let Z7, . . ., Z; be a random sample, independentf. . ., Z,,
from the uniform distribution orf0, 1]2. For bothL?" and L2, we have thaf’, [0, 1], with
probability one for large enough, andu(1,) = P(Z € I,). For largeB,

() = i1 Lzren,

UB\Ln) = B

approximates.(/,). There are alternatives to this design, €eez-Orive(2001/03 for a tutorial
on geometric sampling. For example, instead of generdfingdependent point&y, ..., 75

from the uniform distribution o0, 1]2, we can proceed as follows. We divide the unit square
into b by b cells and generate a uniform random paint (x1,x2) on[0,1/b]%. Then,

{(xl—l—z,xg—i—?)),i,j—O,...,b—l}

constitutes a so-called systematic sequendé pbints on[0,1]2, 73, .. ., Zy,, see Figuret.7.
As before,
2
El?:]_ H{Z-*Epn}
(1) = === (4.3)

approximates.(77,). One of the advantages of the systematic sampling design is that we only
need to generate one sample painfurthermore, we have noticed in practice that the estima-
tions we obtain with this procedure are more stable than with the Monte Carlo sgmydthod.
Thus, the systematic sampling design allows us to efficiently estip(dte) with fewer points,
reducing the computational cost.

Once we have explained the method to estimdtg, ), the problem reduces to determining
whether a given poinZ; belongs tol;, or not. Let us first consider the estimatof™V. It is
easy to see thdf* € I, for all ¢,, such that

eu = max{min{|Z; - Zy[, & = 1, min|1Z — Z4], & = 0}
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Figure 4.7:Systematic design.

Let us now consider the estimatdf,. Then, I, is defined as the intersection of the dilations
of radiuse,, of both C,,(X,,) andC,(),,). In Section4.3 we explained how to compute the
a-convex hull of a given sample. In order to determingifbelongs tal’;, we have programmed
the functioni n. BTnEn . The arguments of this function are theconvex hull ofx,, and,,
the pointZ;, and the radius,,. The procedure is as follows. The auxiliary functnl at i on
returns the distance&y anddy from Z* to C,,(&,,) andC,(Y,,), respectively. ThenZ* € I,

for all £,, such that

en > max{dy,dy}.

Figure4.8 gives insight into the procedure for determinifig for both LW andL¢. In Figure
4.9we represent the sét, for the estimator.2".

(a) (b)

Figure 4.8:SampleX;, = {X1,..., Xy} (black dots). (a) The dashed green area corresponds
to J¥_, B(Xi,20). The pointy belongs toJF_, B(X;,¢) for all ¢ > min{|ly — X, i =
1,...,k}. (b) In green boundary of’,(X)). The pointz belongs toB(C,(X%),e) for all

e >d(z,Co(Xk)).
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Figure 4.9: Uniform random sampléZ;,&;), i« = 1...,1000, on the unit square. In green
B(X,,e,) and in red (dashedB(V,, ), for ,, = 0.03. The intersection of both regions,,,
estimatesB(0G, ,,). The original set is represented in Figu4el0(a), below.

4.3.1 Simulation study

In order to evaluate and compare the behaviouEpfand LPW | we have considered two dif-
ferent sets, see Figu#el0(a), (b). We denote them by andC, respectively, referring to their
shape. We have chosen these sets for several reasons. Firstparhdilsag rolls freely in

S and inS¢ for someas > 0. The same property holds fat, beingac > ag (note thatC' is
wider thans). In fact,ag = 0.035 whereasyc = 0.1 Therefore,S andC fulfill the conditions
under which the theoretical properties of the estimators have been obt&eeahnd, we know
for both sets the exact value of the boundary length, see Pahlesince they are constructed
from a union of arcs. We shall use this information to evaluate the perfarafrihe estimators.

S C
Boundary length 3.16 2.51

Table 4.1:Boundary length of the setsand C' in Figure 4.10

Proceeding as in the simulation study carried ouCuevas et al(2007), both estimators
L and LP" have been evaluated for 500 samples of sizes1000 andn = 5000. Regarding
the parameters, we have chogsen= 0.03 and have slightly modified the estimatby for the
setC. Note that, by definition, we should estimate bétrand [0, 1)? \ int(C) with the same
parameteryc. However, it is clear that both sets areconvex for different values af. For this
reason we estimatB(9C, ¢,,) by means of

Fn == B(CO.2(Xn)7€n) N B(CO.l(yn)ygn)'

We have considered 250 equidistant values,pfrom ¢,, = 0.001 to &,, = 0.250. The resam-
pling parameteb, used in the systematic design described at the beginning of this section, is



116

CQHAPTER4. IMPLEMENTATION ISSUES AND SIMULATION RESULTS

(@)

(b)

0.4 0.6 0.8 1.0 0.0 0.2

Figure 4.10:(a) SetS. (b) SetC.

0.4 0.6 08 1.0

b = 40. Therefore, we approximatg(/;,) by evaluatingl 600 points of the unit square, recall
the definition ofy,2 (17,) in (4.3). First, we show the results for the g8t Tables4.2and4.3
provide, forn = 1000 and some values af,, the average, standard deviation and median of
both LS and LEW computed from the 500 replications. The same resultspfer 5000, are
shown in Tableg.4, 4.5. Finally, we plot the Mean Square Error (MSE) fbf and L2 with

n = 1000, see Figuret.11(a), andn = 5000, see Figuret.11(b).

En

0.001 0.020 0.039 0.058

0.077 0.096 0.115

Average
Std. deviation
Median

En

0.00000 0.81684 1.60635 1.91578
0.00000 0.12498 0.08362 0.05696
0.00000 0.81250 1.60256 1.91810

0.135 0.154 0.173 0.192

2.07226 2.16685 2.19261
0.04453 0.03623 0.02738
2.07386 2.16634 2.19293

0.211 0.230 0.250

Average
Std. deviation
Median

2.09326 2.00396 1.93119 1.86917
0.02214 0.01916 0.01772 0.01607
2.09491 2.00487 1.93280 1.87174

1.81670 1.76831 1.72203
0.01479 0.01375 0.01250
1.81724 1.76902 1.72313

Table 4.2:Average, standard deviation and median/gf for the setC', based on 500 uniform
samples on the unit square with sample size n=1000.

Regarding the results for the st and for the sake of brevity, we only show the summary
results corresponding to the sample size 5000. Tables4.6and4.7provide, forn = 5000 and
some values of,,, the average, standard deviation and median of ﬁﬁthndLSW computed
from the 500 replications.

At this point, we make some comments on the behaviour of the estithgtdfirst of all, we
must admit that the results are not so good as expected, according todhetitta properties
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€n 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 0.31344 1.29790 1.81036 2.03090 2.14738 2.18399
Std. deviation 0.00000 0.07044 0.08990 0.06049 0.04526 0.03688 0.02873
Median 0.00000 0.31250 1.29808 1.81304 2.03328 2.14518 2.18750

€n 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.08929 2.00265 1.92996 1.86910 1.81660 1.76830 1.72173
Std. deviation 0.02216 0.01923 0.01753 0.01630 0.01509 0.01385 0.01268
Median 2.09028 2.00487 1.93100 1.87012 1.81724 1.76902 1.72250

Table 4.3:Average, standard deviation and median’/gf"" for the setC, based on 500 uniform
samples on the unit square with sample size n=1000.

€n 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00625 1.92284 2.21537 2.31475 2.36476 2.39559 2.32049
Std. deviation 0.04379 0.07450 0.04173 0.02872 0.01985 0.01697 0.00994
Median 0.00000 1.93750 2.21955 2.31681 2.36607 2.39583 2.32065

€n 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.18389 2.08127 1.99714 1.92794 1.86857 1.81365 1.76147
Std. deviation 0.00811 0.00698 0.00647 0.00575 0.00585 0.00488 0.00503
Median 2.18519 2.08198 1.99783 1.92708 1.86908 1.81386 1.76125

Table 4.4:Average, standard deviation and median/gf for the setC', based on 500 uniform
samples on the unit square with sample size n=5000.

of the estimatorL$. A larger sample size might produce more remarkable features although
the computational cost substantially increases &slarger. In spite of this first discouraging
impression, we have noticed some interesting peculiarities we next discuss.

1. As happened with the estimatbf’"V', seeCuevas et al(2007, L% underestimates sys-
tematically the true valué,. The bias decreases as the sample size increases.

2. The variance also decreases by increasing the sample size.
3. The bias is the main source of errorfif.

4. We have also observed that the values of the mean and the medianyactoser This
suggests that the sampling distributions are almost symmetric.

Apart from the previous conclusions, we consider that it is interestingrtgpare the behav-
ior of L2 and LPY. While neither of theses alternatives feature an accurate approximation to
the target, we observe that:
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€n 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 1.51294 2.11728 2.27876 2.35119 2.39009 2.31759
Std. deviation 0.00000 0.08438 0.04194 0.02651 0.01956 0.01627 0.00988
Median 0.00000 1.51562 2.11538 2.27909 2.34984 2.38932 2.31793

€n 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 2.18235 2.08006 1.99712 1.92790 1.86846 1.81317 1.76156
Std. deviation 0.00800 0.00741 0.00675 0.00600 0.00569 0.00512 0.00496
Median 2.18287 2.07995 1.99603 1.92871 1.86759 1.81386 1.76125

Table 4.5:Average, standard deviation and median/gf"" for the setC, based on 500 uniform
samples on the unit square with sample size n=5000.

(a) (b)

Figure 4.11:Mean Square Error (MSE) df¢ (solid line) andL>" (dashed line) for the se&t.
(@) n = 1000. (b) n = 5000.

1. Interms of the Mean Square Error (MSE), the estimafpmimproves the results obtained
with LPW | see Figuret.11 These differences are more obvious for small values of the
smoothing parameter, and they are mainly due to the bias term, which is smaller for the
estimatorLy.

2. Observe that the differences between both estimators is less obvigusaseases. The
reason is that when we dilate both estimators with large valugsg ttie influence of those
points ofG,, and R,, which are not inX,, and)/,, is not noticeable any more.
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€n 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00000 1.94110 2.64593 2.60890 2.36584 2.18777 2.05832
Std. deviation 0.00000 0.12758 0.10116 0.07361 0.05891 0.04732 0.03954
Median 0.00000 1.93750 2.64530 2.61351 2.36797 2.18924 2.05797

€n 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 1.95846 1.88848 1.82453 1.76424 1.71131 1.66469 1.62216
Std. deviation 0.03427 0.02990 0.02552 0.02259 0.01992 0.01740 0.01478
Median 1.95802 1.88853 1.82466 1.76389 1.71011 1.66377 1.62200

Table 4.6:Average, standard deviation and median/gf for the setS, based on 500 uniform
samples on the unit square with sample size n=5000.

€n 0.001 0.020 0.039 0.058 0.077 0.096 0.115
Average 0.00033 1.90640 2.66134 2.61699 2.36965 2.18995 2.05963
Std. deviation 0.00745 0.13115 0.09951 0.07545 0.05887 0.04949 0.04076
Median 0.00000 1.90000 2.66239 2.61782 2.36797 2.18924 2.06087

€n 0.135 0.154 0.173 0.192 0.211 0.230 0.250
Average 1.95762 1.88830 1.82507 1.76487 1.71191 1.66497 1.62230
Std. deviation 0.03527 0.03120 0.02620 0.02288 0.02006 0.01737 0.01498
Median 1.95802 1.88745 1.82370 1.76476 1.71248 1.66522 1.62267

Table 4.7:Average, standard deviation and mediarﬂﬁw for the setS, based on 500 uniform
samples on the unit square with sample size n=5000.

4.4 Boundary length estimation: the one sample approach

It may be the case that we only have information on the set of intétest R?, that is, we
are provided with a random sampk, from a random variabl& with supportS. In Chapter

1 we have discussed different support estimators, such as the coulleestimator and the
Devroye-Wise estimator. Suppose that we are interested in a geometractenstic of the
setS, for example the boundary length. It seems natural to estimate the lsgtmeans of a
support estimatof,, and then compute the boundary lengthSgf The main difference with
respect to the problem in Sectidr3is that now we have to estimate the boundary length from
inside the set since we do not have any kind of information about the commiene this
section we compare the results obtained when we estimate the perimeter of &é\seising
the a-convex hull estimator and-shape estimator of a given sampledn In Section4.2 we
have commented on the implementation of theonvex hull estimator. The-shape estimator,
however, was briefly introduced in Chapteibut nothing was said about its structure or the
algorithm to compute it. Before presenting the results of the simulation study wigl e to
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give some insight into the construction of theshape. First, recall Definitiors5.1, 1.5.2 and
1.5.3 Thea-shape of a sampl#,, is defined to be a straight line graph. One of the drawbacks of
its definition is that thex-shape does not provide us with a criterion to differentiate between the
insideand theoutsideof thea-shape. In Figurd.12(a) thea-shape of a uniform random sample
X, on the unit square withx = 0.13 is represented. It does not seem clear how to define the
interior of thea-shape. On the contrary, theconvex hull is completely characterized and we
can determine whether a given point belongs todkeonvex hull or not. As with the--convex

(@) (b)

Figure 4.12:Uniform random samplé&’, of sizen = 30 on the unit square. The boundary of
C.(X,) is represented in solid red. Theshape is represented by a straight black line graph.
(8 a=0.13. (b)a = 0.3.

hull, the value oty affects thex-shape. Thus, the-shape tends to the convex hull of the sample
for large values oy, whereas as tends to zero the-shape tends to the empty set. Another
drawback of thex-shape is that there exist few theoretical results on its behaviour, maialpdu
the difficulty formalizing its definition. In spite of these disadvantages we taga&led to study
the performance of the length of theshape as an estimator of the boundary length, since it is
relatively easy to implement and we have observed that it achieves gadtsre

In Edelsbrunner et a(1983 it is proved that thex-shape is a subgraph of the Delaunay
triangulation defined in Sectioh3. The algorithm for its construction is as follows.

1. Construct the Voronoi diagram and Delaunay triangulatioft,of
2. Determine thev-extremes ofY,,.

2.1. Determine the convex hull of the sample. The poikise X, which lie on the
convex hull arex-extremes for alty > 0.

2.2. For eachX; which is not on the convex hull compute the distances fégjrio the
verticesv of the Voronoi cellV;. ThenX; is a-extreme for alky satisfying

0 < a < max{||X; — v||, v vertex ofV;}.
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3. Determine thex-neighbours ofY,.
4. Output then-shape.

We now briefly comment on how to solve step 3 of the algorithm. Given an efitfeo
Delaunay triangulatiofiX;, X;] and its dual edge of the Voronoi diagram, the extredfesnd
X area-neighbours for alt satisfying

Qmin < @ < Qmax, (44)

whereami, andamax are computed from the position &f; and X ; with respect to the vertices
of the dual Voronoi edge. In particular, if the Voronoi edge is a cldsetisegmenta, b], then
amax = max{||X; — a||, | X; — b||} whereas if the Voronoi edge is a semi-infinite line segment
[a, +00), thenamax = oo and equation4.4) reduces tax > amni,. Obtaining the value of
amin IS @ bit trickier. For example, if the Voronoi edge is a closed line segffaehit thena iy

is not necessarily equal tain{||X; — a||, || X; — b||}, see Figure4.13 Of course, we have
programmed all possible valuesaf,;,, but we omit here the details since they do not contribute
to the understanding of the subject matter.

B(a, [la — Xil))

B(b, |6 — Xil))

Figure 4.13:Let [ X;, X;] be an edge of the Delaunay triangulation and [etb] be the corre-
sponding dual Voronoi edge. Then, we can find a ball of radissich that bothX; and X lie

on its boundary for albvyin < @ < Amax, b€INGamax = max{||X; — a||, || X; — b||} and for
the given example,i, = || X; — X;|| /2.

Regarding the implemented code, the functadrpha. shape returns thea-shape of a
sample. The input arguments are the output of the funétidnor m vor . t ri and the value
of a. Continuing with the example of Secti@gh3, we compute ther-shape of the samplé,
for a = 0.3.

> al pha<-0.3
> shape<- al pha. shape(i nf o, al pha)

The output objecs hape contains the following components:
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> nanes(shape)
[1] "sanple" "info" "al p. shape” "al pha"
[5] "al pha. extrenes" "possibles" "l engt h"

Among other informationshape stores inshape$al pha. extr enes the indexes of the
sample points that are-extremes. The componeshape$al p. shape contains the coordi-
nates of each pair af-neighbours, the corresponding dual Voronoi edges and the virbhras
which ami, andanmay are computed. The length of theshape is stored ishape$l engt h.

> shape$al pha. extrenes

[1] 21 7 5 2 30 10 8 22 13 28 1 2023 9
> shape$l engt h

[1] 3.039860

Finally, the functiorpl ot . ashape produces a plot of the-shape. If desired it also adds the
Voronoi diagram and the Delaunay triangulation®f. In Figure4.14we show the plot of the
a-shape for the discussed example.

> pl ot . ashape(shape, pvor =T, pdel =T, new=T)

Figure 4.14:Uniform random sampléet,, of sizen = 30 on the unit square. In green Voronoi
diagram ofX,, in blue Delaunay triangulation and in blaek-shape fora = 0.3.

4.4.1 Simulation study

Again, we have considered the same seendC defined in Subsectiof.3.1, see Figuret.10
The setting is, however, different since now we are provided with nans@mples of points
generated into the sets under study but not into their complementaries. WageB00 uniform
samples of size. = 1000 on each set and evaluate the estimators for different valuas sde
Table4.8. Summarizing, for each samphé, and each value of we constructC,,(X,,) and
the corresponding-shape, denoted hy*"2P§ X,,). Finally, we compute the boundary length of
both estimators. The results corresponding to th&'sate summarized in Tabl&s9, 4.10 and
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o 0.01 0.03 0.05 0.07 0.09

Table 4.8:Values ofo.

4.11 Tables4.12 4.13 and4.14provide the results corresponding to the SeRecall Tablet.1
for the exact values of the boundary length.

! 0.01 0.03 0.05 0.07 0.09
Average 7.03104 2.70356 2.57810 2.53918 2.52043
Std. deviation 0.22676 0.02905 0.01207 0.00989 0.01036
Median 7.05082 2.69996 2.57740 2.53939 2.52082

Table 4.9:Average, standard deviation and median of the boundary length, ot, ), based on
500 uniform sampleg’, on C with sample size n=1000.

o 0.01 0.03 0.05 0.07 0.09
Average 14.17756 2.56695 2.51315 2.49881 2.49186
Std. deviation  0.38347 0.02445 0.00906 0.00751 0.00673
Median 14.16505 2.56389 2.51289 2.49883 2.49204

Table 4.10:Average, standard deviation and median of the boundary lengtf"8# X, ), based
on 500 uniform sample’;,, on C with sample size n=1000.

o 0.01 0.03 0.05 0.07 0.09
Cn(X,) 20.46161 0.03705 0.00435 0.00077 0.00016
aSh@Pgx)  136.20260 0.00348 0.00008 0.00027 0.00050

Table 4.11:Mean square error of the boundary length@f (X’,) andaShape(Xn), based on 500
uniform samplesy,, on C' with sample size n=1000.

o 0.01 0.03 0.05 0.07 0.09
Average 7.56055 3.31702 3.27558 3.21966 2.66260
Std. deviation 0.22075 0.01844 0.03622 0.02116 0.07993
Median 7.56726 3.31649 3.28373 3.21991 2.65317

Table 4.12:Average, standard deviation and median of the boundary lengfh, 6k, ), based
on 500 uniform sample%,, on S with sample size n=1000.
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o 0.01 0.03 0.05 0.07 0.09
Average 10.54785 3.19447 3.21567 3.19925 2.74672
Std. deviation  0.35094 0.01527 0.02962 0.09567 0.06215
Median 10.55026 3.19327 3.21205 3.14840 2.73819

Table 4.13Average, standard deviation and median of the boundary lengtf'8# X, ), based
on 500 uniform sample%,, on S with sample size n=1000.

o 0.01 0.03 0.05 0.07 0.09
Co(X,) 19.40276 0.02461 0.01439 0.00386 0.25502
aShP] ) 54.68538 0.00134 0.00384 0.01060 0.17568

Table 4.14:Mean square error of the boundary length@f (X,,) anda®"P x,,), based on 500
uniform samplesgt,, on .S with sample size n=1000.

We observe, for some values of the parametex significant improvement compared to the
results of the simulation study discussed in Sectidh Small values ofy, however, provide
considerably biased estimations, especially in the case af-teape, see the first column of
Tables4.10and4.13 This fact can be explained by the definition of daeshape. Recall that
the a-shape was defined as the straight line graph whose edges canneighbours. When
is small, a considerable number of interior points of the set turn out te-&dremes and the
a-shape looks like a mesh connecting many of them, see Fijife As a consequence, the
length of then-shape is large, as it is the result of the addition of many small segments.

(@) (b)

08
08

0.6

0.6

0.2
0.2

Figure 4.15:Boundary length estimation with small (a) The boundary length @f, (X)) for
o = 0.01 is 6.782. (b) The boundary length aff"#§ x;,) for o = 0.01 is 14.053.

The estimations are also biased for large values ¢dompared to the real valueg- and
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ag). This fact cannot be appreciated in the particular case of th€ setceac > 0.09. Note
that a ball of radius rolls freely inC' and inC* for all « in Table4.8. However, observe the last
column of Tablegl.12and4.13 It seems that there is an inflection point in the estimations of
the boundary length &f. The reason is that = 0.09 is too large and the estimator is not longer
able to identify the cavities of the set. For example,dhghape joing-extreme points from the
upper and lower part of. The same occurs witf', (X, ), see Figurel.16 As a consequence,
the boundary length is underestimated.

(@) (b)

0.2 0.6 08 0.2 0.4 0.6 0.8

Figure 4.16:Boundary length estimation with large (a) The boundary length @f, (X,,) for
o = 0.09 is 2.659. (b) The boundary length afs"#P§ x;,) for o = 0.09 is 2.724.

Finally, we also include some descriptive graphs. Figdr&3 and4.18 show boxplots of
the estimates for different values @f Due to the bias problems explained before, the scale for
the casex = 0.01 is much higher than for the rest of valuescaf For the sake of clarity, we
have omitted this case in the plots.
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Figure 4.17:Summary graphs for the sét. (a) Boxplots for the boundary length 6%, (X,,).
(b) Boxplots for the boundary length af"#§ .x,).
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Figure 4.18:Summary graphs for the sgt (a) Boxplots for the boundary length 6%, (X,,).
(b) Boxplots for the boundary length af"¥§ .x,,).



Appendix A

Rolling condition, positive reach and
a-convexity

The free rolling condition, recall Definitioh.4.5 has useful implications which are worth not-
ing. In this appendix we list some results about the rolling condition that playnpartant role
throughout this work. For example, sufficient conditions relating the roltiowgdition to the
positive reach or the.-convexity of a set are given.

We begin by making some preliminary comments. Assume that a ball of radiu$ rolls
freely in a nonempty closed sdt ¢ R¢ and leta € 9A. By definition there exists € A such
thata € B(z,«a) C A and, necessarilyjx — a|| = a. Observe that ifjz — a|| < «, then it
easily follows thatz € B(a,a — ||z — al|) € B(z, ) C int(A), yielding a contradiction since
a € OA. Define the unit vecton(a) = (a—x)/ ||a — z||. Then we can writd3(a — an(a), ) C
Assincer = a—an(a). Itis important to note that the free rolling conditiondndoes not imply
that the pointc and, consequently, the vectgfa) are unique, see Figure1.

ai

az)

A

Figure A.1: A ball of radius« rolls freely in A. For the pointa; € JA there exists a unique
x € Asuchthata; € B(z,a) C A. However, for the pointy € 0A, as € B(x, o) C A for
infinitez € A.

LemmaA.0.1shows that the uniqueness of the unit veggar) such thatB(a —an(a), ) C
A is closely related to the existence of some# A such thata coincides with the metric
projection ofz onto A.

127



128 APPENDIXA

Lemma A.0.1. Let A ¢ R be a nonempty closed set and= 0A. Assume that there exists
x ¢ A such that
p =z —al =d(z,A),

that is, a is a metric projection of: onto A. If there existsy > 0 and a unit vectom(a) such
that B(a — an(a),a) C A, then
z = a+ pn(a).

Proof. To see this suppose the contrary, that is, suppose that there exisiger the stated
conditions such that # a + pn(a). Then, it can be easily seen thata, anda — an(a) cannot
lie on the same line and hence,

la —an(a) — 2| <lla —anla) —all + [l — ]| = a + p. (A1)

Now, letz € 0B(a — an(a), o) N[z, a — an(a)], where[z, a — an(a)] denotes the line segment
with endpointse anda — an(a), see Figuréh.2. We have

la —an(a) — zf| = [[a — an(a) — z|| + ||z — z[| = o + ||z — z]|.
Therefore, by A.1)
|z —z| = lla —an(a) —z| —a <a+p—a=p,

which is a contradiction sincec A andp = d(z, A). O

Figure A.2:Elements of LemmA.0.1

Remark A.0.1. A direct consequence of Lemd. lis that the vector(a) is unique, whenever
a is the metric projection of some ¢ A onto A. Another interpretation is that id € 9A and
there exists more that one ball suchthat B(z,a) C A, thena cannot be the metric projection
of any pointz ¢ A, see FigureA.3,

The following lemma shows that the rolling condition guarantees some regularitigeo
boundary of the set.
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A

Figure A.3:For the setA in gray and the point. € 9 A we can find two unit vectorg(a) such
that B(a — an(a),a) C A. It follows from Lemmai.0.1thata cannot be the metric projection
of anyx ¢ A onto A.

Lemma A.0.2. Let A C R be a nonempty closed set. Assume that a ball of radius0 rolls
freely in A. Then,

int(A¢) = A° and 0A = 9Ae.

Proof. First we prove that irftA¢) = A°. It is straightforward to see that® C int(A¢) by using
that A° is open. Now we prove that ifl¢) C A°. Suppose the contrary, that is, suppose that
there existsr € int(Ac) such thatr ¢ A°. Then,x € AN A¢ = JA. By the free rolling
condition in A4, there existe € A such thatr € B(p,a) C A. Moreover, as we have seen
|z — p|| = a. Sincex € int(Ac), there exists > 0 such thatB(z, <) C A°. Assume that < o

and consider the point

pP—x
[ad

Y=+ A\ , A€ (0,¢e).

We havey, € B(p, o) C int(4). We get a contradiction sinag, € B(x,e) C A°. The proof
for 9A = 9 A< is now straightforward if we use that the boundary of a set can be wristéinea
adherence of the set minus its interior. Sinteis open and intd<) = A¢, we obtain

OAC = A\ int(A°) = A°\ A° = A°\ int(A°) = DA = JA.

An immediate consequence of Lemid.2is given in the following lemma.

Lemma A.0.3. Let A ¢ R? be a nonempty closed set. Assume that a ball of radis0 rolls
freely in A. Then,

A=A

Proof. The result is a straightforward application of Lemi#.2. Use that infA¢) = A° to
obtain
A = int(A°)° = A.
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Figure A.4:For A = B U {z}, we have thal** = int(4) = B. Note thatA does not fulfill the
free rolling condition inA.

Remark A.0.2. The setd<’ can also be written ais (A). SinceA is closed, itis straightforward
to verify thatint(A) C A. We then deduce that the rolling conditiondnis essential in order to
guarantee thatd C int(A), since in general this is not true, see Figuket.

From here on, we will assume that ¢ R? is a nonempty closed set such that a ball of
radiusa: > 0 rolls freely not only inA but also inA¢c. The implications of this assumption are
established in Lemma&.0.5, A.0.6, A.0.7, andA.0.8. First, we would like to comment on the
symmetric roles thatl and A¢ play in this assumption. It can be proved that the roled aid
Ac are interchangeable in the sense that if a ball of radiusO rolls freely in A and inA¢, then

we also have that a ball of radius> 0 rolls freely in A° and inA<°. The precise statement is
given in LemmaA.0.4, which relies on Lemm&.0.3.

Lemma A.0.4. Let A C R? be a nonempty closed set. Assume that a ball of radius0 rolls
freely in A and in A°. Then, a ball of radiusy > 0 rolls freely in A¢ and in A"

Proof. The result is a direct consequence of Lenmin@.3 which states thatie” = A. O

Lemma A.0.5. Let A C R? be a nonempty closed set. Assume that a ball of radins0 rolls
freely in A and in Ac. Then, for alla € O A there exists a unique unit vectg(a) such that

B(a — an(a),a) C A and B(a+ an(a),a) C A°.

Proof. Let a € 0A. By the free rolling condition in4, there existst € A such thata €
B(z,a) C A. Moreover,z can be written as = a — an(a), wheren(a) = (a — x)/ ||a — z||.
By LemmaA.0.2, 0A = JAc and hence: € 9Ac. The free rolling condition inA¢ yields that
there existy) € Ac such thas € B(y,«) C A¢ and then|y — a|| = d(y, A) = o, thatis,a is
the metric projection of) ¢ A onto A. It follows from LemmaA.0.1 that

y = a+an(a),

and thereforéB(a + an(a), ) C A°. O

Remark A.0.3. Note that by LemmaA.0.2we can conclude that iB(a + an(a), a) C Ac, then
B(a + an(a),a) C A¢, sinceint(Ac) = A,
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Next we focus on the relation between the free rolling condition and the y@sitach of a
set. Recall that the reach of a nonempty deteach(A), is defined as the largeat possibly
infinity, such that ifz € R? andd(x, A) < «, then the metric projection af onto A is unique.
LemmaA.0.6 states that ifd is a nonempty closed subsetl®f such that a ball of radius rolls
freely in A and in A¢, thendA has positive reach, being redéhl) > «. As a consequence
every point whose distance ¢ is lower thano has a unique metric projection onfol.

Lemma A.0.6. Let A C R? be a nonempty closed set. Assume that a ball of radius0 rolls
freely in A and in A<. Then, for allz € R? such thatp = d(x,0A) < « there exists a unique
pointa € 0A such that|z — a|| = d(x,0A). Thatis, the reach a§ A is greater or equal tex.

Proof. Let z € R such thap = d(z,0A) < a. We can assume that¢ A since the result is
trivial otherwise. First, suppose that¢ A. If there exist two metric projections afontod A,
namelya; andas, then by the free rolling condition id and by Lemmag\.0.1 andA.0.5, we
have that

r = ay + pn(ar) = az + pn(az),

wheren(a;) andn(ag) are the unique unit vector such that
B(a; — an(a;),a) C A and B(a; + an(a;),a) C A¢, i=1,2.
The pointse, az + an(az), anda; cannot lie on the same line. Otherwise
a; = az + An(ag)

for some\ € R. But by assumption; = as + pn(az2) — pn(a1) and hencel — p| = p, that is,
A=0o0r\=2p.

None of these two values is valid. First,= 0yields ;4 ap(ay)
a1 = ag Which is a contradiction since we are assuming that
both points are different. Seconil= 2p < 2« yields

lar = (a2 + an(az))|| = [2p — a| <,

and hence,; € B(ay + an(as),a) C A¢, which is another
contradiction since; € 0A. Thereforeg, as + an(ag), and
a1 do not lie on the same line. Finally, using the strict triangle
inequality ando < a we have that a1

lar = (a2 + an(az))|| < llar — 2| + [lz = (a2 + anlaz))[| = p+ (@ = p) = a.

This is again a contradiction sineg € 0A. Therefore, the projection on@A of =z ¢ A such
thatp = d(x,0A) < « is unique. Now suppose that € A. Since we are assuming that
x ¢ OA it can be easily seen that¢ Ac. Moreover,0A¢ = 9A by LemmaA.0.2 and hence
d(z,0A¢) < a. The result is now straightforward if we repeat the same steps as lzefongse
that, by LemmaA.0.4, the roles of4 and A¢ are interchangeable.

O
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Therefore, Lemmal.0.6 proves that a sufficient condition féerA ¢ R? to have positive
reach is that a ball of radius > 0 rolls freely in A and in A¢. It is convenient to note, as it
is shown in FiguréA.5, that it is not enough that a ball of radiusrolls freely in A in order to
guarantee thatach(9A) > a. The same occurs if a ball of radiusonly rolls freely in A<, see
FigureA.6. In LemmaA.0.7 we state a useful application of LemrmAzD.6.

Lemma A.0.7. Let A ¢ R? be a nonempty closed set. Assume that a ball of radisO rolls
freely in A and in Ac. ThenA and A¢ are both sets with positive reach, beingact{A) and
react{Ac) greater or equal tav.

Proof. The result is an immediate consequence of LenAniab. O

Figure A.5: A ball of radiusa rolls freely in A, d(xz,0A) < «, and the metric projection of
ontodA is not unique.

Figure A.6: A ball of radiusa rolls freely in A<, d(z,0A) < «, and the metric projection of
ontodA is not unique.

Finally, it remains to establish the relation between the rolling condition aneg-ttenvexity,
recall Definition1.4.1 LemmaA.0.8 states the result.

Lemma A.0.8. LetA C R? be a nonempty closed set. Assume that a ball of radins0 rolls
freely in A and in A¢. ThenA and A¢ are botha-convex.

Proof. First we shall prove thatl = C,(A). Since by definitionA C C,(A), it suffices to
show that ifx € A°thenx ¢ C,(A). Thus, letx € A°andp = d(x, A). If p > «, then
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2 € B(z,a) C A° and thereforer ¢ Co(A). If p < a, then by Lemmag.0.7 andA.0.5 there
exists a unique point € A and a unique unit vectoy(a) such thatc = a + pn(a) and

z € B(a+ an(a),a) C A°,

which yieldsz ¢ C,(A). It remains to proof thatlc is a-convex. The result is an immediate
consequence of the latter and Lem#a.3. O

Remark A.0.4. The converse of Lemn&0.8 may fail, that is, we may find sett such that
A and A¢ are botha-convex but do not satisfy the rolling condition ihand in Ac. See for
example FigureA.4, where the setst = B U {z} and A° = R2\ B are botha-convex for
« = 1. However, a ball of radius 1 does not roll freely fhbecause of the point.






Appendix B

Closing of a sample with respect to
open and closed balls

Chapter2 focused on the study of a set estimator for a compac$ setR? under the assump-
tion of a-convexity. As has been argued, theconvex hull serves as basis to define a natural
estimator in this context. Thus, given a random saniple= {X1,..., X, } from a random
variable with supporf, we defined

o o

Sp = (X, ®rnB) ©r,B.

Note that, according to Definitioh.4.3 S,, is the closing of¥,, with respect tol-°3(0, rn). We
have pointed out that the method to boulddi,, (.S, S,,)) can be simplified if instead of,, as
defined above we considered

Sp = (X, ®rpnB) ©r,B.

Although we have not introduced the precise definition in Chdptitre latter estimata$,, is the
closing of X, with respect taB(0, r,). The result of this appendix states that, with probability
one, both estimators are equal. More precisely, geometric arguments yidgfdhaclosing of a
sampleX,, with respect to the open ball(0, ) is not the same as the closing&f with respect

to B(0,r), then there exisy € R? andd + 1 sample points whose distanceitds exactly equal

to . The proof concludes by showing that, under the assumption of an &ddgatontinuous
distribution, this is a zero-probability event. In short, it makes no diffezavizether we consider
Sy, defined with open or closed balls.

Lemma B.0.9. Let X,, = {Xy,...,X,} be a random sample frotX, where X denotes a
random variable ifR¢ with absolutely continuous distributiaRy . For anyr > 0, let

Co(Xy) = (X, @rB)orB and CP(X,)=(X,®rB)crB.

Then, with probability one,
C (X)) = CB(x,).

135
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Proof. It is straightforward to verify tha€,.(X,,) ¢ CP(X,,) and hence

By using the definitions of the Minkowski addition and Minkowski subtractiaran be easily
proved that ifC2(x,) \ C,.(&,) # 0, then

int (Lnj B(Xi,r)> = LnJ B(X;,7). (B.1)
=1

=1

Note thal J!", B(X;,r) C int (U, B(X;,r)) and henceR.1) implies that there existg ¢ R?

such that .
y €int (U B(Xi,r)> (B.2)

=1
and, foralli € {1,...,n},
ly — Xil| > . (B.3)

It follows from (B.2) that there exists > 0 such thatB(y,d) C |U;_, B(Xj,r). In particular,
there exists; € {1...,n} such thatly — X; || < r and by 8.3) we have that

ly — X[l =7
Now, define
Yy — Xi1
T I —— (B.4)
Hy - Xi1 H

and lety; ,, = y + e,u1 be a sequence of vectors, wheggrepresents a sequence of positives
numbers that converges to zerorasends to infinity. Theny; ,, ¢ B(X;,,r) since

[y1m = Xirll = ly +emur = Xay | = [[(em + Iy = Xu[Dwal| = em +r>7, (B.5)

for all m € N. By construction|y — y1,m|| = &, and hence, for large enough, y; ,, €
B(y,d) C U, B(Xi,r), that is, there exists,, € {1,...,n} such that|y, ,, — X;,.|| < r.
Note that B.5) yieldsi,, # i;. Now, since the sequendgeX;  },, has a finite range, then
there must be at least one value which is taken on by infinitely many terf& of},,,. More
precisely, there exists a constant subsequ¢iGg, };. For alll,

r < Hy—XimZ =€m +T.

S ||y - yl,mH + Hyl,m - Xz'ml
Let X;,, = X, and, since,,,, tends to zero aktends to infinity, the latter expression yields
ly — Xip || = 7. (B.6)

Now, if d > 2 we proceed as follows. lIteratively, fdr € {2,...,d} let us consider the
(k — 1)-hyperplanell;, defined by the pointsY; ,..., X; . Note that, since the distribution
is absolutely continuoud/}, is well defined with probability one. L&y, y be the projection
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of y onto IT;,. Note that, since|ly — X;, || = r for all j < k, it is straightforward from the
Pythagorean theorem th&j;, y is the unique point i, equidistant fromX;,,..., X;, . More
precisely, for allj < k,

1Py — Xi||* = lv — X5, |* = lly = Proyl> = 7% = ly — Pyl

For instance, folk = 2, P,y is the middle point of the segment defined Ay, and X;,.
Similarly, for k = 3, Pp,y is the circumcentre of the triangle defined Ky,, X;,, and X,,.
Define

y— Py

ly — Pyl

whenevel # Pr, y. Otherwise, lety;, be any unit normal vector tfy;, at the pointy € I1;,. Let
yem = Y+ emuy, be a sequence of vectors, whergrepresents a sequence of positive numbers
that converges to zero astends to infinity. Thenyy ,,, ¢ B(X;,,r) forj =1,... k, since

U =

I° = lyem— Pyl + || Pry — X, |

= lly+emur — Pyl + | Poy — X, ||*

= (em+ lly = Puyl)?+ || Py — X, |

> &+ |y — Pyl + || Py — X ||

= &2 +r>r (B.7)

Yke,m — Xz
I ;

for all m € N. Furthermore, by constructiofy — yx || = en and therefore, for large
enoughm, yi., € B(y,d) C U, B(X;,r), that is, there exists,, € {1,...,n} such that
lykm — Xi,, || < r. Note that by B.7) i,,, # i; for j = 1,..., k. We use a similar argument
as in the proof of B.6) to establish that there exisig;, € {1,...,n} such that,,, # i; for
j=1,...,kand

ly = Xi

g1 H =T

To summarize, iC2(X,,) \ C.(X,,) # 0, then we have proved that there exjst R? andd + 1
sample pointsX;,, ..., X;,,, such that|y — X; || = r forall j = 1,...,d + 1. This implies

ld+1

that
P(CB(X)\ Co(Xy) # 0) < PGy, Xiy, ooy Xigs ¢ |y =X | =rd = 1,...,d+1).
Note that
Fy, Xy, ooy Xigyy - Hy X-.H:r,jzl,...,aH—l
S3X o X |[e(Xay L X)) = Xl =ri=1,0 0 d+ 1,
wherec(X;,, ..., X;,,,) denotes the unique point equidistant frofy , . .., X;, . Therefore,

n

PICPEN G 20 < (0 ) PllelXi Xaw) = Xl =)



138 APPENDIXB

In order to compute’(||c(X1, ..., Xq4r1) — X1|| = r) we apply LemmaB.0.1Q which states
that if [[e(X1,..., Xq41) — Xa|| = 7, thene(Xq, ..., Xq11) € {p1,p2}, wherep; and p,
dependonly oXs, . .., X4.1. Note that a random set @f-1 points from ad-variate continuous
distribution are noncoplanar with probability one. Thus, the convex halrahdom set of + 1
such points is a simplex with probability one. Therefore we are under thgitoors in Lemma
B.0.10and

2
P(lle(X1, -, Xar1) = Xa| =) <Y P(Ipi(Xa, -, Xap1) — Xal| = 7)
-1
2
=Y E(Px(|lpi(Xa,. .., Xap1) — X1|| = r| X2, ..., Xa11)) =0
=1

sincep{z € R? : ||y —z|| = r} = 0for all y € R? and Px is absolutely continuous with
respect tqu. Therefore, we have proved that

and the proof is complete. O

Lemma B.0.10. Let X; ..., X4, be the vertices of @-dimensional simplex iiR¢ and let
c(X1,...,Xq41) be the unique point ilR? which is equidistant to{1, . .., X4,;. Assume that
lle(Xq, ..., Xgr1) — X1|| = r for fixedr > 0. Then

C(Xla ey Xd+1) S {plvp?}a
wherep; € R? do not depend oX 1, that is,p; = p;(Xo, ..., Xg41),i = 1,2.

Proof. Let I1,; be the(d — 1)-hyperplane defined b¥s ..., X441 and lete(Xs, ..., X441) be
the unique point i, equidistant taXs ..., Xgy1. If ¢(X1,..., Xq11) € 14, then the result
follows immediately since(X1, ..., Xg11) = ¢(Xa,..., X441) and

P1 = p2 = C(XQ, e ,Xd+1).

Otherwise, define for = 1, 2,

pi=c(Xo, .., Xap1) /12— [e(Xas ..., Xap1) — XoPus, (B.8)
whereu;,i = 1,2 are the two possible unit normal vectors & at ¢(Xo, ..., X441), that
is, u1 = —u2. We shall see now that(Xy,..., X4.1) = p; fori = 1 ori = 2. Let
Pr,e(Xq, ..., Xq41) be the projection of( X1, ..., X44+1) ontoI1;. To simplify notation we

abbreviatePr, c(X1, ..., X4+1) to P, c. Then

o(Xy,..., Xar1) — Pryce
lle(Xq, ..., Xay1) — Prc|l

C(Xl, ce Xd+1) = PHdC =+ ||C(X1, ceey Xd—i—l) — PHdCH (Bg)
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It follows from the Pythagorean theorem that, forah2,...,d + 1,
1P = X1 = Je(X..... Xan) = X1~ le(Xr, ... Xagr) — Pryel?
= 2 —|e(Xy,. .., Xap1) — Pryel?, (B.10)

that is, Pr7,c € 11, is equidistant toX», . .., X441 and hence’r,c = ¢(Xo, ..., Xqy1). If we
replaceP,cin (B.9), then

(X1, Xap1) = o(Xo, o, Xa) + [le(Xa, -, Xarr) — Pryel u,
where
C(Xl, .. .,Xd+1) - PHdC
le(X1, ..., Xay1) — Pr,c||

is a unit normal vector tél; atc(Xo, ..., X44+1) and by 8.10)

u =

le(X1, ..., Xar1) — Pryel® =12 — || Prye — Xol|* =72 = [e(Xa, . . ., Xap1) — Xa| 2.

Thereforec(Xy, ..., X441) corresponds to one of the defined in B.8). This completes the
proof of the lemma. O
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The alphahull Package

The alphahull package is the result of the implementation of the estimatorssisdhsoughout
this dissertation. Over the last years, Recomputing environment has become a powerful
scientific tool that offers a rich collection of classical and modern statistiodeling technigues.
Motivated by its flexibility and its widely acceptance among the scientific communéyave
choserR as programming language to develop this library of functions.

Title Generalization of the convex hull of a sample of points in the plane
Version 1.0

Date 2008-03-01

Author Beatriz Pateiro-Lopez, Alberto Rodriguez-Casal

Maintainer Beatriz Pateiro-Lopez <beatriz.pateiro@usc.es>

Depends R, tripack

Description This package computes the alpha-shape and alpha-convex hull @&frasgiinple
of points in the plane. The concepts of alpha-shape and alpha-coaVgeheralize the
definition of the convex hull. The programming is based on the Voronoi diagnd
Delaunay triangulation of the sample. The package also includes functioaktdate
the dilation of the alpha-convex hull of a given sample and to determine wheefhant
belongs to it. A function to estimate the Minkowsky content of a compact setds als
included.

License R functions: GPL, Fortran code: ACM, free for noncommercial use

R topics documented:

add.voronoi . . . ... 142
alpha.hull . . . . . . .. 143
alpha.shape . . . . . . . 145
alphahull-package . . . . . . . . . ... 146

141
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angs.arch . . . . . . 147
arch . . . . 148
complement . . . . .. e 149
dilation . . . . . . 150
dummy.COOr . . . . . . . e e e e e e e 152
iNBTNEN . . . . . . e 153
inalpha.hull . . . . .. ... 155
inform.vortri . ... L 156
] ] (= 157
length.ahull . . . . . .. .. 159
plotahull . . . .. .. .. 160
plot.ashape . . . . . . . . . e 161
rotation.Cw . . . . . . . . 162

add. vor onoi

Voronoi diagram

Description

This function adds the Voronoi diagram to an open plot.

Usage
add. voronoi (mat.info, ...)
Arguments
mat . i nfo Output matrix from the nf or m vor . del function, see Details.
Arguments to be passed to methods, such as graphical parameters (see
par).
Details

The input matrixmat . i nf o is one of the arguments included in the output list that the
functioni nf orm vor . del returns. It contains all the necessary information of the De-
launay triangulation and Voronoi diagram. For each edge of the Delawizangulation

mat . i nf o contains the indexes and coordinates of the sample points that form the edge,
the indexes and coordinates of the extremes of the corresponding tdgrttesn Voronoi
diagram, and an indicator that takes the value 1 for those extremes of theoVoliagram

that represent a boundless extreme. The semi-infinite segments of threMdi@gram are
represented with dashed lines.
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See Also

informvor.tri.

Examples

# Sinmple exampl e from TRI PACK

data(tritest)

sanpl e<-matrix(c(tritest$x,tritest$y), nc=2, byr ow=F)

pl ot (sanpl e[, 1], sanpl e[, 2], xlimrc(-1,2),ylimc(-1,2))

# Del aunay triangul ati on and Voronoi di agram cal cul ati on
i nfo<-informvor.tri(sanple)

# Add Voronoi di agram

add. voronoi (i nfo$mat. i nfo, col =3)

# Random sanmple in the unit square

sampl e<-mat ri x(runif(20), nc=2)

pl ot (sanpl e[, 1], sanpl e[, 2], xlimec(-1, 2),ylimec(-1,2))

# Del aunay triangul ati on and Voronoi di agram cal cul ati on
i nfo<-informvor.tri(sanple)

# Add Voronoi di agram

add. voronoi (i nf o$nmat . i nfo, col =3)

al pha. hul | alpha-convex hull calculation

Description

This function calculates the boundary of theconvex hull of a given sample, from the
complement of the--convex hull.

Usage

al pha. hul | (shape, conpl)

Arguments

shape Output list from theal pha. shape function.

conpl Output matrix from theonpl enent function.
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Details

The boundary of the--convex hull is formed by arcs of the open balls that define the com-
plement of thex-convex hull. The arcs are determined by the intersections of some of these
balls. The extremes of an arc are givenddy r Agv andc + r A_gv wherec andr represent

the centre and radius of the arc, repectively aha represents the clockwise rotation of
angled of the unitary vectoo.

Value
A list with the following components:

sanpl e A 2-column matrix with the coordinates of the sample points.

ahul | . ar chs For each arc in the boundary of theconvex hull,ahul | . ar chs con-
tains the centre and radius of the arc, the unitary vectmd the anglé
that define the arc, see Details.

| ength Length of the boundary of the-convex hull, se¢ engt h. ahul | .
ashape Output list from theal pha. shape function.
al pha Value ofa.

conpl enent  Output matrix from theeonpl enent function.

See Also

al pha. shape, conpl enent ,rot ati on. cw,i nter,| ength. ahul |,
pl ot. ahul I .

Examples

# Random sanple in the unit square
sanpl e<-matri x(runi f(100), nc=2)

# val ue of al pha

al pha<-0.2

# Triangul ation information

i nffo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

# Conpl enent of the al pha-convex hull and al pha-hull boundary
conpl <- conpl enent (al pha, i nf o$nat . i nf o)
ahul | <-al pha. hul | (shape, conpl)
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al pha. shape alpha-shape calculation

Description

This function calculates the-shape of a given sample.

Usage

al pha. shape(i nfo, al pha)

Arguments
info Output list from thd nf orm vor. tri function.
al pha Value ofa.

Details

The a-shape is implemented with the algorithm described in Edelsbrurairatr(1983).

Value

A list with the following components:

sanpl e A 2-column matrix with the coordinates of the sample points.
info Output list from the nf or m vor . tri function.

al p. shape A nsegrow matrix with the coordinates and indexes of the edges of the
Delaunay triangulation that form the-shape. The number of rowseg
coincides with the number of segments of theshape. The matrix also
includes information of the Voronoi extremes corresponding to each seg-
ment.

al pha Value ofa.

al pha. extrenes
Vector with the indexes of the sample points that arextremes. See
Edelsbrunnneet al. (1983).

possi bl es Matrix with the coordinates and indexes of the edges of the Delaunay tri-
angulation that are candidates to form theshape. It includes the edges
whose extremes are-extremes, not necessariyneighbours.

| ength Length of thea-shape.
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References

Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R. (1988) the shape of a set of points in
the plane IEEE Transactions on Information Theory, Vol IT-29, No. 4.

See Also

informvor.tri,plot.ashape.

Examples

# Uni form sanpl e of size n=300 on the disc B(c,0.5)\B(c,0.25),
# with ¢=(0.5,0.5).

n<- 300

n<- 0

sanpl e<-matri x(0, n, 2)

whi | e(men) {

x<-runif (1)

y<-runif (1)

d<- (x-0.5)"2+(y-0.5)"2

i f((d<=(0.5)"2)&(d>=(0.25)"2)){

n<- m+l
sanple[m]<-c(x,y)
}

}

# Val ue of al pha
al pha<-0.1

# Triangul ation information

i nfo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

al phahul | - package
Generalization of the convex hull of a sample of points in the
plane

Description

This package computes theshape andv-convex hull of a given sample of points in the
plane. The concepts af-shape andv-convex hull generalize the definition of the convex
hull. The programming is based on the Voronoi diagram and Delaunay ditegtian of the
sample. The package also includes functions to calculate the dilation af¢bavex hull

of a given sample and to determine whether a point belongs to it. A functioninoats the
Minkowsky content of a compact set is also included.
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Details

Package: alphahull

Type: Package

Version: 1.0

Date: 2008-03-01

License: R functions: GPL, Fortran code: ACM, free for noncommeéusia

Author(s)

Beatriz Pateiro-LOopez, Alberto Rodriguez-Casal.

Maintainer: Beatriz Pateiro-Lopez <beatriz.pateiro@usc.es>

angs. arch Angles of the extremes of an arc

Description
Given a vectow and an anglé, angs. ar ch returns the angles thatyv and A_gv form
with the axisOX, whereAyv represents the clockwise rotation of ang@lef the vector.
Usage

angs. arch(v, theta)

Arguments
\Y Vectorv in the plane.
theta Angled.

Details

The angle that forms the vectowith the axisOX takes its value if0, 27).

Value

angs Numeric vector with two components.
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# Let v=c(0,1) and theta=pi/4

# Consider the arc such that v is the internal angle bisector
# that divides the angle 2+theta into two equal angles

# The angles that the arc forms with the OX axis are pi/4

# and 3*pi/4

v<-¢(0,1)
theta<-pi/4

angs. arch(v, t heta)

arch

Add an arc to a plot

Description

This function adds the arc @ (c, ) between anglel and62 to a plot.

Usage

arch(cl, cz2,

Arguments

cl

c2

r

t hetal

t het a2

col
| wd

[ty

See Also

pl ot. ahul I .

r, thetal, theta2, col=1, Iwd=3, Ity=1,...)

X-coordinate of the centre.
Y-coordinate of the centre.
Radius of the ball.

Angle that forms the vector defining one of the extremes of the arc with
the axisOX.

Angle that forms the vector defining one of the extremes of the arc with
the axisOX.

Color parameter, by default black.
Line width, by default 3.
Line type, by default solid.

Arguments to be passed to methods, such as graphical parameters (see
par).
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Examples

# Plot of the circunference of radius 1

t het a<-seq( 0, 2*pi, | engt h=100)

r<-1

pl ot (r+cos(theta), rxsin(theta),type="1")

# Add in red the arc between pi/4 and 3xpi/4
arch(0, 0,1, pi/4,3*pi/4,col =2, wd=3)

conmpl enent Complement of the alpha-convex hull

Description

This function calculates the complement of tieonvex hull of a given sample.

Usage

compl enent (al pha, nat. coor)

Arguments

al pha Value ofa.

mat . coor Output matrix from the nf or m vor . t ri function.
Details

The complement of the-convex hull is calculated as the union of open balls and halfplanes

that do not contain any point of the sample. See Edelsbruretralr (1983) for a basic
description of the algorithm. The construction of the complement is based dbelhe-
nay triangulation and Voronoi diagram of the sample, provided by tifeor m vor . tri
function. The functiortonpl enent returns a matrixxonpl . For each ronconpl [ i, ]
contains the information relative to an open ball or halfplane of the complerfibetfirst
three columns are assigned to the characterization of the ball or halfplafi&e infor-
mation relative to the edge of the Delaunay triangulation that generates ther tellf-
planei is contained inconpl [i, 4:17]. Thus, if the rowi refers to an open ball,

conmpl [i, 1: 3] contains the centre and radius of the ball. Furthermore, the compo-

nentsconpl [i, 19: 20] andconpl [i, 21] refer to the unitary vector and the angle
f that characterize the arc that joins the two sample points that define thie. bHlithe

row i refers to a halfplanegonpl [ i, 1: 3] determines its equation. For the halfplane
y > a+bx,conmpl[i, 1l:3]=(a,b,-1).Inthe same way, for the halfplape< a + bz,
compl [i,1:3]=(a, b, -2), for the halfplaner > a, compl [i, 1: 3] =(a, 0, - 3)
and for the halfplane < a,conpl [i,1:3]=(a, 0, -4).
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Value
conpl Output matrix. For each row,onpl [ i, ] contains the information rela-
tive to an open ball or halfplane of the complement of dheonvex hull,
see Details.
References

Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R. (1988) the shape of a set of points in
the plane IEEE Transactions on Information Theory, Vol IT-29, No. 4.

See Also

informvor.tri,al pha. hul | .

Examples

# Random sanple in the unit square
sanpl e<-matri x(runi f(100), nc=2)

# val ue of al pha

al pha<-0.2

# Triangul ation information

i nfo<-informvor.tri(sanple)

# Compl enent of the al pha-convex hull
conpl <- conpl enent (al pha, i nf o$mat . i nf o)

dilation Dilation of the alpha-convex hull

Description
This function determines if a given poipbelongs to the dilation of radiusof thea-convex
hull of a sample.

Usage

dilation(Shull, p, eps)

Arguments
Shul | Output list from theal pha. hul | function.
p Numeric vector with two components describing a point in the plane.

eps Value ofe.
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Details

The dilation of radiug of a setS is given by the pointx such thatd(z, S) < e, where
d(z,S) = inf{d(z,s), s € S}. The functiondi | at i on determines if the given point
belongs to thex-convex hull of the sample by using the function. al pha. hul | . If the
point does not belong to the-convex hull the functioi | at i on computes the distance
to the boundary and establishes if the distance is lower or equal to

Value

A list with the following components:

i n.dilation Alogical value specifying whether the poinbelongs to the dilation.

eps. max Distance fronp to the boundary of the-convex hull. Ifp belongs to the
a-convex hull,eps. max=0.

Examples

# Random sanmple in the unit square
sampl e<-mat ri x(runi f (100), nc=2)

# Val ue of al pha and epsilon

al pha<-0.2

eps<-0. 05

# Triangul ation information

i nfo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

# al pha- hul

conpl <- conpl enent (al pha, i nf o$mat . i nf o)
ahul | <-al pha. hul | (shape, conpl)

pl ot . ahul | (ahul I, pvor =F, pdel =F, pshape=F, new=T, col =1)
# Dilation of radius al pha

# Gid

n=100

x<-seq(O0, 1, | engt h=n)

y<-numeric()

for (i in 1.n){

y<-c(y,rep(x[i],n))

grid<-matrix(c(rep(x,n),y),nc=2)

for (i in 1:n"2){
in.dilation<-dilation(ahull,grid[i,],eps)$in.dilation

if (in.dilation==1){points(grid[i,1],grid[i, 2], pch=19, col =4)}
}
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dumry. coor Semi-infinite edge of the Voronoi diagram

Description
This function determines fictitious coordinates for the boundless extremeeashainfinite
edge of the Voronoi diagram.

Usage

dummy. coor (tri.obj, 11, 12, m away)

Arguments
tri.obj Objectofclasstri". Seetri . nmesh in packageripack .
1 Index of the sample point correponding to one vertex of a triangle of De-
launay that lies on the convex hull, see Details.
|2 Index of the sample point correponding to other vertex of a triangle of
Delaunay that lies on the convex hull, see Details.
m Index of the circumcentre of the triangle of Delaunay with one edge on
the convex hull.
away Constant that determines how far away the fictitious boundless extreme is
located.
Details

When a triangle of the Delaunay triangulation has one of its edges (givémebsegment
that joins the sample pointsl andl 2) on the convex hull, the corresponding segment of
the Voronoi diagram is semi-infinite. The finite extreme coincides with the cireaine of
the triangle and the direction of the line is given by the prependicular bisettbe edge
that lies on the convex hull.

Value

dum Fictitious coordinates of the boundless extreme.

See Also

informvor.tri.
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i n. BTnEn Estimated dilation of the boundary of a set

Description

This function determines whether a point belongs to the estimated dilation okradiu

the boundary of a set. The dilation of the boundary is expressed as treeniten of the
dilation of the set and the dilation of its complement. Both the set and its compleneent ar
estimated by means of theconvex hull.

Usage

in. BTnEn(Ghul I, Rhull, p, eps)

Arguments
Chul | Output list from theal pha. hul | function applied to a sample of points
taken in the set of interest.
Rhul | Output list from theal pha. hul | function applied to a sample of points
taken in the complement of the set of interest.
p Numeric vector with two components describing a point in the plane.
eps Value ofe.
Details

Let G be a compact set ijo, 1]? and letR be [0, 1]2 \ G. Let T denote the boundary @f.
Based on the fact tha (7, c) = B(G,e) N B(R,¢) itis possible to construct an estimator
for B(T, <) from estimators of the sets and R. The estimators off and R considered by
the functioni n. BTnEn are then-convex hull of samples taken in both sets.

Value

A list with the following components:
in B A logical value specifying whether the poiptbelongs to the estimated
dilation of the boundary of the set.

eps. max The pointp belongs to the estimated dilation of the boundary of the set for
€ > eps. max.
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References

Pateiro-Lopez, B., Rodriguez-Casal, A. (200@ngth and surface area estimation under
convexity type restrictiongAdvances in Applied Probability, Vol 40.2.

See Also

al pha. hul I ,in.dilation.

Examples

# Ellipse of centre (0.5,0.5) and radius a=0.45, b=0.25
n<- 2000

c<-¢(0.5,0.5)

a<-0. 45

b<-0. 25

al pha<-b”"2/a

X<-runif(n)

y<-runif(n)
inside<-ifelse(((x-c[1])/a)”2+((y-c[2])/b)"2<=1,1,0)
sanmpl e<-matri x(c(x,y,inside),n,3)

# al pha-convex hull of the sample in G

sampl e. - sanpl e[ sanpl e[, 3] ==1, 1: 2]
info.G-informvor.tri(sanple.Q

shape. Gz- al pha. shape(i nfo. G al pha)

conpl . Gz- conpl enent (al pha, i nf o. Gbmat . i nf 0)

Ghul | <-al pha. hul | (shape. G conpl . G

# al pha-convex hull of the sample in R

sampl e. R<- sanpl e[ sanmpl e[, 3] ==0, 1: 2]
info.R<-informvor.tri(sanple.R

shape. R<- al pha. shape(i nfo. R, al pha)

conpl . R<- conpl enent (al pha, i nfo. Rsmat . i nf 0)

Rhul | <- al pha. hul | (shape. R, conpl . R)

# Plots

pl ot . ahul | (Rhul | , pvor =T, pdel =F, pshape=F, new=T, col =2)
pl ot. ahul | (Ghul |, pvor =T, pdel =F, pshape=F, new=F, col =3)
# Gid

n=100

x<-seq(0, 1, | engt h=n)

y<-nureric()

for (i in 1:n){

}y<-C(y, rep(x[i],n))
grid<-matrix(c(rep(x,n),y), nc=2)

npunt <- n*2

# Plot in green of the dilation of radius 0.05 of the
# al pha-convex hull of the sanple in G

# Add in red the dilation of the al pha-convex hul

# of the sample in R
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# Represent in blue the points in the estimated dilation of the
# boundary

eps<-0. 05

for (i in 1:npunt){
in.dilation<-dilation(Ghull,grid[i,],eps)$in.dilation

if (in.dilation==1){points(grid[i,1],grid[i, 2], pch=19, col =3)}
in.dilation<-dilation(Rhull,grid[i,],eps)$in.dilation

if (in.dilation==1){points(grid[i,1],grid[i,?2],pch=19, col=2)}
sal[i]<-in.BTnEn(Ghul I ,Rhul |l ,grid[i,],eps)$in. B

if (sal[i]==1){points(grid[i,1],grid[i,2],pch=19, col =4)}

}

i n.al pha. hul | Determine whether a point belongs to the alpha-convex hull

Description

This function determines whether a given pqiriielongs to thex-convex hull of a sample.

Usage

i n.al pha. hul | (ahul I, p)

Arguments

ahul | Output list from theal pha. hul | function.

p Numeric vector with two components describing a point in the plane.
Details

The complement of tha-convex hull of a sample is calculated by thenpl enent func-
tion. The functiori n. al pha. hul | checks whether the poiptbelongs to any of the open
balls or halfplanes that define the complement.

Value
i n. al pha. hul |

A logical value specifying whether the poiptbelongs to thex-convex
hull.

See Also

al pha. hul | ,conpl enent .
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Examples

# Random sanple in the unit square

sanpl e<-matri x(runi f(100), nc=2)

# val ue of al pha

al pha<-0.2

# Triangul ation information

i nfo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

# Conpl ement of the al pha-convex hull and al pha-hull boundary
conpl <- conpl enent (al pha, i nf o$mat . i nf 0)

ahul | <-al pha. hul I (shape, conpl)

# Check if the point (0.5,0.5) belongs to the al pha-convex hul
i n.al pha. hull (ahul |, p=c(0.5,0.5))

informvor.tri Delaunay triangulation and Voronoi diagram

Description
This function returns a matrix with information of the Delaunay triangulation am@noi
diagram of a given sample.

Usage

informvor.tri(sanple)

Arguments
sanmpl e Matrix of sample points in the plane. The dimensiosafpl e isn x 2,
wheren is the sample size.
Details

The functiont r i . mesh from packagdripack calculates the Delaunay triangulation of a
finite number of points using Fortran functions from the library TRIPACKirg the Delau-
nay triangulation, the functionnf or m vor . tri calculates the corresponding Voronoi
diagram. For each edge of the Delaunay triangulation there is a segment\ortrei

diagram, given by the union of the circumcentres of the two neighbour triatigge share
the edge. For those triangles with edges on the convex hull, the cordisgdime in the
Voronoi diagram is a semi-infinite segment, whose boundless extreme isatattby the
functiondunmy. coor . The functioni nf or m vor. tri returns the sample, the output
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object of class'tri " from the functiont ri . mesh and a matrix with all the necessary
information of the Delaunay triangulation and Voronoi diagram. Thus,dohedge of the
Delaunay triangulation the output matrix contains the indexes and coordafdkessample
points that form the edge, the indexes and coordinates of the extremesaairtbsponding
segment in the Voronoi diagram, and an indicator that takes the value lok¥ #xtremes
of the Voronoi diagram that represent a boundless extreme.

Value

A list with the following components:

sanpl e A 2-column matrix with the coordinates of the sample points.
mat . i nfo Matrix of dimensionn.edges x 14, wheren.edges is the total number of
different edges of the Delaunay triangulation.
tri.obj Objectofclasstri". Seetri . mesh in packagdripack.
See Also

add. vor onoi , dunmy. coor .

Examples

# Sinple exanple from TRI PACK

data(tritest)

sanpl e<-matrix(c(tritest$x,tritest$y), nc=2, byr ow=F)

# Del aunay triangul ati on and Voronoi di agram cal cul ati on
i nfo<-informvor.tri(sanple)

# Random sanple in the unit square

sanpl e<-matri x(runif(20), nc=2)

# Del aunay triangul ati on and Voronoi di agram cal cul ation
i nfo<-informvor.tri(sanple)

i nter Intersection of two circumferences

Description

This function calculates the intersection of two circumferences, givendkaires and ra-
diuscy, r1 andes, o9, respectively.
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Usage

inter(clil,

Arguments

cli
cl2
ri
c21
c22
r2

Details

APPENDIXC

cl2, rl, c21, c22, r2)

X-coordinate of the centrg .
Y-coordinate of the centrq.
Radiusr.

X-coordinate of the centr®.
Y-coordinate of the centre.

Radiusrs.

The functioni nt er is internally called by the functioal pha. hul | .

Value

A list with the following components:

n. cut

vl

t hetal

v2

t het a2

Number of intersection points.

If there are two intersection pointgl is the numeric vector whose com-
ponents are the coordinates of the unitary vector that has its origin in
and it's perpendicular to the chord that joins the intersection points of the
two circumferences.

Angle that formss1 with the radius that joins the centee with an inter-
section point.

If there are two intersection pointg2 is the numeric vector whose com-
ponents are the coordinates of the unitary vector that has its origin in
and it's perpendicular to the chord that joins the intersection points of the
two circumferences.

Angle that formsv 2 with the radius that joins the centeg with an inter-
section point.
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| engt h. ahul | Length of the boundary of the alpha-convex hull

Description

This function calculates the length of the boundary ofdheonvex hull of a given sample.

Usage

| engt h. ahul | (ahul | . ar chs)

Arguments

ahul | . ar chs Output matrix from thel pha. hul | function.

Details

The functionl engt h. ahul | is internally called by the functioal pha. hul I .

Value

| ength Length of the boundary of the-convex hull.

See Also

al pha. hul I .

Examples

# Random sanple in the unit square
sanpl e<-matri x(runi f(100), nc=2)

# val ue of al pha

al pha<-0. 2

# Triangul ati on information

i nfo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

# Conpl ement of the al pha-convex hull and al pha-hull boundary
conpl <- conpl enent (al pha, i nf o$nat . i nf o)
ahul | <- al pha. hul | (shape, conpl)

# Length of the al pha-convex hul
ahul | $l engt h
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pl ot . ahul | Plot the alpha-convex hull

Description

This function returns a plot of the-convex hull. If desired, it also adds the Delaunay
triangulation, Voronoi diagram ang-shape of the sample.

Usage

pl ot. ahul |l (ahull, pvor=F, pdel=F, pshape=F, new=T,...)

Arguments
ahul | Output list from theal pha. hul | function.
pvor Logical, indicates if Voronoi diagram should be added to the plot.
pdel Logical, indicates if Delaunay triangulation should be added to the plot.
pshape Logical, indicates if thex-shape should be added to the plot.
new Logical, indicates if a new plot is opened.
Arguments to be passed to methods, such as graphical parameters (see
par).
See Also

al pha. hul I ,angs. arch, add. vor onoi , pl ot . ashape.

Examples

# Random sanple in the unit square

sanpl e<-matri x(runi f(100), nc=2)

# val ue of al pha

al pha<-0.2

# Triangul ation information

i nffo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

# Conpl ement of the al pha-convex hull and al pha-hull boundary
conpl <- conpl enent (al pha, i nf o$mat . i nf o)

ahul | <-al pha. hul | (shape, conpl)

# Plot including the al pha-convex hull, al pha-shape,
# voronoi diagram and Del aunay triangul ati on

pl ot. ahul | (ahul |, pvor =T, pdel =T, pshape=T, new=T, col =1)
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pl ot . ashape Plot the alpha-shape

Description

This function returns a plot of the-shape.

Usage
pl ot . ashape(ashape, pvor = F, pdel = F, new=F, ...)
Arguments
ashape Output list from theal pha. shape function.
pvor Logical, indicates if Voronoi diagram should be added to the plot.
pdel Logical, indicates if Delaunay triangulation should be added to the plot.
new Logical, indicates if a new plot is opened.
Arguments to be passed to methods, such as graphical parameters (see
par).
See Also

objects to See Also ad pha. shape, add. vor onoi .

Examples

# Uni form sanmpl e of size n=300 on the disc B(c, 0.5)\B(c,0.25),
# with ¢=(0.5,0.5).

n<- 300

nx- 0

sanpl e<-matri x(0, n, 2)

whi | e('men) {

x<-runif (1)

y<-runif (1)

d<- (x-0.5)"2+(y-0.5)"2

i f((d<=(0.5)72)&(d>=(0.25)"2)){
m<- m+1

sanmpl e[ m ] <-c(x,y)

}

}
# Val ue of al pha

al pha<-0.1
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# Triangul ation information

i nffo<-informvor.tri(sanple)

# al pha- shape

shape<- al pha. shape(i nf o, al pha)

pl ot . ashape(shape, pvor =T, pdel =T, new=T)

rotation.cw Clockwise rotation

Description

This function calculates the clockwise rotation of angjlef a given vectow in the plane.

Usage

rotation.cw(v, theta)

Arguments
v Vectorv in the plane.
theta Angled.
Value
V. rot Vector after rotation.
Examples

# Rotation of angle pi/4 of the vector (O0,1)
rotation.cw(v=c(0,1),theta=pi/4)



Resumen en castellano

Nuestro objetivo en este resumen es destacar brevemente los princgsalésdos que hemos
obtenido durante este periodo de investigacion. En este tiempo, nuestés sedra centrado,
fundamentalmente, en los problemas de estimacién del soporte y el areficalpgue se en-
marcan dentro de la teoria general de estimacion de conjuntos. La recoitstrde un conjunto
S a partir de un conjunto finito de puntos tomados en él es un problema quetasidado en
diferentes campos de investigacion. Por ejemplo, en geometria computaleiamalstruccion
eficiente de la envoltura convexa tiene importantes aplicaciones en rao@ro de patrones,
procesamiento de imagenes y analisis cluster, entre otros. Véase Rrg@hamos (1985) para
una introduccion a la geometria computacional y sus aplicaciones. En detdamituaciones
es razonable suponer que el conjunto de puntos a partir del cuattemghe reconstruif es
no-determinista. Obtener buenas estimaciones de un conjunto a partir celesi@a de puntos
no es una tarea facil y la resolucién de este problema depende, en giaandge las hipétesis
del modelo. Asi, si no disponemos de ninguna informacion sobre el donjieninterés, no
tendremos otra eleccion mas que considerar estimadores flexibles quermitsup abordar efi-
cientemente la mayor cantidad de situaciones posibles. En cambio, si restengifamilia de
conjuntos a estimar, podremos considerar estimadores mas sofisticagles,aglapten mejor a
las restricciones de forma establecidas.

Formalmente, el problema destimacion del soportese establece como el problema de
aproximar el soporte de una distribucidn de probabilidad absolutamertiau@Ry, a partir
de una muestra aleatoria simpte = {X1, ..., X,,} de X. Tradicionalmente, el problema de
estimacion del soporte ha sido abordado para la familia de conjuntos csnves{, Korostelév y
Tsybakov (1993) cita los trabajos de Geffroy (1964), Rényiy SiddhR63) y Rényi y Sulanke
(1964) como las primeras referencias que tratan el problema de la estindati€oporte. En
concreto, Rényi y Sulanke (1963) y Rényi y Sulanke (1964) estdlial caso en el que el
soporteS C R? es convexo y propusieron un estimador natural, la envoltura convela de
muestra. Sin embargo, la hipétesis de convexidad puede resultar demastidiva en la
practica y siS no es convexo, entonces la envoltura convexa de la muestra no resulta se
estimador apropiado. La pregunta es entonces, ¢como podemos éssimartenemos ninguna
hipotesis sobre la forma del conjunto? En este sentido, Chevalier (1926yrpye y Wise
(1980) proponen estimar el soporte de una distribucion de probabilembdocida mediante
una version suavizada de la muestia El estimador propuesto, al que nos referiremos como

163
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estimador Devroye-Wise, se define como

n

U B(Xive)v

=1

dondes > 0y B(X;,¢) denota la bola cerrada de centkg y radioe. El problema de la
estimacion del soporte se presenta en Devroye y Wise (1980) relacienadina aplicacion
practica, la deteccién de comportamiento anormal de un sistema, planta o magosee-
sultados del comportamiento del estimador fueron analizados, entrepmr@hevalier (1976),
Devroye y Wise (1980) y Korostelév y Tsybakov (1993). Por sufpjesisten situaciones inter-
medias entre las dos citadas anteriormente, es decir, podemos asumirapjarghs satisface
una condicion de forma mas flexible que la convexidad. En Rodrigues-2896) se estudia
la estimacion de un soporte-convexo. Se dice que el conjuntbC R¢ esa-convexo, para
a>0,siS = C,(9), siendo

Ca(S) = N (é(m,a))c.

{é(z,a): é(m,a)ﬁszw}

En la ecuacion anterio3(z, ) denota la bola abierta de centroy radioa y (B(z, «))¢ su
complementario. El conjunt@,,(.S) se denomina envolturaconvexa de5'y es la base para la
definicion del nuevo estimador de soporte propuesto por Rodriguss-(28906), la envoltura
a-convexa de la muestra. Dicho estimador es estudiado en profundida@apitilo2 de esta
tesis. La hipotesis de-convexidad, que juega un papel fundamental en nuestro trabajo, esta
intimamente relacionada con otra interesante condicion de forma, la condici@l@miento

libre. Diremos que una bola de radiorueda libremente en el conjuntbsi para cada punte

de la frontera del conjunto, existe un punte S tal quea € B(z,a) C S.

Antes de continuar, nos gustaria hacer hincapié sobre algo fundameata:mos obviado
hasta el momento. Estamos hablando de estimadores del soporte y de detsirdiclaos
estimadores se aproximan al conjunto origifalSin embargo, no hemos establecido ningun
criterio para evaluar dicha proximidad. Existen distintas alternativas pdirgirda distancia
entre conjuntos, como por ejemplo, la distancia de Hausdorff o la distancizedina. Nos
centramos en la definicion de esta Gltima. Asi, dados dos conjuntos deBgré! ¢ R?, se
define la distancia en medida enttey C' como

d,(A,C) = u(AAC),

dondep denota la medida de Lebesgdaimensional yAAC denota la diferencia simétrica
entreAy C, es decir,
AAC = (A\C)U(C\ A).

La distancia en medida nos da una idea de la similitud en el contenido de dostoenj&n

particular, siS,, es un estimador del soportg entoncesi, (.S, S,,) mide la proximidad entre
ambos conjuntos, sirviendo asi como criterio para evaluar el comportandigrestimador del
soporte.
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En cuanto a lastimacion del area superficigl abordamos el problema desde dos puntos
de vista diferentes. En el primer planteamiento que comentamos, la informacé&trahwiene
dada por una muestra de puntos tomada en el conjunto de interés. En esiarsifparece que
lo natural es estimar el conjunto mediante un estimador del soporte y calcilaasuperficial
de dicho estimador. La intuicion que tenemos es que, si el estimador apragimel bonjunto,
entonces su area superficial también aproximara bien al area supedicénjunto, que es
el objetivo. Con este planteamiento presentamos un nuevo estimadortamesen medir el
a-shape de la muestra. ktshape, véase Edelsbrunner et al. (1983), es un grafo cuyas aris
tas son rectas uniendo puntos muestrales denominaglesinos. Dos puntos muestrales son
a-vecinos si existe una bola de radiode forma que los dos puntos estan en su frontera v,
ademas, ningln punto muestral esta en su interior.

El segundo planteamiento para abordar el problema de la estimacionalslaegficial con-
siste en suponer que la informacién muestral viene dada por puntos tatentde del conjunto
de interég= como de fuera del conjunto. Asumimos entonces, sin pérdida de genérajida
G c (0,1)? y definimosR = [0,1]¢ \ int(G), donde intG) denota el interior del conjunto.
La informacioén muestral consiste en observaciones (¥4, 1), . . ., (Zn, &,) de una variable
aleatoria(Z, ¢), dondeZ se distribuye uniformemente €0, 1]% y ¢ = Iizeqy es la funcién
indicadora de&~. DenotamosY,, = {Z; : ¢, = 1} e Y, = {Z; : & = 0}. El &rea superficial de
G se calcula a partir de su contenido de Minkowski,

Lo = lim wBIe) = lim L(¢)

e—0 15 e—0

siempre que este limite exista y sea finito. En la definicion antdriatenota la frontera del
conjuntoG'y B(I',¢) es la dilatacion de radiode dicha frontera, es decir,

B(I'e) = | J B(z,).

zel’

Por lo tanto, si definimos un estimador para la dilatacion de la frontera, mpodrdefinir un
estimadorl,, para el contenido de MinkowsKiy de la siguiente forma:

Ln = M(Fn)7
2e,

siendoe,, > 0y I, un estimador d&(1',¢,,). La clave para definif}, es que, bajo condiciones
suaves,

B(I'yen) = B(G,e,) N B(R,&y),

es decir, es posible construir un estimador/gea partir de estimadores de los conjunf®y

R, lo cual nos lleva de nuevo al problema de estimacién del soporte. Por ejdbydeas et

al. (2007) proponen estim&F y R medianteX,, e ),, respectivamente. Nos referiremos al
estimador resultant&,, como estimador empirico. De nuevo, dependiendo de las restricciones
de forma de7 y R, podremos definir estimadores mas sofisticados. Siguiendo la linea abierta
en la estimacion del soporte, nos centraremos en la condiciarcdavexidad.
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Resultados sobre la estimacion de conjuntas-convexos

En el Capituld se aborda el problema de la estimacion de conjumtognvexos. El estimador
natural en esta situacion es la envoltaraonvexa de una muestra de puntos tomada en el con-
junto de interés. De manera formal, seaC R? un conjunto compacto, no vacioaconvexo

cona > 0. El objetivo es estima$' a partir de una muestr¥, de una variable aleatori& con
distribucion de probabilidad absolutamente contifitiay soporteS. Puesto que, en general,

el parametrax es desconocido, consideraremos el estimétofX,, ), donde asumimos que,

es menor o igual que para todon. ¢ESC,, (X,) un estimador consistente & ¢Bajo qué
condiciones? ¢ Cuanto se aproxi@ig (X,,) a.S? En el Capitul® damos respuesta a estas pre-
guntas. El Teorema.5.1establece una condicidn necesaria y suficiente para la consistencia del
estimador envoltura,-convexa. Se prueba ql&d,,(S, C,, (X,))) — 0 siy sblo sinré — occ.
Merece la pena comentar que la hipotesisiemnvexidad no es esencial para probar la consis-
tencia del estimador. De hecho, se puede probar gquyg-si 0y nré — oo, entonces se sigue
cumpliendo quéE(d, (S, C;., (X,))) — 0, incluso en el caso de queno seax-convexo. Notese

gue las hipétesis sobrg, son idénticas a las que, impuestas sobre el parametro de suavizado
del estimador Devroye-Wise, garantizan su consistencia en probabiliksk Devroye y Wise
(1980).

Respecto a la proximidad entey C,, (X)), estudiamos la distancia en medida entre
ambos conjuntos. Rodriguez-Casal (2006) obtuvo la tasa de coneergmsi segura para
d,.(S,C,, (X)), bajo la hipdtesis de que satisface las condiciones del Teorema 1 de Walther
(1999). En concreto, se prueba que el orden de convergengja @sg n/n)?/(“+1) . En el Teo-
rema2.5.2obtenemos la tasa de convergenci&dé, (S, C;,(X,))). Aligual que Rodriguez-
Casal (2006), necesitamos una condicién de forma adicional solareual, en particular, im-
plica laa-convexidad. Suponemos que una bola de radie 0 rueda libremente e§ y en
Se. Esta condicion juega un papel fundamental a lo largo de nuestro trabzgoece algunos
comentarios. En primer lugar, la condicién de rodamiento libr§ gren.S¢ excluye la posibi-
lidad de que el conjunt§ tenga picos. Notese que si Gnicamente suponermvexidad, no
podemos asegurar que la frontera del conjunto es suave. Por dagbasumir que una bola
de radioa: > 0 rueda libremente e estamos descartando, por ejemplo, conjuntos con puntos
aislados. En términos generales, la condicion de rodamiento libseobtiga a los puntos de la
frontera del conjunto a estar en contacto directo con el interiét. dela vista de la importancia
de esta condicion, uno puede preguntarse por qué en el titulo del C&uétbllmhacemos refe-
rencia a lax-convexidad. Pues bien, el motivo es quertaonvexidad es la restriccion de forma
gue motiva originalmente la definicién del estimador. Ademas, la envalio@nvexa de una
muestra de puntos tiene sentido como estimador, independientemente de cesdigidorma
mas restrictivas sobrg. Esta es la razon por la que hemos decidido enfatizar la importancia de
esta propiedad.

Respecto a la distribucion de probabilidad, es Gtil suponerfguesta acotada uniforme-
mente enS. Formalmente,Py esta acotada uniformemente 8nsi existed > 0 tal que
Px(C) > éu(C n S) para todo conjunto de Borél ¢ R?. Es inmediato comprobar que,
por ejemplo, la distribucion uniforme efesta acotada uniformemente.

Una vez discutidas las hipotesis, podemos pasar a establecer los resuigedionportantes
del Capitulo2. Asi, seaS un subconjunto compacto no vacio é tal que una bola de radio
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a > 0 rueda libremente efi y en S¢ y supongamos quEx esta acotada uniformemente &n
En estas condiciones, el Teoreha.2establece que, si la sucesifpn, } satisface

Tle

lim = o0,
n—oo logn

entonces .
E(d, (S, Cy, (X)) = O <7~nd+1n—dil) .

Debemos también mencionar que el concepto de familia inevitables de conpliatagido en
detalle en las Seccion&3y 2.4 es fundamental en el desarrollo del CapitBlg juega un
papel esencial en la prueba del Teoreéhfa2 Finalmente, en el Teorentab.3probamos que
la tasa de convergencia obtenida p&fd,, (.S, C,, (X,))) no puede ser mejorada ya que existen
conjuntos bajo las condiciones establecidas para los cuales

d—1
lim inf T n@ TE(d, (S, C,, (X,))) > 0.

Estos resultados nos llevan a comparar la tasa de convergenti@de, C,, (Xy,))), es-
tablecida en el Teorema5.2 con la ded,(S,C,, (X)) (tasa de convergencia casi segura)
obtenida por Rodriguez-Casal (2006). Observamos que la coneg@agkeE (d, (S, C,., (X))
es mas rapida puesto que el logaritmo del numerador desaparece Yoeldapenalizacion

ry, @D/ g asintéticamente menor qugt.

Resultados sobre la estimacion del area superficial
El Capitulo3 aborda el problema de la estimacion del area superficial de un conjuhpoe-A
sentar este problema distinguimos entre el caso en que la informacién muiesteatiado por
puntos dentro del conjunto de interés y el caso en el que la informaciéstnalugene dada por
puntos tanto dentro del conjunto de inte@sc (0, 1)¢ como dentro de? = [0, 1]¢ \ int(G).
Como comentamos, la primera situacion se puede entender como un paso tradelémes-
timacion del soporte. A pesar de que dicho planteamiento es mas elemental wintegulta
mas dificil de abordar desde el punto de vista teérico ya que no es inmeeliatmahar cuando
un punto esta proximo a la frontera del conjunto. Por tanto, en el Caitde restringimos al
caso en el que la informacion muestral viene dada por observacionegdii, g, ), . . ., (Z,, &)
de una variable aleatori#, £), donde, como ya comentamdssigue una distribucion uniforme
en[0,1]%y ¢ = I ze@y - Siguiendo la notacion introducida anteriormente consideramos
(L)

L. —
n 26”7

donder’;, es un estimador d8(I¢,) y ¢, > 0. Recordemos que la expresion Hg viene
motivada por la definicién del contenido de Minkowsgkj. Asi, para valores pequefios €g

el estimadot,, se aproxima d.¢. Siguiendo con la restriccién de forma estudiada, suponemos
queG'y R sona-convexos. Entonces, proponemos estif@éf’, ,,) mediante

Iy = B(Ca(Xn),en) N B(Ca(Vn),en)
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dondeX,, = {Z;: & =1} e ), = {Z, : & = 0}. Una cuestion de importancia tedrica es la
existencia del contenido de Minkosky. Este hecho esta relacionado con el comportamiento
de la funcionu(B(I',¢)) vy, por lo tanto, con las hip6tesis sobre el conjuto En cuanto al
estimador, la cuestion mas relevante e5,saproxima con exactitud Ay. De forma analoga al
problema de estimacion del soporte, los resultados del CaBisg@btienen bajo una condicion
adicional de rodamiento libre. De nuevo, asumimos que una bola deaadi® rueda libre-
mente erG'y enG¢. Esta condicion garantiza que el contenido de Minkowski esta bien dfinid
De todas formas, no debemos olvidar dugtiene sentido bajo condiciones mas suaves. Por
ejemplo, lac-convexidad de= y R es suficiente para garantizar que, con probabilidad uno,
I, € B(I,e,). Esta Gltima propiedad indica qug, es sesgado, tendiendo a infraestimar el
valor deL. Las propiedades asintéticas fig se estudian y comparan con las del estimador
del area superficial propuesto por Cuevas et al. (2007). Losmeas3.3.1y 3.3.2nos dan,
respectivamente, la tasa de convergencia casi segura y la tasa degeoial; del estimador

L,, aLgy. Bajo las hipotesis establecidas se prueba que, con probabilidad uno,

1
1 a1

inf| L, — Lo| = O ( Og”) ,

En n

donde la tasa Gptima se obtiene paya= (logn/n)'/(4*+1). Respecto a la tasa de convergencia

L1, probamos que se puede eliminar el logaritmo en la tasa anterior y, por tanto,

infE |L, — Lo| = O (n—#l) .
En

El orden 6ptimo en este caso se obtiene para n Y+ | g convergencid,; del estimador
propuesto es asi mas rapida que la del estimador empirico propuestogyas@t al. (2007),
de ordem,~1/24,

Aspectos computacionales

Una vez que hemos discutido las propiedades tedricas de diferentes estisndel soporte y el
area superficial de un conjunto, el Capitdlse centra en como se puede llevar a cabo el analisis
practico de dichos problemas. El calculo de la envoliH@onvexa de una muestra no es un
problema de solucién inmediata y, por este motivo, dedicamos parte del Capéwescribir

el algoritmo de implementacién propuesto por Edelsbrunner (1983).

Ademas de la envoltura-convexa, hemos programado el estimador de la longitud de la
frontera propuesto en el Capitubopara el caso particular de?. llustramos el problema de
estimacion del &rea superficial mediante un estudio de simulacion en elmgpareonos nuestro
estimador con el propuesto por Cuevas et al. (2007). Puesto quesldsdes del estudio no
son tan satisfactorios como cabria esperar tras el analisis tedrico, hiamiesido una solucion
alternativa al problema de la estimacion del area superficial. Dada la eawelionvexa de
una muestra, podemos calcular su perimetro sumando las longitudes desogeErconforman
su frontera. De forma analoga, se consideran otros estimadores comegemplo, ekv-shape
para los cuales medimos la longitud de su frontera. En el Capitsdomuestran los resultados
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de un estudio de simulacion que pretende mostrar el comportamiento en lagpdé&ctiste tipo
de estimadores de la longitud de la frontera.

A la vista de los resultados obtenidos, ho podemos concluir que los modshdolsaen la
nocién de contenido de Minkowski, sean significativamente mejores quadasits en la idea
mas intuitiva de medir la frontera de un estimador del soporte. Los prometerksultados
obtenidos en este Ultimo estudio de simulaciéon nos animan a afrontar en el laujusaifi-
cacion tedrica que explique el buen comportamiento observado. Asi, ersiénea abierta a
la investigacion en este contexto.

Finalmente, merece la pena comentar que, como consecuencia de la implemesi&io
de los estimadores estudiados, hemos desarrollado una nueva libreri@rbteal phahul | .
La documentacién completa del paquete, incluyendo la descripcion destioslisnciones, se
puede consultar en el Apéndi€e Nos gustaria resaltar algunas de las caracteristicas mas desta-
cables de la libreria. Ademas de las funciones que calculan los estimadbseparte y de la
longitud de la frontera utilizados en los estudios de simulacion, el pagueteahul | incluye
otras funciones que pueden ser de utilidad en diferentes contextosieRyro, hemos progra-
mado el diagrama de Voronoi y la triangularizacion de Delaunay. El dizgyde Voronoi y la
triangularizacion de Delaunay se usan con mucha frecuencia en vamp®s de investigacion
y, por lo que nosotros sabemos, no existia un cédigo depuraBaee calculase estas estruc-
turas geométricas. Por lo tanto, pretendemos que el pagupteahul | se entienda, no sélo
como una coleccion de funciones programadas para la realizacion dgéudioede simulacion
aislado, sino como una herramienta Gtil para la investigacién mas alla delwodéessta tesis.
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Notation

I
dH(A, C)
(0, )

B(A)¢)
B(A,¢)

B(z,7)
B(x,r)

AC
int(A)

0A

du(A,C)
AAC
Ia

Ca(A)
reach(S)
Lo(A)

gxm
ux,r
Sqa

Pu,v

Sample(Xy, ..., X,),3

Distribution probability function ofX, 3
d-dimensional Euclidean space,
Inner product irk¢, 5

Euclidean norm iR?, 5

Hausdorff distance betweehandC, 5, 6, 8
Distance from the point to the setC, 5
opene-neighbourhood6
closedz-neighbourhood6

Minkowski addition,7

Minkowski subtractiony

Closed ball with centre and radius-, 7
Open ball with centre: and radius-, 7
Closed ball with centré and radiud, 7
Open ball with centr@ and radiusl, 7
Complement of4, 7

Interior of A, 7

Closure ofA4, 7

Boundary ofA4, 7

Borel o-algebra9

Lebesgue measur®,

Distance in measure betwednandC, 9
Symmetric difference betweetandC, 9
Indicator function of4, 10

Convex hull of the samplg’,, 11
a-convex hull of4, 12

Reach ofS, 16

Minkowski content of the bodyl ¢ R¢, 20
Boundary of a seQ1

{B(y,r):y € B(z,r)}, 29
Unavoidable family of sets faf,. ., 29
Unit sphere{u € R? : ||ul| = 1}, 31, 48

Angle between the vectotsandv. ¢, , € [0, 7], 31, 48
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€d

0
Cuv Cu
Cz,r’ CUJ"

Ro, R
Prz

Wd

Unit vector (0, ...,0,1) € R?, 31, 48
CO={zeRe: (z,u) > ||z| cos 0}, C2/%, 31, 48
Circular sectoC? . = C9 N B(0, ), Cr/% 31,48
Counter-clockwise rotation of angle R ;. 6, 31
Metric projection ofr ontoI", 37

Orthogonal transformatior38

Measure of the unit ball iR, 48

I, = B(Gn,en) N B(Ry,er), 86
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a-convexity, 12-17, 127

a-extreme, 18, 111, 122, 124, 125

a-neighbours, 18, 111, 121, 122, 124

a-shape, 17, 18, 112, 120-125

e-neighbourhood
closedz-neighbourhood, 6, 85, 86
opene-neighbourhood, 6

add. vor onoi , 142,157,160, 161

al pha. hul | , 143,150, 153-155%
158-160

al pha. shape, 143, 144 145,161

al phahul | (al phahul | - package),
146

al phahul | - package, 146

angs. arch, 147,160

arch, 148

closing, 1, 13, 14, 135

conpl enent , 143, 144 149,149, 155

convex hull, 4, 10-13, 17, 19, 105, 107,
119,120

Devroye-Wise estimator, 10, 11, 18, 20, 23,
113,119

dilation, 7, 8, 13, 14, 21, 141

di | ati on, 150

distance in measure, 9, 23, 28

dunmy. coor, 152,156, 157

erosion, 7, 8, 13, 14
free rolling condition, 15, 127
Hausdorff distance, 5, 6, 8, 12, 20

i n.al pha. hul |, 151, 155,155
i n. BTnEn, 153

177

in.dilation,154

i nform vor. del , 142

informvor.tri, 143 145, 146149,
150 152 156

i nter, 144 157

| engt h. ahul | , 144, 159

Minkowski
addition, 6-8, 136
content, 4, 20, 24, 25, 85, 105
subtraction, 7, 8, 136

opening, 13, 14

par, 142 148 160, 161
pl ot . ahul | , 144 148 160
pl ot . ashape, 146, 160, 161

reach, 16, 86, 89, 127, 131, 132
Reuleaux triangle, 35, 36
rotation.cw, 144 162

Serra’s regular model, 15

structuring element, 6-8, 13

surface area, 4, 17-22, 24, 25, 85-103,
112-118

tri.nmesh, 152 156, 157
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