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Abstract

An R package for stationary time series clustering is presented. Its aim is

to provide the R community with the implementation of well-established

peer-reviewed time series dissimilarity measures and specific clustering

methods for research and other purposes. This work has been motivated

by the inexistence of a previous packages targeting the problem and the

certainty of its demand. Special emphasis in the interoperability with

existing general purpose clustering methods has been made, along with

the ease of use. All dissimilarity functions are accessible individually for

an easier extension and use out of the clustering context.
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Chapter 1

Introduction

Clustering is an unsupervised learning task aimed at classifying a set of unlabeled

data objects into homogeneous groups in such a way that the within-group-series sim-

ilarity is minimized and the between-group-series dissimilarity is maximized. Cluster

analysis has an enormous range of applications and is one of the multivariate tech-

niques more widely used. Sometimes the clustering task must be performed with

particularly complex data type, which generally requires clustering techniques more

sophisticated than the conventional ones for multidimensional data points. This is

the case of data having the form of time series. Time series data are dynamic in

their nature, with an underlying autocorrelation structure, and hence the analysis of

similarities between series should regard their evolution in time. However, the con-

ventional clustering methods usually consider proximity measures that are inherently

static because they assess the closeness of the values observed in specific instants of

time, ignoring the interdependence relationship between values. In fact, the concept

of similarity between time series is not simple and it can be established in different

ways. On the other hand, the problem of grouping together similar time series arises

in a broad range of fields such as economics, finance, medicine, bioinformatics, ecol-

ogy, geology, environmental studies, engineering, and many others. Finding stocks

that behave in a similar way, determining products with similar selling patterns, iden-

tifying countries with similar population growth or regions with similar temperature

. . . are some specific applications where the similarity searching among time series is

important.

Previous arguments motivate that the number of contributions on time series clus-

tering has increased substantially in recent years, becoming a very active research area

nowadays. A detailed and extensive review on time series clustering is given by Liao

(Liao, 2005), who introduces the basics of this topic and provides a set of interesting

references and some specific application areas along with the sources of data used.

1



Some illustrative examples reported in the literature are: classification of children on

the basis of similarities in behavior through time (Hirsch and DuBois, 1991), com-

parison of seismological data as the case of distinguishing between earthquake and

nuclear explosions waveforms (Kakizawa et al., 1998), organization of industrial data

according to average wage rates (Galbraith and Jiaqing, 1999), cluster models of eco-

logical dynamics (Li et al., 2001), clustering of industrialized countries according to

historical data of CO2 emissions (Alonso et al., 2006), detection of similar immune

response behaviors of CD4+ cell number progression over patients affected by im-

mune deficiency virus (HIV) (Chouakria-Douzal and Nagabhushan, 2007), clustering

of banks on the basis of their weekly share price series (Vilar et al., 2009), cluster-

ing of industrial production indices (Vilar et al., 2010), the automatic identification

of groups of rail switching operations by analyzing time series of electrical power

consumption acquired during these operations (Samé et al., 2011), and many others.

As previously mentioned, one key point in cluster analysis is to determine a sim-

ilarity or dissimilarity measure between two data objects. In the specific context of

time series, the concept of dissimilarity can be approached from many different points

of view. A motivating work by Tong and Dabas (Tong and Dabas, 1990) shows how

various measures of similarity and dissimilarity among time series lead to unexpected

and substantially different cluster solutions. Furthermore, some usual dissimilarity

measures could not work adequately with time series. For instance, the Euclidean

distance, one of the most common distance measures in clustering, has the important

limitation of being invariant to transformations that modify the order of observations

over the time (Galeano and Peña, 2000), and therefore it does not take into account

the correlation structure of the time series. So, the problem of measuring the degree

of affinity between two time series is a key problem in time series clustering.

Corduas and Piccolo (Corduas and Piccolo, 2008) (see Introduction and refer-

ences therein) provide a valuable overview on the different approaches considered in

the literature to construct dissimilarity measures between time series. One way is

to directly compare observations or specific features extracted from raw data (see

(Kovac̃ić, 1998; Struzik and Siebes, 1999; Galeano and Peña, 2000; Caiado et al.,

2006; Chouakria-Douzal and Nagabhushan, 2007), among others). An alternative

approach is to assess the discrepancy between the underlying generating processes

(some references following this approach are (Piccolo, 1990; Maharaj, 1996, 2002;

Kakizawa et al., 1998; Vilar and Pértega, 2004), among many others). Sometimes,

the dissimilarity measures are tailored for the problem at hand, emphasizing proper-

ties of the time series that are of interest for the specific context. For instance, there
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are many practical situations where the real interest of the clustering relies directly

on the properties of the predictions, as in the case of any sustainable development

problem or in situations where the concern is to reach target values on a pre-specified

future time. Works by (Alonso et al., 2006) and (Vilar et al., 2010) focused on this

idea and considered a notion of dissimilarity governed by the performance of future

forecasts. Specifically, two time series are similar if their forecasts for a specific future

time are close. Summing up, there exist a broad range of metrics to compare time

series and the choice of a suitable metric heavily relies on the nature of the clustering,

i.e. on determining what the purpose of the grouping is.

Once the dissimilarity measure is determined, an initial pairwise dissimilarity ma-

trix can be computed and several clustering algorithms be then used to form groups of

objects. In fact, most of the time series clustering approaches reviewed by Liao (Liao,

2005) are variations of general procedures (e.g. a k-means or a hierarchical cluster-

ing) that use non-conventional metrics specifically designed to deal with time series.

According to this observation, we have focused on the implementation of a wide range

of dissimilarity measures for time series (Chapter 2). Package statTSclust includes

model-based metrics, free-model metrics and the prediction-based metrics introduced

by (Alonso et al., 2006) and (Vilar et al., 2010). Some of these metrics work in the

domain time but others are developed in the frequency domain, and it can be ob-

served that a range of statistical techniques (AR models estimation, kernel density

estimation, local polynomial regression, automatic bandwidth selectors, resampling

procedures, . . . ) must be used to construct these metrics. It is worth stressing that

the stationarity assumption is required for some of the considered metrics, although

others can be also applied to non-stationary series (in fact, an experimental study ad-

dressed to classify series as stationary or as non-stationary is developed in Chapter 4).

This limitation is inherent to the own metrics, which are only well-defined under this

assumption. Occasionally, some particular metrics are not suitable for being merged

with classical clustering algorithms, and then specific clustering methods must be pro-

vided. For instance, a specific clustering algorithm developed to work with the metric

based on p-values proposed by (Maharaj, 2000) is also implemented in statTSclust

(see Chapter 3 for details). The design philosophy underlying statTSclust aims to

provide a complete tool to perform clustering of time series, and for this reason the

package includes: routines to evaluate the accuracy of the cluster solutions, such as

the Gavrilov index (Gavrilov et al., 2000), the Rand index (Rand, 1971) and an ad-

justed version of the Rand index (Hubert and Arabie, 1985); statistics to measure the
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clustering quality indicating jointly the compactness of each cluster and the separate-

ness of different clusters, such as the Silhouette coefficients (Kaufman and Rousseeuw,

1990), and some graphical devices to illustrate the clustering performance (e.g den-

drograms, Sihouette plots,. . . ). The code of some of these routines (as the case of

the Gavrilov’s index) was specifically developed here and others are available from

several R packages (which are loaded when the package is installed). Finally, some

simulation results are presented in the present work to illustrate as these metrics per-

form and some real data examples are also considered to emphasize the applicability

of the time series clustering.
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Chapter 2

Dissimilarity measures

2.1 Approaches for measuring dissimilarity between

two time series

As mentioned in Introduction, differing from traditional static data as points in high

dimensional space, time series encode temporal dynamics that are often key in group-

ing sequences in many real cases. The different approaches for similarity searching in

time series database differ mainly because of their notion of similarity/dissimilarity

between two time series. Many different measures of pairwise dissimilarity have been

proposed in the classification literature and an important number of them are consid-

ered in statTSclust. Specifically, we have grouped these dissimilarity measures into

three categories: model-based metrics, free model metrics and the prediction-based

metrics.

The model-based metrics assume some specific form of the underlying generating

models and establish the dissimilarity notion in terms of the discrepancy between the

corresponding fitted models. The main approach of statistics researchers has been to

assume that the underlying models are generated by an ARIMA process, although

researchers in speech recognition and machine learning have also adopted alternative

models as Markov chains (MC) (see (Ramoni et al., 2002)) or hidden Markov models

(HMM) (see (Smyth et al., 1997) and (Oates et al., 1999), among others). One key

difference in clustering technique between the ARIMA and the MC/HMM models is

that the ARIMA-based approach fits a model to each series before clustering, whereas

most research into MC/HMMs involves estimating the HMMs models for each cluster

on each iteration of the clustering algorithm. In statTSclust the most popular

approaches based on ARIMA models are only considered and they are presented in

Section 2.3 of the present work.
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The model free metrics do not assume an explicit model form for the underlying

structures and they are based on directly comparing the original observations (raw-

data-based approaches) or specific features extracted from raw data such as autocor-

relations or partial autocorrelations (feature-based approaches). The feature-based

approaches present some obvious advantages. For one thing, compared to model-

based approaches, feature-based approaches are usually easier to implement as most

of the features can be obtained in a straightforward manner. For another, rather

than using the raw data, clustering time series using a suitable dissimilarity measure

based on their features is much more common. The reason is that if the time series

values are used, clustering methods will suffer from extremely high dimensional input,

especially for those time series collected at fast sampling rates or with large lengths.

Consequently, the clustering process will be time consuming and the computational

cost of the clustering process will be increased. In that case, it is much more efficient

to use particular features of time series in clustering algorithms. A range of model

free metrics are implemented in statTSclust and they are described in Section 2.2.

Finally, we have also implemented some metrics to perform clustering when the

final purpose is not grouping the underlying structures but measuring the similarity

between forecasts at a specific future time. These metrics were proposed by by (Alonso

et al., 2006) and (Vilar et al., 2010) and they are presented in Section 3.3.

Hereafter, unless otherwise specified, the metrics work with two time series Xt

and Yt of length T (although this limitation can be omitted in some cases).

2.2 Free model approaches

In this section, dissimilarity measures between two time series constructed with as-

suming specific generating models are introduced. They directly measure the distance

between values of the series or between extracted features and all of them have been

considered in time series clustering literature.

2.2.1 Minkowski distance

The simplest approach is to treat the time series as an T -dimensional vector and use

the Lq Minkowski distance given by

dMIK(Xt, Yt) =

(
T∑
k=1

(Xk − Yk)q
)1/q

with q a positive integer.

6



The Lq distance presents serious drawbacks. First, it depends on the scale of data.

On the other hand, the closeness between two series depends on the closeness of the

values observed at corresponding points of time, regardless of the serial correlation

structure. Thus, observations are treated as if they were independent so that, in

particular, dMIK is invariant to permutations over time. Therefore, this metric cannot

be considered a good measure of dissimilarity between time series data.

2.2.2 Fréchet distance

This distance was introduced by (Fréchet, 1906) to measure proximity between con-

tinuous curves, but has been extensively used on the discrete case (see (Eiter and

Mannila, 1994)) and in the time series context. A popular intuitive definition of this

distance is the minimum length of a leash required to connect a dog with its owner,

each one walking along different curves from one endpoint to the other. Both may

vary their speed or even stop, but they can never backtrack.

A formal definition for the discrete case can be given as follows. Let the mapping

r ∈ M between time series Xt = (x1, ..., xp) and Yt = (y1, ..., yq) be defined as a

sequence of m pairs preserving the observation order

r = ((xa1 , yb1), ..., (xam , ybm)) ,

with ai ∈ {1, ..., p}, bj ∈ {1, .., q}, and satisfying for i ∈ {1, ..,m − 1} the following

constraints: a1 = 1, am = p, ai+1 = (ai or ai + 1) and b1 = 1, bm = q and bi+1 = (bi

or bi + 1). The Fréchet distance is defined by

dFRECH(Xt, Yt) = min
r∈M
|r| = min

r∈M

(
max
i=1,..,m

|xai − ybi |
)
.

2.2.3 Dynamic Time Warping distance

The dynamic time warping distance was studied in (Sankoff and Kruskal, 1983). It

can be considered a variant of the Fréchet distance with the length of the mapping

|r| defined as

|r| =
∑

i=1,..,m

|xai − ybi |.

Hence, the definition of the dynamic time warping distance is:

dDTW (Xt, Yt) = min
r∈M
|r| = min

r∈M

( ∑
i=1,..,m

|xai − ybi |
)
.
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According to dDTW , two series are similar if there exists a mapping between their

observations, expressing a time distortion by an acceleration/deceleration so that the

sum of the spans between all couple observations is close. As in the case of dMIK ,

both dFRECH and dDTW ignore the temporal structure of the values as the proximity

is based on the differences |xai − ybi | independently of the behavior around these

values.

To make useful these metrics for time series clustering, (Chouakria-Douzal and

Nagabhushan, 2007) propose a dissimilarity index model that include both behavior

and observations proximity.

2.2.4 Chouakria-Douzal dissimilarity

(Chouakria-Douzal and Nagabhushan, 2007) introduce a dissimilarity measure ad-

dressed to cover both conventional measures for the proximity on observations and

temporal correlation for the behavior proximity estimation. The first order temporal

correlation coefficient is defined by

CORRT (Xt, Yt) =

∑p−1
t=1 (xt+1 − xt)(yt+1 − yt)√∑p−1

t=1 (xt+1 − xt)2
√∑p−1

t=1 (yt+1 − yt)2
,

and it is used as a measure of the first order proximity between the dynamic be-

havior of the series. CORRT (Xt, Yt) belongs to the interval [−1, 1]. The value

CORRT (Xt, Yt) = 1 means that both series show a similar dynamic behavior, i.e.

their growths (positive or negative) at any instant of time are similar in direction and

rate. The value CORRT (Xt, Yt) = −1 implies a similar growth in rate but opposite

in direction (opposite behavior). Finally, CORRT (Xt, Yt) = 0 expresses that there is

no monotonicity between X and Y , and their growth rate are stochastically linearly

independent (different behaviors).

Using this coefficient, they define the following distance:

dCORRT (Xt, Yt) = f [CORRT (Xt, Yt)]δ(Xt, Yt),

where f(·) is an adaptive tuning function to modulate a given raw data distance

δ(Xt, Yt) (like dMKW , dFRECH or dDTW ) according to the temporal correlation. The

purpose of this dissimilarity measure is weighting the contribution of the similarity of

the dynamic behavior of the series and the similarity between their raw values. The

conventional raw data discrepancy (δ(Xt, Yt)) should be increased when the temporal

correlation (CORRT (Xt, Yt)) decreases from 0 to −1. The resultant dissimilarity
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should approach the raw data discrepancy when the temporal correlation is zero. Fi-

nally, when the temporal correlation increases from 0 to +1 the raw data discrepancy

is decreased. As adaptive tuning function, they choose an exponentially adaptive

function given by

f(u) =
2

1 + eku
, with k = 0, 1, 2, . . .

Note that for k = 0 the value of dCORRT coincides with the raw distance δ(Xt, Yt).

Figure 2.1 shows the effect of the k parameter. As CORRT (Xt, Yt) tends to 0,

f(u) is near 1 for any value of k, making dCORRT approximately equal to δ(Xt, Yt). As

k increases the contribution of the behavior proximity increases while the contribution

the the raw distance decreases.

Figure 2.1: Weighting effect based on several values of k.

2.2.5 Autocorrelation-based distance

(Galeano and Peña, 2000) propose a metric based on the estimated autocorrelation

function (ACF) for the situations when the correlation structure of the series is of

interest.

Let ρ̂X = (ρ̂1,X , .., ρ̂L,X)t and ρ̂Y = (ρ̂1,Y , .., ρ̂L,Y )t be the estimated autocorrelation

vectors of the time series X and Y , for some L such that ρ̂i,X ≈ 0 and ρ̂i,Y ≈ 0 for

i > L. A distance between time series can be then constructed by means of:

dACF = {(ρ̂X − ρ̂Y )tΩ(ρ̂X − ρ̂Y )}
1
2 ,

where Ω is a matrix of weights. Some common choices of Ω are:
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• Consider uniform weights by taking Ω = I. In such case, dACF becomes the

Euclidean distance between the estimated autocorrelation functions:

dACFU(Xt, Yt) =

{
L∑
i=1

(ρ̂X − ρ̂Y )2

}1/2

.

• Consider geometric weights decaying with the autocorrelation lag, so that dACF

takes the form:

dAFCG = {
L∑
i=1

(p(1− p)i(ρ̂i,X − ρ̂i,Y )2}1/2,

with 0 < p < 1.

• Consider Ω = Cov(ρ̂)−1, the inverse covariance matrix of the autocorrelations,

thus obtaining the Mahalanobis distance between autocorrelations, dACFM .

Other distances can be introduced by considering the partial autocorrelation functions

(PACF’s) instead of the ACF’s. Hereafter, notation dPACFU and dPACFG will be

used to denote the Euclidean distance between the estimated partial autocorrelation

coefficients with uniform weights and with geometric weights decaying with the lag

(dPACFG), respectively.

All the measures until now work in the time domain, but the frequency domain

approach also offers an interesting alternative to measure the dissimilarity between

time series. The key idea is to assess the dissimilarity between the corresponding

spectral representations of the series.

2.2.6 Periodogram-based distances

(Caiado et al., 2006) introduce several distances based on the periodograms of the

time series. Let: IX(λk) = T−1|∑T
t=1Xte

−iλkt|2 and IY (λk) = T−1|∑T
t=1 Yte

−iλkt|2 be

the periodograms of the time series X and Y respectively, at frequencies λk = 2πk/T ,

k = 1, . . . , n, with n = [(T − 1)/2]. Based on these periodograms several distances

are defined below.

The Euclidean distance between the periodogram ordinates:

dP (Xt, Yt) =
1

n
{

n∑
k=1

(IX(λk)− IY (λk)}1/2.
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If we are not interested in the process scale, but only on its correlation structure,

better results can be obtained using the Euclidean distance between the normalized

periodogram ordinates:

dNP (Xt, Yt) =
1

n
{

n∑
k=1

(NIX(λk)−NIY (λk)}1/2,

where NIX(λk) = IX(λk)/γ̂0
X and NIY (λk) = IY (λk)/γ̂0

Y , with γ̂0
X and γ̂0

Y the

sample variance of series X and Y respectively.

Since the variance of periodogram ordinates is proportional to the spectrum value

at the corresponding frequencies, it makes sense to use the logarithm of the normalized

periodogram:

dLNP (Xt, Yt) =
1

n
{

n∑
k=1

(logNIX(λk)− logNIY (λk)}1/2.

(Casado de Lucas, 2010) consider a distance measure based on the cumulative

versions of the periodograms, i.e. the integrated periodograms. They argue that inte-

grated periodogram based approaches presents several advantages over periodogram

based ones, such as:

• Good asymptotic properties. The periodogram is an asymptotically unbiased

but inconsistent estimator of the spectral density while the integrated peri-

odogram is a consistent estimator of the spectral distribution.

• From a theoretical point of view, the spectral distribution always exists, the

spectral density exists only under absolutely continuous distributions. However,

in practice, the integrated spectrum is usually estimated via the estimation of

the spectrum.

• The integrated periodogram completely determines the stochastic process.

They propose two distances based on the integrated periodogram, one normalized

and other nonnormalized. The normalized version gives more weight to the shape

of the curves while the nonnormalized considers the scale. They suggest using the

normalized version when the graphs of the functions tend to intersect, and the non-

normalized when they do not. Specifically, the distances based on the integrated

periodograms take the form:

dIP (Xt, Yt) =

∫ π

−π
|FX(λ)− FY (λ)| dλ,
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where FX(λj) = C−1X
∑j

i=1 IX(λi) and FY (λj) = C−1Y
∑j

i=1 IY (λi), with CX =
∑

i IX(λi)

and CY =
∑

i IY (λi) for the normalized version, and CX = 1 and CY = 1 for the

nonnormalized version.

2.2.7 Dissimilarity measures based on nonparametric spec-
tral estimators

Also in the frequency domain, (Kakizawa et al., 1998) proposed a general spectral

disparity measure given by

dW (Xt, Yt) =
1

4π

∫ π

−π
W

(
fX(λ)

fY (λ)

)
dλ,

where fX and fY denote the spectral densities of the series X and Y , respectively,

and W (.) is a divergence function satisfying appropiate regular conditions to ensure

that dW has the quasi-distance property. If, for example, W is given by:

W (x) = log(αx+ (1− α))− α log x

with 0 < α < 1, dW corresponds to the limiting spectral approximation of the Chernoff

information in the time domain. To perform cluster analysis it is necessary to have a

symmetrized version of dW , which can be easily obtained by modifying the divergence

function as follows:

W̃ (x) = W (x) +W (x−1).

In practice, the spectra fX and fY are usually unknown and they must be previ-

ously estimated. (Vilar and Pértega, 2004) studied the asymptotic properties of dW

when fX(.) and fY (.) are replaced by non-parametric estimators constructed via local

linear regression. These approximations can be done in three different ways ((Fan and

Kreutzberger, 1998)) and hence three dissimilarity measures can be also constructed,

which are described below.

• dW (DLS), when the spectra are replaced by local lineal smoothers of the peri-

odograms, obtained via least squares.

• dW (LS), when the spectra are replaced by the exponential transformation of local

linear smoothers of the log-periodograms, obtained via least squares.
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• dW (LK), when the spectra are replaced by the exponential transformation of local

linear smoothers of the log-periodograms, now obtained by using the maximum

local likelihood criterion. Here, the likelihood function takes the form:

L(a, b) =
n∑
−n

[
−eYk−a−b(λk)−λ + Yk − a− b(λk − λ)

]
Kh(λk − λ),

where λk = 2πk
T

, Yk = log(I(λk)) is the logarithm of the periodogram and Kh

is the kernel function with bandwidth h. Since the purpose of this package is

automatic clustering, the default value of h is established by the plug-in method

for local linear Gaussian kernel regression in (Ruppert et al., 1995).

Another two non-parametric spectral dissimilarity measures studied in (Pértega

and Vilar, 2010) are considered. In both cases, the discrepancy measure is given by a

non-parametric statistic originally introduced to check the equality of the log-spectra

of two processes, that is, to test between

H0 : mX(.) = mY (.)

H1 : mX(.) 6= mY (.)

with mX(λ) = log(fX(λ)) and mY (λ) = log(fY (λ)).

The first distance comes from the generalized likelihood ratio test approach intro-

duced by (Fan and Zhang, 2004) to check whether the density of an observed time

series belongs to a parametric family. (Pértega and Vilar, 2010) introduce a slight

modification to adjust the procedure to the previously states hypothesis testing to

produce:

dGLK(Xt, Yt) =
n∑
k=1

[Zk − µ̂(λk)− 2 log(1 + e{Zk−µ̂(λk)})]−
n∑
k=1

[Zk − 2 log(1 + eZk)],

where Zk = log(IX(λk)) − log(IY (λk)), µ(λk) = mX(λk) −mY (λk) and µ̂(λk) is the

local maximum log-likelihood estimator of µ(λk) computed by local linear fitting.

The second distance is based on the integrated squared differences between non-

parametric estimators of the log-spectra mX(λ) and mY (λ).

dISD =

∫
(m̂X(λ)− m̂Y (λ))2 dλ,

where m̂X(λ) and m̂Y (λ) are the local linear smoothers of the log-periodograms,

obtained using the preciously defined maximum local likelihood criterion.
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2.3 Model-based approaches

Model-based metrics assume that the underlying models are generated from a par-

ticular parametric model. The main approach in literature is to consider that the

generating processes follow an invertible ARIMA model. In such case, the clustering

procedure usually involves the following steps:

1. fitting an ARIMA model to each time series;

2. measuring the distances between each pair of fitted models;

3. performing cluster based on these distances.

First step requires the estimation of the structure and parameters of ARIMA

models. Structure is either assumed to be given or automatically estimated using, for

example, Akaike’s Information Criterion (AIC) or Schawartz’s Bayesian Information

Criterion (BIC). Parameters are commonly fitted using the generalized least squares

estimators. Some of the most relevant metrics derived in the literature under the

assumption of generating models following an ARIMA structure are provided below.

2.3.1 Piccolo distance

(Piccolo, 1990) proposes a metric for the class of invertible ARIMA processes. As

an ARIMA model can be correctly specified by an AR(∞) model, Piccolo proposes

to measure the discrepancy between two series by means of the Euclidean distance

between their corresponding AR(∞) operators. He argues that, in a sense, the π

coefficients convey all the useful information about the stochastic structure of the

process, since all the other information required is the initial values and the white

noise process.

As already mentioned, the AR modeling is automatically performed by using a

model selection criterion such as AIC or BIC criterion. Let Π̂X = (π̂1,X , . . . , π̂k1,X)t

and Π̂Y = (π̂1,Y , . . . , π̂k2,Y )t be the vectors of AR(k1) and AR(k2) parameter estima-

tions of the observed series XT and YT . The Piccolo’s distance is calculated as

dPIC(Xt, Yt) =

{
k∑
j=1

(π̂′j,X − π̂′j,Y )2

}1/2

,

where k = max(k1, k2), π̂
′
j,X = π̂j,X , if j ≤ k1, and π̂′j,X = 0 otherwise, and analogously

π̂′j,Y = π̂j,Y , if j ≤ k2, and π̂′j,Y = 0 otherwise.

Note that the authors do not consider the residual variance as relevant for com-

parison, since it is purely a scale parameter, and do not include it in the metric.
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2.3.2 Maharaj distance

(Maharaj, 1996) introduced two other discrepancy measures for ARMA processes,

based on the hypothesis testing to determine whether or not two time series have sig-

nificantly different generating processes. More precisely, the hypotheses to be tested

are:

H0: There is no significant difference between the generating processes of two sta-

tionary series, i.e ΠX = Πy.

H1: There is a significant difference between the generating process of two stationary

series, i.e ΠX 6= ΠY .

The motivation of the test lies in one particular use of the cluster analysis of

time series: the identification of a series that is characteristic of all series in a given

cluster. Maharaj argues that, since the cluster solution depends on the distance

measure, the clustering technique and the analyst, it is useful to have a test to check

the homogeneity of the generating models of the series in a given cluster. They further

develop this idea and use the p-values of the test to cluster processes that are not

significantly different from each other, effectively creating a clustering technique by

itself. As consequence of these ideas, both the test statistic and the associated p-value

can be used as dissimilarity measures for a more general clustering technique. The

proposed test statistic is given by:

dMAH(Xt, Yt) =
√
T (Π̂′X − Π̂′Y )tV̂ −1(Π̂′X − Π̂′Y ),

where Π̂′X = (π̂′1,X , . . . , π̂
′
k,X), Π̂′Y = (π̂′1,Y , . . . , π̂

′
k,Y ), V̂ is an estimator of V =

σ2
XR

−1
x (k) + σ2

YR
−1
Y (k), with σ2

X and σ2
Y denoting the variances of the white noise

processes associated with XT and Yt, and RX and RY are the corresponding sample

covariance matrices of both series. k1 and k2 are the orders of the AR processes

selected by AIC as in dPIC .

(Maharaj, 1996) establishes that, under H0, dMAH(Xt, Yt) is asymptotically dis-

tributed as a chi-square with k degrees of freedom and, in this way, the values of the

statistic can be replaced by the corresponding p-values to construct the metric.

2.3.3 Maharaj extended distance

The second metric proposed by (Maharaj, 2000) does not require the time series are

independent and is based on the differences between estimated parameters. Let the
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T − k observations of the series XT and YT be expressed by:

X = Wxπx + ax

Y = Wyπy + ay

where

xt = (xk+1, ..., xT−1, xT ),

Wx =


xk xk−1 . . . x1
. . . . . .
. . . . . .
. . . . . .

xT−2 xT−3 . . . xT−k−1
xT−1 xT−2 . . . xT−k

 ,
πtx = (π1x, π2x, ..., πkx),

atx = (ak+1x, ..., aT−1x, aTx).

The quantities yt, Wy, π
t
y and aty are analogously defined. Furthermore, E[ax] = 0,

E[axa
t
x] = σxIT−k, E[ay] = 0 and E[aya

t
y] = σyIT−k. The measure assumes that the

disturbances of the two models are correlated at the same points in time but with

uncorrelated across observations. That is:

E(axa
t
y) = σxyIT−k.

Assuming a total of 2(T − k) observations are used, the combined model may be

expressed as:

Z = Wπ + a,

where Z =

[
X
Y

]
, W =

[
Wx 0
0 Wy

]
, π =

[
πx
πy

]
and a =

[
ax
ay

]
. Now, it is observed that

E(a) = 0 and E(aat) = V = Σ⊗ IT−k, with Σ =

[
σ2
x σxy

σxy σ2
y

]
.

The proposed test statistic is:

D = (Rπ̂)t[R(W tV̂ −1W )Rt]−1(Rπ̂),

with R = [Ik,−Ik], V̂ = Σ̂⊗ IT−k, π̂ = [W tV̂ −1W ]−1W tV̂ −1Z.

As D ∼ χ2
k, the p-value computed on D is the final distance metric:

dMAHEXT (Xy, Yt) = P (D ≥ χ2
k).
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2.3.4 Cepstral-based distance

(Kalpakis et al., 2001) propose a dissimilarity measure based on the Linear Predictive

Coding (LPC) cepstrum. The cepstrum is defined as the inverse Fourier transform

of the short-time logarithmic amplitude spectrum. The cepstrum defined using the

autoregression coefficients from linear model of the signal is referred to as the LPC

Cepstrum, since it is derived from the linear predictive coding of the signal.

Consider a time serie Xt defined by an AR(p) model:

Xt =

p∑
r=1

φrXt−t + εt,

where φr are the autoregression coefficients and εt is white noise with 0 mean and

non-zero variance. The LPC cepstral coefficients are defined by:

ψh =


φ1 : h = 1

φh +
∑h−1

m=1(φm − ψh−m) : 1 < h ≤ p∑p
m=1(1− m

h
)φmψh−m : p < h

The distance will then be the Euclidean distance between cepstral coefficients.

dCEP = {
T∑
i=1

(ψXi − ψYi )2}1/2,

with ψX and ψY the cepstral coefficients of the series Xt and Yt respectively.

2.4 Prediction-based approaches

(Alonso et al., 2006) and (Vilar et al., 2010) do not consider an approach based on

the raw data or features of the series neither just on the model that generates it,

but in their forecast at an specific point in time. Figure 2.2 shows a scenario where

clustering based on: (i) the underlying models, (ii) the last observed values or (iii)

the forecasts at an specific horizon, produce totally different results. The prediction-

based approach is specifically suited to clustering scenarios where the interest is in

the long term convergence or where some specific level is going to be reached. (Alonso

et al., 2006) use the CO2 emission reduction of the Kyoto Protocol to illustrate the

applicability of this method, since in this particular case a method based on the

properties of the predictions is clearly interesting. The idea of using series forecast

introduces an extra consideration on the clustering problem, namely which point in

the future will be considered. The introduction of this parameter makes this approach
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notably different to the other distance metrics in this work. In fact, the value of this

parameter is selected by the user from the context but externally to the information

conveyed by the series, while the other metrics only work with the provided series.

Figure 2.2: Three different cluster solutions depending on whether modelling, present
information or future values are used.

This clustering procedure is based on the full forecast densities instead of focusing

on the pointwise forecast. The differences between each pair of densities are used to

fill a dissimilarity matrix from which the cluster analysis will be carried out. One of

the advantages of considering the full forecast densities is the ability to distinguish

between series generated by models that are essentially similar, e.g. models differing

only in the variability of the observations or in the distribution of the innovations,

but which produce different forecast densities. For instance, forecast densities on left

panel in Figure 2.3 have equal means but showing a lower similarity index than the

ones on right panel, where the means are different. Note also that for constructing

the forecasts, both present and past information are used so no valuable knowledge

is discarded.

Figure 2.3: Considering only point forecast can produce incorrect results.
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In this work, the most general approach proposed by (Vilar et al., 2010) is con-

sidered. Their approach is valid to be applied to general autoregressive models,

including extensively studied parametric models, such as the threshold autoregres-

sive (TAR), the exponential autoregressive (EXPAR), the smooth-transition autore-

gressive (STAR) and the bilinear, among others, see (Tong and Yeung, 2000) and

references therein.

2.4.1 Distance procedure

Let Ξ be a class of real value stationary processes {Xt}t∈Z such that

Xt = m(Xt−1) + εt

where

• {εt} is and i.i.d. sequence.

• Xt−1 is a d -dimensional vector of known lagged values.

• m(.) is assumed to be a smooth function, not restricted to any pre-specified

parametric model.

We wish to perform a cluster analysis on a set S of s partial realizations from

series belonging to Ξ, i.e. each series in study is generated from a process satisfying

the above model. The goal of the clustering process is to capture the similarities in

the forecasts at a specific future time T + b. Given two series X and Y in S, the

distance between them is defined by:

DL1(Xt, Yt) =

∫
|fXT+b

(u)− fYT+b
(u)| du,

where fXT+b
and fYT+b

denote the densities of the forecasts XT+b and YT+b, respec-

tively.

The L1 functional distance is chosen over the L2 because the last removes the

effect of the distance between the point forecasts and is only governed by the shape

of the forecast densities. It is not useful when the forecast densities at the specified

horizon are disjoint. On the othe hand, when this happens, DL1 = 2, allowing the

production of reasonable clusters.

Since direct computation of the distance is not feasible in practice due to the

unknown nature of the forecast densities, the densities are replaced by the kernel-

type estimators based on bootstrap predictions. A detailed description of the steps

involved in generating the bootstrap predictions is given below.
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1. Estimate m using a Nadaraya-Watson estimator m̂g1 .

2. Compute the nonparametric residuals, ε̂t = Xt − m̂g1(Xt−1)

3. Construct a kernel estimate, f̂ε̃,h of the density function associated to the cen-

tered residuals ε̃ = ε̂t − ε̂•

4. Draw a bootstrap resample ε∗t of i.i.d from f̂ε̃,h.

5. Define the bootstrap series X∗t by the recursion X∗t = m̂g1(X
∗
t−1) + ε∗t

6. Obtain the bootstrap autoregressive function m̂g2 , using the bootstrap sample

(X∗1 , ..., X
∗
T )

7. Compute bootstrap prediction paths by the recursion X∗t = m̂g2(X
∗
t−1) + ε∗t for

t = T + 1, .., T + b and X∗t = Xt for t ≤ T

8. Repeat steps 4-7 for the desired amount B of bootstrap resamples.

Applying the resampling method toX, provides a bootstrap sample (X∗1T+b, ..., X
∗B
T+b)

from wich the unknown density of XT+b can be estimated using kernel techniques. In

particular, the Rosenblatt-Parzen kernel smoother is used to obtain f̂
X

(i)∗
T+b

(x), the b-

step ahead estimator at point x of X. Finally the distance DL1 can be approximated

by the plug-in version:

dPRED = D̂∗1,ij =

∫
|f̂
X

(i)∗
T+b

(x)− f̂
X

(j)∗
T+b
|dx

This procedure is valid for series of unequal length, unlike other dissimilarity

measures.
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Chapter 3

Clustering

There are a lot of different taxonomies of clustering algorithms (Berkhin, 2006),

(Everitt et al., 2001), (Hansen and Jaumard, 1997), (Jain and Dubes, 1988) but most

authors coincide (Xu et al., 2005), (Kalpakis et al., 2001),(Everitt et al., 2001), (Jain

et al., 1999) in distinguishing two great families of clustering algorithms: partitioning

and hierarchical.

We will give a simple mathematical definition of these two types.

Given a set of input patterns X = {x1, x2, ..., xN} where xj = (xj1, xj2, ..xjd)
T ∈ R

and each measure xjd is said to be a feature.

• Partitioning cluster attemps to seek a K-partition of X, C = {C1, C2, ..CK},
K ≤ N such that

1. CiK 6= ∅, i = 1, ..., K

2. ∪Ki=1Ci = X

3. Ci ∩ Cj = ∅, i, j = 1, ...K, i 6= k

• Hierarchical clustering attemps to construct a tree-like nested partition of X,

H = {H1, ..., HQ}, Q ≤ N , such that Ci ∈ Hm, Cj ∈ Hl and m > l imply

Ci ∈ Cj or Ci ∩ Ck = ∅ for all i, j 6= i,m, l = 1, ...Q.

Among partitioning cluster algorithms, K-means and K-medoids are the two

most representative, and for the hierarchical clustering algorithm, agglomerative with

single-linkage or complete-linkage (Xu et al., 2005).

Most common clustering algorithms, including those mentioned above, are general-

purpose and so can be applied to time series clustering using the appropiate distance

measure for computing the dissimilarity matrix. Implementations exist in R packages
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such as (R Development Core Team) and (Maechler et al., 2011). These implemen-

tations are constantly being tested by the whole R community and have acquired a

degree of maturity that makes it counter productive to reproduce their work. Never-

theless, we have included in our work a clustering algorithm, explained in the following

section, that was created in the context of time series clustering.

3.1 Maharaj Clustering Algorithm

This clustering algorithm was introduced by (Maharaj, 2000) for the use with their

proposed statistic for the hypothesis on series coming from the same model. The first

step is performing the test on each pair of series and determine the p-value. Then the

series are grouped together in way similar to agglomerative hierarchical clustering.

The main differences lie series are only grouped together if their p-values exceed a

previously stablished significance level. Serie y can only join the cluster of serie x

if the p-value of the pair (x, y) and every other combination of the elements in the

cluster of x with y exceeds the significance level. In the same way, two clusters are

only merged if every combination of elements across the two clusters are greater than

the significance level. The full description of the algorithm can be seen in Figure

3.1. This clustering procedure can be applied to any dissimilarity metric based on

p-values.

3.2 Clustering results evaluation criteria

Altough it can be argued that there is no true correct or incorrect clustering solution,

it is helpful to have some criteria to evaluate different clustering methods. Two

different criteria can be distinguished: known ground-truth and unknown ground-

truth. The number of desired clusters and the classification of each element for a

particular problem must be known for the former method, and no extra information

is required for the latter. The most common method for each type of criteria are

explained in the following sections.

3.2.1 Known Ground-truth cluster evaluation criteria

3.2.1.1 Gavrilov similarity

For this kind of criteria one metric is selected, Gavrilov similarity (Gavrilov et al.,

2000). It is computed as follows:
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Let G = G1, ..., GK be the ”ground-truth” cluster and A = A1, ..., Ak be the cluster

obtained using some clustering method that we want to test, then cluster similarity

metric Sim(G,A) is:

Sim(G,A) = (
∑
i

(max
j
Sim(Gi, Aj)))/k

with:

Sim(Gi, Aj) =
|Gi ∩ Aj|
|Gi|+ |Aj|

3.2.1.2 Rand index

The Rand index (Rand, 1971) is a measure of the similarity between two clusterings.

Let S be a set of N data elements. Given two clustering of S, namely A = {A1, ..., AR}
with R clusters and B = {B1, ..., BC} with C clusters, the Rand index is computed

over the pairs of elements on wich the two clustering agree or disagree. Any pair

of data elements of S of the total of
(
N
2

)
distinc pairs falls into one of these four

categories :

1. N11: the number of pairs that are in the same cluster in both A and B

2. N00: the number of pairs that are in different clusters in both A and B.

3. N01: the number of pairs that are in the same cluster in A but in different

clusters in B.

4. N10: the number of pairs that are in different clusters in A but in the same

cluster in B.

The Rand index is defined by:

RI(A,B) =
N00 +N11(

N
2

)
The Rand index lies between 0 and 1. It takes the value 1 when the two clusters

are identical and 0 when no pair of points appear in the same cluster.

3.2.1.3 Adjusted Rand index

(Hubert and Arabie, 1985) propose an adjusted-by-chance modification of the Rand

index by taking the hypergeometric distribution as the model of randomness. The

information on cluster overlap can be summarized in the form of a R×C contingency

table as in table 3.1.
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A/B B1 B2 · · · BC Sums
U1 n11 n12 · · · n1C a1
U2 n21 n22 · · · n2C a2
...

...
...

. . .
...

...
UR nR1 nR2 · · · nRC aR

Sums b1 b2 · · · bC
∑

ij nij = N

Table 3.1: Contingency table for pair overlap information.

The adjusted Rand index is then defined by:

AdjustedIndex =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

more specifically:

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
N
2

)
1
2

[∑
i

(
ai
2

)∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
N
2

)
The adjusted Rand index lies between −1 and 1, taking the value 0 when the

index takes the expected value.

3.2.2 Unknown Ground-truth cluster evaluation criteria

3.2.2.1 Silhouette width

Silhoutte width, first described by (Rousseeuw, 1987) does not require a true reference

solution, it is only a measure on the degree of uniformity of the clusters. It is defined

as follows. Let A be the cluster to which the object i belongs. Let a(i) be the average

dissimilarity measure of i to all the the objects of A. Consider any cluster C different

from A. Let d(i, C) be the average dissimilary measure of i to all the objects of C.

Take the smallest of those average dissimilarity b(i) = minC 6=A d(i). The cluster B

which attains this minimum d(i, B) = b(i) is called neighbor of object i, the second

best cluster for object i. The value s(i) is defined by:

s(i) =
a(i)− b(i)

max(a(i), b(i))

The value s(i) lies between 1 and −1. Values close to 1 mean the object is well

clustered, and if it is closer to −1 the object is badly clustered.
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Arrange the p-values in an array of descending order

Set the level of significance

i = 1

is the p-value(1) < significance level?YES

STOP

Each serie in its own cluster

NO

Group the two series together

i = i + 1

is the p-value(1) < significance level?YES

Is one of the series in the pair (x,y)
say x, already in a cluster

YESNO

STOP STOP

Each serie in 
its own cluster

The serie y in 
its own cluster

NO Is each serie in 
its own cluster?

NO YES

Are the p-values of all pairs
 of series across the two 
clusters > significance level?

YES NO

Merge the 
two clusters

Each serie 
remains 
in its own
 cluster

Is one of the series 
in the pair (x,y)
say x, already 
in a cluster

YESNO

Is the p-value associated 
with the serie y and each 
of the other series in this 
cluster <  significance level?

YES NO

The serie y in 
its own cluster

Merge the serie
y into the existing
cluster

Group the two
series together

Figure 3.1: Maharaj clustering algorithm for time series.
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Chapter 4

Simulation study

The purpose of the simulation study is threefold. First, it compares with the results

shown in existing research papers such as (Pértega and Vilar, 2010), checking for

the correctness of the implementation. Second, it studies the performance measures

that have not been compared with other proposals such as (Casado de Lucas, 2010).

Finally it gives a general reference for the performance of the measures.

4.1 Classification of time series as Stationary or

Non-stationary

The purpose of this experiment, performed in (Caiado et al., 2006) and extended in

(Pértega and Vilar, 2010) for a subset of the dissimilary measures targeted in this

work, is testing the performance of a given measure in classifying series as stationary

or non-stationary.

The procedure is as follows: Given a set of time series, create two clusters using

the studied measure. Each of the time series to classify has been simulated from

a chosen known model, of which the stationary property is known. For each of

the measures to study, compute the dissimilary matrix of the series generated from

their models and cluster them in two groups using complete linkage agglomerative

hierarchical clustering. The resulting group with greater amount of series that come

from stationary models is considered the stationary group, and the other the non-

stationary group. The final result is the ratio of series that have been grouped in

the right cluster. The reason behind using this kind of hierarchical clustering and

not other lies in the lack of proper interpretation for the methods that use average

of elements in a group and similar approaches. Taking the Piccolo distance as an

example, an representative element of a cluster formed by averaging their existing
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elements has no real interpretation in terms of similarity with another given outside

element.

The series used in this study come from a general ARIMA(p, d, q) model defined

by:

φ(B)(1−B)dMt = θ(B)ωt, t = 0,±1, ...

where B is the back-shift operator such that BtMt = Mt−r, φ(B) = 1−φ1B− ...φpBp

is the p-order autoregressive operator, θ(B) = 1− θ1B− ...θqBq is the q-order moving

average operator, d is the order of differenciating ( so that d = 0 for a stationary

process, d ≥ 1 for a non-stationary process) and ωt is a sequence of independent

variables with constant mean and variance. Each process Nt = (1−B)dMt is assumed

to be causal and invertible. As in (Pértega and Vilar, 2010) and (Caiado et al.,

2006), one realization of the following 12 ARIMA processes, six stationary and six

non-stationary, was generated.

(a) AR(1) φ1 = 0.9

(b) AR(2) φ1 = 0.95, φ2 = −0.1

(c) ARMA(1, 1) φ1 = 0.95, θ1 = 0.1

(d) ARMA(1, 1) φ1 = −0.1, θ1 = −0.95

(e) MA(1) θ1 = −0.9

(f) MA(2) θ1 = −0.95, θ2 = −0.1

(g) ARIMA(1, 1, 0) φ1 = −0.1

(h) ARIMA(0, 1, 0)

(i) ARIMA(0, 1, 1) θ1 = 0.1

(j) ARIMA(0, 1, 1) θ1 = −0.1

(k) ARIMA(1, 1, 1) φ1 = 0.1, θ1 = −0.1

(l) ARIMA(1, 1, 1) φ1 = 0.05, θ1 = −0.05

In all cases, the error was Gaussian white noise with zero mean and unit variance.
The experiment was performed on series sampled from the models above, for three
different lengths T = (50, 200, 500). For each length, the experiment was repeated
N = 300 times. Table 4.1 shows the average success percent of the clustered series
over the T repetitions. Since we focus on automatic clustering, all the distances that
require extra parameters, such as the decaying rate of ACFG distance, bandwiths,
. . . select them in a unassisted way. The results show a general tendency to improve
the classification with the growth of the sample size T , in particular autocorrelation
based metrics and LNP show the stronger benefits. No measure decreases its per-
formace with the increase of T . The success rate of 0.75 is very common among
the studies metrics, the reason beign that those metric find a strong dissimilarities
among the sampled series that do not change across repetitions of the experiment.
Paricularly, the first two models are the ones that produce this phenomenon by beign
constantly grouped in the nonstationaty cluster, with one of the two ARMA models
causing the third erroneus classification to achieve the 0.75 success rate. The best
performing distance is ACFG with a success rate of 0.93 for T , but it is worth men-
tioning that for smaller sample sizes T = 50, it performs similar to the 0.75 success
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rate of other metrics, and it could perform even worse for small series . It is a note-
worthy observation that some of the measures are not affected by this and so are
preferred if that is the case. The worse performing distance is the one based on cep-
stral coefficients, it is highly dependant on the automatic model selected. Among the
Chouakria temporal correlation coefficient distances, Dynamic Time Warping gets
betters results than Frechet.

The results are consistent with those shown in (Pértega and Vilar, 2010) and the
differences fade after selecting the same parameters that they used in their simulation.

T

Measure 50 200 500

Model-free

dACFU 0.79 0.89 0.91
dACFG 0.8 0.87 0.93
dPACFU 0.74 0.75 0.75
dPACFG 0.75 0.75 0.75
dP 0.6 0.64 0.66
dLP 0.67 0.68 0.69
dNP 0.62 0.64 0.67
dLNP 0.77 0.87 0.91
dW (DLS) 0.75 0.75 0.75
dW (LK) 0.75 0.75 0.75
dISD 0.75 0.75 0.75
dGLK 0.75 0.75 0.75
dIntegrated 0.76 0.75 0.75
dCHOUAK.FRECH 0.66 0.66 0.66
dCHOUAK.DTW 0.67 0.69 0.69

Model-based

dPIC 0.75 0.75 0.75
dMAH 0.75 0.75 0.75
dMAHEXT 0.64 0.66 0.70
dCEPST 0.58 0.58 0.58

Table 4.1: Results of the stationary or non-stationary classification.

4.2 Classification of Non-linear time series

This experiment consists in the classification of non-linear time series, to study how
the metrics work in this scenario. These series were simulated from four different

28



underlying processes:

• Model(1): Threshold Autoregressive (TAR) model:

Xt = 0.5Xt−1I(Xt−1 ≤ 0)− 2Xt−1I(Xt−1 > 0) + εt

• Model(2): Exponential Autoregressive (EXPAR) model:

Xt = (0.3− 10e−X
2
t−1)Xt−1 + εt

• Model(3): Linear Moving Average (MA) model:

Xt = εt − 0.4εt−1

• Model(4): Non-linear Moving Average (NLMA) model:

Xt = εt − 0.5εt−1 + 0.8ε2t−1

With εt a process consisting in independent zero mean and unit variance Gaussian
variables. These models are used in (Tong and Yeung, 2000) for linearity tests.
Note that Model(3) is a linear process. The clustering objective is grouping series
with the same underlying models in a set of sampled series from all the four given
models. Since the true solution of the cluster is know, the Gravrilov index is used.
The clusters were created using the hierarchical clustering algorithm with complete
linkage until four clusters are left. The experiment was repeated 100 times for each
distance metric, with the results shown in Table 4.2 being the average Gravrilov
index obtained. The adjusted Rand index is also included. Cepstral distance works
noticeably better in this context, compared with the stationarity test. The rest of
the model-based metrics suffer from the lack of linearity, since they are also based
on AR models. While they have close Gravrilov indices, the adjusted Rand index
show that they have inferior performance to the Cepstral distance. Autocorrelation
and Partial-Autocorrelation based distance have average performance, attributed to
the non-linearity of the processes. The reason behind the low performance of the
periodogram based distances is their sensibility to the high variance that affect the
periodogram . This effect is mitigated by the spectral smoothers, and, as shown
in (Pértega and Vilar, 2010), non-parametric metrics exhibit superior performance
in this context. The adjusted Rand index has been proved useful for finer grain
comparison of measures with close Gravilov indices.
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Measure Gavrilov index Adj. Rand index

Model-free

dACFU 0.67 0.18
dACFG 0.70 0.26
dPACFU 0.68 0.16
dPACFG 0.65 0.19
dP 0.62 0.10
dLP 0.61 0.1
dNP 0.64 0.12
dLNP 0.66 0.1
dW (LS) 0.83 0.55
dW (LK) 0.87 0.63
dISD 0.83 0.62
dGLK 0.81 0.55
dIntegrated 0.75 0.34
dCHOUAK.FRECH 0.72 0.31
dCHOUAK.DTW 0.75 0.42

Model-based

dPIC 0.64 0
dMAH 0.64 0
dMAHEXT 0.64 0
dCEPST 0.7 0.23

Table 4.2: Results of the non-linear classification.
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Chapter 5

Clustering Real Datasets

While a simulation study is better suited for a comparison between metrics, real
datasets also offer a good benchmarking opportunity. There is also the need to
illustrate the performance of the forecast-based distance included in this work. Since
comparing this last group of distances with those on the model-free and model-based
metrics is not appropiate, two examples have been selected for each group. The
particular datasets are chosen from the works in (Kalpakis et al., 2001) for the model-
free and model-based metrics, and (Alonso et al., 2006) and (Vilar et al., 2010) for
the forecast-based one. All these datasets have in common that they require some
kind of transformation before applying clustering procedure. Even though, arguably,
not all of the implemented dissimilarity measures require transformations, we follow
the same steps suggested in these works for a better comparison.

Kalpakis et al. (Kalpakis et al., 2001) work with several real datasets, and use two
different methods to evaluate their metrics. The first method is based on a similarity
metric of the generated clusters when compared with a given ”ground-truth” or ”true”
cluster, the Gavrilov index. The second measure is the average silhouette width, a
notion of the stability of a particular clustering solution.

Each measure is used to compute a dissimilary matrix, that is the base of a
partitioning against medoids (PAM) (Maechler et al., 2011) clustering method. We
have used hierarchical clustering with complete linkage due to lack of interpretation
of the centroid of a group.

5.1 Population Dataset

This dataset is composed of 20 time series that represent the estimate population from
1900 to 1999 in 20 states of the US. The authors distinguish two main clusters, the
first is composed by states that have exponentially increasing trend and the second
is composed by states with a stabilizing trend. A representative example of elements
of both clusters is shown in Figure 5.2.

This classification sets the true cluster that will be used for the ”ground-truth”
cluster in the gravrilov similarity metric. The series of the dataset are non-stationary,
and are subject by the authors to a set of transformation to make them stationary,
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Figure 5.1: Example of time series for a state in the exponential (California) cluster
and a state in the stabilizing cluster (North Dakota).

a requisite of some of the time series dissimilarity measures that are studied. The
transformation is done according with the following steps:

1. The series are smoothed by using a window average over a window size of 2.
This helps in reducing the high frequency noise.

2. The non-stationarity over the variance is lessened by taking a logarithmic trans-
form of xavg, log xavg, with xavg the smoothed serie coming from the previous
step.

3. After these two transforms, there is still a non-stationary mean that suggest
a differenciating step. The result is xdiff = (1 − B) log xavg where B is the
back-shift operator.

The Table 5.1 shows the result of the clustering for a representative set of metrics.
A illustrative output of clustering for the metric ACFG is shown in Figure 5.2.
The top three metrics are the logarithm of normalized periodogram, autocorrelation
with geometrically decaying weigths and the integrated periodogram ones. Despite
that LNP produces the best solution in terms of Gavrilov index, the low average
silhouette shows high inestability and with other but similar data, its result could
be quite different. Integrated periodogram could be a more reliable method in this
context. The overall success rate of the metrics of 0.7 evidences a difficult scenario,
that could be atributed to the general nature of the transformations applied to the
data. Model-based approaches suffer once again from the missespecification of their
parameters while showing good silhoutte coefficients compared with the model-free
approaches.
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Measure Sim(G,A) SilhouetteWidth

Model-free

dACFG 0.74 0.79
dPACFU 0.65 0.67
dLNP 0.85 0.28

dINTEG.PERIOD 0.8 0.53
dW.LK 0.65 0.65

dCHOUAK.DTW 0.62 0.52

Model-based

dMAH 0.66 0.88
dCEPSTRAL 0.66 0.76

Table 5.1: Results of the Population dataset clustering.

5.2 Electrocardiogram Dataset

This dataset features three different groups of EGC time series obtained from Phy-
sioNet (Goldberger et al., 2000 (June 13). The electrocardiograms are taken at in-
tervals of 8 millisecond over a period of two seconds. The first group is composed
by recordings of people having malignant ventricular arrythmia. The arrythmia is a
change in the normal rythm of the heart. This kind of arrythmia is the most seri-
ous that exists since it is equivalent to a cardial arrest. The second group includes
recordings of healthy people. The third group is formed by recordings of people hav-
ing supraventricular arrythmia. This kind of arrythmia is usually benign. Figure
5.3 shows one element of each group. As is clearly seen in the Figure, the data is
nonstationary. (Kalpakis et al., 2001) work with this dataset and apply a series of
three consecutive differenciations to obtain stationarity. For the test, we take 10
samples from each of the previously described groups. The objective of the clustering
will be group the elements according to their original groups: ventricular, healthy
and supraventricular. Since the correct solution is known beforehand, a ground-truth
based performance metric will be used. The clustering algorithm selected is agglom-
erative hierarchical clustering with complete linkage, taking the last three remaining
clusters as the solution. The results of the test are shown in Table 5.2 and a repre-
sentative solution in Figure 5.4. For this particular problem, ACFG is clearly the
best metric, having a superior Gravilov index while also obtaining a high silhouette
coefficient. Cepstral based distance achieves a good silhouette coefficient, but a poor
success ratio. It is observed that series are well-separated but they are not correctly
grouped according to the needs of this context. A particular characteristic of this
problem is that healthy readings tend to get clustered together, often creating a per-
fect cluster, and that the majority of the mistakes come from locating some arrythmia
samples into the wrong group. LNP metric exhibits an extremelly low silhouette co-
efficient due to some of their elements having negative values. Bening arrythmia
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Figure 5.2: Result of clustering real data population series using the dACFG distance
measure.

recordings have also their first half very similar to their healthy counterparts, and
this fact could be behind the relatively low silhouette coefficient of the metrics.

5.3 Forecast

Due to the unique nature of the forecast-based distances, it is not appropiate to com-
pare them with dissimilarity metrics that follow different viewpoints. The datasets
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Figure 5.3: Samples of ECG readings
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Measure Sim(G,A) SilhouetteWidth

Model-free

dACFU 0.6 0.27
dACFG 0.73 0.51
dPACFU 0.7 0.22

dLNP 0.6 0.07
dINTEG.PERIOD 0.6 0.5
dCHOUAK.DTW 0.5 0.3

dW.LK 0.65 0.48

Model-based
dPIC 0.52 0.52
dMAH 0.6 0.35

dCEPSTRAL 0.52 0.9

Table 5.2: Results of the ECG dataset clustering.

should also portrait a scenario with interesting possibilites for a cluster based on pre-
dictions. We have chosen two datasets, studied in (Alonso et al., 2006) and (Vilar
et al., 2010), as a meaning to show the performance of this type of distance metric.
The first dataset consists in annual C02 emissions taken between 1960 and 1999 for
countries facing the Kyoto agreement. The second dataset is formed by mothly in-
dustrial production indices by countries memeber of the Organization for Economic
Cooperation and Development (OECD).

5.3.1 CO2 emissions dataset

The Kyoto agreement dictates a reduction in emission for the participating countries
by the year 2012, making natural to set the forecast horizon at this point in time.
2012 is also 12 years from the ending datum of each series, presumably enough time
to deviate from this last point and produce interesting results from the prediction
point of view.

The emissions can be seen in Figure 5.5. Some countries like China or Korea
feature growing patterns, others as USA exhibit a relatively stable behavior and
others are clearly decreasing, with Great Britain and France among them.

Due to the non-stationarity of the data, a chain of transformations is required in
order to produce stationarity, a requisite of the bootstrap method used in the met-
ric. The transformations are obtained from TRAMO (Time series Regression with
ARIMA noise, Missing observations and Outliers) (Gómez and Maravall, 1996), a
program developed to automatically identify log/level transformations and the pres-
ence of calendar-type effects, as well as detecting and correcting additive outliers,
transitory changes and level shifts in underlying ARIMA models. Once the transfor-
mations are properly identified, the procedure for applying the distance measure to
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Figure 5.4: Result of clustering the ECG series using the dACFG distance measure.

the dataset is as follows:

1. Apply the identified transformation to the data.

2. Use the bootstrap method to generate predictions resamples at the given horizon
(year 2012).

3. Backtrasform the bootstrap predictions.

4. Calculate the densities of the predictions.

5. Compute the L1 distance for each pair of densities calculated from the back-
transformed bootstrap predictions.

Once the dissimilarity matrix is computed, a hierarchical clustering with average
linkage procedure is applied, producing the results shown in Figure 5.6. In Figure
5.7 the estimation of the forecast densities is depicted. If we take the last available
observation as a reference, we can see that countries like Australia and Canada swap
their positions as the second and third top emitter. Israel and Venezuela, with al-
most identical point forecasts are not grouped together first beacuse the density of
Israel is more similar to France’s. Argentina and Mexico are grouped together before
Argentina and Korea, despite these last two having closer point forecasts. Japan and
Saudi Arabia feature similar behavior, with high variance, and are grouped together
at an early stage, but much later to the rest of the countries with a similar point
forecasts.

5.3.2 Industrial production indices dataset

The second dataset consists in monthly industrial production indices, seasonally ad-
justed, for different countries, taken from 1997 to 2007. All the considered countries
are members of Organization for Economic Cooperation and Development (OECD),
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and in particular, this dataset is available from the Statistics Portal of OECD (OECD,
2005). For this dataset, short term forecast, with horizon b = 1 (1 month) will be
considered. This relatively short horizon makes the weight of the metric shift from
the actual forecast (they will be very similar to their last observed point, so the fact
that is a forecast is less relevant) to its shape (density). The dataset is show in figure
5.8.

As in previous example, the input data is nonstationary and must undergo some
transformation due the the assumptions of the bootstrap method used in the metric.
As in the CO2 dataset, the program TRAMO (Gómez and Maravall, 1996) was used to
identify the appropiate transformation for each series. An average linkage hierarchical
clustering algorithm was used to generate the dendogram shown in Figure 5.9. The
results of the classificacion are compared with the densities depicted in Figure 5.10.
Taking a closer look at the case of Spain, Mexico and the United States we can see
the effect of a distance based on densities instead of point forecasts. If we take the
prediction centers for these three countries, 107.9, 109.3 and 110.1 repectively, the
point based distance would group the United States with Mexico before than with
Spain, but if we take the whole density of the predicion, it can be argued that in fact
Spain and Mexico are closer between them than to the United States, a fact that is
correctly reflected in the distance and in the consequent dendogram. At the root of
this graph, the two groups that are formed are coherent with the point forecast and
the last value of the series, since countries like Greece and Turkey have completely
disjoint supports, their L1 distance is maximum and they are consequently joined
in the last step. In this dataset, it can be said that the particular effects of the
density based metric are more clear in the initial steps, and tend to behave like a
point based metric once the groups get more dissimilar and the respective densities
of their members become disjoint.
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Chapter 6

Conclusions

6.1 Design discussion

Since there are many distance metrics that can be applied to time series and with
extensibility in mind, a careful consideration of what a time series distance function
should be was required. We have opted for the definition of a distance as a function
that takes two parameters, the two series to compute the distance, as numeric vectors.
This is the simplest definition of a distance between two series (from the software
point of view). The main drawback of this approach is that some distances can reuse
data or intermediate results when working with the same series, such as the fitted
AR models or calculated periodograms and this information cannot be kept if only
two series are given as input to the function. On the other hand, if a list or matrix
of series is given as a parameter, each distance function must consider these issues,
overly complicating its implementation, even when there is no neccessity for it. If
computational requirements are costly, an alternate function can be created when
needed.

Some distance can take extra parameters besides the two series, such as band-
widths or the order of ARMA models to be fitted, maximum autocorrelation lag to
be considered, amount of cepstral coefficients and so on. These parameters have
default parameters for a more simple usage.

The auxiliary function stat ts clust takes a matrix of series and a distance
function defined follown the considerations above. This usage is inspired by methods
such as optimize or integrate, that take a function as a parameter. If a distance
requires fine grain specification of a parameter, an auxiliary function can be easily
defined.

6.2 Usage and Functions Description

See the statTSclust package manual included below.
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6.3 Conclusions and Future Work

This works presents a series of dissimilarity measures created for the problem of time
series clustering, taken from the scientific literature available in this area, that are
being implemented as a software package for the popular statistical suite R. These
metrics are first briefly described, and then their performance is illustrated using a
simulation study and some real dataset examples. Since this clustering is an automatic
task, special care on lessening the need of human intervention has been taken. There
are many proposed dissimilarity measures in the context of time series clustering but
the ones presented here compose a reasonable subset of them. The final purpose is
the creation of a software package that includes, maintains and becomes a point of
reference for the efforts on the implementation of solutions in this area, for the benefit
of the scientific community.
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Package ‘statTSclust’
January 8, 2013

Type Package

Title Stationary time series clustering

Version 1.0

Date 2013-01-07

Author Pablo Montero Manso, Jose Antonio Vilar

Maintainer <pmontm@gmail.com>

Description A package containing functions used in time series clustering: distance metrics and spe-
cific clustering methods.

License GPL-2

Depends nlme,locpol, KernSmooth, dtw, longitudinalData

R topics documented:
distance.ACFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
distance.ACFU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
distance.CEPST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
distance.CHOUAK.DTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
distance.CHOUAK.FRECH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
distance.EUCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
distance.GLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
distance.INTEGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
distance.ISD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
distance.LNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
distance.MAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
distance.MAHEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
distance.NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
distance.P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
distance.PACFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
distance.PACFU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
distance.PIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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distance.PRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
distance.W.LK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
distance.W.LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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distance.ACFG Autocorrelation-function based distance with geometrically decaying
weights

Description

Computes the distance based on the autocorrelation function of two given time series. The weight
of each autocorrelation coefficient in the final distance is weighted geometrically decreasing.

Usage

distance.ACFG(x, y, p = 0.05)

Arguments

x numeric vector containing the first of the two time series.
y numeric vector containing the second of the two time series.
p the parameter controlling the decay of each successive autocorrelation coeffi-

cient.

Value

The computed AFCG distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.ACFU, distance.PACFG, distance.PACFU

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.ACFG(x, y, 0.5)
distance.ACFG(x, z, 0.5)
distance.ACFG(y, z, 0.5)
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distance.ACFU Autocorrelation-function based distance with uniform weights

Description

Computes the distance based on the autocorrelation function of two given time series. All the
successive autocorrelation coefficients have the same weight in the final distance.

Usage

distance.ACFU(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Value

The computed ACFU distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.ACFG, distance.PACFU, distance.PACFG

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.ACFU(x, y)
distance.ACFU(x, z)
distance.ACFU(y, z)



4 distance.CHOUAK.DTW

distance.CEPST Cepstral coefficients based distance

Description

Computes the distance based on the cepstral coefficients of two given time series.

Usage

distance.CEPST(x, y, k = 50)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

k the amount of cepstral coefficients to be considered.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.CEPST(x, y, 25)
distance.CEPST(x, z, 25)
distance.CEPST(y, z, 25)

distance.CHOUAK.DTW Dynamic Time Warping distance weighted by Chouakria-Douzal tem-
poral correlation coefficient

Description

Computes the distance between time series based on the dynamic time warping distance and the
Chouakria-Douzal temporal correlation coefficient.
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Usage

distance.CHOUAK.DTW(x, y, k = 1)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

k parameter controlling the contribution between the dynamic time warping dis-
tance and the Chouakria-Douzal temporal correlation coefficient. k must be
greater or equal to 0.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.CHOUAK.FRECH

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.CHOUAK.DTW(x, y, 1)
distance.CHOUAK.DTW(x, z, 1)
distance.CHOUAK.DTW(y, z, 1)

distance.CHOUAK.FRECH Frechet distance weighted by Chouakria-Douzal temporal correlation
coefficient

Description

Computes the distance between time series based on the Frechet distance and the Chouakria-Douzal
temporal correlation coefficient.

Usage

distance.CHOUAK.FRECH(x, y, k = 1)
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Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

k parameter controlling the contribution between the Frechet and the Chouakria-
Douzal temporal correlation coefficient. k must be greater or equal to 0.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.CHOUAK.DTW

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.CHOUAK.FRECH(x, y, 1)
distance.CHOUAK.FRECH(x, z, 1)
distance.CHOUAK.FRECH(y, z, 1)

distance.EUCL Euclidean distance

Description

Computes the Euclidean distance between two time series.

Usage

distance.EUCL(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.
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Details

This distance is included as an auxiliary function, having the same usage as the others distance
metrics include in this package.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.EUCL(x, y)
distance.EUCL(x, z)
distance.EUCL(y, z)

distance.GLK Generalized Likelihood Ratio Test based distance

Description

Computes the distance based on the generalized likelihood ratio test between the spectra of two
time series

Usage

distance.GLK(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Details

High computational requirements.

Value

The computed distance.
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Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.ISD

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.GLK(x, y)
distance.GLK(x, z)
distance.GLK(y, z)

distance.INTEGP Integrated Periodogram based distance

Description

Computed the distance between two time series based on their integrated periodograms.

Usage

distance.INTEGP(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.
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Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.INTEGP(x, y)
distance.INTEGP(x, z)
distance.INTEGP(y, z)

distance.ISD Integrated Squared Differences between log-spectra distance

Description

Computes the distance between two time series based on the integrated squared differences between
the non-parametric estimators of their log-spectra.

Usage

distance.ISD(x, y)

Arguments

x numeric vector containing the first of the two time series.
y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.GLK

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.ISD(x, y)
distance.ISD(x, z)
distance.ISD(y, z)
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distance.LNP Logarithmic Normalized Periodogram distance

Description

Computes the distance between two time series based on the logarithm of their normalized peri-
odograms.

Usage

distance.LNP(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.P, distance.NP

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.LNP(x, y)
distance.LNP(x, z)
distance.LNP(y, z)
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distance.MAH Maharaj distance

Description

Computes the distance between two time series based on the test on the homogeneity of generating
ARMA models.

Usage

distance.MAH(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Details

The ARMA models are fitted automatically and the degree selected by the AIC criterion.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.MAHEXT, distance.PIC

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.MAH(x, y)
distance.MAH(x, z)
distance.MAH(y, z)
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distance.MAHEXT Extended Maharaj distance

Description

Computes the distance between two time series based on their AR coefficients when the series are
fitted by ARMA models and extended by the inclusion of the correlation coefficient between the
series.

Usage

distance.MAHEXT(x, y, k)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

k degree of the AR model to be fitted.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.MAH, distance.PIC

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.MAHEXT(x, y, 2)
distance.MAHEXT(x, z, 2)
distance.MAHEXT(y, z, 2)



distance.NP 13

distance.NP Normalized Periodogram distance

Description

Computes the distance between two time series based on their normalized periodograms.

Usage

distance.NP(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.P, distance.LNP

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.NP(x, y)
distance.NP(x, z)
distance.NP(y, z)
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distance.P Periodogram based distance

Description

Computes the distance between two time series based on their periodograms.

Usage

distance.P(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.NP, distance.LNP

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.P(x, y)
distance.P(x, z)
distance.P(y, z)
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distance.PACFG Partial Autocorrelation function based with geometric decaying
weights distance

Description

Computes the distance based on the partial autocorrelation function of two given time series. The
weight of each partial autocorrelation coefficient in the final distance is weighted geometrically
decreasing.

Usage

distance.PACFG(x, y, p = 0.05)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

p the parameter controlling the decay of each successive autocorrelation coeffi-
cient.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.ACFU, distance.ACFG, distance.PACFU

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.PACFG(x, y, 0.5)
distance.PACFG(x, z, 0.5)
distance.PACFG(y, z, 0.5)
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distance.PACFU Partial Autocorrelation function based distance with uniform weights

Description

Computes the distance based on the partial autocorrelation function of two given time series. All
the successive partial autocorrelation coefficients have the same weight in the final distance.

Usage

distance.PACFU(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.PACFG, distance.ACFU, distance.ACFG

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.PACFU(x, y)
distance.PACFU(x, z)
distance.PACFU(y, z)



distance.PIC 17

distance.PIC Piccolo distance

Description

Computes the distance between two time series based on their AR coefficients when the series are
fitted by ARIMA models.

Usage

distance.PIC(x, y)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

Details

The ARMA models are fitted automatically and the degree selected by the AIC criterion.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.MAH, distance.MAHEXT

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.PIC(x, y)
distance.PIC(x, z)
distance.PIC(y, z)
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distance.PRED Nonparametric forecast based distance

Description

Computes the distance between two time series based on their bootstrap density of their forecasts
at a given horizon.

Usage

distance.PRED(x, y, k = 5)

Arguments

x numeric vector containing the first of the two time series.

y numeric vector containing the second of the two time series.

k the forecast horizon in time steps after the end of the given series.

Value

The computed distance.

Author(s)

Jose Antonio Vilar, Pablo Montero Manso.

Examples

x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.PRED(x, y, 5)
distance.PRED(x, z, 5)
distance.PRED(y, z, 5)

distance.W.LK Spectral dissimilarity distance via maximum likelihood estimation of
the log-spectra

Description

Computed the distance between two time series based on the spectral dissimilarity between their
spectral densities estimated by the exponentiation of the estimation by maximum likelihood of their
log-spectra.
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Usage

distance.W.LK(x, y)

Arguments

x numeric vector containing the first of the two time series.
y numeric vector containing the second of the two time series.

Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.W.LS

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.W.LK(x, y)
distance.W.LK(x, z)
distance.W.LK(y, z)

distance.W.LS Spectral dissimilarity distance via least squares estimation of the log-
spectra

Description

Computed the distance between two time series based on the spectral dissimilarity between their
spectral densities estimated by the exponentiation of the estimation by lest squares of their log-
spectra.

Usage

distance.W.LS(x, y)

Arguments

x numeric vector containing the first of the two time series.
y numeric vector containing the second of the two time series.
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Value

The computed distance.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

See Also

distance.W.LK

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
distance.W.LS(x, y)
distance.W.LS(x, z)
distance.W.LS(y, z)

maharaj_clust Maharaj p.value-based Clustering Algorithm

Description

Computes the distance based on the autocorrelation function of two given time series. The weight
of each autocorrelation coefficient in the final distance is weighted geometrically decreasing.

Usage

maharaj_clust(distances, significance)

Arguments

distances a dist object containing the distances between the series to cluster.

significance the significance level.

Value

A list with the indices of the series. Each element of the list is a numeric vector with the indices of
the series that are grouped into the same cluster.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.
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See Also

stat_ts_dist

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
## Compute the distance and check for coherent results
dd = stat_ts_dist( rbind(x,y,z), distance.MAH)
maharaj_clust( dd, 0.05 )

stat_ts_dist Distance between time series

Description

Computes the dist object for the given series using the given distance metric.

Usage

stat_ts_dist(series, dist_fun)

Arguments

series matrix containing the series in row order

dist_fun A distance function that takes two series (x,y) as parameters.

Value

A list with the indices of the series. Each element of the list is a numeric vector with the indices of
the series that are grouped into the same cluster.

Author(s)

Pablo Montero Manso, Jose Antonio Vilar.

Examples

## Create three sample time series
x <- cumsum(rnorm(100))
y <- cumsum(rnorm(100))
z <- sin(seq(0, pi, length.out=100))
dd = stat_ts_dist( rbind(x,y,z), distance.EUCL)
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Sonia Pértega and José Antonio Vilar. Comparing several parametric and nonpara-
metric approaches to time series clustering: A simulation study. J. Classification,
27(3):333–362, November 2010. ISSN 0176-4268.

Domenico Piccolo. A distance measure for classifying arima models. J. Time Series
Anal., 11(2):153–164, 1990. ISSN 1467-9892.

R Development Core Team. A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2004. URL
www.R-project.org.

M. Ramoni, P. Sebastiani, and P. Cohen. Bayesian clustering by dynamics. Machine
learning, 47(1):91–121, 2002.

William M. Rand. Objective Criteria for the Evaluation of Clustering Methods. J.
Amer. Statist. Assoc., 66(336):846–850, 1971.

Peter Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math., 20(1):53–65, 1987.

D. Ruppert, S.J. Sheather, and M.P. Wand. An effective bandwidth selector for local
least squares regression. Journal of the American Statistical Association, 90(432):
1257–1270, 1995.

70
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