
Additive Mixed Models applied to the study of
red shrimp landings: comparison between
frequentist and Bayesian perspectives.

Valeria Mamouridis

January 14, 2011



Abstract
Relationships between Red shrimp landings in the Catalonian port of Bar-
celona and some explanatory variables are studied by means of regression
analysis. Generalized additive mixed models (GAMMs) are proposed here as
flexible alternatives to the parametric modeling approaches actually applied
in fishery research (mainly GLMs). Two different approaches are consid-
ered and compared: (a) the frequentist approach, using restricted likelihood
(REML), and implemented in the R-package mgcv, and (b) Bayesian ap-
proach based on two different methods (i) the Markov Chain Monte Carlo
simulation (full Bayesian) and (ii) the empirical Bayesian REML, both im-
plemented in the BayesX software. The main purpose of the study is to
compare the three methods (frequentist REML, empirical Bayesian REML
and full Bayesian) for fitting variance components, fixed and mixed effects
in selected models.
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Chapter 1

Introduction

In the present study the incorporation of random effects is proposed to model
CPUE (Catch Per Unit Effort) fluctuations of a fishery resourse over a quite
long time period. The CPUE is a standardized indicator of the amount of an
exploited marine resourse. Usually this index is modelled considering only a
fixed effects design [2, 43], while here the possibility of the incorporation of
mixed effects is implemented and discussed. Different covariates and factors
were employed as distinct sources of variability in this regression analysis.

1.1 Fixed effects vs Random effects

Commonly, in regression studies, the coefficients are considered as fixed. In
fact it is somewhat usefull, mainly because the inference is relatively easy.
However, there are cases in which it makes sense to assume some random
coefficients. These cases typically occur in two situations:

• when the main interest is to make inference on the entire population,
which some levels are randomly sampled from,

• and/or when the observations are correlated.

For example, in biological and medical studies, observations are often col-
lected from the same units (e.g. individuals) over time. It may be reasonable
to assume that correlations exist among the observations from the same in-
dividual.
Fixed effects are parameters associated with an entire population or with
certain repeatable levels of experimental factors, while
Random effects are associated with “unrepeatable” individual experimen-
tal units, drawn at random from a population.
A model with both fixed and random effects is called mixed effects model.
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By associating common random effects to observations sharing the same
unit or level of a classification factor, mixed effects models flexibly represent
the covariance structure induced by grouping data.

Figure 1.1: Boxplot of the CPUE expressed in kg/trip for 21 vessels.

The following example, proceeding from the application study presented
in Chapter 3, could clarify the importance of incorporate fixed or random ef-
fects in a model. Data of red shrimp (Figure 1.3) landings were used to build
a one-way classification model (that means observations classified according
to a single characteristic), where the response CPUE is classified according
to vessels. That relationship can be analyzed either with a fixed or a ran-
dom effects model. The distinction between the two models is according to
whether someone wish to make inference about: particular levels of the clas-
sification factor (fixed effects) or the population from which these levels come
from (random effects). The quantities someone would be interested in esti-
mating from this data set are the average CPUE for a “typical” vessel (the
expected CPUE), the variation in average of CPUE among vessels (that is
the between-vessel variability), and the variation in the observed CPUE
for a single vessel (that is the within-vessel variability). Box-plots of the
CPUE with respect to each level of factor vessel (named code) are presented
in Figure 1.1. It is evident that there is some variability in the mean CPUE
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Figure 1.2: boxplot of residuals vs vessel code. From the top to the down:
residuals of the single mean model, of the fixed effects model and the random
effects model.

for the different vessels.
Consider first the simple model
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yij = α + εij, i = 1, . . . ,M, j = 1, . . . , ni, (1.1)

where yij is the observed CPUE for observation j on vessel i, α is the mean
CPUE across sampled vessels, and the εij are independent errors belonging
to the mormal, N(0, σ2). The number of vessels is M = 21, while the total
number of observations is N =

∑M
i=1 ni = 2354, where ni is the number

of observations on vessel i. The estimated parameters of model 1.1 are:
α̂ = 16.68 and σ̂ = 11.27, where σ̂ is the residual standard error or, in this
case, within vessel variability. In this model the grouping structure by vessel
is completely ignored. The box-plots of the residuals from the fit of equation
1.1 against vessels, displayed in the upper panel of Figure 1.2, illustrate the
problem in which someone incures if the classification factor is ignored: the
“group effects” are incorporated into the residuals, leading to an inflated
estimate of the variability in the response. The “vessel effects” indicated
in Figure 1.1 and in the top of Figure 1.2 may be incorporated into the
model by allowing the mean of each vessel to be represented by a separate
parameter. This parameter can be considered as fixed or random. The fixed
effects model is given by

yij = αi + εij, i = 1, . . . ,M, j = 1, . . . , ni, (1.2)

where the αi represents the mean CPUE of vessel i and, as in model 1.1, the
errors εij are assumed to be independently distributed as N(0, σ2).

As expected, there is a difference in estimations. The residual standard
error obtained, σ̂ = 9.80, is lower than the corresponding estimate obtained
for the single-mean model 1.1, indicating that it has accounted for the vessel
effects. This is illustrated by the box plot of the residuals versus vessels
(middle panel of Figure 1.2).

Even though the fixed effects model 1.2 accounts for the vessel effects,
it only models the specific sample of vessel, while the main interest can be
in the total population of vessels. In this case the fixed effect model does
not provide an estimate of the between-vessel variability. Another drawback
of this fixed effects model is that the number of parameters in the model
increases linearly with the number of vessels. In other words, it depends on
the number of vessel sampled.

A random effects model circumvents these problems by treating the vessel
effects as random variations around a population mean. The following re-
parametrization of model 1.2 helps to motivate the random effects model.
Hence,

yij = ᾱ + (αi − ᾱ) + εij, i = 1, . . . ,M, j = 1, . . . , ni, (1.3)

14



where ᾱ =
∑M
i=1 αi/M represents the average CPUE for the vessels.

The random effects model replaces ᾱ by the mean CPUE over the pop-
ulation of vessels and replaces the deviations αi − ᾱ by random variables
whose distribution is to be estimated. Assume that each vessel is associated
with a random effect whose value is unobservable. A random effects model
for the one way classification is

yij = α + bi + εij (1.4)

where α is the mean CPUE across the population of vessels being sampled, bi
is a random variable representing the deviation from the population mean of
the mean CPUE for the i-th vessel, and εij is a random variable representing
the deviation in CPUE for observation j on vessel i from the mean CPUE.
Furthermore is assumed that the random variables bi, i = 1, . . . ,M and
εij, i = 1, . . . ,M ; j = 1, . . . , ni are independent and normally distributed
random variables with mean zero and have constant variances, σ2

b for the
bi, or between-vessel variability, and σ2 for the εij, or within-vessel
variability. That is,

bi ∈ N(0, σ2
b ), εij ∈ N(0, σ2) (1.5)

The bi are called random effects because they are associated with the
particular units (vessels in this case). Now, observations made on the same
vessel share the same random effect bi, thus, they are correlated. The co-
variance between observations of the same vessel is σ2

b corresponding to a
correlation of σ2

b/(σ
2
b + σ2). The parameters of the model 1.4 are α, σ2

b and
σ2. And their estimations are: α̂ = 16.68, σ̂2

b = 6.40 and σ̂2 = 9.80. However
the between-vessel variability, σ2

b , does not exceed the within-vessel variabil-
ity, σ2, it is considerably high (more than 1

3
of σ2). Note that the number

of parameters will always be three, irrespective of the number of vessels in
the data. In the lower panel of Figure 1.2, the residuals are plotted versus
the factor levels. Residuals have almost the same behavior of those in the
fixed effects model. In fact the within-vessel variability is almost the same
and the imperceptible difference between the residual vectors of both models
is probably due to the different estimation procedure used.
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1.2 The historical controversy between fre-

quentists and Bayesians

Some backgrounds on frequentist and Bayesian “philosophies” are briefly
commented in this section to introduce the estimation tecniques in a concep-
tual point of view. The frequentist, figuring prominently in 20-th Century, is
actually considered the classical approach, while the Bayesian, which domi-
nated the 19-th Century, recently emerged as an alternative to the frequen-
tist perspective. Which approach will predominate in the 21-st Century is
an open debate [21].

Frequentist and Bayesian points of view reflects two different attitudes to
the process of doing science. Frequentist statisticians are cautious with their
modeling assumptions, while Bayesians tend to be optimistic. In pursuing
their aims, Bayesians try to use all the information at disposal. The fre-
quentist base his procedures on the likelihood which defines the probability
distribution of observed data. Properties of the procedure are evaluated in
this repeated sampling framework for fixed values of unknown parameters.

The Bayesian requires in addition to a sampling model, a prior distribu-
tion of all unknown quantities in the model. The notion of probability is re-
lated with uncertainty of knowledge rather than with variability of outcome.
The prior and likelihood are used to compute the conditional distribution
of the unknowns given the observed data (the posterior distribution), from
which all statistical inferences arise.

Bayesian methods are older than frequentist, dating to the 1763 original
paper by the Rev. Thomas Bayes, a minister and amateur mathematician.
The area generated some interest by Laplace, Gauss, and others in the 19-th
Century, but the Bayesian approach was ignored (or actively opposed) by
the statisticians of the early 20-th Century.

Pioneering papers on the formulation of statistical inference by R. A.
Fisher (e.g. 1922) laid the foundations for a frequentist theory. Despite it,
during this period several prominent non-statisticians, most notably Harold
Jeffreys (a physicist) and Arthur Bowley (an econometrician), continued to
lobby on behalf of Bayesian ideas (which they referred to as ’inverse proba-
bility’). Then, beginning around 1950, statisticians such as L.J. Savage, B.
de Finetti, D. Lindley and many others began advocating Bayesian methods
as remedies for certain deficiencies in the classical approach.
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1.3 Background of the application study

The red shrimp, Aristeus antennatus (Risso, 1816) (Figure 1.3), is present in
the entire Mediterranean Sea (except the Adriatic) and in the Atlantic from
the north Iberian Peninsula to Angola [2].

Figure 1.3: The red shrimp Aristeus antennatus.

This crustacean is found within 100− 3300 m depth [54], but in the NW
Mediterranean it is abundant only from 600 to 800 m. Its shoals undergo
important movements over a short time scale (weekly to seasonal [16, 55])
resulting in some uncertainty the exact location of the high-density shoals.
Movements are linked to feeding and reproductive behavior [15, 56].

The red shrimp represents an important target species of deep-water trawl
fisheries in the Western Mediterranean [2]. Its fishery is very lucrative, due
to the high commercial value of the product (from 20 e kg−1 in 1992 to
50 e kg−1 in 2004), but involves high costs and risks because of conducted
in deep-waters of the continental slope (450 − 900 m) and near submarine
canyons [61].

In the Catalan Sea, A. antennatus is fished by the largest vessels of the
trawl fleet [44] along the continental slope between 400 and 800 m depth.
As for many Spanish Mediterranean harbors, the trawl fleet of Barcelona
operates the red shrimp deep-water fishery on a daily trip basis.

Fishery showed important fluctuations over the mid- and short-term (cy-
cles of minimum catches every 8 − 10 years [8]) and seasonal fluctuations
(Autumn-Winter fishing occurs usually around 400 m, while during Summer
in deeper waters).
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In the period between years 1950−2000 a general decrease in catches was
observed [2], due, among other things, to an important increase in the engine
power of the trawlers. Nowadays the catches increased, but at a very high
energetic cost: the engine power required to produce one unit of red shrimp is
ten times what it was more than 50 years ago. The high prices fetched by red
shrimps (typically above 30 e kg−1 on first sale) explain the increased effort
towards this deep-water living resource, raising concern about its long-term
sustainability [44].

Maynou et al. [44] suggest that the high temporal variability of the CPUE
of red shrimp is due to both inter- and intra-annual variations of the resource
and the technical characteristics of boats (e.g. HP and length). As pointed
out elsewhere [57], the characteristics of the Spanish Mediterranean trawl
fishery give a premium to larger boats with powerful engines, able to reach
far-off fishing grounds in shorter periods (as the fishery is limited to 1-day
trips). More powerful engines also allow for the trawling of larger nets and
for large powerful winches suitable for towing at great depth.

Also the contribution of the individual vessel must be considered, because
of fishing skills of the individual fishermen or other factors not captured by
the technical characteristics, such as investment in technology, are important
in this fishery. As an example, short-time migrations of A. antennatus make
difficult to point to the exact location of high-density shoals and imply a
certain mastering by the fishermen of red shrimp life history [43].

More recent studies have related red shrimp caches by the North Atlantic
Oscillation (NAO) as a simplified environmental indicator [45].

The NAO refers to the most prominent atmospheric phenomenon over
the middle and high latitudes of the Northern Hemisphere [34]. It has pro-
found implications on the weather and also affects human economic activi-
ties, such as agricultural harvests and fisheries yields [34]. NAO [62] has a
demonstrated influence (both direct and indirect) on the biology of marine
organisms, including fish stocks [17]. It may act on biological organisms at
different levels (individual, population) through physiology (metabolic and
reproductive processes) or through trophic relationships, including ecological
cascade effects.

Relationship between NAO index and the evolution of catches of A. an-
tennatus were observed in many representative ports of the Catalan Sea [45]:
the mean annual NAO index is positively correlated with the annual catches
at different time lags in each port (from 1 to 4 years).

Maynou [45] proposed that NAO-induced environmental variability may
enhance food supply to A. antennatus and hence strengthen the reproductive
potential of particular year classes, which result in increased catches 1 to 3
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years later, although other possible effects of environmental variability on
the population dynamics of this species are worth investigating.

1.4 Outline of the study

The first porpuse of the present study was to validate the use of mixed models
in modelling fisheries data sets as an effective alternative to the widely used
fixed effects models, often unsuitable to data. This aim was carried out
building and comparing a wide range of linear and additive models, from
the simple linear model (LM) up to the generalized additive mixed model
(GAMM) (see Chapter 2). The analysis of residuals was used to check the
valididty of models and the proportion of deviance explained (DE%) to select
the best model.

The second purpose was to compare the fitting procedures at date avail-
able for generalized additive mixed models. In particular, the following in-
ference approaches were compared:

1. the frequentist REML procedure;

2. the full Bayesian prespective, that benefits of MCMC tecniques;

3. and the empirical Bayesian REML procedure.

The mean squared error, MSE [66] was used as evaluation criterion to
compare the three fits.

The sources of variability taken into account during the regression analysis
were:

• technical characteristics of vessels, such as HP and/or GRT;

• intensity of fishing activity, estimated by the monthly number of trips
performed by each vessel;

• the environmental variable NAO, using mean annual values;

• all source of variability not captured by the above cited variables, suhch
as the time and the vessels.

This study highligths the importance to take into accont the between-
group variability of vessels as random effect. Technical characteristics of
vessels, such as HP or GRT, give a limited information regarding to the
effect that vessels can generate on the response: boats strongly differ each
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other due to non strictly technical reasons, e.g. fishermen ability. Moreover,
since boats change along years, a fixed number of levels of this factor is not
available. That also comprises that the variability in the entire population
of boats becomes of main interest. Considering vessel as a random effect also
permits predictions of biomass indices and fishery landings.

Another problem related to fishery data is that time series are not avail-
able for all boats in the same time. Mixed models allow to combine data sets
in a single continuous time-series.

To date, the modelling of catches [43] has been carried out mainly by
GLMs, that do not allow to point out possible non parametric relation-
ships nor the incorporation of vessel variability as a random effect. Only
three studies are available in the literature regarding to linear mixed models
( [12, 4, 32]). Besides in the past many continuous explanatory variables have
been used as categorical (e.g. the time, grouped in categories of years and
months). The possible non parametric influence of some covariates and the
replacement of categories by continuous, justify the use of additive models.

The work is structured as follows: in Chapter 2 a theoretical introduction
to the Generalized Additive Models (GAMMs) and spline regression is given
as well as some notion about inference methodologies; in Chapter 3 GAMMs
are applied to the case of red shrimp fishery; in Chapter 4 the software
used to fit models are breifly introduced and some example of the syntax
implemented; and in Chapter 5 a conclusion of the study is discussed.
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Chapter 2

Generalized additive mixed
model formulation and
inference

In this chapter some theory on generalized additive mixed models (GAMM) [39]
is given. First the linear model (LM) is introduced as the simplest regres-
sion model. Then, moving on through intermediate models and adding some
complexity, the GAMM formulation is achieved.

There are three ways to add complexity and flexibility in these regression
models:

1. incorporate random effects

2. admit responses not belonging only to the Gaussian distribution

3. admit smooth functions.

Thus, to accomplish an ordered presentation of all models, they are split
into two main groups: linear and additive models. Linear models, LM, LMM,
GLM and GLMM will be presented in 2.1.1 first, while moving into the
additive context, AM, AMM, GAM, and finally GAMM will be exposed in
2.1.2.

2.1 GAMM formulation

2.1.1 From LM to GLMM

Consider n pairs of observations (xi, yi), where yi is an observation of random
variable, Yi, with expectation, µi ≡ E(Yi). Y is called response variable or
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dependent variable, while x is the predictor or independent variable. In the
case of a fixed design, the simplest model which describes the relationship
between x and y is:

yi = µi + εi (2.1)

where µi = xiα and α is an unknown parameter while, εi’s, called ran-
dom errors, are mutually independent random variables, supposed to be
εi ∈ N(0, σ2).

If there are more then one predictor, xj, where j = 1, . . . , p is the number
of different predictors, the equation 2.1, using matrix notation, becomes

y = Xα + ε (2.2)

where y is the n × 1 vector of the response, X is a n × p matrix of pre-
dictor variables, usually called the design matrix of the model, α is a p × 1
vector of unknown parameters and ε is n × 1 vector of random errors, with
ε ∈ N(0, Iσ2). The vector 0 denotes a vector with n zero’s and I is the
identity matrix of order n× n.
Note that by considering xj = xj, j = 1, . . . , p, the model 2.2 becomes a poly-
nomial regression model. Thus, it is linear in the coefficients even though it
is a nonlinear function of the predictor variable, hence also the polynomial
is a particular case of linear regression.

The linear model in 2.2 is based on many limiting assumptions, which
are:

• Linearity: the dependence between variables can be described only by a
straight line and it implies the estimation of parameters (the intercept
and the slope parameters for each one of the independent variables);

• Homoscedasticity: the error variance is the same whatever is the value
of the explanatory variable, V ar(ε | X = x) = σ2 ∀x;

• Normality: the error is normally distributed, ε ∈ N(0, Iσ2);

• Independence: the errors are uncorrelated.

All those assumptions are useful simplifications to carry out inference
procedures, but in real cases if data do not comply with them, the model
loses validity.
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The incorporation of random effects generalizes in some way the model
2.2. Let consider q vectors of predictor variables, z of length n. A LMM can
be easily built as an extension of the LM and has the form

y = Xα + Zb + ε (2.3)

where b is a q× 1 vector containing random effects, b ∈ N(0,Gθ), while the
vector of random errors has order n× 1 and ε ∈ N(0,R). Both b and ε are
unobservable. The matrix Z is the design matrix for the random effects and
has order n× q. The covariance matrix Gθ is positive definite and depends
on unknown parameters θ, usually called variance components. Finally R
is a positive definite matrix, sometimes used to model residual correlation.
Usually it is equal to Iσ2 matrix.

The basic assumptions for 2.3 are that the random effects and errors
have mean zero and finite variances. Typically, the covariance matrices
Gθ = cov(b) and R = cov(ε) involve some unknown dispersion parameters,
or variance components. It is also assumed that b and ε are uncorrelated.

These models have the ability to model the mean structure (fixed effects)
and the covariance structure (random effects and random errors) simultane-
ously.

LM and LMM permit only gaussian responses. GLM [46](with only
fixed effects) and GLMM [3] (with both fixed and random effects) allow
response to follow also some other distribution. That is what the letter G
(=generalized) refers to.

Thus, a GLM has the form

G(y) = Xα + ε (2.4)

and a GLMM is represented as

G(y) = Xα + Zb + ε (2.5)

where G(·) is a monotonic link function. If µb ≡ E(y | b), is the conditional
mean of the response, model 2.5 can also be written

G(µb) = η = Xα + Zb (2.6)

and η is usually called linear predictor of the model, while, in the case of
more than one covariate, ηj = Xjαj, represents the partial effect of covari-
ate xj.
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The assumptions for generalized models are:

• response belongs to one exponential family distribution (that includes
Gaussian and categorical responses)

• the mean of the observation is associated with a linear function of some
covariates through a link function G(·)

• the variance of the response is a function of the mean, that is var(y) =
u(φ)v(µ), where φ is called dispersion parameter.

2.1.2 From AM to GAMM

In the same way is possible to built a GAMM adding complexity to a simple
AM. The AM is the nonparametric version of the LM.

Consider the response vector, y, and the corresponding p-vectors of predic-
tors, x. The AM has a structure something like

y = X∗α +
p∑
j=1

fj(xj) + ε (2.7)

where X∗ is a model matrix for all strictly parametric model components, α
is the corresponding parameter vector and the fj(·)’s are smooth functions
of covariates xj’s, ε is the vector of random errors, belonging to a Gaussian
N(0, Iσ2). Note that assumptions of AM are the same of the LM except the
linearity.

If random effects are incorporated into the AM, thus the AM becomes an
additive mixed model (AMM):

y = X∗α +
p∑
j=1

fj(xj) + Zb + ε. (2.8)

Finally, if we let the response to be some other distribution function and
not only the Gaussian, thus, the AMM is converted to a GAMM.

A GAMM, [39, 22], represents the model with higher flexibility and
complexity, where mixed effects, smooth terms and a not normal response
are admitted. A GAMM has the following structure

G(y) = X∗α +
p∑
j=1

fj(xj) + Zb + ε (2.9)
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where G(·) is a monotonic differentiable link function, α is the vector of fixed
parameters; X∗ is the fixed effects model matrix, the fj is the smooth func-
tion of covariate xj (and it is centered), Z is the random effects model matrix,
b ∈ N(0,Gθ) is the vector of random effects coefficients with unknown pos-
itive definite covariance matrix Gθ, ε ∈ N(0,R) is the residual error vector
with covariance positive definite matrix R. The structure of those models
allows element of the response vector, y, to be not longer independent [69].

In analogy to 2.5, the conditional mean of the response, µb, is linked to
the linear predictor, η, and model 2.9 can be written

G(µb) = η = X∗α +
p∑
j=1

fj(xj) + Zb (2.10)

and ηj = f(xj) is the partial effect of covariate xj.

Model 2.10 encompasses various study designs, such as clustered, hierar-
chical and spatial designs. This is because it is possible to specify a flexible
covariance structure of the random effects b.

Note that in the generalized additive model framework, linear and poly-
nomial models are specific cases of the more general additive model, when
smooth effects reduce to linear.

2.1.3 The response distribution

Generalized regression models assume that, given a vector of covariates, x,
the distribution of the response variable y belongs to an exponential family,
i.e.

p(y|x) = exp(
yθ − b(θ)

φ
)c(y, φ) (2.11)

where b(·), c(·), θ and φ determine the specific response distribution. Many
distributions belong to that family: Gaussian, Exponential, Gamma, Chi-
square, Beta, Dirichlet, Bernoulli, Binomial, Multinomial, Poisson, and many
others. In the following Gamma distribution is briefly discussed, as it is used
in the application study.

The Gamma distribution

In the literature, the density function of the Gamma distribution is param-
eterized in various ways. In the context of regression analysis, the density
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is usually parameterized in terms of the mean µ and the scale parameter s.
Then, the density of a Gamma distributed random variable y is given by

p(y) ∝ ys−1exp(− s
µ
y) (2.12)

for y > 0. For the mean and the variance we obtain E(y) = µ and V ar(y) =
µ2/s and we write y ∈ G(µ, s). A second parametrization is typically em-
ployed (e. g. for hyperparameters a and b of priors for variance parameters
in the Bayesian approach). In this case, the density is given by

p(y) ∝ ya−1exp(−by) (2.13)

for y > 0. In this parametrization we obtain

E(y) = a/b, V ar(y) = a/b2 (2.14)

for the mean and the variance, respectively and we write y ∈ G(a, b).

2.2 Spline representation

Smooth effects of continuous variables in model 2.10 must be represented in
such a way to be estimated.

Many techniques were developed in last decades, such as the running
mean, the Nadaraya-Watson Kernel Smoothing [27], the locally weighted
regression [10, 11] and the smoothing spline [50, 67, 64] among others.

In this section, the spline regression is discussed, being the method chosen
for the application study. The basic idea is that the shape of a smooth
function, f(·), can be approximatively represented with a linear combination
of some basis functions:

f(·) =
r∑

k=1

Sk(·)βk (2.15)

where βk’s are unknown parameters to be estimated and S(·) is the n× r de-
sign matrix consists of the basis functions evaluated at specified observations.
Using 2.15 to represent smooth functions in 2.10 yields to a linear model and
that allows to make inference in the framework of the linear model [69, 6]
(see section 2.3).

A spline is a function defined piecewise by polynomials, i.e. dividing the
codomain of the covariate into not overlapped intervals and fitting separate
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polynomials, called bases (see de Boor [14] and Wahba [64]). The break-
points between two adjacent intervals consist of a vector of ordered points,
called knots. Knots at the borders of the curve are called boundary knots,
while the inner are called interior or inner knots. At these points adjacent
basis are joined to allow the function to appear continuous.

Figure 2.1: Spline representation of the smooth effect of time on the natural
logarithm of the CPUE.

In Figure 2.1 a spline estimation is represented. It is an example taken
from red shrimp data: the natural logarithm of the CPUE, is plotted with
respect to the time. More detailed information about the variables, will be
given in chapter 3. Vertical dashed lines represent the knots. Note that the
curve is continuous at the knots. This curve is the result of a linear combi-
nation of the bases represented in Figure 2.2. Knots can be equally spaced
or not. The latter allows the model to be noticeably more flexible. Figure
2.3 shows the behaviour of a basis changing both the degree of polynomial
and the position of the knots.

Spline bases perform well in such circumstances, because of they have
good approximation theoretic properties. They are simple to construct, easy
to estimate and capable to approximate complex shapes. They can be ap-
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Figure 2.2: The set of bases used to estimate the curve in figure 2.1. Bases:
B-spline, number of knots: 13, polynomial degree: 3, knots equally spaced.

plied on either one-dimensional or multi-dimensional data.

The term “spline” usually refers to a wide class of functions, e.g. poly-
nomial splines [14], thin plate regression splines [68], P-splines [18] and
Bayesian P-splines [38] among others.

2.2.1 Polynomial spline

A function f : [a, b]→ R of the covariate x, is called polynomial spline of
degree d, with d ∈ N0, based on knots a = ξ1 < . . . < ξm = b, if it satisfies
the following conditions.

• f(x) is a polynomial of degree d for x ∈ [ξt, ξt+1), with t = 1, . . . ,m− 1

• f(x) is (d− 1) times continuously differentiable

and represented by 2.15. The space of polynomial spline is a (m + d − 1)-
dimensional space and a subspace of the space of (d− 1) times continuously
differentiable functions.

Hence every polynomial spline can be represented by a set of r = m+d−1
basis functions.
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Figure 2.3: B-spline basis functions of degrees d = 1 (upper row), d = 2
(middle-upper row), d = 3 (middle-lower row) and d = 10 (lower row) for
equally spaced knots (left panel) and unequally spaced knots (right panel).
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One commonly used polynomial spline is the cubic spline with d = 3.

The polynomial spline f(x) is a cubic spline if

1. f(x) is a cubic polynomial over x ∈ [ξt, ξt+1), with t = 1, . . . ,m− 1

2. f(x) has first and second continuous derivatives at inner knots.

Hence, the cubic polynomial spline of order M = 4, has d = 3 degree
of freedom and d − 1 derivates at the knots. More generally an M -th order
spline is a piecewise d = M − 1 degree polynomial with M − 2 continuous
derivatives at the knots.

The natural spline is a spline that is linear beyond the boundary knots,
and the natural cubic spline is a cubic spline that is linear on the bound-
aries.

2.2.2 B-spline

The Basic spline basis (or simply B-spline) [18] is a particular polynomial
spline with excellent computational properties.

B-splines of degree d are obtained by fusing d + 1 polynomials of degree
d with d− 1 derivates at inner knots. The choice of extra knot is arbitrary.
The basis functions are defined recursively as follows.

B-spline of degree d = 0 and order M = 1 id given by [14]:

B0
k = 1[ξt,ξt+1)(x) =

{
1 if ξt ≤ x < ξt+1

0 otherwise
(2.16)

Next, higher order B-spline are defined recursively as

Bd
k =

x− ξt
ξt+d − ξt

Bd−1
t +

ξt+d+1 − x
ξt+d+1 − ξt+1

Bd−1
t+1 (x) (2.17)

Some properties of the B-splines are:

• they form a local basis

• all basis functions have the same shape for equidistant knots

• at a given position x ∈ [a, b] exactly d+ 1 basis functions are positive

• at a given position x ∈ [a, b] the basis functions sum up to one, that is,

m+l∑
k=1−d

Bk(x) = 1 (2.18)
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• each basis function overlaps with 2d neighbouring basis functions (ex-
cept for the boundaries)

• the basis functions are bounded from above and this make them nu-
merically stable

• B-splines determine a large linear model y = Xβ + ε with

X =


Bd

1−d(x1) · · · Bd
m−d(x1)

...
. . .

...
Bd

1−d(xn) · · · Bd
m−d(xn)

 (2.19)

2.2.3 P-spline

One great problem in using splines is to avoid subjectivity proceeds from too
many “conditions” to be selected. In fact the functional form of splines is
determined by:

• the degree of the basis

• the number of knots

• the position of knots

Obviously that subjectivity also leads to problems of over- or under-fitting
data, thus, some regularization is needed.

Two approaches are actually used in estimation procedures to avoid this
problem:

1. Adaptive knot selection procedure

2. Penalization approach

however the latter is usually preferred.

The first approach controls the dimensionality of the basis looking for a
set of potential knots which mark the major trend as well as the detailed
features of the curve. The idea is to choose the combination of knots using a
stepwise forward or backward selection scheme to minimize a model selection
criterion. For example the wide used GCV [13]

GCV =
n‖
√

W(y −Xβ)‖2

n− γ p
(2.20)
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where W is a weigth matrix, p are the effective degree of freedom of the
model and γ an addictional smooth parameter; or other model selectors such
as the AIC [1], BIC [59] and the Cp statistic [41]. During the last decade
procedures which optimize both number and location of knots were proposed
[47].

However, before contemplating such an approach it is worth considering
the number of possible models. If there are R candidate knots then there are
2R possible models, assuming the overall intercept and linear term are always
present. Thus, often this approach becomes either highly computationally
intensive or impossible [52].

The second approach works on the coefficients, βk of equation 2.15, for
which an appropiate penalty with an associated penalty (or smoothing) term
is specified. This penalty can be built, e.g., through the second derivative of
f(x) [48] and depends on one smoothing term, λ. This parameter controls
the trade-off between fidelity to data (λ small) and smoothness of the func-
tion estimate (λ large). In that context each kind of spline basis is called
penalized spline or simply P-spline. Anyhow note that P-spline refers in-
deed to an estimation procedure rather than to a kind of basis.

P-splines were introduced by Eilers and Marx [18] for (generalized linear)
smoothing. They proposed B-splines choosing a sufficiently large number of
basis, so that the penalty gives additional, continuous, control over smooth-
ness. Because the penalty is discrete, it can be implemented extremely easily,
in contrast to penalties that use the integral of squared higher-order deriva-
tives of the fitted function [48]. They also extended their field of application
in several directions, exclusively choosing a B-spline basis with an equis-
pacesed grid of knots and (higher-order) differences in the penalty (see e.g.
[42, 19]).

The P-spline approach proposed by Eilers and Marx [18] is following
presented. Consider for simplicity, a B-splines, B, and the model E(y) =
µ = Bβ and minimize the following objective function:

QB = |y −Bβ|2 + λ|Ddβ|2 (2.21)

where Dd is a matrix such that Dd = ∆dβ, the d-th differences of β.
Note that ∆βj = βj − βj−1, ∆2βj = ∆(∆βj) = βj − βj−1 − (βj−1 − βj−2) =
βj−2βj−1+βj−2, and so on for higher d. Mostly d = 2 (such as in the present
study) or d = 3 is used. In practice the difference penalty on a B-spline, forces
the coefficients to follow a smooth pattern. Hence, minimization of QB leads
to the system of equations
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(BTB + λDT
dDd)β̂ = BTy (2.22)

from which the estimation of response variable, ŷ, can be obtained. Notice
that for λ = 0 this reduces to the normal equations for linear regression of
y on B. The number of basis functions in B is chosen “too large”, which
means that for λ = 0 the fitted curve is over-fitting the data, giving a result
with too many fluctuations. Depending on the application, the size of the
basis can be anywhere from 10 to over 1000. By increasing λ the smoothness
can be tuned [18].

2.3 Inference

Statistical inference in GAMMs involves estimation of the nonparametric
functions fj(·), the smoothing parameters, λ, and on all the variance com-
ponents θ (including σ2).

In previous sections the implicit linearity behind spline representation
2.10 was emphasized, being it crucial in inference procedures. In fact, estima-
tion of and inference on parameters can be carried out within the framework
of GLM with some devices.

2.3.1 Frequentist perspective

The estimation of nonparametric functions, smoothing and variance parame-
ters in the context of generalized additive mixed models is achieved by using
REML (Restricted Maximum Likelihood) in the case of Gaussian responses
and identity link function and PQL (Penalized Quasi Likelihood) or DPQL
(Double Penalized Quasi Likelihood) otherwise [39]. All such methods are
likelihood-based techniques and take origin from the ML technique, which has
a straightforward application only in fixed models with Gaussian response.
ML was used for LMM as well [28], but maximum likelihood estimators
(MLE) of variance are, in general, biased.

Could be useful discuss briefly ML and REML estimation of LMM param-
eters as introductory. Afterwards, the PQL methodology, used to estimate
GAMM parameters, is presented, overtaking the GLMM inference, which is
a particular case of GAMM.

ML estimation

Under Gaussian mixed model, such as 2.3, the distribution of y is
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y ∈ N(Xα,V) with V = R + ZGθZ
T (2.23)

and the log-likelihood is given by

l{y;α, θ} = c− 1

2
log(|V|)− 1

2
(y −Xα)TV−1(y −Xα) (2.24)

where c is a constant and θ is the vector of variance components involved in
V. Then, partial derivatives of l{y;α, θ} w.r.t. the parameters, θ and α can
be obtained

∂l

∂α
= XTV−1y −XTV−1Xα (2.25)

∂l

∂θr
=

1

2
{(y −Xα)TV−1

∂V

∂θr
V−1(y −Xα)− tr(V−1∂V

∂θr
) (2.26)

where θr is the r-th component of θ of dimension q. Assuming that α has
dimension p and rank(X) = p, then the MLE is obtained by solving 2.25
and 2.26. With some assumptions, the MLE for α is:

α̂ = (XT V̂−1X)−1XT V̂−1y (2.27)

that requires the estimation of V and of its components θ. Such estimators
are obtained by solving

yTP
∂V

∂θr
Py = tr(V−1

∂V

∂θr
) (2.28)

where

P = V−1 −V−1X(XTV−1X)−1XTV−1 (2.29)

Then α̂ is obtained by plugging V̂ into 2.27.

REML estimation

The MLE of the variance components are, in general, biased. The “trick” in
the REML estimation is to apply a transformation to the data to eliminate
the fixed effects, then use the transformed data to estimate the variance
component. As before, assume, w.l.o.g., that rank(X) = p. Let A be an
n× (n− p) matrix such that
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rank(A) = n− p,ATX = 0 (2.30)

Then, define z = ATy, where z ∈ N(0,ATVA). It follows that the
log-likelihood based on z, that is the restricted log-likelihood, is given by

lR{z; θ} = c− 1

2
log(|ATVA|)− 1

2
zT (ATVA)−1z) (2.31)

By differentiating the lR{z; θ}, one obtains in terms of y

∂lR
∂θi

=
1

2
{yTP

∂V

∂θi
Py − tr(P∂V

∂θi
)} (2.32)

where P = A(ATVA)−1AT and i = 1, . . . , q. Although the REML estimator
is defined through a transforming matrix A, it does not depend on A (note
that, by 2.32, the REML equations do not depend on A). This fact is im-
portant because, obviously, the choice of A is not unique, and one does not
want the estimator to depend on the choice of the transformation.
Note that the restricted log-likelihood is a function of θ only. In other words,
the REML method is a method of estimating θ (not α, because the latter is
eliminated before the estimation). However, once the REML estimator of θ
is obtained, α is usually estimated in the same way as the ML, that is, by
2.27, where V = V (θ̂) with θ̂ being the REML estimator. ML and REML
are based on the normality assumption, that is violated in many cases in the
practice and likelihood-based inference is difficult, or even impossible. First
if the distributions of the random effects and errors are not specified, the
likelihood function is simply not available. Furthermore, even if the (non-
normal) distributions of the random effects and errors are specified (up to
some unknown parameters), the likelihood function is usually complicated
and not have an analytic expression. Finally, like normality, any other spe-
cific distributional assumptions may not hold in practice. These difficulties
have led to consideration of methods other than maximum likelihood. One
such method is Gaussian-likelihood, or, as we call it, quasi-likelihood. ap-
proach, the REML estimators can be derived from a quasi-likelihood [33].
Furthermore, it has been shown (Richardson and Welsh 1994; Jiang 1996,
1997a) that the REML estimator is consistent and asymptotically normal
even if normality does not hold. Therefore, the quasi-likelihood approach is,
at least, well-justified from an asymptotic point of view. data are not really
normal. Jiang (1996) has pointed out that exactly the same equations will
arise if one starts with a multivariate t-distribution.More generally, Heyde
(1994, 1997) showed that the REML equations can be derived from a quasi-
likelihood.For such a reason, the (Gaussian) REML estimation may be re-
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garded as a method of quasi-likelihood. For simplicity, the corresponding
estimators are still called REML estimators.

Laplace approximation

When the exact likelihood function is difficult to compute, approximation be-
comes one of the natural alternatives. A well-known method of approximate
integrals is the Laplace approximation. Suppose to need to approximate an
integral of the form, ∫

exp{−q(x)}dx (2.33)

where q(·) achieves its minimum value at x = x̃ with q′(x̃) = 0 and q′′(x̃) > 0.

where q′ and q′′ denote the gradient (i.e., the vector of first derivatives) and
Hessian (i.e., the matrix of second derivatives) of q, respectively. Then, we
have ∫

exp{−q(x)}dx ≈ c|q′′(x̃)|−1/2exp{−q(x̃)} (2.34)

where c is a constant depending only on the dimension of the integral and
|q′′(x̃)| denotes the determinant of the Hessian.

PQL estimation

With Laplace approximation, one may proceed as in maximum likelihood,
treating the approximated likelihood function as the true likelihood function.

Using Laplace approximation, an approximated likelihood can be calcu-
lated instead of the exact likelihood. Such approximated likelihood is called
Penalized Quasi-Likelihood. PQL is required in the case of non-Gaussian
models.

The discussion of GLMM inference is skipped here, because of it can be
seen as a particular case of GAMM. Following the estimation procedure pro-
posed by Lin and Zhang [39] is discussed. They propose to estimate jointly
smoothing parameters and variance components by using a marginal Quasi-
Likelihood, that is an extensions of the REML approaches used by Wahba
[63] and Kohn [37]. Smoothing parameters are treated as extra variance com-
ponents, an idea proceed from inference in Gaussian nonparametric mixed
models (see e.g. Wang [65] among others).

According to Lin and Zhang [39], for given values of λ and θ, the spline
estimator of fj(·) maximizes the following penalized log-quasi-likelihood
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lPQ{y;α, f1, . . . , fp, θ} −
1

2

p∑
j=1

λj

∫ tnj

t0j

f ′′j (x)2dx =

lPQ{y;α, f1, . . . , fp, θ} −
1

2

p∑
j=1

λjf
T
j Kjfj (2.35)

where (t0j , t
n
j ) defines the range of the j-th covariate and Kj is the nonnegative

define penalty matrix of fj evaluations (see Green and Silverman [25]). Dif-
ferentiating equation w.r.t α, smoothing functions and b respectively, yields
to a system equations that can be solved by Fisher scoring algorithm with
working vectors of response and estimated (centered) smooth functions. Lin
and Zhang proposed an alternative to 2.35, since it still usually requires nu-
merical integration, the DPQL approximation (see [39] for futher details).

These estimators can be obtained by iteratively fitting a working GLMM
to an updated response. The basic idea of this approach is to re-parameterize
a GAMM as a GLMM. In fact, the GAMM in equation 2.9 can be reformu-
lated as a GLMM as follows

G(µb) = Xβ + Ua + Zb (2.36)

by assuming that smooth function estimations can be sundered into a fixed
component and a random component. That derives from each fj = Xjβj +
Ujaj, where βj represents the fixed effects while aj the random effects. In
particular if Bk is a set of spline bases with k = 1, . . . , r, then the model is
specified by X = (Bk)k=1,2 and U, such a transformed matrix of remaining
bases matrix B = (Bk)3<k<r (see [6]).

But the estimation of smoothing functions, f(·), needs previously the
estimation of λ and θ.

The smoothing parameters, λ, and the variance components, θ, can be
jointly estimated by using the marginal quasi-likelihood by extending the
REML approach of Wahba [63]. They can be obtained by fitting a work-
ing GLMM via iteratively fitting a working LMM using REML, with τ =
(1/λ1, . . . , 1/λp) treated as extra-variance components in addition to θ. Then
the GLMM can be fitted iteratively. Hence a marginal quasi-likelihood of
(τ, θ), lmPQ{y; τ, θ}, can be constructed (eq. 21 in Lin and Zhang [39]).
The lm reduces to REML under AMM.

Equation 21 in [39] is often uncalculable for intractable numerical inte-
gration and is necesary an approximation of it, e.g. using Laplace’s method
(equation 22 in [39]). This approximated lmPQ{y; τ, θ} corresponds to the
REML log-likelihood under the LMM
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µb = Xβ + Ua + Zb (2.37)

with a and b random effects. It follows that τ and θ can be easily es-
timated by iteratively fitting model 2.37 using REML. After estimating τ
and θ. is possible to use the BLUP estimators of βj and aj to construct

approximate spline estimators f̂j by PQL (or DPQL).

2.3.2 Full bayesian perspective

Priors

The unknown functions fj(·), fixed parameters and variance components for
the model 2.10 are considered as random variables and must be supplemented
by appropriate prior assumptions. In absence of any knowledge, the appro-
priate choice for fixed effects parameters is the diffuse prior, i. e.,

p(αi) ∝ const (2.38)

while for random effects a Gaussian prior is specified.
Priors for the unknown functions, fj(·), depend on the type of the co-

variate and on prior beliefs about the smoothness of fj(·). Using spline
representation of fj(·) is possible to rewrite the predictor in 2.10 as a long
linear model, i.e.

η = Xα +
p∑
j=1

Sjβj + Zb (2.39)

where fj = Sjβj.
Thus a prior for a function, fj, is defined by specifying a design matrix,

Sj, and a prior distribution for the vector βj of unknown parameters,i.e.

p(βj/τ
2
j ) ∝ 1

(τ 2j )rank(Kj)/2
exp(− 1

2τ 2j
βTj Kjβj) (2.40)

where Kj is a penalty matrix. The variance parameter, τ 2j , is equivalent
to the inverse of the smoothing parameter, λj, in the penalized likelihood
approach.

The unknown variance parameters, τ 2j , are supplemented with hyperprior
assumptions, e.g. dispersed inverse Gamma priors p(τ 2j ) ∼ IG(aj, bj), with
the corresponding probability density function

τ 2j ∝ (τ 2j )−aj−1exp(−bj/τ 2j ) (2.41)
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for aj > 0 and bj > 0. Usually small values are given to aj and bj. Also
for the overall variance σ2 the same hiperprior is given.

Several alternatives have been proposed to specify smoothness priors for
continuous covariates. Here, random walk priors or more generally autore-
gressive priors [22] and Bayesian P-splines [38] are presented.

The random walk

Suppose that x is a time scale or continuous covariate with equally spaced
ordered observations x(1) < x(2) < . . . < x(K), where K ≤ n denotes the
number of different observations for x. A common approach is to estimate
one parameter βk for each distinct x(k),i.e. f(x(k)) = βk, and penalize abrupt
jumps between successive parameters using random walk priors. For exam-
ple, first and second order random walk models are given by

βk = βk−1 + εk and βk = 2βk−1 + βk−2 + εk (2.42)

with errors εk ∈ N(0, τ 2) and diffuse priors p(β1) ∝ const or p(β1) ∝ const
and p(β2) ∝ const,for initial values, respectively. Both specifications act as
smoothness priors that penalize too rough functions. A first order random
walk penalizes abrupt jumps βk − βk−1 between successive states while a
second order random walk penalizes deviations from the linear trend 2βk−1−
βk−2. The joint distribution of the regression parameters β is easily computed
as the product of conditional densities defined by 2.42 and can be brought
into the general form 2.40. The penalty matrix is of the form K = DTD
where D is a first or second order difference matrix. For example, for a
random walk of first order the penalty matrix is given by

K =



1 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1

 (2.43)

The design matrix X is a simple 0/1 matrix where the number of columns
equals the number of parameters, i.e. the number of distinct covariate values.
If for the i-th observation xi = x(k) the element in the i-th row and k-
th column of X is one and zero otherwise. In case of non-equally spaced
observations slight modifications of the priors defined in 2.42 are necessary,
see [22] for details.
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Bayesian P-spline

In alternative to random walk for continuous variables the Bayesian P-spline
can be used, such as in the present study. In the Bayesian approach, the
difference penalties in 2.21 are replaced by their stochastic analogue, i.e.
first or second order random walks (e.i. equations in 2.42) as priors for the
regression coefficients.

The amount of smoothness allowed by particular priors specifications for
τ 2j depends (weakly) on the scale of the response. To avoid the problem,
the vector y is standardized before estimation and results are retransformed
afterwards (this also avoid numerical difficulties with MCMC simulations).

The posterior

For the given priors, the posterior of the model is given by

p(β1, . . . , βn, τ
2
1 , . . . , τ

2
p , α | y) ∝ l{y; β1}, . . . , βp, α)

p∏
j=1

(p(β − j | τ 2j )p(τ 2j ))

(2.44)

where l(·) denotes the likelihood which under the assumption of condi-
tional independence is the product of individual likelihood probabilities.

MCMC simulation techniques

Full Bayesian inference is based on MCMC (Markov Chain Monte Carlo)
simulation techniques. They overcome difficulties in calculation of the pos-
terior distribution, which is usually numerically intractable. These technics
allow to draw random samples from the posterior, whose characteristics (such
as the mean, standard deviation and quantiles) can be easily estimated by
their empirical analogues. Instead of drawing samples directly from poste-
rior, MCMC devices a way to construct a Markov chain with the posterior
as a stationary distribution. Hence the iterations of the transition kernel of
this Markov chain converge to the posterior yielding a sample of independent
random numbers. Usually the first part of the sample (the burn-in phase)
is discarded because of the algorithm needs time to converge. The sampling
scheme depends on the supposed distribution of the response variable, e.g.
Gaussian or categorical (see the methodology manual of BayesX programm
for futher details).
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2.3.3 The empirical Bayesian perspective

In the empirical Bayesian inference the GAMM is re-parametrized as a GLMM,
as proposed by Green [24] and used in the actual frequentist procedures. Ba-
sically its prerogatives are:

• to use priors as in the full Bayesian approach

• to use the REML procedure of estimation.
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Chapter 3

The application study

3.1 Data source

Available data were obtained from two different sources. The monthly to-
tal landings of red shrimp by vessel (expressed in kg month−1 vessel−1), the
monthly number of trips performed by each vessel and their technical spec-
ifications (Engine Power: HP, and Gross Registered Tonnage: GRT) were
obtained from the Barcelona Fishers Association. The average monthly value
of the NAO index was obtained from the web site of the Climatic Research
Unit of the University of East Anglia (Norwich, UK): http://www.met.rdg.
ac.uk/cag/NAO/slpdata.html.

3.2 Data description and exploration

The total number of observations amounts to 2354 for 21 trawlers having
prictised deep-fishing in the period from January 1992 to December 2008 (17
complete years).

Table 3.1 contains all variables examined in this analysis, not necessarily
all included in final models. A basic statistical description is reported in
table 3.2.

The response variable, cpue (CPUE, Catch Per Unit Effort), is a ratio
commonly used to eliminate temporal and regional trends in fish stocks.
The “catch” portion of the measure is expressed as the weight of the entire
catch (sometimes as the number). The “unit effort” portion of the rate refers
to the unit of time spent by a unit of the tool used to catch (e.g. vessel in
this case or peace of gear elswhere).
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Table 3.1: List of variables
Variable Description

biom the total monthly landings per vessel of red shrimp
cpue monthly average catch per unit effort of red shrimp
idmonth time index of T progressive months, T = 204
month categorical variable of I categories, I = 12
trips number of trips performed by each vessel during the t-th month
hp Engine Power of vessels
grt Gross Registered Tonnage of vessels
code code assigned to each vessel, C = 21
naoj mean annual NAO index of j years before the year of observed CPUE

Table 3.2: Basic descriptive statistics.

biom cpue trips hp grt nao1 nao2 nao3

Min 0.20 0.20 1.00 160.00 37.70 -1.01 -1.01 -1.01
1-st Qu 26.85 7.90 3.00 300.00 42.83 -0.30 -0.25 -0.25
Median 125.05 15.60 8.00 375.00 48.10 -0.04 0.04 0.05
Mean 173.06 16.68 8.99 370.60 53.85 -0.05 0.04 0.09
3-rd Qu 275.31 23.50 13.75 430.00 54.99 0.25 0.34 0.51
Max 1064.00 91.80 43.00 700.00 113.50 1.11 1.23 1.23
sd 171.57 11.27 6.48 110.95 17.54 0.47 0.57 0.59

code month year
levels 21 12 17

Thus, CPUE was calculated dividing biom (the total monthly kg per
boat) by the monthly number of fishing trips:

cpue =
biom

#trips
(3.1)

Hence, the CPUE is the monthly average kg per boat [43].

A brief study of density and distribution functions of cpue is necessary to
select both response distribution and link function in generalized regression
models (see Chapter 2). Two estimations of the density function of the
cpue are reported in the upper panels of Figure 3.1: the histogram and the
gaussian kernel estimation.

44



Figure 3.1: From left to right. In the upper panels: Histogram (on the left)
and kernel density estimation (on the right); in the middle panels: boxplot
(on the left) and empirical distribution function of cpue (on the right); in
the lower panels: QQ-plot for the Gamma (on the left) and for the Normal
distribution (on the right). Red lines: the theoretical Gamma distribution.
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Both density estimations show an asymmetric shape, due to many low values
and few high values of the response. Those high values could be “atipical”
as can be observed in the box-plot in the middle left panel of the same
figure. In the right middle panel, also the empirical cumulative distribution
function (ecdf) of cpue and the 95% confidence intervals, jointly with the
theoretical Gamma distribution (a and b estimated parameters) are reported.
The theoretical Gamma distribution lies inside calculated intervals of the
ecdf, hence it can be considered as the underlying theoretical distribution of
the response in the regression analysis. Finally, in the lower panels of the
figure also the QQ-plots for the Gamma and the Normal distributions are
reported, given one more evidence of the good approximation of data to the
Gamma (on the left) and bad approximation to the Normal (on the right).

Confidence intervals were calculated as follows [66]:

L(·) = max{Fn(·)− εn, 0} (3.2)

U(·) = min{Fn(·) + εn, 1} (3.3)

where εn is given from the DKW (Dvoretzky-Kiefer-Wolfowitz) inequality,
by:

εn =

√
1

2n
log(

2

α
) (3.4)

Parameters a and b were obtained by 2.14.

The temporal series of the CPUE for each vessel are reported jointly in
Figure 3.2. In spite of non complete series is available for any of the boats, a
similar trend can be observed in the plot: a quite constant trend during first
10 years (up to idmonth = 90), an abrupt decreasing around idmonth = 100
and high variability after this crash.

The monthly average CPUE within all vessels (Figure 3.3) highlights more
clearly the fluctuations above commented and allows to detect another crash
in cpue around idmonth = 175.

The presence of a dependence structure between observations of each
vessel was also investigated. Thus, the autocorrelation functions of vessel
series were calculated looking for such structure in the data and all series
showed some autocorrelation. Here only the autocorrelations for two of the
21 vessels are reported, i.e. with codes 2 and 10, in Figures 3.4 and 3.5
respectively.
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Figure 3.2: The temporal series of CPUE for each vessel.

Figure 3.3: The temporal series of CPUE monthly averege acroos all vessels.

Both series show some kind of trend (both in the series and in the ACF
in left panels). Hence to avoid it, series were differentiated (1-st order dif-
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Figure 3.4: Autocorrelation plots of the vessel with code = 2. From above
to below: time series of CPUE (on the left) and its first difference (on the
rigth); autocorrelation (ACF) and partial autocorrelation (partial ACF).

ferentiation). The partial ACFs of differentiated series show the possibility
of an autoregressive or mean average relationship of 1-st order (difficultly of
more order).

Follows an exploratory analysis of relationships between variables, used
as a guideline in building models.

The Figure 3.6 shows sample points of cpue and its logarithm versus
idmonth. The logarithmic transformation allows to better identify which
periods showed extreem values of CPUEs.

days of a month, because it can be that vessels performed more trips for
day.

The cpue seems to show a positive relationship with the number of trips
performed by each boat, if a logarithmic transformation on it is implemented
(Figure 3.7). An abnormal pattern can be observed in the first and second
panels of Figure 3.7, around idmonth = 90 − 110, corresponding to years
1999 and 2000. In those years, high values of number of trips correspond
to the lowest cpue observed along all the time period. That trend will be
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Figure 3.5: Autocorrelation plots of the vessel with code = 10. From above
to below: time series of CPUE (on the left) and its first difference (on the
rigth); autocorrelation (ACF) and partial autocorrelation (partial ACF).

Figure 3.6: Relationship between cpue and idmonth.

discussed in the biological conclusion in section 3.5.
index, it is affected by the number of trips performed such as it differs

within months and vessels.
The two technical characteristics of vessels, hp and grt, are positively

correlated (first panel of Figure 3.8), but high values of hp are sub-estimated
because of fishermen underreported the real value, thus it could not be a good
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Figure 3.7: Relationship between cpue and trips.

predictor and only the grt were incorporate in the final regression model.
The relationship between cpue and grt is shown in middle and right pan-
els of Figure 3.8. The relationship is more evident applying a logarithmic
transformation on the response variable.

Figure 3.8: Relationship between hp and grt, cpue and grt and log(cpue)
and grt.

The relationship between cpue and nao is displayed in Figure 3.9. It can
be appreciated that negative values of nao affect negatively to the cpue.
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Figure 3.9: Relationship between cpue and nao.

affects to the cpue fluctuations, controlling inter and intra-annual vari-
ability of cpue: idmonth captures the year to year variability and month the
seasonal variability.

Figure 3.10: Relationship between cpue and month.
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3.3 Materials and methods

3.3.1 Model construction

The relationship between cpue and all predictors was initially checked through
the frequentist approach using R2.12.0 (packages: “mgcv”, “nlme” and “MASS”
as appropiate). REML algorithm was set as the estimation procedure of all
models and the P-spline as the basis for smooth functions.

Initially independent models were constructed for all covariates to check
their effect on the cpue and, if it resulted significant, its nature (linear or
nonparametric).

Regarding to the variable NAO, three subsets of the covariate were ini-
tially considered, from 1 to 3 years before the year of estimated cpue, due
to biological reasons commented in Section 1.3. Only the subset with best
explanatory potential (percentage of deviance explained, DE%, see below
for details about this criterion) was introduced in the final model.

To the other hand, components, i.e. parameters, that were initially sig-
nificant, but not in more complicate models, were simply eliminated from the
model itself. That is, if a covariate was significant as unique predictor, but
not significant jointly with other predictors, it was delated. For example, it
occurred in the case of the variable naolag3, that had a significant parameter
in the model GAMM, but it was eliminated in models with autocorrelation
structures (see below) because its effect resulted no more significant. In the
case of categorical variables, i.e. month and code, levels with no signifi-
cant coefficient were one by one eliminated and merged with the reference
category. This rearrangement was made separatelly for each class of model
built.

This preliminary analysis was omitted from the results for shortness. This
procedure allowed to built the best model within each of the theoretical
classes of models presented in Section 2.1, i.e. the best LM, the best LMM,
and go on up to the GAMM.

As mixed models permits the incorporation of autocorrelation structures
in residuals, e.g. autoregressive and moving everage structures (ARMA mod-
elling), also additive mixed models with the incorporation of ARMA(p,q)
(as suggested by the exploratory analysis) were investigated. All GAMM-
ARMA(p,q) were buitl up to the orders p and q with no more significant
coefficients. GAMM-MA(1) are presented in the results because of all

Thus, the collection of models compared can be summarized as follows:
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The linear model (LM):

cpue = α0 + grtαgrt + idmonthαidmonth +

tripsαtrips + nao3αnao3 + (3.5)

monthαmonth + codeαcode + ε

The additive model (AM):

cpue = α0 + grtαgrt + fidmonth(idmonth) +

ftrips(trips) + fnao3(nao3) + (3.6)

monthαmonth + codeαcode + ε

The generalized linear model (GLM):

G(cpue) = α0 + grtαgrt + idmonthαidmonth +

tripsαtrips + nao3αnao3 + (3.7)

monthαmonth + codeαcode + ε

The generalized additive model (GAM):

G(cpue) = α0 + grtαgrt + fidmonth(idmonth) +

ftrips(trips) + fnao3(nao3) + (3.8)

monthαmonth + codeαcode + ε

The linear mixed model (LMM):

cpue = α0 + grtαgrt + idmonthαidmonth +

tripsαtrips + nao3αnao3 + (3.9)

monthαmonth + code bcode + ε

The additive mixed model (AMM):

G(cpue) = α0 + grtαgrt + fidmonth(idmonth) +

ftrips(trips) + fnao3(nao3) + (3.10)

monthαmonth + code bcode + ε
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The generalized linear mixed model (GLMM):

G(cpue) = α0 + grtαgrt + idmonthαidmonth +

tripsαtrips + nao3αnao3 + (3.11)

monthαmonth + code bcode + ε

The generalized additive mixed model (GAMM):

G(cpue) = α0 + grtαgrt + fidmonth(idmonth) +

ftrips(trips) + fnao3(nao3) + (3.12)

monthαmonth + code bcode + ε

The generalized additive mixed model (GAMM-ARMA(p,q)):

G(cpue) = α0 + grtαgrt + ftrips(trips) +

fidmonth(idmonth) +monthαmonth + (3.13)

code bcode + ε, with ε ∼ ARMA(p, q)

In the cases of generalized response assumption, the Gamma distribution
was used as the underling distribution function with logarithmic link as the
descriptive analysis in section 3.2 suggested.

Then, the residuals were analyzed and those models whose residuals ir-
refutably did not pass the diagnostics were discarted in further analyses.

Finally the deviances were calculated and an F test, based on deviances
was used to compare pairs of models. The model with the highest percentage
of deviance explained (DE%) was considered the model that best explains
the dataset.

3.3.2 Diagnostic tools for the analysis of residuals

In the analysis of residuals, several diagnostics were used to asses the follow-
ing theoretical assumptions:

54



1. Normality of residuals. It was checked for the residuals of all vessels
jointly and in the case of mixed models for each vessel separately.

2. Homocedasticity of residuals. It was checked for all vessels jointly and
in the case of mixed models within each category of vessel.

3. Normality of random effects in mixed models.

4. Indipendence between random effects and residuals.

5. Also the relationship between response and fitted values was checked
as a visual goodness of fit verification.

and the corresponding diagnostics were:

1. QQ-plots and histograms of residuals and the lliliefors test for normal-
ity.

2. Scatterplots of residuals vs linear predictor.

3. QQ-plots of the random coefficients and the lilliefors test.

4. Scatterplots of residuals for each vessel.

5. Scatterplots of response vs fitted values.

In the construction of QQ-plots, the distribution function of residuals,
F (ε), was estimated with the empirical cumulative distribution function
(ecdf) as

F̂ (εi) =
rank(εi)− 0.5

n
(3.14)

Then, the QQ-plot is the scatter-plot of the collection of points

(εi, F
−1
0 (F̂ (εi))), with i = 1, . . . , n (3.15)

where, F−10 (·) is the quantile function of the distribution function F0, that
in this case is the Normal distribution.

The Lilliefors test was used to checks the normality of both residuals and
random coefficients, i.e. the null assumption

H0 : x ∈ N(µ, σ2) against H1 : x 6∈ N(µ, σ2) (3.16)

and the test statistic, that is a modified Kolmogorov-Smirnov statistic, is:
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L = supx | Fn(x)− F(µ̂,σ̂2)(x) | (3.17)

where Fn is the ecdf of the sample vector x and F(µ̂,σ̂2)(x) is the distribution
function of a normal with mean µ̂ and standard deviation σ̂. The null hy-
pothesis is rejected for large values of the statistic.

Residuals used in the construction of QQ-plots, were the “deviance resid-
uals”,

ε̂di = sign(yi − µ̂i)
√
di (3.18)

where di is the i-th component of the deviance (3.20) contributed by the
datum i-th, as suggested by Wood [69].

Also the “standardized” or “pearson” residuals were sometimes imple-
mented in other graphics and analyses (i.e.in the scatterplots of residuals for
each vessel). They are defined as

ε̂pi =
yi − µi√
V (µ̂i)

(3.19)

which have approximate mean 0 and variance φ.

3.3.3 Selection criterion

After the diagnostic, the criterion used to compare and select models was the
proportion of deviance explained (DE%). The deviance or residual deviance
(DR) of a model is defined as:

DR = 2[l(β̂max)− l(β̂)]φ (3.20)

where l(β̂max) indicates the maximized likelihood for the saturated model,
i.e. the model with one parameter per datum. It represents the highest value
that the likelihood could possibly achieve for a given data set. l(β̂) is the
likelihood of the estimated model, while φ is the unknown scale parameter.
In the practise DR can be estimated independently from φ and that permits
the construction of a F test to compare models through their deviances [69].
In the case that response y ∈ N(µ, σ), the DR is simply the sum of squared
residuals. Then, the deviance explained (DE) by a model is

DE = DN −DR (3.21)
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where DN is the “null deviance”, given by setting the model with a constant,
yi = α0 + εi. Finally, the DE% is simply

DE% = DE × 100/DN . (3.22)

The F test was performed between pairs of several models as follows. Con-
sider the following test hypothesis

H0 : mod1 = mod2 against H1 : mod1 6= mod2 (3.23)

under H0, the F statistic is:

F =
(DR1 −DR2)/(p2 − p1)

DR2/(n− p2)
∼ Fp2−p1,n−p2 (3.24)

where DR1 and DR1 are the residual deviances of models mod1 and mod2 and
p1 and p2 are the corresponding degrees of freedom and n the total number of
observations. If F > F.05, the test is significant and H0 is rejected. The test
was built with the aim to check if the degrees in deviance of mod2 justify the
increasing number of parameters. The degree of freedom of a model, p, was
setted as given by the sum of effective degrees of freedom of smooth functions
plus the number of the fixed parameters. Hence, within models that passed
the diagnostic of residuals, the model with highest DE% and significant F
test was selected as the best model.

3.3.4 Comparison between estimations

Then the selected best model was fitted applying the empirical Bayesian
REML and the full Bayesian methods using the software BayesX [5].

The same initial conditions, when possible, were set for the three proce-
dures:

1. P-spline 1 as bases for all smooth functions;

2. the same number of initial knots for each smoother: nkidmonth = 20,
nktrips = 10, nknao3 = 5.

Then, the three estimations were compared using the estimate mean
squared error, MSE:

M̂SE =

∑n
i=1 ε̂

2
i

n
(3.25)

where ε̂ are the response residuals, i.e. (yi − ŷi), n the number of observa-
tions. The estimation with the lowest value of M̂SE was considered the best
estimation.

1cubic penalized spline with a B-spline basis and 2-nd order difference penalty
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3.4 Results and discussion

3.4.1 Diagnostics of model assumptions

Basic diagnostic plots of the AMM 3.10 (Figures 3.11, 3.12 and 3.13)
were selected as example of residual behaviour recorded for all models with
Gaussian response assumption, i.e. the LM, the LMM, the AM and obviously
the AMM.

Residuals of all these models produced almost the same patterns. These
are:

• The QQ-plot of residuals shows an evident departure of residual quan-
tiles from the theoretical normal quantiles and a pronounced curvature,
concave upwards, related to a pronounced asymmetry observable in the
histogram of residuals as well (upper and lower left panels in Figure
3.11).

• The scatter-plot of residuals versus the linear predictor shows an ac-
centuated heteroscedasticity with a notable increasing of variance for
higher values of the linear predictor (upper right panel in Figure 3.11).

• The same scatterplot shows another problematic behaviour of residuals,
that is, some kind of trend evidenziated by the groupping of negative
residuals for lower values of the linear predictor.

• The response versus fitted values shows an increasing badness in the fit
while accompanying the response (lower right panel of the same figure).

• The remaining two figures show residuals behaviour inside each group of
variability, scatterplots allow to highlight in which vessel residuals are
more dispersed or concentrated and for which vessel residuals clearly
follows the same trand (see e.g. the upperand the middle plots on the
left 3.12).

• The information proceeding from this graphics allows sometimes the
construction of more general models where categories of random effects
are groupped into more general categories.

• Moreover Fn of residuals within each vessel shows the same pattern of
the residual joint sample Figure 3.13.

• Finally the QQ-plot of random coefficients is the unique valid diagnostic
plot of this model ( 3.23).

58



The diagnostic graphics for the GLMM show mainly the same, includ-
ing somewhat accentuated, failures (see e.g. the QQ-plot of joint residuals
in Figure 3.14). Comments are omitted, being figures of immediate inter-
pretation ( 3.14 and 3.15). The QQ-plots per vessel were omitted having
exactly the same behaviour than the AMM’s residuals. On the contrary the
QQ-plot of random coefficients showed a good approximation to the normal
distribution (graphic was ommitted as well).

The diagnostic plots of all remaining models, GLM, GAM, GAMM, GAMM-
AR(1) and GAMM-MA(1) show evident gains with respect to the models
with Gaussian assumption of the response. That is mainly the gain given by
strike with the Gamma assumption for the response. Futhermore they show
increasing gain moving through the GLM, the GAM and finally to GAMMs
(both with and without correlation structures). In fact, the sequential ob-
servation of Figures 3.16, 3.17, 3.18, 3.19 and 3.20, highliths a rearrange-
ment of residuals versus a more homogeneous variability in the scatter-plots
against the linear predictor (upper right panel of figures). Also the QQ-plots
in the upper left panels of all figures show better trends, however in the fixed
design models the residuals look like more normal distributed. The scatter-
plots of residuals for heach vessel (only the plots for GAMM are presented,
Figure 3.21) show residuals centered and homogeneously distributed around
the zero, without drastically allarming trends. However, the within-group
variability changes considerably among vessels. Finally, both residual per
vessel and random coefficients quantiles show a reasonably approximation to
the normal, however less evident in both residuals and random coefficients
of the GAMM-MA(1) (Figures 3.22 and 3.23). The Lilliefors’s test ( 3.17)
gave significant results for residuals of all models (Table 3.3). That means
rejection of the normality assumption, but it is not allarming because of
the test for large sample sizes detects each minimum difference between the
ecdf and the theoretical distribution as significant. On the contrary, the test
performed on the coefficients was not significant in all cases (Table 3.3).

In conclusion, data clearly violate the assumptions of normality and in-
dependence, as it was easy to suppose from the exploratory analysis. Thus,
Gaussian models were no longer considered. The GLMM gave clearly bad
diagnostics and was set aside as well. In contrast, analysis of residuals can
be razonably accepted in the case of remaining models, giving some better
diagnostics regarding to trends in the residuals in the case of GAMMs and
regarding to the normality assumptions in the case of fixed effects models.
The following section is devoted to a deeper comparison of remaining models.
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Table 3.3: Lilliefors test for normality of residuals and random effects. For
each model the statistic L and the corresponding p − value are given for
residuals (resid) and for random effects (random) respectively. The last one
only for mixed models.

model L (resid) p− value L (random) p− value
LM 0.065 ≤ 2e-16
LMM 0.066 ≤ 2e-16 0.146 0.279
GLM 0.073 ≤ 2e-16
GLMM 0.073 ≤ 2e-16 0.185 0.058
AM 0.065 ≤ 2e-16
AMM 0.045 ≤ 2e-16 0.109 0.738
GAM 0.048 ≤ 2e-16
GAMM 0.075 ≤ 2e-16 0.162 0.159
GAMM-MA1 0.062 ≤ 2e-16 0.144 0.307
GAMM-AR1 0.057 ≤ 2e-16 0.166 0.137

3.4.2 Deviance and F test

The results about the deviance of the remaining models are presented in
Table 3.4. All tests with p − values < 0.05 were significant. The models
were ordered from lower to higher DE% for an easier interpretetion. The
GAM was the model with higher deviance explained, while the GLM with
the lower. The GLM was significantly different from the Null model as well as
the GAMM−AR(1). Hence, suceeding models, with higher p and lower DE
are significantly different from the Null model, without need to calculate
the F statistic. The GAMM−AR(1) does not apport improvement w.r.t.
the GLM, neither the GAMM−MA(1), neither the GAMM, while the GAM
was significantly different from the GLM. The GAM was also significanly
better than the GAMM−AR(1) and GAMM−MA(1). The test between
GAM and GAMM produced obviously NA due to that statistic F cannot be
negative, but the fact to have both less df and DE, is a sufficient proof of its
explanatory potencial, confirmed by its DE%. Finally, within mixed additive
models, results show that the GAMM has the best explanatory potential
(DE% = 28.5), but it also presents the highest number of parameters.

The results of deviance regarding to GAMMs with higher orders p and
q of ARMA, showed increasing values of DR, thus they were descarted from
the analysis, even if they presented significant added parameters. These
results about autoregressive and moving average incorporation were some-
what surprising, because ACF and PACF of data presented evidense of these
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Table 3.4: Deviance explained and F tests. mod1 and mod2 as in the statis-
tic formula3.24. Null is the null deviance, with y ∈ Gamma. p =degree
of freedom of mod2, DR =residual deviance, DE =deviance explained,
DE% =proportion of DE, F =F statistic, p−value =p-value of the statistic.

mod2 p DR DE DE% mod1 F-val p-val

Null 2 1446

GLM 9 1081 364 25.2 Null 18.8 ≤2e-16
GAMM-AR1 24.8 1054 391 27.1 Null 6.1 2e-15

GLM 0.6 0.87

GAMM-MA1 25.6 1046 400 27.7 GLM 0.7 0.79
GAMM-AR1 3.6 7e10-02

GAMM 27.2 1033 413 28.5 GLM 0.9 0.51
GAMM-AR1 2.7 6e10-02
GAMM-MA1 2.9 7e-02

GAM 27.1 922 524 36.2 GLM 3.5 26e-06
GAMM-AR1 3.4 1e-05
GAMM-MA1 33.4 2e-11
GAMM NA NA

structure. At the evidence of results, the dependence structure is negligible.
In conclusion, the GAM resulted the best model according to this criterion

of selection. And in fact, if the main interest is to describe the particular
situation of cpue only for the sampled vessel, thus, the GAM remain the best
model. In other words, if there is any intention in make estrapolations, but
just only describe the particular dataset, GAM is the best choice. But it is
razonable to suppose that vessel effect changes in time (e.g. with improoving
tecnology) or in space. Thus, it must be clear that vessel levels of the entire
population can not be defined a priori, can not be “predictable” by the
scientist, simply because they are not available (e.g. there are not information
about vessel in the future). Many times throughout the manuscript, the
importance of considering the effect of vessel as random was pointed out. As
a result, it is in the context of mixed models that data must be modelled.
Thus, in the spectrum of possibilities used to model red shrimp’s data, the
best model within mixed models, must be selected. And the best, in this case,
is the GAMM, that presented the best explanatory potential (DE% = 28.5)
within this class of models.
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Figure 3.11: Diagnostic for Model AMM. Clockwise from top left: 1) QQ
plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of the
residuals and 4) plot of the response vs. fitted values.

Figure 3.12: Scatterplots of standardized residuals vs. fitted values of the
AMM for each level of code.
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Figure 3.13: QQ-plots for normality of the residuals of the AMM for each
level of code.

Figure 3.14: Diagnostic for Model GLMM. Clockwise from top left: 1) QQ
plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of the
residuals and 4) plot of the response vs. fitted values.
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Figure 3.15: Scatterplots of standardized residuals vs. fitted values of the
GLMM for each level of code.

Figure 3.16: Diagnostic for Model GLM. Clockwise from top left: 1) QQ
plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of the
residuals and 4) plot of the response vs. fitted values.
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Figure 3.17: Diagnostic for Model GAM. Clockwise from top left: 1) QQ
plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of the
residuals and 4) plot of the response vs. fitted values.

Figure 3.18: Diagnostic for Model GAMM. Clockwise from top left: 1) QQ
plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of the
residuals and 4) plot of the response vs. fitted values.
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Figure 3.19: Diagnostic for Model GAMM-AR1. Clockwise from top left: 1)
QQ plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of
the residuals and 4) plot of the response vs. fitted values.

Figure 3.20: Diagnostic for Model GAMM-MA1. Clockwise from top left: 1)
QQ plot of residuals, 2)plot of residuals vs. linear predictor, 3) histogram of
the residuals and 4) plot of the response vs. fitted values.
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Figure 3.21: Scatter-plots of standardized residuals vs. fitted values of the
GAMM for each level of code.

Figure 3.22: QQ-plots for normality of the residuals of the GAMM for all
levels of code.
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Figure 3.23: QQ-plot for normality of the random effects of all mixed effects
models.

3.4.3 Frequentist, empirical Bayesian and full Bayesian
estimations

This section is focused on the comparison of the three different procedures at
date available for estimating generalized additive mixed models. The model
estimated with the three approaches was the model selected at the end in
section 3.4.2, i.e. the GAMM.

A compendium of results of each procedure is reported in Tables 3.5,
3.6, 3.7 and the partial effects of predictors are displayed in Figures 3.25,
3.26, 3.27 respectively for the frequentis, the empirical Bayesian and the full
Bayesian approaches. In the following section some biological interpretation
of results are given.

In the Tables are reported the estimations of: fixed effects, smoothing
terms, the two variance estimation end the estimated mean squared error,
M̂SE, calculated as in 3.25. The inference procedure that gave the smallest
mean squared error was the empirical Bayesian (M̂SE = 71.83), followed in
order by the full Bayesian (M̂SE = 73.41) and at the end by the frequentist
(M̂SE = 82.71).

Though, paying attention on the various parameter estimated, the three
approaches gave quite similar results as can be observed by comparing esti-
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mations of the fixed coefficients and of scale parameters of each model. As
an example, Figure 3.24 shows three different boxplots, where, in each of
them, the three estimations (“fB”=full Bayesian, “eB”=empirical Bayesian,
“fr”=frequentist) of the three fixed parameters (in order “coef const”, “coef
month2”, “coef trb”) are represented. It is evident that the coefficient inter-
vals overlapped.

Also comparing graphically the smooth partial effects in figures 3.25, 3.26,
3.27, no substantial differences can be appreciated.

Table 3.5: Estimations for the GAMM using the frequentist inference.

FIXED EFFECTS
mean std t-val p-val

const 2.22 0.17 13.17 ≤ 2e-16
grt 0.01 0.003 3.34 8.6e-04
month2 −0.17 0.03 −4.98 6.64e-07

SMOOTH TERMS

λ̂ df F-val p-val
s(trips) 0.35 4.12 87.42 ≤ 2e-16
s(nao3) 0.04 2.08 5.18 5.07e-03
s(idmonth) 0.02 16.17 16.86 ≤ 2e-16

GLOBAL ESTIM

M̂SE = 82.71 σ̂2 = 0.35 σ̂2
b = 0.06
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Table 3.6: Estimations for the GAMM using the empirical Bayesian inference.

FIXED EFFECTS
mean std p−val

const 2.37 0.30 1.83e-11
grt 0.01 0.003 1.7e-03
month2 −0.17 0.03 1.37e-05

SMOOTH TERMS

λ̂ df θ̂
s(trips) 11.09 4.50 0.03
s(nao3) 21.31 2.23 0.02
s(idmonth) 0.50 15.93 0.72

GLOBAL ESTIM

M̂SE = 71.83 σ̂2 = 0.36 σ̂2
b = 0.07

Table 3.7: Estimations for the GAMM using the full Bayesian inference.

FIXED EFFECTS
mean std p-val

const 2.37 0.20 1.83e-11
grt 0.009 0.003 1.38e-05
month2 −0.17 0.04 0.002

SMOOTH TERMS

λ̂ θ̂
s(trips) 14.00 0.05
s(nao3) 52.71 0.07
s(idmonth) 0.54 0.83

GLOBAL ESTIM

M̂SE = 73.41 σ̂2 = 0.36 σ̂2
b = 0.08

3.5 Interpretation of results

In this study for the first time vessel characteristics (grt), fishing intensity
(trips) and environmental incidences (nao3) were jointed in one global model
with temporal variability (idmonth, month) to predict catch index fluctu-
ations. Furthermore, for the first time generalized additive mixed model
(GAMM) was used for this purpose, being data obtained from a multi-vessel
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Figure 3.24: Comparison of fixed effects estimations. Confidence intervals
of fixed parameters estimated by the three methods (from the left to the
right panels: constant, trb and month). Labels indicates: “fr”=frequentist,
“fB”=full, Bayesian, “eB”=empirical Bayesian.

trawl fishery context. In the past few studies proposed mixed models (in
particular GLMM), which take into account vessel as a random effect [12],
but, we found that linear mixed model are not flexible enough to describe
complicated effects such those observed for some variables (e.g. idmonth).

The model here proposed confirmed that all variables, often considered
separately (fishery fleet effects: [43], [60]; environmental effects: [45]) syner-
gistically influence the CPUE fluctuations. In previous studies, models were
built by means of GLM or descriptively and did not capture the complex
relationships existing between each explanatory variable and the response,
while the model here proposed identified many non linear relationships.

The NAO (with a lag of 3 years before the year of observed response,
nao3), has a non linear influence indicating that CPUE increases,with NAO
increasing for negative values of that variable, while it reaches a maximum
for NAO≈ 0.2 keeping constant for higher values (we can say that it reach a
saturation). Thus, values higher than NAO= 0.2 does not seem to influence
CPUE. Note that for high values of NAO, the curve of the partial effect
tends to decrease, but the large credible bands of that region do not permit
to consider that curvature significant.

Maynou [45] found that nao2 infuences Barcelona landings more than
nao3, however here we found that is nao3 the subset that most influences
CPUE. It probably could be due to the different period observed in the two
studies (larger in this study). Furthermore, CPUE depends on both datasets
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of nao (lag = 2 or 3), sometimes more on the former or the latter according
to the dominant length class of the species captured (2 or 3 years length
class) [45].

The partial of monthly number of trips (trips) also shows a non linear
effect on the CPUE: the two variables are positively related and the rate of
the curvature decreases for increasing values of the covariate. That occurs
because the CPUE, such as it is actually calculated [43] does not take into
account the difference in the number of trips (the average is not a weighted
average). The non linear effect observed is probably due to both the in-
creasing fishing effort, which provides higher caches and to the experience of
fishermen (higher effort is related to vessels which are specialized in the deep
sea fishery, thus they reach higher values of CPUE for trips ≈15-25. In other
words, experienced fishermen reach higher catches than not experienced, as
observed by Maynou et al. ( [43]).

The partial effect of the time (idmonth) also shows an evident non linear
relationship with different relative maxima and minima along the years. Fig-
ure 3.25 indicates that the CPUE generally increase then decrease along the
time observed, reaching minima after about 8-10 years, as was commented
in [45]. Note that this effect incorporates between years variability of the
CPUE, while losing the within years variability (that allows the introduction
of month as categorical variable, such as it was done). The absolute minimum
was observed in time around of idmonth = 90 − 110 (which correspond to
year 1999-2000). That low CPUE observed was probably due to the low nao3
observed in preceding months (3.9). These years of low CPUE encouraged
fishermen to make more trips to catch as more as possible. This condition
explains the high effort observed in these years and that was apparently in
contrast with the marginal of trips (see Figure 3.7).

The idmonth effect did not evidence intra-annual variation of red shrimp
CPUE, which was better captured by the categorical variable month. In
figure 3.25 effect of monthly variation results significantly lower for June and
November groupped in level 2 of the variable month. This result could be
related with the reproduction behaviour of A. antennatus. The model prob-
ably mask partially the effect of month variability due to the high number of
explanatory variables Results about grt marginal effect suggest that bigger
boats obtain higher CPUE in this offshore fishery.
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Figure 3.25: Partial effects of the covariates using frequentist REML infer-
ence. 95% Bayesian credible intervales.
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Figure 3.26: Partial effects of the covariates using empirical Bayesian REML
inference. 80% and 95% Bayesian credible intervales.
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Figure 3.27: Partial effects of the covariates using the full Bayesian inference.
80% and 95% Bayesian credible intervales.
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Chapter 4

Software

4.1 The R package mgcv

R library mgcv allows to fit GAMMs using the function gamm, by a call to
the library lme in the case of normal response and identity link, or by a call
to gammPQL otherwise. Theoretical motivations of that settings are given in
Section 2.3. gammPQL is a modified version of glmmPQL and in that case the
estimates are only approximated. All fixed effects and smooths are specified
as in a call to gam as part of the fixed effects model formula, but the “wig-
gly” components of the smooth are treated as random effects (that is the
representation discussed in Chapter 2, Section 2.3.1). The random effects
structures available through lme are used to specify other random effects.
It is also assumed that the prime interest is in inference about the terms in
the fixed effects model formula including the smooths. For this reason the
routine calculates a posterior covariance matrix for the coefficients of all the
terms in the fixed effects formula, including the smooths.

Other functions sometimes useful in constuctiong mixed models are mle

and glmmPQL from the libraries nlme and MASS respectively. These functions
can be used in alternative to gam in construction of LMM and GLMM mod-
els. Although, in theory gamm comprises all the models presented in this
study, it often crashes, probably for computational instability. Thus, also
in the present study, for models LMM and GLMM, mle and glmmPQL were
implemented.

4.1.1 R syntax

First load required libraries and dataframe:
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> library(nlme)

> library(mgcv)

> data<-read.table("C://dots data.txt",header=T)

The construction of model 3.12 is reported below.
Before fitting model, ensure that the variable month is read as factor, if

it is not, type:

> MONTH=factor(data$month)

Otherwise, intercept and slope parameters are estimated rather than devia-
tions from the mean of the reference level! Note that in R the first level is
chosen as reference level.

gamm formula is quite similar to gam:

> fit<-gamm(cpue ∼ s(trips,bs="ps",k=10)+grt+

+ s(nao3,bs="ps",k=5)+s(idmonth,bs="ps",k=20)+

+ MONTH,random=list(code= 1),gamma=1.4,

+ family=Gamma(link="log"), data=data,method=REML,

+ niterPQL=100)

Response variable is in the left side of the symbol ∼, that means equal to in
the formula, while all predictors and options are in the right part after ∼.
All fixed terms can be smooth, parametric or categorical. Random effects
can be put in the model using the argument random. In the simple case of
no nested random effects the code is as in the example above.

Smoothing terms, s or te (the latter specifies the tensor product, that
allows the construction of smooths of more then one covariate), are imple-
mented as in gam. In present analysis, only two parameters were explicitly
controlled: bs and k:

bs indicates the smoothing basis to use. (e.g. tp for thin plate regres-
sion spline, ps for penalized spline). Typing ?smooth.terms, it shows which
options are available. For example, regarding to ps: a univariate P-spline as
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proposed by Eilers and Marx (1996 ), is used. This command allows to use
B-spline bases penalized by discrete penalties applied directly to the basis
coefficients. These bases can be also implemented in tensor product smooths
(see te).

k is the dimension of the basis used to represent the smooth term. The
default depends on the number of variables that the smooth is a function of.
k should not be less than the dimension of the null space of the penalty for
the term (see null.space.dimension), but will be reset if it is.

The computation of a GAMM within the gamm formula returns a list with
two items:

gam: an object of class gam, less information relating to GCV/UBRE
model selection. It allows to use predict, summary and print methods and
vis.gam, but not to use e.g. the “anova” method function to compare models.

lme: the fitted model object returned by lme or gammPQL. This out-
put may appear to be rather difficult to understand, because of the manner
in which the GAMM is split up and the calls to lme and gammPQL are
constructed. This output contains:

• information of the technique used for estimation

• AIC, BIC and Log-likelihood value

• information on the random components of smooth functions

• information on random effects

• information on fixed effects and their correlation

Thus, we can print the results of the model in the following way:

> summary(fit$gam)

> summary(fit$lme)

The output of summary(fit$lme) is given in Figure 4.1.
This output gives the information of the random components of smoothing
functions. Each smooth starts with 10, 5 and 20 dimensionality of basis, but
one of these is lost to the GAM centering constraint (that ensure the additive
identifiability) and one is treated as a fixed effect [69], so each smooth has
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Figure 4.1: Output of the code summary(fit$lme) for the frequentist model
in R.
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two less number of random coefficients. Each of these coefficients is treated
as having the same variance, after re-parameterizations, but this variance
(which plays the role of smoothing parameter) is unknown and is estimated.
From g.1 to g.3 are dummy grouping variables each having only one level.
They force the smooths to apply to all data. What follows in the same output
is information about fixed effects. In this case there are: intercept, effects of
TRB, MONTH levels and all smoothers.

The following syntax produces some diagnostic informations about the
fitting procedure and the results:

> gam.check(fit$gam)

In particular it plots four standard diagnostics plots, such as those in Figure
3.18, and some other convergence information.

Some diagnostics for the random effect part of the mixed model are avail-
able typing:

> plot( fit$lme, form = resid(., type = "p") fitted(.)|code,

abline = 0 )

stand residuals vs fitted values for heach code.

> qqnorm(fit$lme, resid(.)|code)

to check the normality assumption separatly for residuals within each code.

To check the normality of random effects, the following syntax is avail-
able, but it works well only for lme and glmmPQL object, while it does not
work for gamm$lme, for which is necessary to programm directly the qq-plots.

> qqnorm( fit6LMMlme, ranef(.))

The syntax to display partial effects is:

> plot(fit$gam,all.terms=T, pages=1,scale=0)
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4.1.2 Syntax implemented for the example in Section
1.1

#Boxplot of cpue vs levels of vessel

> boxplot(data$cpue ∼ factor(code),xlab="code",ylab="cpue")

#construction of models

> m0<-lm(cpue ∼ 1 , data = data ) #simple mean model

> m1<-lm(cpue∼ factor(code)-1, data = data ) #fixed effects model

#The -1 is used in the model formula to prevent the default inclusion of
an intercept term in the model.
# More clearly: in this way the reference value in taeting significantness of
heach term of code is the average of the whole set of observations, otherwise
the reference value becomes the average within observations of the 1-st level
of the factor.

> m2<-lme(cpue∼ 1, data = data, random = ∼ 1 | code) #random
effects model

#outputs

> summary()

#diagnostics

> plot()

#example of boxplot of residuals: residuals vs code in the SIMPLE-mean
model

> boxplot(residuals(m0)∼ factor(code),xlab="code",ylab="residuals")

#alternatively:

> res=data$cpue-m0$coefficients[1]
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> boxplot(res ∼ factor(code),xlab="code",ylab="residuals")

4.2 BayesX

Currently, BayesX is available in two different versions. The first one is
intended for the various versions of the Windows operating system and in-
cludes a graphical user interface that enables visualization of estimated ef-
fects. While the computational kernel of BayesX has been implemented in
C + +, the graphical user interface has been implemented in Java. As a
supplement to both versions, an additional R package, BayesX, is avail-
able from CRAN (http://www.r-project.org). While this package does
not provide direct access to BayesX from within R at the moment (this is
planned for the future), it provides additional visualization routines. The
current releases of both BayesX versions can be downloaded from http:

//www.stat.uni-muenchen.de/~bayesx. Manuals are also available in the
same website.

4.2.1 BayesX syntax

# Read data from an ASCII file:

Before uploading dataframes, create the object where it be load. Thus,
e.g., create the data set object shrimps :

> dataset shrimps

and fill the created object of data:

> shrimps.infile using C:/ ...

It is also possible to print the data set:

> shrimps.describe

Note that in the ASCII file, variable names and observations must be
separated by blanks or tabs. If missing value is present, only ”.” or ”NA”
signs are red by default. Otherwise specify the sign used in the missing option
in the infile method.

83

http://www.r-project.org
http://www.stat.uni-muenchen.de/~bayesx
http://www.stat.uni-muenchen.de/~bayesx


# The empirical bayesian regression syntax:

Create the remlreg object fit1:

> remlreg fit1

Create the path in which to save the results of the regression model:

> fit1.outfile = C:/ ...

Create the folder of results before typing the command and at the end of
the path write which will be the name of the output files.

The formula of the model:

> fit1.regress cpue = time(psplinerw2,nrknots=15)+

nao3(psplinerw2,nrknots=10)+fr(psplinerw2,nrknots=10)+

code(random)+grt,family=gamma using shrimps

That command allows to fit the regression model: fit1 is the name of the
model, regress is the method applied, pssplinerw2 is used for smooth terms
to apply p-splines bases with penalization on the second derivative (rw2),
nrknots is the number of knots

Quite all information are printed in the output window.

# Full bayesian regression syntax:

With the same logic is constructed the completely bayesian model:

> bayesreg fit2

> fit2.outfile = C:/...

> fit2.regress cpue=time(psplinerw2,nrknots=15)+

nao3(psplinerw2,nrknots=10)+fr(psplinerw2,nrknots=10)+

code(random)+grt,family=gamma using shrimps

here the only difference from the first code is the object type, bayesreg.
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# Visualizing estimation results:

After estimating model plots of non parametric effects can be plotted in
BayesX. Plotting parametric effects is not allowed by the programm, but it
can be done importing results in the R environment (see below for the im-
plementation of the R-packege BayesX).

> fit1.plotnonp

> fit2.plotnonp

# Visualizing results with R:

> library("BayesX")

> plotnonp("C:/.../results idmonth pspline.res",ylab="s(idmonth)")

where many graphical settings can be changed.
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Chapter 5

Conclusions

In the study brought up here, a mixed effects approach was proposed to
model the CPUE of the red shrimp within the framework of the Generalized
Additive Mixed Models (GAMMs). The main purposes were:

1. Propose a new form to model data proceeding from the fishery;

2. Investigate the ability of GAMMs to flexibly model real data;

3. Investigate and compare the methodologies currently in use to estimate
such models, which follow in turn, the frequentist, the Bayesian end the
empirical Bayesian perspectives;

4. Define a brief guideline of the syntax required to construct such models
in the environments of two software to date available.

The first and second items were carried out comparing a wide class of
models (from LM to GAMM with autocorrelation structures).

The third item was achieved comparing the three estimators using the
mean squared error, MSE.

About the last porpuse Chapter 4 explains the most important steps in
the construction of generalized additive mixed models.

Mixed model was considered the proper model design to deal with the
application study. In section 1.1, the importance of considering effects as ran-
dom rather than fixed was explained. The mixed model considers as source
of variance both error and random effects variance, that permits estrapola-
tions of results to the entire population.
A series of different models with incresing complexity was constructed, from
the LM to the GAMM with the incorporation of autoregressive and moving
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average structures. Moreover GAMMs has the ability to partially eliminate
undesirable trends in residuals however it did not always deal with the ap-
plication study .
The comparison between bayesian versus frequentist techniques, detected
better behaviours (in terms of the lowest MSE estimated) of the Bayesian in
comparison to the frequentist approach. The comparison does not give sig-
nificant different results in the estimation of the parameters, whose intervals
overlapped (except to the constant).
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