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Prefacio

Este trabajo es el resultado de mi iniciación a la investigación en Matemáticas,
en concreto en el área de la Teoría de Juegos.

Antes de nada me gustaría expresar mi agradecimiento a Ignacio García
Jurado, en primer lugar por despertar en mí el interés por este área con sus
clases de Teoría de la Decisión y Teoría de Juegos, y en segundo lugar por
toda la ayuda prestada para integrarme en el acogedor grupo de investigadores
teóricos de juegos de Galicia. También quiero agradecer a todos los integrantes
de SaGaTh y muy especialmente a José Ma Alonso Meijide y a Ma Gloria
Fiestras Janeiro por haberme guiado en mis primeros años como investigador y
por la gran ayuda prestada.

En este trabajo, se presentan mis primeras aportaciones a la Teoría del
valor de juegos cooperativos con utilidad transferible, en concreto, se estudian
modelos de juegos en los que la cooperación está restringida. En los capítulos 2,
3, 4 y 5 se presentan los distintos modelos estudiados, se repasan los principales
resultados existentes y se proponen y caracterizan nuevos conceptos de solución .
Por último, en el capítulo 6 se aplican los modelos estudiados a un caso práctico
proveniente de la política.

El resto de trabajo ha sido escrito en inglés dado a que de esta forma podré
utilizar partes de él para su futura publicación.
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Introduction

The goal of Game Theory is the analysis of con�ictive situations on which more
than one player interact. In such a situation the agents or players have di�erent
preferences over the outcomes of the game. This research branch studies how
rational individuals should behave when they have to face di�erent kinds of
con�ictive situations.

Game Theory classi�es such situations in two di�erent groups: A situation
is modeled as a non cooperative game when the players do not have mechanisms
to make binding agreements before the game is played, in this �rst group each
players 'best strategies' are obtained depending on each possible situation. A
situation is modeled as a cooperative game when players have mechanisms to
make binding agreements before the game itself is played. The class of coop-
erative games is divided into transferable and non transferable utility games.
We assume that players obtain utility from each possible outcome of the game
depending on their preferences. In the transferable utility games, TU games
from now on, the utility that players get can be divided and transferred among
other players without any loss. This work deals with TU games.

Chapter 1 starts introducing some basic concepts and notation dealing with
TU games. Next, the existing solution concepts are brie�y described, classifying
them into the one point set and set solutions. The �rst Chapter ends recalling
the main results concerning the Shapley and the Banzhaf values since they are
the basis of the solution concepts that are studied in the rest of this report.

The remaining Chapters, except for Chapter 6, consider di�erent extensions
of the original model presented in Chapter 1. The extensions are built intro-
ducing external information to enrich the model. This external information is
called externality.

Chapter 2 is devoted to the study of games with graph restricted communica-
tion model. Following the model proposed by Myerson (1977), the main results
of the literature concerning the Myerson and the Banzhaf graph values are re-
vised. In particular a characterization of the Banzhaf graph value proposed in
Alonso-Meijide and Fiestras-Janeiro (2006) is presented in detail.

In Chapter 3 we study the model of games with incompatibilities. In this
case the restrictions to the cooperation are given by means of a graph which
describes the existing incompatibilities among players. We follow the approach
proposed in Carreras (1991) and Bergantiños (1993). In this context, the ex-
isting literature deals with the extension of the Shapley value and nothing has
been done using the Banzhaf value so far. Consequently, an extension of the
Banzhaf value for games with incompatibilities is introduced and characterized.

Chapter 4 follows the �rst approach to restricted cooperation games pro-
posed in Aumann and Drèze (1974). In this approach a system of a priori
unions is given together with the TU game. The games with a priori unions,
also called games with coalition structure, have been widely studied in the lit-
erature and di�erent solution concepts have been proposed. Particularly the
Owen value proposed in Owen (1977) has been successfully used to analyze the
implications of the formation of coalitions in a parliament (Carreras and Owen
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INTRODUCTION

(1995)). In this Chapter three solution concepts (values on U(N) under this
scenario) are presented together with their parallel axiomatic characterizations
by Alonso-Meijide and Fiestras-Janeiro (2002). These parallel characterizations
of the values are very helpful in order to compare and sort out the di�erences
among the solution concepts.

In Chapter 5 we consider the joint model of games with graph restricted
communication and a priori unions as in Vázquez-Brage et al. (1996). In this
way we are capable of building a model which adds more external information
concerning the behavior of the players involved. In Vázquez-Brage et al. (1996)
the Owen value is extended to this context and an axiomatic characterization of
it provided. The remaining values on U(N) presented in the previous Chapter
are extended to this context. The two new values proposed are characterized and
the proposed characterizations yield to a comparison among the three values.

Lastly, Chapter 6 provides two real world examples coming from the political
�eld. The examples show the applicability of the studied models. The presented
solution concepts are used in order to determine the power of each political party
in a parliament. The relations among the di�erent political parties and the
emerging coalitions can constrain the way the cooperation occurs. The studied
models try to include all this externalities into the original simple game.
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1
Preliminaries

This Chapter is devoted to the basic concepts of the Cooperative Game Theory.
In Section 1.1, the cooperative games with transferable utility are introduced
and some important properties of them stated. Section 1.2 revises the di�erent
approaches that have been proposed in order to obtain solutions to this class of
games. Section 1.3 concludes recalling with detail the main characterizations of
the Shapley and the Banzhaf values.

1.1 Basic concepts of Game Theory

De�nition 1.1.1. A TU game is a pair (N, v), where N = {1, . . . , n} is the
(�nite) set of players, and v : 2N → R is the characteristic function of the game,
which satis�es v(∅) = 0. In general, we interpret v(S) as the bene�t that S can
obtain by its own, i.e., independent to the decisions of players in N \S. We will
denote by G(N) the class of all TU games with set of players N .

To avoid cumbersome notation braces will be omitted whenever it does not
lead to confusion, for example we will write v(S ∪ i) or v(S \ i) instead of
v(S ∪ {i}) or v(S \ {i}). The cardinality of a �nite set S, will be denoted by s,
the corresponding lower case letter.

We can de�ne the sum and the scalar product in the setG(N) in the following
way. Let (N, v), (N,w) ∈ G(N) and λ ∈ R,

• The sum game (N, v+w) ∈ G(N) is de�ned by (v+w)(S) = v(S) +w(S)
for all S ⊆ N .

• The scalar product game (N,λv) ∈ G(N) is de�ned by (λv)(S) = λv(S)
for all S ⊆ N .

The set G(N) together with the operations de�ned above has a vector space
structure. The neutral element in this space is the null game (N, v0) ∈ G(N),
de�ned by v0(S) = 0 for all S ⊆ N . Shapley (1953) showed that this space has
dimension 2n − 1 and that the family of unanimity games constitute a basis of
it. Then, any TU game can be uniquely written as a linear combination of this

1



CHAPTER 1. PRELIMINARIES

type of games. In other words, given (N, v) ∈ G(N), there exist a unique set of
scalars {λS ∈ R}∅6=S⊆N , for which,

v =
∑
∅6=S⊆N

λSuS ,

where (N, uS) ∈ G(N) denotes the unanimity game with carrier S de�ned by,

uS(T ) =
{

1 if S ⊆ T
0 else

for all T ⊆ N , and λS are the Harsanyi dividends (Harsanyi (1959, 1963)),
de�ned by,

λS =
∑
T⊆S

(−1)s−tv(T ).

Next we recall the de�nitions of some specially interesting games.

De�nition 1.1.2. Let (N, v) ∈ G(N) be a TU game.

• (N, v) is called superadditive if

v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N,S ∩ T = ∅.

• (N, v) is called subadditive if (N,−v) is superadditive.

• (N, v) is called additive if

v(S ∪ T ) = v(S) + v(T ) for all S, T ⊆ N,S ∩ T = ∅.

• (N, v) is called monotone if

v(S) ≤ v(T ) for all S, T ⊆ N with S ⊆ T.

• (N, v) is called convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N.

• (N, v) is called a zero sum game if

v(S) + v(N \ S) = 0 for all S ⊆ N.

• (N, v) is called a simple game if it is monotone, v(N) = 1, and

v(S) ∈ {0, 1} for all S ⊆ N.

We will denote by SG(N) the set of all simple games with player set N .

2



1.2. SOLUTION CONCEPTS

In general in superadditive or monotone games players have incentives to
form the grand coalition, i.e., they bene�t from the cooperation with the rest
of players. It is easily seen that if a game is convex, then it is superadditive.

Some players have properties which will be specially interesting. We provide
their de�nitions as follows,

De�nition 1.1.3. Let (N, v) ∈ G(N) be a TU game,

• Player i ∈ N is called a dummy player if

v(S ∪ i) = v(S) + v(i) for all S ⊆ N \ i.

• Player i ∈ N is called a null player if it is a dummy player and v(i) = 0.

• Players i, j ∈ N are called symmetric if

v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j}

1.2 Solution concepts

The situations modeled by a TU game have a cooperative approach, therefore
an implicit objective of TU games is the grand coalition, N , to be formed,
and the generated bene�ts to be shared among the players. Hence, one of the
goals of the Cooperative Game Theory is to distribute the worth of the grand
coalition, v(N), among the players involved. An allocation is simply a vector
x = (x1, . . . , xn) ∈ Rn, where each coordinate represents the amount allotted to
each player. Hence, the aim is to provide rules which give allocations for any
particular game. These rules will be called solution concepts.

The aim is to provide an allocation which is "admissible" for the players.
But what does admissible mean? This issue has generated a big discussion and
many di�erent approaches have been developed in the last years in order to
obtain an answer to such a question. Two of the most accepted principles are
individual rationality and e�ciency. Let us take a TU game (N, v) ∈ G(N).
We say that an allocation x ∈ Rn satis�es individual rationality if it allocates
each player with at least what he can obtain on his own, i.e., if v(i) ≤ xi. An
allocation x ∈ Rn is e�cient if it completely shares the worth of the grand
coalition, i.e., if x1 + · · ·+ xn = v(N). The allocations which satisfy these two
properties are called imputations. Hence, most of the solution concepts existing
in the literature provide allocations that lie within this set.

In general, solution concepts can be classi�ed in two big groups. In the �rst
one we have the set-valued solutions. They are mainly based on stability, i.e,
these solutions try to provide a set of allocations on which players will possibly
agree. In other words, this approach discards those allocations which are not
acceptable for a group of players. It depends on the game, but these kind of
solutions can be unique, can be a set of di�erent vectors or can even be empty.
The most well known such a solution concept is the core, which was introduced
by Gillies (1953). The idea behind the core follows a coalitional rationality

3



CHAPTER 1. PRELIMINARIES

principle, which states that no coalition should have incentives to brake the
grand coalition. Other set solution concepts are the Stable set (von Neumann
and Morgenstern (1944)), the Bargaining set (Aumann and Maschler (1965)),
the Kernel (Davis and Maschler (1965)), the Harsanyi set (Hammer et al. (1977),
Vasil'ev (1980)), and the Weber set (Weber (1988)) among others. The second
group are the so called one-point solutions. From now on we will focus our
attention on them and we will also refer to them as values. These kind of rules
provide an allocation which is fair in some sense. In other words, �rst some
desirable properties need to be de�ned. And then, a value is built in such a way
that is the only one satisfying the set of properties. The characterizations help us
to sort out all the basic properties that each rule satis�es. The most popular one-
point solution is the Shapley value (Shapley (1953)). There is a vast literature
concerning this value and many di�erent characterizations have been provided.
The Shapley value does not verify individual rationality in general, however,
for the class of superadditive games the Shapley value is an imputation. For a
good survey on this issue see, for instance Winter (2002). Another value is the
Banzhaf value (Banzhaf (1965)). As we will later see in the explicit expression
the Banzhaf value is very similar to the Shapley value. Other one-point solution
are the Nucleolus (Schmeidler (1969)), the τ -value (Tijs (1981)), and the Core
center (González-Díaz and Sánchez-Rodríguez (2007)) among others. For the
class of simple games SG(N) the one-point solutions are usually called power
indices.

1.3 The Shapley and Banzhaf values

This section is devoted to the description and comparison of the Shapley and
Banzhaf values since these solution concepts are the basis of the following Chap-
ters. Although most of the values existing in the literature are introduced ax-
iomatically, i.e., �rst a set of desirable properties which a value should satisfy
are stated, and then it is proved that there exist only one value satisfying them.
Here, we will �rst give the explicit analytical de�nitions of both the Shapley
and the Banzhaf values, to come to the discussion on the properties later.

By a value on G(N) we will mean a map f that assigns a vector f(N, v) ∈ Rn
to every game (N, v) ∈ G(N).

De�nition 1.3.1. Shapley (1953). Given a TU game (N, v), the Shapley value,
ϕ, is a value on G(N) de�ned for every i ∈ N as follows:

ϕi(N, v) =
∑

S⊆N\i

s!(n− s− 1)!
n!

[v(S ∪ i)− v(S)] .

De�nition 1.3.2. Banzhaf (1965). The Banzhaf value, β, is a value on G(N)
de�ned for every i ∈ N as follows:

βi(N, v) =
1

2n−1

∑
S⊆N\i

[v(S ∪ i)− v(S)] .

4



1.3. THE SHAPLEY AND BANZHAF VALUES

The Shapley and Banzhaf values have a simple probabilistic interpretation.
For doing so we will base our explanation on the work by Weber (1988) on
probabilistic values.

Fix a player i ∈ N , and let {piS |S ⊆ N \ i} be a probability distribution over
the collection of coalitions not containing i. A value f on G(N) is a probabilistic
value if for every (N, v) ∈ G(N) and every i ∈ N ,

fi(N, v) =
∑

S⊆N\i

piS [v(S ∪ i)− v(S)] .

Let i view his participation in a game as consisting merely of joining some
coalition S ⊆ N \ i, and then receiving as a reward his marginal contribution
v(S ∪ i) − v(S) to the coalition. If, for each S ⊆ N \ i, piS is the (subjective)
probability that he joins coalition S, then fi(N, v) is simply i's expected payo�
from the game.

As it can be seen in De�nition 1.3.1 and De�nition 1.3.2, both ϕ and β are
instances of probabilistic values. The Banzhaf value arises from the subjective
belief that each player is equally likely to join any coalition, that is, piS = 1

2n−1

for all S ⊆ N \ i. On the other hand, the Shapley value arises from the belief
that for every player, the coalition he joins is equally likely to be of any size
s (0 ≤ s ≤ n−1) and that all coalitions of a given size are equally likely. That
is,

piS =
1
n

(
n− 1
s

)−1

=
s!(n− s− 1)!

n!
, for every S ⊆ N \ i.

Before we get into the characterizations, it is worth to make a comment on
the origin of the Shapley and Banzhaf values. The Shapley value was proposed
by Shapley (1953) in an axiomatic way and for the whole class of n-person co-
operative TU games. We recall the original characterization in Theorem 1.3.3.
The value proposed by Shapley was an interesting idea and one year later Shap-
ley and Shubik (1954) considered the value for the class of simple games. In this
framework it is known as the Shapley-Shubik index. The values restricted to
simple games are called power indices. This comes from the use of simple games
to study the distribution of power in a voting body as we will see in Chapter
6. The Shapley value became early the most popular probabilistic value. On
the other hand, the underlying idea of the Banzhaf value was �rst presented
in Penrose (1946) for simple games, but it lay unnoticed for decades. For that
reason the Banzhaf value for simple games is known as the Banzhaf-Penrose
index. Banzhaf (1965) was the �rst to present the power index in detail even
though he provided no characterization. The Banzhaf value in the expression
presented above, was introduced in Owen (1975), and the �rst characterization
was not proposed until Lehrer (1988). The Banzhaf value has never received as
much attention as the Shapley value.

To end with this �rst Chapter we will state di�erent characterizations of
both the Shapley and the Banzhaf values. For doing this we will need some
properties a value f on G(N) could be asked to satisfy. Let f be a value on
G(N).

5



CHAPTER 1. PRELIMINARIES

• E�ciency. For any (N, v) ∈ G(N),∑
i∈N

fi(N, v) = v(N).

• Dummy player property. For every (N, v) ∈ G(N) and each dummy player
i ∈ N in (N, v),

fi(N, v) = v(i).

• Null player property. For any TU game (N, v) ∈ G(N) and each null
player i ∈ N in (N, v),

fi(N, v) = 0.

• Symmetry. For all (N, v) ∈ G(N) and each pair of symmetric players
i, j ∈ N in (N, v),

fi(N, v) = fj(N, v).

• Anonymity. For all (N, v) ∈ G(N) and all permutations σ of N ,

fσ(i)(N, v) = fi(N, σv),

where the game σv is de�ned by σv(S) = v(σ(S)) for all S ⊆ N .

• Additivity. For any pair of TU games (N, v), (N,w) ∈ G(N),

f(N, v + w) = f(N, v) + f(N,w).

• Transfer property. For all (N, v), (N,w) ∈ G(N),

f(N, v) + f(N,w) = f(N, v ∨ w) + f(N, v ∧ w),

where (N, v ∨ w), (N, v ∧ w) ∈ G(N) are de�ned for all S ⊆ N as
(v ∨ w)(S) = max{v(S), w(S)} and (v ∧ w)(S) = min{v(S), w(S)}.

• 2-E�ciency. For all (N, v) ∈ G(N) and each pair of players i, j ∈ N ,

fi(N, v) + fj(N, v) = fp(N ij , vij),

where (N ij , vij) is the game obtained from (N, v) when players i and j
merge in a new player p, i.e., N ij = (N \ {i, j}) ∪ {p} and

vij(S) =
{
v(S) if p /∈ S
v((S \ p) ∪ i ∪ j) if p ∈ S , for all S ⊆ N ij .

• 2-E�ciency*. For all (N, v) ∈ G(N) and each pair of players i, j ∈ N ,

fi(N, v) + fj(N, v) ≤ fp(N ij , vij).

• Total power property. For all (N, v) ∈ G(N),∑
i∈N

fi(N, v) =
1

2n−1

∑
i∈N

∑
S⊆N\i

[v(S ∪ i)− v(S)] .

6



1.3. THE SHAPLEY AND BANZHAF VALUES

• Strong monotonicity. For any pair (N, v), (N,w) ∈ G(N) and each i ∈ N
such that v(S ∪ i)− v(S) ≤ w(S ∪ i)− w(S), for all S ⊆ N \ i, then

fi(N, v) ≤ fi(N,w).

• Marginal contributions. For any pair (N, v), (N,w) ∈ G(N) and each
i ∈ N such that v(S ∪ i)− v(S) = w(S ∪ i)−w(S), for all S ⊆ N \ i, then

fi(N, v) = fi(N,w).

A value is E�cient if it completely shares the worth of the grand coalition,
v(N), among the players. The E�ciency property may appear very reasonable,
but it is not always essential. It depends on the situation being modeled. For
example if simple games are being used to analyze the distribution of the power
in a voting body, the E�ciency property sates that the sum of the power indices
of each agent adds unity. This however, may not be necessary when we want to
compare the strength of two players. Besides, if in a voting body, the unanimity
is needed to reach an agreement, the voting body itself would have less power
than if we consider the majority rule, because it will be more di�cult to make
a decision.

The Dummy player property states that a player whose marginal contribu-
tion to any coalition is always the worth he can obtain on his own, v(i), should
be allotted with exactly that amount. The Null player property is the Dummy
player property only required for null players.

An allocation rule is Symmetric when it allocates the same amount to play-
ers whose marginal contribution to every coalition are equal. The Anonymity
property states that the amount that a player recibes does not depend on his
relative position inside N . Anonymity implies Symmetry while the reverse does
not hold in general.

The Additivity is a standard property in the literature, even if it has been
criticized for the use of the sum game. It states that the payo� of the sum game
equals the sum of the original games payo�. The Transfer property avoids the
use of the sum game but is very similar to the Additivity property.

The 2-E�ciency property states that the allocation rule that satis�es it is
immune against arti�cial merging or splitting of players. It was �rst introduced
as inequality (2-E�ciency*) and it is very helpful for some characterizations.
The 2-E�ciency property requieres a value to be inmune only against arti�cial
splitting.

The Total power property establishes that the total payo� obtained for the
players is the sum of all marginal contributions of every player normalized by
2n−1. Depending on the particular game this amount may be greater, lesser or
equal to v(N).

The last two properties, Strong monotonicity and Marginal contributions are
quite similar. They link the payo�s of two games with the di�erences between
the marginal contributions of the games mentioned.

7



CHAPTER 1. PRELIMINARIES

There is a vast literature concerning characterizations of the Shapley and
Banzhaf values. In this work we present the main results in the following The-
orems. In Shapley (1953) the Shapley value was introduced in an axiomatic
way.

Theorem 1.3.3. Shapley (1953). The Shapley value, ϕ, is the unique value on
G(N) satisfying E�ciency, Null player property, Symmetry, and Additivity.

In Young (1985) the Shapley value was characterized without using the ad-
ditivity axiom, which was the most criticized one of the characterization by
Shapley.

Theorem 1.3.4. Young (1985). The Shapley value, ϕ, is the unique value on
G(N) satisfying E�ciency, Strong monotonicity, and Symmetry.

Feltkamp (1995) presented alternative characterizations of both the Shapley
and Banzhaf values. In this way a comparison of the properties that each
solution concept satis�es could be done.

Theorem 1.3.5. Feltkamp (1995). The Shapley value, ϕ, is the unique value
on G(N) satisfying E�ciency, Anonymity, Null player property, and Transfer
property.

The �rst characterization of the Banzhaf value which made use of the Sym-
metry, the Additivity and the Dummy player property was stated in Lehrer
(1988). In this Theorem the Shapley's E�ciency axiom was substituted by
2-E�ciency*.

Theorem 1.3.6. Lehrer (1988). The Banzhaf value, β, is the unique value
on G(N) satisfying 2-E�ciency*, Symmetry, Additivity, and the Null player
property.

Theorem 1.3.7. Feltkamp (1995). The Banzhaf value, β, is the unique value
on G(N) satisfying Total power, Transfer property, Anonymity, and the Null
player property.

In Nowak (1997) it was shown that the Banzhaf value actually satisfy the
2-E�ciency property, which extend the property 2-E�ciency* used in Theorem
1.3.6.

Theorem 1.3.8. Nowak (1997). The Banzhaf value, β, is the unique value on
G(N) satisfying 2-E�ciency, Symmetry, Dummy player property, and Marginal
contributions.

A recent work which provides a new characterization of the Banzhaf value
is Lorenzo-Freire et al. (2007).

Theorem 1.3.9. Lorenzo-Freire et al. (2007). The Banzhaf value, β, is the
unique value on G(N) satisfying Total power, Symmetry, and Strong mono-
tonicity.
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1.3. THE SHAPLEY AND BANZHAF VALUES

To conclude this �rst Chapter, we present in Table 1.1 a summary of the
properties that each of the values on G(N) satis�es. A X indicates that the
value on G(N) satis�es the corresponding property.

ϕ β
E�ciency X

Dummy player property X X
Null player property X X

Symmetry X X
Anonymity X X
Additivity X X

Transfer property X X
2-E�ciency X
2-E�ciency* X
Total power X

Strong monotonicity X X
Marginal contributions X X

Table 1.1: Properties and values on G(N)

As it can be seen, there are few but important di�erences between ϕ and
β. The Shapley value is e�cient while the Banzhaf value is not. As we argue
before, the e�ciency property may not always be reasonable, for that reason,
the decision whether to use ϕ or β depends on the situation being modeled.
The Banzhaf value divides the amount indicated by the Total power property.
The last property that makes the di�erence between ϕ and β is the 2-E�ciency.
The Banzhaf value satis�es it. In addition, it is a very useful property since it
leads to a characterization of β.
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2
Games with graph restricted

communication

In the basic TU game model there is no restriction to the cooperation, which
means that any group of agents can reach agreements. In many real situations
however, there is a priori information about the behavior of the players and only
partial cooperation occurs.

The TU game with graph restricted cooperation model was �rst introduced
in Myerson (1977). Few years later (Myerson (1980)) the question was extended
to games without side payments (NTU games) where the communication is
restricted by means of an hypergraph. An interesting survey in the �eld of
games with graph restricted communication can be found in Borm et al. (1991),
where several research lines are described.

In this Chapter the basic model introduced in Myerson (1977) will be de-
scribed. In such a situation we have a graph together with the TU game which
depicts the way cooperation may occur. Each link of the graph indicates that di-
rect communication, and hence cooperation, is possible between agents located
at each end. Also, communication between agents joined via a path in a given
coalition is possible.

In Section 2.1 we will introduce the model and in Section 2.2 the solution
concepts for such a class of games will be de�ned and characterized.

2.1 The model

An undirected graph without loops on N is a set B of unordered pairs of distinct
elements of N . Each pair (i : j) ∈ B is a link. Given i, j ∈ S ⊆ N , we say that
i and j are connected in S by B if i = j or if there is a path in S connecting
them, i.e., there is some k ≥ 1 and a subset {i0, i1, . . . , ik} ⊆ S such that i0 = i,
ik = j and (ih−1 : ih) ∈ B, for every h = 1, 2, . . . , k. We denote by S/B the
set of maximal connected components of S determined by B, i.e., the set of
maximal subsets of elements connected in S by B. S/B is a partition of S. We
denote by g(N) the set of all undirected graphs without loops on N . Given
B ∈ g(N), the dual or complementary graph of B, Bc ∈ g(N) is given by,

11



CHAPTER 2. GAMES WITH GRAPH RESTRICTED COMMUNICATION

Bc = {(i : j) ∈ g(N)|(i : j) /∈ B}. We will denote by ∅c the complete graph on
N de�ned by ∅c = {(i : j)|i, j ∈ N, i 6= j}.

Given B ∈ g(N) we say that agent i ∈ N is an isolated agent with respect
to the graph B if there is no j ∈ N \ i such that (i : j) ∈ B, that is, {i} ∈ N/B.
Given a link (i : j) ∈ B, the graph B−ij ∈ g(N) is de�ned as the resulting graph
after the elimination of the link (i : j), that is

B−ij = {(h : k) ∈ B|(h : k) 6= (i : j)}.

For any i ∈ N , we denote by B−i the element of g(N) obtained from B by
breaking the links where agent i is involved, i.e.,

B−i = {(j : h) ∈ B|j 6= i and h 6= i}.

De�nition 2.1.1. A TU game with graph restricted communication is a triplet
(N, v,B) where (N, v) ∈ G(N) and B ∈ g(N). We denote by C(N) the set of
all such games. If (N, v,B) ∈ C(N) the communication game (N, vB) ∈ G(N)
is de�ned by

vB(S) =
∑

T∈S/B

v(T ).

Notice that when B = ∅c, we have vB = v and when B = ∅, (N, vB) ∈ G(N) is
an additive game.

The de�nition of the communication game can be understood as follows.
Consider a coalition of players S ⊆ N . If coalition S is internally connected,
i.e., if all players in S can communicate with one another (directly or indirectly)
without the help of players in N \S, then they can fully coordinate their actions
and obtain the worth v(S). Nevertheless, if coalition S is not internally con-
nected, then not all players in S can communicate with each other without the
help of outsiders. Coalition S will then be split into communication components
according to the partition S/B. The best that players in S can accomplish under
these conditions is to coordinate their actions within each of these components.
Players in di�erent components cannot coordinate their actions and hence, the
components will operate independently.

2.2 Myerson and Banzhaf graph values

After having described how several authors have approached the integration
of restrictions on communication into TU games, in this Section we will focus
on values which give us an assessment of the bene�ts for each player from
participating in a graph restricted TU game.

By a value on C(N) we will mean a map f that assigns a vector f(N, v,B) ∈
Rn to every game with graph restricted communication (N, v,B) ∈ C(N). In
order to de�ne such values on C(N) we can use the communication game vB

de�ned above and the Shapley and Banzhaf values, ϕ and β. In doing this we
come to the de�nitions of the well known Myerson and Banzhaf graph values.

12
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De�nition 2.2.1. Myerson (1977). The Myerson value, ϕc, is the value on
C(N) de�ned by

ϕc(N, v,B) = ϕ(N, vB).

De�nition 2.2.2. Owen (1986). The Banzhaf graph value, βc, is the value on
C(N) de�ned by

βc(N, v,B) = β(N, vB).

If two players are in di�erent communication components of a graph re-
stricted game (N, v,B) ∈ C(N), then they do not interact with each other at
all. Consequently, it seems reasonable to expect that the values on C(N) of
coalitions that include players that are not connected to player i ∈ N as well as
links involving such players do not in�uence the payo� of player i. This require-
ment is satis�ed by both the Myerson and the Banzhaf graph values, which are
Component decomposable as it was shown in van den Nouweland (1993) and
Alonso-Meijide and Fiestras-Janeiro (2006). Formally, let f be a value on C(N).

• Component decomposability. For every (N, v,B) ∈ C(N) and every player
i ∈ N , it holds that

fi(N, v,B) = fi(S, v|S , B|S),

where S ∈ N/B such that i ∈ S, and (S, v|S , B|S) ∈ C(S) is the graph
restricted game obtained from (N, v,B) ∈ C(N) when the players set is
restricted to S.

Myerson (1977) found the Myerson value when he was looking for an allo-
cation rule that satisfy the two properties Component e�ciency and Fairness,
which we describe below. Let f be a value on C(N).

• Component e�ciency. For every (N, v,B) ∈ C(N) and every S ∈ N/B,
it holds that ∑

i∈S
fi(N, v,B) = v(S).

• Fairness. For every (N, v,B) ∈ C(N) and any i, j ∈ N such that (i : j) ∈
B, it holds that

fi(N, v,B)− fi(N, v,B−ij) = fj(N, v,B)− fj(N, v,B−ij).

An allocation rule is Component e�cient if the payo�s of the players in a
maximal connected component add up to the worth of that component. Using
a Component e�cient value on C(N), the players distribute the worth of this
component among themselves. Fairness re�ects the equal gains equity principle
that two players should gain or loose equally from their bilateral agreement.

Under this scenario, other properties that a value f , on C(N) should satisfy
have been proposed in the literature. Next we de�ne four more properties which
will be needed to characterize the Myerson and Banzhaf graph values.
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• Balanced contributions. For every (N, v,B) ∈ C(N) and any i, j ∈ N , it
holds that

fi(N, v,B)− fi(N, v,B−j) = fj(N, v,B)− fj(N, v,B−i).

• Isolation. For every (N, v,B) ∈ C(N) and any i ∈ N isolated agent, it
holds that

fi(N, v,B) = v(i).

• Component total power. For every (N, v,B) ∈ C(N) and any S ∈ N/B,
it holds that∑

i∈S
fi(N, v,B) =

1
2s−1

∑
i∈S

∑
T⊆S\i

[
vB(T ∪ i)− vB(T )

]
.

• 2-E�ciency. For all (N, v,B) ∈ C(N) and each pair of players i, j ∈ N
such that (i : j) ∈ B, it holds that

fi(N, v,B) + fj(N, v,B) = fp(N ij , vij , Bij),

where (N ij , vij , Bij) is the game obtained from (N, v,B) when players i
and j merge in a new player p, i.e., (N ij , vij) is de�ned as in Chapter 1
and given l, k ∈ N ij ,

(l : k) ∈ Bij if and only if

 (l : k) ∈ B with l, k ∈ N \ {i, j}
(l : i) ∈ B or (l : j) ∈ B and k = p
(i : k) ∈ B or (j : k) ∈ B and l = p

The Balanced contributions property generalizes the Fairness property. It
states that a player's isolation from the graph bene�ts or damages other player
in the same amount than if it happened the other way round. The Isolation
is very similar to the Dummy player property, in fact it is just the Dummy
player property applied to the communication game vB , it states that a player
who cannot communicate to any other player should be given what he can
obtain on his own. The Component total power property indicates the amount
that a connected component will receive. The 2-E�ciency property is just the
generalization of the 2-E�ciency property de�ned in Chapter 1 for a pair of
agents that are directly connected by the graph..

To conclude with the Chapter the main characterizations of the Myerson
and the Banzhaf graph values will be presented. The �rst two characterizations
by Myerson have been widely used in the literature.

Theorem 2.2.3. Myerson (1977). The Myerson value, ϕc, is the unique graph
value on C(N) satisfying Component e�ciency and Fairness.

Theorem 2.2.4. Myerson (1980). The Myerson value, ϕc, is the unique graph
value on C(N) satisfying Component e�ciency and Balanced contributions.
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More recently, the Banzhaf graph value has been characterized using a simi-
lar set of properties. The di�erence between the Shapley and the Banzhaf value
described in Chapter 1, is transferred to this context. The Banzhaf graph value
characterizations change the Component e�ciency property of ϕc, by the Total
power property of βc or the Isolation and the 2-E�ciency properties.

Theorem 2.2.5. Alonso-Meijide and Fiestras-Janeiro (2006).

• The Banzhaf graph value, βc, is the unique value on C(N) satisfying Com-
ponent total power and Fairness.

• The Banzhaf graph value, βc, is the unique value on C(N) satisfying Com-
ponent total power and Balanced contributions

Theorem 2.2.6. Alonso-Meijide and Fiestras-Janeiro (2006).

• The Banzhaf graph value, βc, is the unique value on C(N)satisfying Iso-
lation, 2-E�ciency, and Fairness.

• The Banzhaf graph value, βc, is the unique value on C(N) satisfying Iso-
lation, 2-E�ciency, and Balanced contributions.

Proof. Next we recall the proof of the characterization by means of Isola-
tion, 2-E�ciency, and Fairness.

(1) Existence. It is clear that βc satis�es Isolation since vB(S∪ i) = vB(S)+
v(i) for any {i} ∈ N/B and all S ⊆ N \ i.

Let i, j ∈ N such that (i : j) ∈ B, then by de�nition

βci (N, v,B)− βcj (N, v,B) =
1

2n−1

∑
S⊆N\{i,j}

[
2vB(S ∪ i)− 2vB(S ∪ j)

]
.

�� ��2.1

In a similar manner,

βci (N, v,B
−ij)−βcj (N, v,B−ij) =

1
2n−1

∑
S⊆N\{i,j}

[
2vB

−ij

(S ∪ i)− 2vB
−ij

(S ∪ j)
]
.�� ��2.2

Since for all S ⊆ N such that {i, j} * S, vB(S) = vB
−ij

(S), we have the equality
of 2.1 and 2.2. Hence, it is proved that the Banzhaf graph value satis�es Fairness.

Using that the Banzhaf value satis�es 2-E�ciency,

βci (N, v,B) + βcj (N, v,B) = βi(N, vB) + βj(N, vB) = βp(N ij , (vB)ij).

In addition, for every S ⊆ N ij ,

(vij)B
ij

(S) =
∑

T∈S/Bij

vij(T ) = (vB)ij(S),

due to de�nition of (vB)ij and the relationship between the component sets S/B
and S/Bij . Then,

βp(N ij , (vB)ij) = βp(N ij , (vij)B
ij

) = βcp(N
ij , vij , Bij).

15



CHAPTER 2. GAMES WITH GRAPH RESTRICTED COMMUNICATION

We prove that βc satis�es 2-E�ciency.
(2) Uniqueness. We prove it by induction on the number of links of B. Let

f be a value on C(N) that satis�es Isolation, 2-E�ciency, and Fairness. We
claim that if B = ∅ by Isolation we have fi(N, v,B) = v(i) = βci (N, v,B) for
every i ∈ N . Then let k ∈ N and assume that f(N, v,B) = βc(N, v,B) for
every graph B with less links than k. Let (N, v,B) ∈ C(N) such that |B| = k
and i ∈ N . If agent i is isolated, then fi(N, v,B) = v(i) = βci (N, v,B) by the
Isolation property. Then there is some j ∈ N such that (i : j) ∈ B, using that
f and βc satisfy Fairness and the induction hypothesis,

fi(N, v,B)− fj(N, v,B) = fi(N, v,B−ij)− fj(N, v,B−ij)
= βci (N, v,B

−ij)− βcj (N, v,B−ij) = βci (N, v,B)− βcj (N, v,B)

or equivalently,

fi(N, v,B)− βci (N, v,B) = fj(N, v,B)− βcj (N, v,B)
�� ��2.3

By 2-E�ciency and the induction hypothesis,

fi(N, v,B) + fj(N, v,B) = fp(N ij , vij , Bij)

= βcp(N
ij , vij , Bij) = βci (N, v,B) + βcj (N, v,B)

where (N ij , vij , Bij) is the communication situation resulting as a consequence
of the amalgamation of i and j. Then,

fi(N, v,B)− βci (N, v,B) = fj(N, v,B)− βcj (N, v,B)
�� ��2.4

And combining 2.3 and 2.4, we get that,

fi(N, v,B) = βci (N, v,B)

which concludes the proof. �
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2.2. MYERSON AND BANZHAF GRAPH VALUES

To end with this second Chapter, we summarize in Table 2.1 the properties
that each value on C(N) satis�es. A X indicates that the value satis�es the
corresponding property.

ϕc βc

Component decomposability X X
Component e�ciency X

Fairness X X
Balanced contributions X X

Isolation X X
Component total power X

2-E�ciency X

Table 2.1: Properties and values on C(N)

The Table shows that the di�erences between the Shapley and the Banzhaf
values described in Chapter 1 are transferred to the di�erences between the
Myerson and the Banzhaf graph values.
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3
Games with incompatible players

In this Chapter we will study situations in which there are incompatible players.

The �rst work concerning cooperative games where there are players who
cannot be together in a coalition can be found in Carreras (1991). In this paper
a joint model which takes into account the a�nities, described by a communi-
cation graph, and incompatibilities among the players was proposed for simple
games. In Carreras and Owen (1996) a political application is provided taking
into account the existence of incompatible players.

In Bergantiños (1993) and Bergantiños et al. (1993) both models are ex-
tended to transferable utility games. The existence of incompatible players is
much more restrictive than the restrictions to the cooperation arriving from
the a�nities among the players, since players which are not connected by the
a�nities graph can still cooperate if there is a path connecting them while if
two players are incompatible they could never be in the same coalition.

The joint model of TU games with a�nities and incompatibilities was con-
sidered in Amer and Carreras (1995a). In this work the authors de�ned the
cooperation index, which is a map p : 2N → [0, 1] that describes quantitative
restrictions to the cooperation. The cooperation index is capable of modeling
situations in which the a�nities among players have di�erent intensities, the
only requirement is that p({i}) = 1 for all i ∈ N (non schizophrenic players).
If p(S) = 0, it means that there are incompatible players on S, while p(S) > 0
means that players in S can communicate, and hence, cooperate. In Amer and
Carreras (1995a) the Shapley value is extended and characterized for games with
cooperation indices. The model studied in Chapter 2 is included in this new
model if we consider the cooperation index pB , given by pB(S) = 1 if S ⊆ N is
connected by B and pB(S) = 0 otherwise. In a similar way, the model that will
be described in this Chapter is included in the approach of Amer and Carreras
(1995a) as we will soon see.

The outline of the rest of the Chapter is as follows. In Section 3.1, we will
present the TU games with incompatibilities. We recall the main results in this
setting in Section 3.2. Finally, in Section 3.3 a new value for this class of games
is proposed and characterized.
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3.1 The model

First of all, the TU game with incompatibilities model is introduced formally in
the next de�nition.

De�nition 3.1.1. A TU game with incompatibilities is a triple (N, v, I) where
(N, v) ∈ G(N) is a TU game and I ∈ g(N) is the incompatibility graph, i.e.,
i, j ∈ N are incompatible if (i : j) ∈ I. We denote by I(N) the set of all such
games.

Given (N, v, I) ∈ I(N) we will say that a coalition S ⊆ N is I-admissible if
there are not incompatible players contained on it. By P (S, I) we will denote
the set of all partitions of S whose elements are I-admissible coalitions.

De�nition 3.1.2. Given a TU game with incompatibilities (N, v, I) ∈ I(N), we
denote by (N, vI) ∈ G(N) the I-restricted game whose characteristic function
is given by,

vI(S) = max
P∈P (S,I)

∑
T∈P

v(T ) , for all S ⊆ N.

The idea behind the I-restricted game is that players of a coalition S form I-
admissible subcoalitions (which are the only feasible coalitions) and they choose
them in such a way to maximize the sum of the worths of the subcoalitions of
S.

As we mentioned before, this model is included in the games with cooper-
ation index proposed by Amer and Carreras (1995a). We only need to de�ne
a cooperation index pI given by pI(S) = 1 if S is I-admissible, and pI(S) = 0
otherwise.

In Bergantiños (1993) it is shown that the game with incompatibilities
(N, v, I) ∈ I(N) is not in general equal to the game with graph restricted
communication (N, v, Ic) ∈ C(N). This fact will be proved in Example 1. In
Bergantiños (1993) it is also shown that the I-restricted game is always super-
additive.

We end this Section, illustrating in Example 1, the way in which the I-
restricted game is built and the di�erence between the I-restricted game and
the communication game of the dual graph.

Example 1. Let (N, v, I) ∈ I(N) be the game with incompatibilities where
N = {1, 2, 3}, I = {(1 : 2)}, and the characteristic function v de�ned by:

v(i) = 0∀i ∈ N, v({1, 2}) = v({1, 3}) = 1, v({2, 3}) = 2, and v(N) = 10.

Let us compute the I-restricted game vI following its de�nition.

vI(i) = 0 ∀i ∈ N, vI({1, 2}) = v(1) + v(2) = 0,

vI({1, 3}) = v({1, 3}) = 1, vI({2, 3}) = v({2, 3}) = 2,

vI(N) = max
P∈P (N,I)

∑
T∈P

v(T ) = v({2, 3}) + v(1) = 2.
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3.2. THE INCOMPATIBILITY SHAPLEY VALUE

Next, let us consider the dual graph of I given by Ic = {(1 : 3), (2 : 3)}, the
communication game (N, vI

c

) ∈ G(N) is given by,

vI
c

(i) = 0 ∀i ∈ N, vI
c

({1, 2}) = v(1) + v(2) = 0,

vI
c

({1, 3}) = v({1, 3}) = 1, vI
c

({2, 3}) = v({2, 3}) = 2,

vI
c

(N) =
∑

S∈N/Ic

v(S) = v({1, 2, 3}) = 10.

As it is seen, in the I-restricted game the grand coalition is not feasible since
it has incompatible players contained. Nevertheless, the grand coalition N can
cooperate jointly in the communication game vI

c

since players 1 and 2 can
communicate through player 3. The incompatibility Shapley value and the
Myerson value show this di�erence.

ϕI(N, v, I) = (1/6, 4/6, 7/6), ϕc(N, v, Ic) = (17/6, 20/6, 23/6).

3.2 The incompatibility Shapley value

After having introduced the model of TU games with incompatibilities, we come
now to the matter of how to allocate the bene�ts of the cooperation.

By a value on I(N) we will mean a map f that assigns a vector f(N, v, I) ∈
Rn to every game with incompatibilities (N, v, I) ∈ I(N). In the literature,
there is only a generalization of the Shapley value for this kind of games. Its
formal de�nition is given next.

De�nition 3.2.1. Bergantiños (1993). The incompatibility Shapley value ϕI ,
is a value on I(N) de�ned as follows,

ϕI(N, v, I) = ϕ(N, vI).

We will present the characterization of the incompatibility Shapley value by
Bergantiños (1993), which is based on the following properties. Let (N, v, I) ∈
I(N).

• I-E�ciency. An incompatibility value f is said to be I-E�cient if for all
S ∈ N/Ic, ∑

i∈S
fi(N, v, I) = max

P∈P (S,I)

∑
T∈P

v(T ) = vI(S).

• I-Fairness. An incompatibility value f is said to be I-Fair if for all i, j ∈ N
such that (i : j) /∈ I,

fi(N, v, I)− fi(N, v, I ∪ (i : j)) = fj(N, v, I)− fj(N, v, I ∪ (i : j)).
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• I-Balanced contributions. An incompatibility value f satis�es I-Balanced
contributions if for all i, j ∈ N ,

fi(N, v, I)− fi(N, v, I∗j) = fj(N, v, I)− fj(N, v, I∗i),

where I∗i denotes the graph obtained from I when player i becomes in-
compatible with the rest of the players, i.e., I∗i = I ∪ {(i : j)|j ∈ N \ i}.

The I-E�ciency property is similar to the e�ciency proposed in Myerson
(1977) and presented in the previous Chapter. The I-Fairness property has the
same meaning as the Fairness property in Myerson (1977). It states that if two
players are not incompatible anymore, both gain or loss the same amount.

In the next Theorem we present the �rst characterization of the incompati-
bility Shapley value.

Theorem 3.2.2. Bergantiños (1993). The incompatibility Shapley value, ϕI ,
is the unique value on I(N) satisfying I-E�ciency and I-Fairness.

Recently Alonso-Meijide and Casas-Méndez (2007) presented an alternative
characterization of ϕI , based on the property of I-Balanced contributions, we
recall it here.

Theorem 3.2.3. Alonso-Meijide and Casas-Méndez (2007). The incompatibil-
ity Shapley value, ϕI , is the unique value on I(N) satisfying I-E�ciency and
I-Balanced contributions.

3.3 A new value on I(N)

In this setting we saw the lack of a value on I(N) which generalizes the Banzhaf
value. Therefore we propose a new incompatibility value using the Banzhaf
value of the I-restricted game, which we introduce in the next de�nition.

De�nition 3.3.1. The incompatibility Banzhaf value, βI is a value on I(N)
de�ned as follows,

βI(N, v, I) = β(N, vI).

First of all we come to the discussion on the properties that this new value
on I(N) satis�es. To do so, we �rst need to de�ne three more properties, which
are natural modi�cations of the properties presented in the previous Chapter
for this scenario. Let f be a value on I(N).

• I-Isolation. For all i ∈ N such that (i : j) ∈ I for all j ∈ N \ i,

fi(N, v, I) = v(i).

• I-Total power. For all S ∈ N/Ic,∑
i∈S

fi(N, v, I) =
1

2s−1

∑
i∈S

∑
L⊆S\i

[
vI(L ∪ i)− vI(L)

]
.
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These properties follow the same ideas as the analogous properties de�ned
in the previous Chapter.

Lemma 3.3.2. The incompatibility Banzhaf value satis�es properties I-Isolation,
I-Fairness, I-Balanced contributions, and I-Total power.

Proof.

I-Isolation It follows from the fact that for every i ∈ N and S ⊆ N \ i,

vI(S ∪ i) = vI(S) + v(i).

I-Fairness. Let i, j ∈ N such that (i : j) /∈ I, then

2n−1
[
βIi (N, v, I)− βIi (N, v, I ∪ (i : j))

]
=

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI(S ∪ j) + vI(S ∪ i)− vI(S)

]
−

∑
S⊆N\{i,j}

[
vI∪(i:j)(S ∪ i ∪ j)− vI∪(i:j)(S ∪ j) + vI∪(i:j)(S ∪ i)− vI∪(i:j)(S)

]
.

Since for all S ⊆ N \ {i, j},

vI(S) = vI∪(i:j)(S), vI(S∪i) = vI∪(i:j)(S∪i), and vI(S∪j) = vI∪(i:j)(S∪j).

βIi (N, v, I)− βIi (N, v, I ∪ (i : j))

=
1

2n−1

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI∪(i:j)(S ∪ i ∪ j)

]
= βIj (N, v, I)− βIj (N, v, I ∪ (i : j)).

I-Balanced contributions. Let i, j ∈ N , then

2n−1
[
βIi (N, v, I)− βIi (N, v, I∗j)

]
=

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI(S ∪ j) + vI(S ∪ i)− vI(S)

]
−

∑
S⊆N\{i,j}

[
vI
∗j

(S ∪ i ∪ j)− vI
∗j

(S ∪ j) + vI
∗j

(S ∪ i)− vI
∗j

(S)
]
.

Since for all S ⊆ N \ j,

vI(S) = vI
∗j

(S) and vI
∗j

(S ∪ j) = vI(S) + v(j).

βIi (N, v, I)− βIi (N, v, I∗j)

=
1

2n−1

∑
S⊆N\{i,j}

[
vI(S ∪ i ∪ j)− vI(S ∪ i)− vI(S ∪ j) + vI(S)

]
= βIj (N, v, I)− βIj (N, v, I∗i).
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I-Total power Let S ∈ N/Ic and take (N, vI,S) ∈ G(N) de�ned as follows,

vI,S(T ) = max
P∈P (T∩S,I)

∑
L∈P

v(L) for all T ∈ 2N ,

First of all we will see that vI =
∑
S∈N/Ic vI,S .

Let P ∈ P (T, I) and L ∈ P . As L is I-admissible it follows that L is a
connected component of Ic on N . Then, there exists S′ ∈ N/Ic such that
L ⊆ S′. Hence, for any S ∈ N/Ic, each partition P ∈ P (T, I) induces
another partition P ∈ P (T ∩ S, I). Taking into account the de�nition of
the I-restricted game we conclude that,

vI(T ) ≤
∑

S∈N/Ic

vI,S(T ) for all T ⊆ N.

On the other hand, let T ⊆ N , if N/Ic = {S1, . . . , Sm} we may take
Pj ∈ P (T ∩ Sj , I) for all j = 1, . . . ,m, and a partition P of T de�ned by
those Pjs. As P ∈ P (T, I), we conclude that,

vI(T ) ≥
∑

S∈N/Ic

vI,S(T ) for all T ⊆ N.

Then the stated equality is proved. Given S ∈ N/Ic, and using the addi-
tivity of β, we have,∑

j∈S
βj(N, vI) =

∑
j∈S

∑
T∈N/Ic

βj(N, vI,T ) =
∑

T∈N/Ic

∑
j∈S

βj(N, vI,T ).

For all i ∈ N \ T , i is a null player in (N, vI,T ) ∈ G(N), hence,∑
T∈N/Ic

∑
j∈S

βj(N, vI,T ) =
∑
j∈S

βj(N, vI,S) =
∑
j∈S

βj(S, vI,S).

Lastly, using that the Banzhaf value satis�es the Total Power property we
conclude that,∑

j∈S
βj(S, vI,S) =

1
2s−1

∑
j∈S

∑
L⊆S\j

[
vI(L ∪ j)− vI(L)

]
.

�
At this point we have the concepts and results we need to characterize the

new proposed incompatibility value.

Theorem 3.3.3. The incompatibility Banzhaf value, βI , is the unique value on
I(N) satisfying I-Balanced contributions and I-Total power.
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3.3. A NEW VALUE ON I(N)

Proof.

• Existence

Shown in Lemma 3.3.2.

• Uniqueness

Let f be an allocation rule satisfying the properties and (N, v, ∅c) ∈ I(N),
then, N/Ic = {{1} , {2} , . . . , {n}} . By I-Total power we have,

f(N, v, I) = (v(1), . . . , v(n)),

and hence f is unique. Suppose that there are two di�erent values f1 and
f2 satisfying the properties. Then there exists (N, v, I) ∈ I(N) such that
f1(N, v, I) 6= f2(N, v, I) and I 6= ∅c, hence, we can take I ∈ GR(N) with
the maximum number of links for which the inequality holds. Let i ∈ N
such that f1

i (N, v, I) 6= f2
i (N, v, I).

If for all j ∈ N \ i, (i : j) ∈ I. Then {i} ∈ N/Ic, applying the I-Total
power property we come to contradiction.

If there is j ∈ N \i such that (i : j) /∈ I. Then by I-Balanced contributions
and the maximality of I,

f1
i (N, v, I)− f1

j (N, v, I) = f1
i (N, v, I∗j)− f1

j (N, v, I∗i) =

= f2
i (N, v, I∗j)− f2

j (N, v, I∗i) = f2
i (N, v, I)− f2

j (N, v, I)
�� ��3.1

Moreover, let S ∈ N/Ic such that i ∈ S, then (i : j) /∈ I for all j ∈ S and
there are {i1, i2, . . . , ik} ⊆ S such that i = i1, j = ik, and (il : il+1) /∈ I
for all l = 1, . . . , k − 1. Hence by (3.1) we have,

f1
i1

(N, v, I)− f1
i2

(N, v, I) = f2
i1

(N, v, I)− f2
i2

(N, v, I)
...

f1
ik−1

(N, v, I)− f1
ik

(N, v, I) = f2
ik−1

(N, v, I)− f2
ik

(N, v, I).

Adding up both sides,

f1
i (N, v, I)− f1

j (N, v, I) = f2
i (N, v, I)− f2

j (N, v, I).
�� ��3.2

On the other hand, using the I-Total power property we have,∑
i∈S

f1
i (N, v, I) =

1
2s−1

∑
i∈S

∑
T⊆S\i

[
vI(T ∪ i)− vI(T )

]
=
∑
i∈S

f2
i (N, v, I).�� ��3.3

By (3.2) and (3.3) it follows�

sf1
i (N, v, I) = sf2

i (N, v, I).

Hence, we come to contradiction.
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�
In a similar way, we can obtain a characterization of the value by means of

the I-Fairness property instead of the I-Balanced contributions property. This
result is presented in the next theorem without proof.

Theorem 3.3.4. The incompatibility Banzhaf value, βI , is the unique value on
I(N) satisfying I-Fairness and I-Total power.

Proof.

• Existence

Shown in Lemma 3.3.2.

• Uniqueness We can repeat the same argument as the proof of the Unique-
ness in Theorem 3.3.3. Notice that we can use the I-Fairness property
instead the I-Balanced contributions property.

�
The Chapter concludes summarizing in Table 3.1 the properties that each

value on I(N) satis�es. A X indicates that the value on I(N) satis�es the
corresponding property.

ϕI βI

I-E�ciency X
I-Fairness X X

I-Balanced contributions X X
I-Isolation X X

I-Total power X

Table 3.1: Properties and values on I(N)

The di�erence between the incompatibility Shapley and the incompatibility
Banzhaf value lies on the fact that the former satis�es I-E�ciency while the
latter satis�es I-Total power.
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4
Games with a priori unions

As mentioned in Chapter 2, in the basic TU game model there is no restriction
to the cooperation, which means that any group of agents can reach agreements.
In many real situations however, there is a priori information about the behavior
of the players and only partial cooperation occurs.

Aumann and Drèze (1974) considered that restrictions in cooperation are
given by a partition of the set of agents. This partition is capable of modeling
the a�nities among agents. The model including a TU game and such a parti-
tion is called a TU game with a priori unions. For this family of games, Owen
(1977) proposed and characterized a modi�cation of the Shapley value (Shapley
(1953)) to allocate the total gains, the Owen value. This value initially splits the
total amount among the unions, according to the Shapley value in the induced
game played by the unions (quotient game). Then, once again using the Shap-
ley value within each union, its total reward is allocated among its members
(quotient game property), taking into account their possibilities of joining other
unions. Owen (1982) de�ned a modi�cation of the Banzhaf value following a
similar procedure, known as the Banzhaf-Owen value. The �rst characterization
of the Banzhaf-Owen value was proposed by Amer et al. (2002). Amer et al.
also noted that the Banzhaf-Owen value does not satisfy two interesting proper-
ties: symmetry among unions and the quotient game property. Alonso-Meijide
and Fiestras-Janeiro (2002) de�ned and characterized the symmetric coalitional
Banzhaf value, a di�erent modi�cation of the Banzhaf value, that satis�es the
two properties considered above. The symmetric coalitional Banzhaf value uses
the Banzhaf value to allocate the payo� among the unions and the Shapley value
to split this payo� within the members of each union. In Alonso-Meijide et al.
(2007), a comparison among the three values on U(N) considered is presented.

In Section 4.1 we recall the model of games with a priori unions. In Sec-
tion 4.2 the main results concerning the Owen, the Banzhaf-Owen, and the
symmetric coalitional Banzhaf values are presented.
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4.1 The model

Let us consider a �nite set of agents, say, N = {1, . . . , n}. We will denote the set
of all partitions of N by P (N). Each P ∈ P (N), of the form P = {P1, . . . , Pm},
is called a system of a priori unions on N . The so called trivial coalition
structures are Pn = {{1}, {2}, . . . , {n}}, where each union is a singleton, and
PN = {N}, where the grand coalition forms. For i ∈ Pk ∈ P , P−i will denote
the partition obtained from P when player i leaves the union Pk and becomes
a singleton, i.e.

P−i = {Ph ∈ P |h 6= k} ∪ {Pk \ i, {i}}.

De�nition 4.1.1. A TU game with a priori unions is a triple (N, v, P ) where
(N, v) ∈ G(N) and P ∈ P (N). We denote by U(N) the set of all such games.
If (N, v, P ) ∈ U(N), with P = {Pk|k ∈M = {1, . . . ,m}}.

Given a TU game with a priori unions (N, v, P ) ∈ U(N), the associated
quotient game (M,vP ) ∈ G(M) is the TU game played by the unions and
de�ned by

vP (R) = v(PR), for all R ⊆M,

where PR = ∪k∈RPk. Note that if P = Pn, vP = v.

4.2 Values on U(N)

In this Section we will recall the di�erent allocation rules existing in the litera-
ture for this class of games. The values on U(N) follow a two steps procedure.
In the �rst step the worth of the grand coalition is shared among the unions
and in the second step the amount allotted to each union is shared among the
members of the union.

By a value on U(N) we will mean a map f that assigns a vector f(N, v, P ) ∈
Rn to every game with a priori unions (N, v, P ) ∈ U(N). In this context we
consider three possible extensions of the Shapley and Banzhaf values.

De�nition 4.2.1. Owen (1977). The Owen value, φ, is the value on U(N)
de�ned for every i ∈ N by

φi(N, v, P ) =
∑

R⊆M\k

∑
T⊆Pk\i

t!(pk − t− 1)!r!(m− r − 1)!
pk!m!

[v(PR ∪ T ∪ i)− v(PR ∪ T )] ,

where i ∈ Pk ∈ P .

De�nition 4.2.2. Owen (1982). The Banzhaf-Owen value, ψ, is the value on
U(N) de�ned for every i ∈ N by

ψi(N, v, P ) =
∑

R⊆M\k

∑
T⊆Pk\i

1
2m−1

1
2pk−1

[v(PR ∪ T ∪ i)− v(PR ∪ T )] .
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De�nition 4.2.3. Alonso-Meijide and Fiestras-Janeiro (2002). The symmetric
coalitional Banzhaf value, π, is the value on U(N) de�ned for every i ∈ N by

πi(N, v, P ) =
∑

R⊆M\k

∑
T⊆Pk\i

1
2m−1

t!(pk − t− 1)!
pk!

[v(PR ∪ T ∪ i)− v(PR ∪ T )] .

There exist a vast literature concerning values on U(N) and their character-
ization, mostly in the case of the Owen value. However, for the purpose of this
work we do not need to present all of them in detail.

The �rst characterization of the Owen value was proposed in Owen (1977), in
the paper where the allocation rule was introduced. This �rst characterization
was based on �ve properties, the Carrier property, two Anonymity properties,
one for the unions and another for players, Additivity, and one last property
which is the basis of the Quotient game property which will be present soon.
The Carrier property together with the Null player property is equivalent to
E�ciency. In Hart and Kurz (1983) three di�erent characterizations of φ are
proposed. The three of them are based on e�ciency, symmetry, and additivity
but they di�er in the fourth axiom. In Winter (1992) the Owen value is char-
acterized making use of a consistency property which states that the payo� of
any player i ∈ Pk ∈ N can be derived from a reduced game whose player set
is a subset of Pk. Amer and Carreras (1995b) obtained a characterization of φ
which is based on only three properties although two of them are quite demand-
ing. Another characterization of the Owen value can be found in Vázquez-Brage
et al. (1997). We will present it in this Section. More recently Hamiache (1999),
Albizuri and Zarzuelo (2004), and Albizuri (2008) provide new characterizations
of φ.

The �rst characterization of the Banzhaf-Owen value was proposed in Al-
bizuri (2001), but only on the restricted domain of simple games. Amer et al.
(2002) were the �rst to establish a characterization of ψ on the full domain of
TU games. The authors use six properties, three well known properties in the
literature (additivity, dummy player property, and symmetry), and three other
properties which have never been used in other axiomatic systems, although
they appear to be very interesting and easy to interpret. Two of these new
properties are based on the delegation game, which is a game obtained from the
original one, considering that a player delegates his role to another player, and
a last property called many null players whose de�nition is quite cumbersome.
As they said in Remark 3.3(b) their characterization is far from giving rise to
an almost common axiomatization of both φ and ψ similar to Feltkamp's one
for ϕ and β. With that target Alonso-Meijide et al. (2007) proposed a new
characterization of the Banzhaf-Owen value, together with a survey on values
on U(N) which helps to understand the di�erences among the three allocation
rules presented for games with a priori unions. The characterization will be
presented in this Section.

The Symmetric coalitional Banzhaf value was characterized in Alonso-Meijide
and Fiestras-Janeiro (2002) with two axiomatic systems. We will present one of
them in detail next.
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Some of the properties we need are just de�ned for games with a priori unions
where the system of a priori unions is the trivial singleton coalition structure
and other are de�ned for all the class of games with a priori unions. The �rst
group of properties will be denoted by b while the second set of properties will
be denoted by a. Let f be a value on U(N).

b1 (E�ciency). For all (N, v) ∈ G(N),∑
i∈N

fi(N, v, Pn) = v(N).

b2 (2-E�ciency). For all (N, v) ∈ G(N) and any pair of distinct players i, j ∈
N ,

fi(N, v, Pn) + fj(N, v, Pn) = fp(N ij , vij , Pn−1).

b3 (Dummy player property). For all (N, v) ∈ G(N) and any i ∈ N dummy
player in (N, v),

fi(N, v, Pn) = v(i).

b4 (Symmetry). For all (N, v) ∈ G(N) and any pair of symmetric players
i, j ∈ N in (N, v),

fi(N, v, Pn) = fj(N, v, Pn).

b5 (Equal marginal contributions). For all (N, v), (N,w) ∈ G(N) and all i ∈ N
such that v(S ∪ i)− v(S) = w(S ∪ i)− w(S) for all S ⊆ N \ i, then

fi(N, v, Pn) = fi(N,w, Pn).

a1 (Quotient game property). For all (N, v, P ) ∈ U(N) and all Pk ∈ P ,∑
i∈Pk

fi(N, v, P ) = fk(M, vP , Pm).

a2 (1-Quotient game property). For all (N, v, P ) ∈ U(N) and every i ∈ N such
that there exists k ∈M such that Pk = {i}, then

fi(N, v, P ) = fk(M,vP , Pm).

a3 (Balanced contributions within the unions). For all (N, v, P ) ∈ U(N) and
all i, j ∈ Pk ∈ P ,

fi(N, v, P )− fi(N, v, P−j) = fj(N, v, P )− fj(N, v, P−i).

a4 (Neutrality under individual desertion). For all (N, v, P ) ∈ U(N) and all
i, j ∈ Pk ∈ P ,

fi(N, v, P ) = fi(N, v, P−j).
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Finally we present the characterizations of the three values mentioned before.

Theorem 4.2.4. Vázquez-Brage et al. (1997). The Owen value, φ, is the unique
value on U(N) satisfying b1, b3, b4, b5, a1, and a3.

Theorem 4.2.5. Alonso-Meijide et al. (2007). The Banzhaf-Owen value, ψ, is
the unique value on U(N) satisfying b2, b3, b4, b5, a2, and a4.

Theorem 4.2.6. Alonso-Meijide and Fiestras-Janeiro (2002). The Symmetric
coalitional Banzhaf value, π, is the unique value on U(N) satisfying b2, b3,
b4, b5, a1, and a3.

These three Theorems contribute to the understanding of the di�erences
among the presented values on U(N). As is seen, the only basic di�erence
between φ and π lies on the fact that the former is the Shapley value for all
(N, v, Pn) ∈ U(N) whereas the later is the Banzhaf value for all games with a
priori unions when we consider the trivial singleton coalition structure. Instead,
the di�erences between φ and ψ arise in axioms b1-b2, a1-a2, and a3-a4.
Finally, the di�erences between ψ and π are limited to a1-a2 and a3-a4.

We conclude the Chapter presenting in Table 4.1, the properties that each
value satis�es in short. A X indicates that the property is satis�ed by the
corresponding value on U(N).

φ ψ π
b1 E�ciency X
b2 2-E�ciency X X

b3 Dummy player property X X X
b4 Symmetry X X X

b5 Equal marginal contributions X X X
a1 Quotient game property X X
a2 1-Quotient game property X X X

a3 Balanced contributions within the unions X X X
a4 Neutrality under individual desertion X

Table 4.1: Properties and values on U(N)
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5
Games with graph restricted

communication and a priori unions

The two extensions of TU games presented in Chapter 2 and Chapter 4 were
�rst considered together by Vázquez-Brage et al. (1996). In this paper a value
for games with graph restricted communication and a priori unions is introduced
and characterized.

In this way, we can consider a more detailed approach of some situations,
since we can enrich the model with more external information concerning the
behavior of the players. The usefulness of this model will be clear when we come
to the analysis of the Parliament of the Basque Country in Chapter 6.

Before we start formalizing the situation it is worth to mention the work by
Amer and Carreras (1995b). The authors introduce a new model which considers
the coalition structure together with a cooperation index as externalities of
the TU game. A cooperation index is a map p : 2N → [0, 1] which can be
used to describe the a�nities and incompatibilities among players but also to
describe the intensity of an a�nity. In this work the Owen value is extended to
games with cooperation indices and a priori unions and a characterization of it
provided.

The rest of the Chapter is organized as follows. In Section 5.1 the model of
games with graph restricted communication and a priori unions is introduced.
In Section 5.2 the main results concerning the Owen graph value are revised
and two new values for this kind of games are proposed. Finally, in Section 5.3
parallel axiomatizations of the considered values are proposed.

5.1 The model

In the next de�nition we introduce the TU games with graph restricted com-
munications and a priori unions model formally.

De�nition 5.1.1. A graph restricted game with a priori unions is a quadruple
(N, v,B, P ), where (N, v) ∈ G(N), B ∈ g(N), and P ∈ P (N). We denote by
CU the set of all such quadruples.
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COMMUNICATION AND A PRIORI UNIONS

This class of games was studied with more detail in Vázquez-Brage (1998).
In this PhD Thesis, the Owen value is extended to the class CU and two char-
acterizations of the solution provided.

Associated to every TU game with graph restricted communication and a
priori unions, we introduce a game which combines the ideas behind the quotient
game, vP , and the communication game, vB .

De�nition 5.1.2. Given (N, v,B, P ) ∈ CU , the communication quotient game
(M, vBP ) ∈ G(M) is de�ned by

vBP (R) =
∑

L∈PR/B

v(L), for all R ⊆M.

5.2 Values on CU

By a value on CU we will mean a map f that assigns a vector f(N, v,B, P ) ∈ Rn
to every graph restricted game with a priori unions (N, v,B, P ) ∈ CU . As we
will see in the following de�nitions, the values on U(N) studied in Chapter 4 can
be extended in a natural way to this new class of games using the communication
game (N, vB) associated to every game with graph restricted communication.

De�nition 5.2.1. Vázquez-Brage et al. (1996). The Owen graph value, φc, is
the value on CU de�ned by

φc(N, v,B, P ) = φ(N, vB , P ).

Next we recall a characterization of this value based on the following prop-
erties. Let f be a value on CU .

A1 Component e�ciency. For all (N, v,B, P ) ∈ CU and all T ∈ N/B,∑
i∈T

fi(N, v,B, P ) = v(T ).

A2 Fairness in the quotient. For all (N, v,B, P ) ∈ CU and all Pk, Ps ∈ P ,∑
i∈Pk

fi(N, v,B, P )−
∑
i∈Pk

fi(N, v,B−(Pk,Ps), P )

=
∑
i∈Ps

fi(N, v,B, P )−
∑
i∈Ps

fi(N, v,B−(Pk,Ps), P ),

where B−(Pk,Ps) ∈ g(N) is the graph obtained from B deleting all links
between members of Pk and Ps.

A3 Balanced contributions within the unions. For all (N, v,B, P ) ∈ CU , all
Pk ∈ P , and all i, j ∈ Pk,

fi(N, v,B, P )− fi(N, v,B, P−j) = fj(N, v,B, P )− fj(N, v,B, P−i).
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Theorem 5.2.2. Vázquez-Brage et al. (1996). There is a unique value on CU
which satis�es A1, A2, and A3. It is the Owen graph value, φc.

Proof. (1) Existence. Given (N, v,B, P ) ∈ CU , consider, for every S ∈
N/B, the game uS given by

uS(T ) =
∑

L∈(T∩S)/B

v(L), for all T ⊆ N.

Clearly, S is a carrier for uS , so as φ satis�es the carrier property, for every
S, T ∈ N/B, ∑

i∈S
φi(uT , P ) =

{
uS(N) if S = T
0 if S 6= T

Also, vB =
∑
S∈N/B u

S , so the additivity of the Owen value implies that,

∑
i∈S

φi(N, vB , P ) =
∑
i∈S

∑
S∈N/B

φi(N, uS , P ) =
∑

S∈N/B

∑
i∈S

φi(N, uS , P )

= uS(N) =
∑

L∈S/B

v(L) = v(S).

Hence, φc satis�es A1.
To show that φc satis�es A2, take Pk, Ps ∈ P and consider the game z =

vB − vB−(Pk,Ps)
. For all R ⊆ M \ {k, s} zP (R ∪ k) = zP (R ∪ s) = 0. Thus∑

i∈Pk
φi(N, z, P ) =

∑
i∈Ps

φi(N, z, P ), then as φ satis�es the additivity and
the anonymity in the unions,∑
i∈Pk

φi(N, vB , P )−
∑
i∈Pk

φi(N, vB
−(Pk,Ps)

, P ) =
∑
i∈Ps

φi(N, vB , P )−
∑
i∈Ps

φi(N, vB
−(Pk,Ps)

, P ).

Finally, to show that the Owen graph value satis�es A3, take (N, v,B, P ) ∈
CU (with P = {P1, . . . , Pm}), Pk ∈ P , and i, j ∈ Pk. By De�nition 4.2.1,

φi(N, v, P ) =
∑

R⊆M\k

∑
T⊆Pk\{i,j}

t!(pk − t− 1)!r!(m− r − 1)!
pk!m!

[v(PR ∪ T ∪ i)− v(PR ∪ T )]

+
∑

R⊆M\k

∑
T⊆Pk\{i,j}

(t+ 1)!(pk − t− 2)!r!(m− r − 1)!
pk!m!

[v(PR ∪ T ∪ j ∪ i)− v(PR ∪ T ∪ j)] .

P−j can be expressed as

P−j = {P ′1, . . . , P ′m+1},

where P ′l = Pl for all l ∈ {1, . . . , k − 1, k + 1, . . . ,m}, P ′k = Pk \ {j}, and
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P ′m+1 = {j}. Writing M ′ for {1, . . . ,m+ 1},

φi(N, v, P−j) =
∑

R⊆M ′\k

∑
T⊆P ′k\i

t!(pk − t− 2)!r!(m− r)!
(pk − 1)!(m+ 1)!

[v(PR ∪ T ∪ i)− v(PR ∪ T )]

=
∑

R⊆M\k

∑
T⊆Pk\{i,j}

t!(pk − t− 2)!r!(m− r)!
(pk − 1)!(m+ 1)!

[v(PR ∪ T ∪ i)− v(PR ∪ T )]

+
∑

R⊆M\k

∑
T⊆Pk\{i,j}

t!(pk − t− 2)!(r + 1)!(m− r − 1)!
(pk − 1)!(m+ 1)!

[v(PR ∪ T ∪ j ∪ i)− v(PR ∪ T ∪ j)] .

Hence,

φi(N, v, P )−φi(N, v, P−j) =
∑

R⊆M\k

∑
T⊆Pk\{i,j}

A1 [v(PR ∪ T ∪ i)− v(PR ∪ T )]

+
∑

R⊆M\k

∑
T⊆Pk\{i,j}

A2 [v(PR ∪ T ∪ j ∪ i)− v(PR ∪ T ∪ j)] ,

where

A1 =
t!(pk − t− 1)!r!(m− r − 1)!

pk!m!
− t!(pk − t− 2)!r!(m− r)!

(pk − 1)!(m+ 1)!
,

and

A2 =
(t+ 1)!(pk − t− 2)!r!(m− r − 1)!

pk!m!
− t!(pk − t− 2)!(r + 1)!(m− r − 1)!

(pk − 1)!(m+ 1)!
.

Using some elementary algebra,

A1 = −A2 =
t!(pk − t− 2)!r!(m− r − 1)!

pk!m!

(
rpk + Pk −mt−m− t− 1

m+ 1

)
.

Thus,

φi(N, v, P )− φi(N, v, P−j) =
∑

R⊆M\k

∑
T⊆Pk\{i,j}

A1 [v(PR ∪ T ∪ i)

−v(PR ∪ T ) + v(PR ∪ T ∪ j)− v(PR ∪ T ∪ j ∪ i)] .

Since the right-hand side of the last equality depends on i in the same way
as it depends on j,

φi(N, v, P )− φi(N, v, P−j) = φj(N, v, P )− φj(N, v, P−i),

and hence A3 is satis�ed.
(2) Uniqueness. If f1 and f2 are two di�erent values on CU satisfying A1,

A2, and A3, then there exist (N, v) ∈ G(N), P = {P1, . . . , Pm} ∈ P (N), and
B ∈ g(N) such that f1(N, v,B, P ) 6= f1(N, v,B, P ). We may suppose that B
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is the graph with the fewest links for which this inequality holds for the given
(N, v). In a similar way, we may take P with the maximum number of unions
for which the inequality holds for the given (N, v,B).

Let BP be the graph induced by B on M ,

BP = {(k : s)|∃(i : j) ∈ B with i ∈ Pk, j ∈ Ps}.

Clearly, for every R ∈M/BP , PR = ∪r∈RPr can be expressed as a union of
elements of N/B. Hence, as f1 and f2 both satisfy A1,∑

i∈PR

(f1
i (N, v,B, P )− f2

i (N, v,B, P )) = 0.
�� ��5.1

Also, as all the elements in R are connected in R by BP , the minimality of B,
and the fact that f1 and f2 both satisfy A2 together imply that, for all r ∈ R,∑

i∈Pr

(f1
i (N, v,B, P )− f2

i (N, v,B, P )) = cR,
�� ��5.2

where cR is a constant depending only on R. Equations 5.1 and 5.2 imply that,
for all Pk ∈ P , ∑

i∈Pr

f1
i (N, v,B, P ) =

∑
i∈Pr

f2
i (N, v,B, P ).

�� ��5.3

Now, select Pk ∈ P . If Pk = {i}, then from 5.3, f1
i (N, v,B, P ) = f2

i (N, v,B, P ).
If Pk has more that one member, take i, j ∈ Pk. Since f1 and f2 satisfy A3,

fhi (N, v,B, P )− fhi (N, v,B, P−j) = fhj (N, v,B, P )− fhj (N, v,B, P−i),

for all h ∈ {1, 2}. Hence, the maximality of P implies that

f1
i (N, v,B, P )− f2

i (N, v,B, P ) = ck for all i ∈ Pk,
�� ��5.4

where ck is a constant depending only on Pk. Together, 5.3 and 5.4 imply that
f1
i (N, v,B, P ) = f2

i (N, v,B, P ) for all i ∈ Pk, and the uniqueness follows. �
Note that as one might expect, this value generalizes the Shapley, Owen, and

Myerson values. Table 5.1 depicts these generalizations for particular instances
of the system of a priori unions and the communication graph.

graph \ unions P = Pn P = PN P ∈ P (N)
B = ∅c ϕ ϕ φ
B ∈ g(N) ϕc ϕc φc

Table 5.1: The Owen graph value

We end by introducing two new values in this context based on the Banzhaf
value as follows.
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De�nition 5.2.3. Alonso-Meijide et al. (to appear). The Banzhaf-Owen graph
value, ψc, is the value on CU de�ned by

ψc(N, v,B, P ) = ψ(N, vB , P ).

De�nition 5.2.4. Alonso-Meijide et al. (to appear). The symmetric coalitional
Banzhaf graph value, πc, is the value on CU de�ned by

πc(N, v,B, P ) = π(N, vB , P ).

As one might expect these two values on CU generalize the values introduced
in De�nitions 4.2.1, 4.2.2, and 4.2.3 in the way shown in Table 5.2 and Table
5.3.

graph \ unions P = Pn P = PN P ∈ P (N)
B = ∅c β β ψ
B ∈ g(N) βc βc ψc

Table 5.2: The Banzhaf-Owen graph value

graph \ unions P = Pn P = PN P ∈ P (N)
B = ∅c β ϕ π
B ∈ g(N) βc ϕc πc

Table 5.3: The symmetric coalitional Banzhaf graph value

5.3 An axiomatic approach

Let us consider the following properties for a value f , on CU . We de�ne some
of the properties for games with the trivial system of a priori unions Pn. These
properties will be denoted by B while the others will be denoted by A (as we
did in Section 5.2).

B1 Graph isolation. For all (N, v,B) ∈ C(N) and all i ∈ N such that i is an
isolated agent, i.e, {i} ∈ N/B, we have,

fi(N, v,B, Pn) = v(i).

The idea behind this property is that an isolated agent with respect to
the communication situation will only receive the utility he can obtain on
his own because he will not be able to communicate with another agent
in the game (N, v,B, Pn) ∈ CU . The graph isolation is based on the idea
of the dummy player property which is standard in the literature.
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B2 Pairwise merging. For all (N, v,B) ∈ C(N) and all i, j ∈ N such that
(i : j) ∈ B, the following equality is satis�ed,

fi(N, v,B, Pn) + fj(N, v,B, Pn) = fp(N ij , vij , Bij , Pn−1),

where (N ij , vij , Bij , Pn−1) is the game such that player i and j have
merged into the new player p.

Property B2 states that a value is immune against arti�cial merging or
splitting of two directly connected players in (N, v,B, Pn) ∈ CU . The idea
behind this property was �rst introduced by Lehrer (1988) to characterize
the Banzhaf value (Theorem 1.3.6) in a slightly di�erent form (as an in-
equality), although it was soon discovered that the equality holds (see e.g.
Carreras and Magaña (1994), Nowak (1997) (Theorem 1.3.8)). Recently,
in Alonso-Meijide and Fiestras-Janeiro (2006) a similar property was used
in the context of games with graph restricted cooperation to characterize
the Banzhaf graph value (Theorem 2.2.6).

B3 Fairness in the graph. For all (N, v,B) ∈ C(N) and all i, j ∈ N such that
(i : j) ∈ B, we have,

fi(N, v,B, Pn)−fi(N, v,B−ij , Pn) = fj(N, v,B, Pn)−fj(N, v,B−ij , Pn).

The Fairness in the graph property says that, given the trivial singleton
coalition structure, if a player's payo� increases or decreases when breaking
the link with another player, this other player should gain or lose the same
amount, given the trivial singleton coalition structure, Pn. Property B3
is based on the Fairness property introduced in Myerson (1977) (Theorem
2.2.3) and is also studied in Alonso-Meijide and Fiestras-Janeiro (2006)
(Theorem 2.2.6). The property used in these papers was de�ned for games
with graph restricted communication.

A4 Neutrality under individual desertion. For all (N, v,B, P ) ∈ CU and all
i, j ∈ N such that {i, j} ⊆ Pk ∈ P , we have,

fi(N, v,B, P ) = fi(N, v,B, P−j).

The Neutrality under individual desertion property states that the deser-
tion of an agent from an a priori union does not a�ect the payo� of the
remaining members of the union. Property A4 is just a stronger version
of A3 which was �rst presented in Vázquez-Brage et al. (1996). The Neu-
trality under individual desertion was introduced in Alonso-Meijide et al.
(2007) in the context of games with a priori unions to characterize the
Banzhaf-Owen value (Theorem 4.2.5).

A5 1-Quotient game property. For all (N, v,B, P ) ∈ CU and all i ∈ N such
that {i} = Pk ∈ P ,

fi(N, v,B, P ) = fk(M, vBP , BM , Pm).
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Property A5 states that, using the value on CU in the original game, any
isolated agent with respect to the system of a priori unions gets the same
payo� as the union he forms in the communication quotient game with
the trivial singleton coalition structure and the complete graph.

A6 Quotient game property. For all (N, v,B, P ) ∈ CU and all Pk ∈ P ,

∑
i∈Pk

fi(N, v,B, P ) = fk(M, vBP , BM , Pm).

Property A6 states that the total payo� obtained by members of a union
in the original game, is the amount obtained by the union itself in the
communication quotient game with the trivial system of a priori unions
and the complete graph. In the case where Pk = {i} propertiesA5 andA6
are equal. The idea behind the Quotient game property was introduced
by Owen (1977). A similar property was used in Vázquez-Brage et al.
(1997) (Theorem 4.2.4) and Alonso-Meijide and Fiestras-Janeiro (2002)
(Theorem 4.2.6) in the context of games with a priori unions.

At this point we have introduced the properties we need to give characteri-
zations for each value on CU proposed in De�nition 5.2.1, De�nition 5.2.3, and
De�nition 5.2.4.

Theorem 5.3.1. Alonso-Meijide et al. (to appear). There is a unique value on
CU which satis�es B1, B2, B3, A4, and A5. It is the Banzhaf-Owen graph
value, ψc.

Proof.

First we will see that ψc satis�es the properties and next we will prove that
it is the only value on CU satisfying them.

(1) Existence. As depicted in Table 5.2, ψc(N, v,B, Pn) = βc(N, v,B).
Then, using the characterization of βc in Theorem 2.2.6 it follows that ψc sat-
is�es B1, B2, and B3. Take (N, v,B, P ) ∈ CU and let i, j ∈ Pk. Then we can
write

ψci (N, v,B, P ) = 22−m−pk

∑
R⊆M\k

∑
T⊆Pk\{i,j}

[
vB(PR ∪ T ∪ i ∪ j)−

−vB(PR ∪ T ∪ j) + vB(PR ∪ T ∪ i)− vB(PR ∪ T )
]
.
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Let P−j = {P ′1, . . . , P ′m+1} where P ′l = Pl for all l ∈ {1, . . . , k− 1, k+ 1, . . . ,m},
P ′k = Pk \ j and P ′m+1 = {j}. Let M ′ = {1, . . . ,m+ 1}. Then,

ψci (N, v,B, P−j) =
∑

R⊆M ′\k

1
2m

∑
T⊆P ′k\i

1
2pk−2

(vB(PR ∪ T ∪ i)− vB(PR ∪ T ))

=
∑

R⊆M\k

1
2m

∑
T⊆Pk\{i,j}

1
2pk−2

(vB(PR ∪ T ∪ i)− vB(PR ∪ T ))

+
∑

R⊆M\k

1
2m

∑
T⊆Pk\{i,j}

1
2pk−2

(vB(PR ∪ T ∪ j ∪ i)− vB(PR ∪ T ∪ j)) = 22−m−pk

×
∑

R⊆M\k

∑
T⊆Pk\{i,j}

[
vB(PR ∪ T ∪ i)− vB(PR ∪ T ) + vB(PR ∪ T ∪ i ∪ j)− vB(PR ∪ T ∪ j)

]
.

Hence, ψc satis�es A4.
Finally, we show that A5 is satis�ed. Take i ∈ N and k ∈ M such that

Pk = {i} and consider the communication quotient game (M,vBP , BM , Pm) ∈
CU . Then,

ψck(M,vBP , BM , Pm) =
∑

R⊆M\k

1
2m−1

((vBP )B
M

(R ∪ k)− (vBP )B
M

(R)) =

=
∑

R⊆M\k

1
2m−1

(vBP (R ∪ k)− vBP (R)) = ψci (N, v,B, P ).

(2) Uniqueness.

• Following a similar argument as in Theorem 2.2.6, we conclude that the
�rst three properties characterize ψc for all (N, v,B, Pn) ∈ CU .

• Suppose that there are two di�erent values on CU , ψ1c and ψ2c that
satisfy the properties. Then, there exists (N, v,B, P ) ∈ CU such that
ψ1c(N, v,B, P ) 6= ψ2c(N, v,B, P ) and P 6= Pn. We may suppose that for
the triple (N, v,B), P is a system of a priori unions with the maximum
number of unions for which ψ1c(N, v,B, P ) 6= ψ2c(N, v,B, P ) holds. Take
i ∈ N such that ψ1c

i (N, v,B, P ) 6= ψ2c
i (N, v,B, P ). Two possible cases

arise.

� {i} = Pk ∈ P . By A5 and the previous item we have,

ψ1c
i (N, v,B, P ) = ψ1c

k (M,vBP , BM , Pm)

= ψ2c
k (M, vBP , BM , Pm) = ψ2c

i (N, v,B, P ).

� There is j 6= i such that i, j ∈ Pk. Then, by A4 and the maximality
of P we have,

ψ1c
i (N, v,B, P ) = ψ1c

i (N, v,B, P−j)

= ψ2c
i (N, v,B, P−j) = ψ2c

i (N, v,B, P ).
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In both cases the inequality in the beginning is contradicted, and hence,
the result is proved.

�
With a similar scheme, a characterization of the symmetric coalitional Banzhaf

graph value is obtained, we just need to replace properties A4 and A5 by A3
and A6.

Theorem 5.3.2. Alonso-Meijide et al. (to appear). There is a unique value on
CU which satis�es B1, B2, B3, A3, and A6. It is the symmetric coalitional
Banzhaf graph value, πc.

Proof. Note that as πc is based on β, for all (N, v,B, Pn) ∈ CU ,

πci (N, v,B, P
n) = βci (N, v,B).

Then, following a similar argument as in Theorem 2.2.6 we have that πc is
characterized by properties B1, B2, and B3 when the system of a priori unions
is Pn. We just need to prove it for any (N, v,B, P ) ∈ CU where P 6= Pn.

(1) Existence. Using Theorem 2.2.6 it is straightforward to check that πc

satis�es B1, B2, and B3.
Let Pk ∈ P , from De�nition 5.2.4,∑

i∈Pk

πi(N, v, P ) =
∑

R⊆M\k

1
2m−1

∑
i∈Pk

∑
T⊆Pk\i

t!(pk − t− 1)!
pk!

[v(PR ∪ T ∪ i)− v(PR ∪ T )] ,�� ��5.5

For every R ⊆ M , we consider the TU game (Pk, wPR
) ∈ G(Pk), with

characteristic function

wPR
(T ) = v(PR ∪ T )− v(PR), for all T ⊆ Pk.

Then the Shapley value of a player i ∈ Pk is equal to:

ϕi(Pk, wPR
) =

∑
T⊆Pk\i

t!(pk − t− 1)!
pk!

[wPR
(T ∪ i)− wPR

(T )]

=
∑

T⊆Pk\i

t!(pk − t− 1)!
pk!

[v(PR ∪ T ∪ i)− v(PR ∪ T )] .

By the e�ciency of the Shapley value, we obtain,∑
i∈Pk

ϕi(Pk, wPR
) = wPR

(Pk) = v(PR ∪ Pk)− v(PR).

Inserting this result in equation 5.5, we have:∑
i∈Pk

πi(N, v, P ) =
∑

R⊆M\k

1
2m−1

[v(PR ∪ Pk)− v(PR)]

=
1

2m−1

∑
R⊆M\k

[
vP (R ∪ k)− vP (R)

]
= πck(M,vP , BM , Pm).
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Hence πc satis�es A6 since (vB)P = vBP .
Let Pk ∈ P and i, j ∈ Pk. By De�nition 4.2.3,

πi(N, v, P ) =
∑

R⊆M\k

∑
T⊆N\{i,j}

1
2m−1

1
pk

1(
pk−1
t

) [v(PR ∪ T ∪ i)− v(PR ∪ T )]

+
∑

R⊆M\k

∑
T⊆N\{i,j}

1
2m−1

1
pk

1(
pk−1
t+1

) [v(PR ∪ T ∪ j ∪ i)− v(PR ∪ T ∪ j)] .

Let P−j = {P ′1, . . . , P ′m+1} where P ′l = Pl for all l ∈ {1, . . . , k− 1, k+ 1, . . . ,m},
P ′k = Pk \ j and P ′m+1 = {j}. Let M ′ = {1, . . . ,m+ 1}. Then,

πi(N, v,B, P−j) =
∑

R⊆M ′\k

∑
T⊆P ′k\i

1
2m

1
pk − 1

1(
pk−2
t

) [v(PR ∪ T ∪ i)− v(PR ∪ T )]

=
∑

R⊆M\k

∑
T⊆Pk\{i,j}

1
2m

1
pk − 1

1(
pk−2
t

) [v(PR ∪ T ∪ i)− v(PR ∪ T )]

+
∑

R⊆M\k

∑
T⊆Pk\{i,j}

1
2m

1
pk − 1

1(
pk−2
t

) [v(PR ∪ T ∪ j ∪ i)− v(PR ∪ T ∪ j)] .

Hence,

πi(N, v,B, P )− πi(N, v,B, P−j)

=
∑

R⊆M\k

∑
T⊆Pk\{i,j}

A1 [v(PR ∪ T ∪ i)− v(PR ∪ T )]

+
∑

R⊆M\k

∑
T⊆Pk\{i,j}

A2 [v(PR ∪ T ∪ j ∪ i)− v(PR ∪ T ∪ j)] ,

where

A1 =
1

2m−1

1
pk

1(
pk−1
t

) − 1
2m

1
pk − 1

1(
pk−2
t

) ,
and

A2 =
1

2m−1

1
pk

1(
pk−1
t+1

) − 1
2m

1
pk − 1

1(
pk−2
t

) .
And operating a bit we have, A1 +A2 = 0.

Then,

πi(N, v,B, P )− πi(N, v,B, P−j)

=
∑

R⊆M\k

∑
T⊆Pk\{i,j}

A1 [v(PR ∪ T ∪ i)− v(PR ∪ T )

−v(PR ∪ T ∪ j ∪ i) + v(PR ∪ T ∪ j)] .

Since the last expression depends on i in the same way as it depends on j,
we proved that A3 is satis�ed.
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(2) Uniqueness. Suppose that there are two di�erent values on CU π1c

and π2c that satisfy the properties. Then, there exists (N, v,B, P ) ∈ CU such
that π1c(N, v,B, P ) 6= π2c(N, v,B, P ). Then P 6= Pn. We may suppose that
for the triple (N, v,B), P is a system of a priori unions with the maximum
number of unions for which π1c 6= π2c holds. Then, there is i ∈ N such that
π1c
i (N, v,B, P ) 6= π2c

i (N, v,B, P ). If {i} = Pk ∈ P , by A6 and the uniqueness
for the trivial singleton structure, we have,

π1c
i (N, v,B, P ) = π1c

k (M,vBP , ∅c, Pm)

= π2c
k (M,vBP , ∅c, Pm) = π2c

i (N, v,B, P ).

Assume that there is j ∈ Pk \ i. Then, by A3 and the minimality of P ,

π1c
i (N, v,B, P )− π1c

j (N, v,B, P ) = π2c
i (N, v,B, P )− π2c

j (N, v,B, P ).
�� ��5.6

Using A6 and (5.6), we have,

pkπ
1c
i (N, v,B, P ) = pkπ

2c
i (N, v,B, P ).

We obtain a contradiction in both cases.
�

Lastly, we give a characterization of φc which will be useful to discuss the
di�erences between the values studied in the paper.

Theorem 5.3.3. Alonso-Meijide et al. (to appear). There is a unique value on
CU which satis�es A1(for Pn), B3, A3, and A6. It is the Owen graph value,
φc.

Proof. Using that φc(N, v,B, Pn) = ϕc(N, v,B) for all (N, v,B, Pn) ∈ CU ,
we claim that φc satis�es A1 (for Pn) and B3 (Theorem 2.2.3). From Vázquez-
Brage et al. (1997) we know that φc satis�es both A3 and A6.

We know that the Myerson value is characterized by e�ciency and fairness
(Theorem 2.2.3). Hence, A1 (for Pn) and B3 uniquely determine φc for all
(N, v,B, Pn) ∈ CU . It remains to prove the uniqueness for any (N, v,B, P ) ∈
CU with P 6= Pn. The proof follows the argument used in the proof of the
uniqueness of Theorem 5.3.2.

�

Remark 5.3.4 (Independence of properties). In order to see that properties used
in the previous results are independent we will consider the following values on
CU .

For Theorem 5.3.1:

• The null value on CU , f1, de�ned as f1(N, v,B, P ) = 0 satis�es properties
B2, B3, A4 and A5, but not B1.

• The value on CU f2 de�ned as f2(N, v,B, P ) = v(i) satis�es B1, B3, A4
and A5, but not B2.
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• The value on CU f3 de�ned as

i) If (N, v,B, P ) with N = {i, j}, with i 6= j, B = ∅c, P = Pn,

f3
i (N, v,B, P ) =

3
4

(v(N)− v(j)) +
1
4
v(i), and

f3
j (N, v,B, P ) =

1
4

(v(N)− v(i)) +
3
4
v(j).

ii) Otherwise, f3 = ψc,

satis�es B1, B2, A4 and A5, but not B3.

• The value on CU πc satis�es B1, B2, B3, and A5, but not A4.

• The value on CU f4 de�ned as f4(N, v,B, P ) = βc(N, v,B) satis�es B1,
B2, B3, and A4, but not A5.

For Theorem 5.3.2:

• The null value on CU , f1, de�ned as f1(N, v,B, P ) = 0 satis�es properties
B2, B3, A3 and A6, but not B1.

• The value on CU φc satis�es properties B1, B3, A3 and A6, but not B2.

• The value on CU f5 de�ned as

i) If (N, v,B, P ) with N = {i, j}, with i 6= j, B = ∅c, P = Pn,

f5
i (N, v,B, P ) =

3
4

(v(N)− v(j)) +
1
4
v(i), and

f5
j (N, v,B, P ) =

1
4

(v(N)− v(i)) +
3
4
v(j).

ii) Otherwise, f5 = πc,

satis�es properties B1, B2, A3, and A6 but not B3.

• The value on CU f6, de�ned as f6
i (N, v,B, P ) = βk(M, vBP )/|Pk|, for

every (N, v,B, P ) ∈ CU with i ∈ Pk and k ∈M satis�es B1, B2, B3, and
A6, but not A3.

• The value on CU ψc, satis�es B1, B2, B3, and A3, but not A6.

For Theorem 5.3.3:

• The null value on CU , f1, de�ned as f1(N, v,B, P ) = 0 satis�es properties
B3, A3, and A6, but not A1 (for Pn).

• The value on CU f7, de�ned as
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i) If (N, v,B, P ) with N = {i, j}, with i 6= j, B = ∅c, P = Pn,

f7
i (N, v,B, P ) =

3
4

(v(N)− v(j)) +
1
4
v(i), and

f7
j (N, v,B, P ) =

1
4

(v(N)− v(i)) +
3
4
v(j).

ii) Otherwise, f7 = φc.

satis�es properties A1 (for Pn), A3, and A6, but not B3.

• The value on CU f8, de�ned as f8
i (N, v,B, P ) = ϕk(M,vBP )/|Pk|, for

every (N, v,B, P ) ∈ CU with i ∈ Pk and k ∈ M , satis�es A1 (for Pn),
B3, and A6, but not A3.

• The value on CU f9, de�ned as f9(N, v,B, P ) = ϕc(N, v,B), for every
(N, v,B, P ) ∈ CU satis�es properties A1 (for Pn), B3, and A3, but not
A6.

We end by presenting in Table 5.4 the properties that are satis�ed by each of
the values studied above. A blank �eld indicates that the value does not satisfy
the property while a X means that it does satisfy the property described in
the row.

φc ψc πc

A1 (component e�ciency) X
A2 (fairness in the quotient) X X

A3 (balanced contributions within the unions) X X X
B1 (graph isolation) X X X
B2 (pairwise merging) X X

B3 (fairness in the graph) X X X
A4 (neutrality under individual desertion) X

A5 (1-quotient game property) X X X
A6 (quotient game property) X X

Table 5.4: Properties and values on CU

In conclusion, we would like to highlight that the di�erences between the
Owen, the Banzhaf-Owen, and the Symmetric coalitional Banzhaf values are
transferred to the corresponding values on CU . Therefore, the only di�erence
between φc and πc is that the former satis�es A1, while the latter satis�es
B2. This di�erence comes from the fact that for every (N, v,B) ∈ C(N),
φc(N, v,B, Pn) = ϕc(N, v,B) and πc(N, v,B, Pn) = βc(N, v,B), and the dif-
ferences between the Myerson and the Banzhaf graph values depicted in Section
2.2 are maintained between φc and πc. The Banzhaf-Owen graph value is the
only one out of the three values that is not fair in the quotient (propertyA2) and
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does not satisfy the Quotient game property, however it is the only one satisfying
the Neutrality under individual desertion property (A4). This three properties
are the only fact in which ψc and πc di�er, while the di�erence between φc

and ψc are quite bigger. φc satis�es A1 while ψc satis�es B2, inheriting the
distinction between ϕc and βc, ψc is not fair in the quotient (A2), and �nally
the di�erences A3-A5 and A5-A6 described between ψc and πc, are the same
between ψc and φc.

To conclude, it is worth to emphasize the interest behind this kind of parallel
axiomatic characterizations because they favor ease when comparing di�erent
options to be chosen as the preferred value. Anyway, there is no value able
to cover all situations, and the idea is to analyze the situation in which the
values are to be applied and all the additional information (not contained in the
characteristic function, nor in the coalition structure, nor in the communication
graph) in order to decide which one of the studied values should be used in each
circumstance.

47





6
A political example. The Basque

Parliament

In order to illustrate all the values studied in this work let us consider the Par-
liament of the Basque Country in two di�erent periods of o�ce. In the �rst
example we analyze the distribution of the power in the Parliament between
1986 and 1990. We choose this term of o�ce to illustrate the model presented
in Chapter 3 because the used example has been studied in detail in Carreras
and Owen (1995) and the proposed incompatibility graph is properly explained
taking into account the situation and the relations between the agents at that
time. This example has also been studied in Alonso-Meijide and Casas-Méndez
(2007) using the TU games with incompatibilities model, and the proposed
modi�cation of the Public Good Index. In Carreras and Owen (1995) the deci-
siveness of each party was studied using an incompatibility graph and di�erent a
priori unions structures, but always with the Owen value φ, the incompatibility
Shapley value ϕI , and a combination of both. In this case the incompatibility
Banzhaf value βI will be used and the obtained results compared with the ones
in the cited papers. In the second example we analyze the distribution of the
power among the di�erent political parties using the models studied in Chapter
1, Chapter 2, Chapter 4, and Chapter 5. In this case we select the VIII term of
o�ce of the Parliament.

The Parliament of the Basque Country, one of Spain's seventeen regions, is
constituted by 75 members. We model the situation by a simple game. The
characteristic function of the game played by the parties with parliamentary rep-
resentation is as follows, unity for any coalition summing 38 or more members,
and zero for the rest, since most decisions are taken by majority.

6.1 The Parliament from 1986 to 1990

We will consider the situation in the Parliament after the elections in November
1986. The Parliament was composed by 19 members of the Spanish socialist
party PSE, 17 members of the Basque nationalist conservative party PNV, 13
members of the Basque nationalist social democrat party EA, 13 members of
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the Basque nationalist left-wing party HB, 9 members of the Basque nationalist
moderated left-wing party EE, 2 members of the Spanish conservative party
CP, and 2 members of the Spanish centrist party CDS. In the papers mentioned
above, taking into account the behavior of the parties and the declarations made
by the representatives of the parties involved, it is assumed the incompatibility
graph compound of the following links:

(PSE : HB), (PSE : CP ), (HB : EE), (HB : CP ), (HB : CDS).

For a more detailed description of each party and their political positions the
reader is referenced to Carreras and Owen (1996).

In the original simple game there are twelve possible minimal winning coali-
tions, but when we consider the I-restricted game with the incompatibility graph
only six minimal winning coalitions are feasible.

In Table 6.1, we present the Shapley and Banzhaf values, the incompatibility
Shapley and incompatibility Banzhaf values, and the corresponding normalized
values1.

Party Seats ϕ β β̄ ϕI βI β̄I

PSE 19 .25238 .46875 .25424 .2333 .40625 .22414
PNV 17 .25238 .46875 .25424 .3167 .53125 .29310
EA 13 .15238 .28125 .15254 .2333 .40625 .22414
HB 13 .15238 .28125 .15254 .0333 .09375 .05172
EE 9 .15238 .28125 .15254 .1500 .28125 .15517
CP 2 .01905 .03125 .01695 0 0 0
CDS 2 .01905 .03125 .01695 .0333 .09375 .05172

Table 6.1: The Banzhaf and Shapley values, the corresponding values on I(N),
and the corresponding normalized values

The depicted results are similar to those presented in Carreras and Owen
(1996) and Alonso-Meijide and Casas-Méndez (2007). PNV ranks �rst, even
though PSE has more seats. PNV and EA are the only parties which increase
their power signi�cantly. CP becomes a null player because his rejection to PSE
and HB.

6.2 The Parliament from 2005 to 2009

Since elections in 2005, the Parliament was composed by 22 members of the
Basque nationalist conservative party EAJ/PNV, "A", 18 members of the Span-
ish socialist party PSE-EE/PSOE, "B", 15 members of the Spanish conser-
vative party PP, "C", 9 members of the Basque nationalist left-wing party

1By f̄ we denote the normalized f value
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EHAK/PCTV, "D", 7 members of the Basque nationalist social democrat party
EA, "E", 3 members of the Spanish left-wing party EB/IU, "F", and 1 member
of the Basque nationalist moderated left-wing party Aralar, "J".

In order to build a model that takes into account the ideology of the political
parties involved we propose a communication graph de�ned in Figure 6.2. The
graph is based on the relations between the parties in such a way that we put a
link between two agents whenever these parties have reached agreements in the
past.

Finally, we propose a cooperation structure in terms of a priori system of
unions. Since the government was formed by A, E, and F before the elections,
we considered the following system of a priori unions:

P = {P1, P2, P3, P4, P5}

where, P1 = {A,E, F}, P2 = {B}, P3 = {C}, P4 = {D}, and P5 = {G}. The
proposed coalition and communication structures are jointly depicted in Figure
6.2.

A

C B E G D

F

P1P2 P5P3 P4

Figure 6.1: The communication graph and the a priori system of unions
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Table 6.2 shows the values studied in Chapter 1 and Chapter 2.

Party Label Seats ϕ β β̄ ϕc βc β̄c

EAJ/PNV A 22 .3524 .5938 .3453 .3024 .4844 .248
PSE-EE/PSOE B 18 .2524 .4062 .2364 .3690 .5313 .272

PP C 15 .1857 .3438 .2000 .0357 .1250 .064
EHAK/PCTV D 9 .0857 .1562 .0909 .0690 .1875 .096

EA E 7 .0857 .1562 .0909 .0857 .250 .128
EB/IU F 3 .0190 .0312 .0182 .0690 .1875 .096
Aralar G 1 .0190 .0312 .0182 .0690 .1875 .096

Table 6.2: The Shapley, Banzhaf, Myerson, and Banzhaf graph values

Concerning the results presented in Table 6.2, the most remarkable e�ect of
the communication graph restriction is that the most powerful player switches
from A to B. In general those parties which have more links to other parties
increase their payo�s at the expense of the parties located at the extremes of
the graph.

Table 6.3 depicts the values studied in Chapter 4 and Chapter 5.

Party φ ψ ψ̄ π π̄ φc ψc ψ̄c πc π̄c

A .3833 .5938 .3878 .5833 .3889 .3806 .4688 .3571 .4479 .3525
B .1667 .2500 .1633 .2500 .1667 .2500 .3750 .2857 .3750 .2951
C .1667 .2500 .1633 .2500 .1667 0 0 0 0 0
D .1667 .2500 .1633 .2500 .1667 .0833 .1250 .0952 .1250 .0984
E .1000 .1563 .1020 .1458 .0972 .0722 .1250 .0952 .1042 .0821
F .0167 .0313 .0204 .0208 .0139 .1306 .0938 .0714 .0938 .0738
G 0 0 0 0 0 .0833 .1250 .0952 .1250 .0984

Table 6.3: The Owen, Banzhaf-Owen, symmetric coalitional Banzhaf, and cor-
responding graph values

The left side of Table 6.3 shows the distribution of power based on the
di�erent values on U(N) studied given the system of a priori unions P . This
approach gives more power to A, which is the biggest party in the union P1. On
the other hand the next three parties, B, C, and D are each allotted with the
same power. Finally, the smallest party becomes a null player.

When we consider the communication graph together with the system of a
priori unions (right side of Table 6.3) the distribution of power changes signi�-
cantly. The most remarkable change is that player C, the third most voted one,
becomes irrelevant and that G, which has only one representative, is no longer
null. This shows that the studied model is an accurate approach of the situation
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and di�erent from the models presented in Section 2.2 and Section 2.3. Last
but not least, if we focus on the values on CU , the di�erence between φc and
the others lies on the power of parties E and F. The Owen graph value gives
more weight to coalitions formed by many players (also by few players), while
the other two (mostly ψc) are not so sensitive to the sizes of the coalitions where
there are swings. This is the reason why parties E and F switch their order.
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