
Trabajo Fin de Máster

GEDA: A Novel Subset Selection
Method for Data E�ciency

Jose Antonio Cribeiro Ramallo

Máster en Técnicas Estad́ısticas

Curso 2021-2022

ii

iii

Propuesta de Trabajo Fin de Máster

T́ıtulo en galego: GEDA: Un novo método de selección de subconxuntos para Data E�-
ciency

T́ıtulo en español: GEDA: Un nuevo método de selección de subconjuntos para Data
E�ciency

English title: GEDA: A novel subset selection method for Data E�ciency

Modalidad: Modalidad B

Autor/a: Jose Antonio Cribeiro Ramallo, Universidade de Santiago de Compostela

Director/a: Marta Sestelo Pérez, Universidad de Vigo

Tutor/a: Marcos Baptista Ŕıos, Gradiant

Breve resumen del trabajo:

En este trabajo se ha realizado una investigación en métodos para Data E�ciency, donde se
han estudiado los métodos del SOTA de Data E�ciency y Data Valuation. Posteriormente se
ha introducido nuestro nuevo método: GEDA, él cual hemos comparado con otros métodos
del actual SOTA.

Recomendaciones:

Otras observaciones:

iv

v

Doña Marta Sestelo Pérez, Dra. de la Universidad de Vigo y don Marcos Baptista Ŕıos, Investigador
Senior de Gradiant, informan que el Trabajo Fin de Máster titulado

GEDA: A Novel Subset Selection Method for Data E�ciency

fue realizado bajo su dirección por don Jose Antonio Cribeiro Ramallo para el Máster en Técnicas
Estad́ısticas. Estimando que el trabajo está terminado, dan su conformidad para su presentación y
defensa ante un tribunal.

En Vigo, a 28 de Enero de 2022.

La directora:

Doña Marta Sestelo Pérez

El tutor:

Don Marcos Baptista Ŕıos

El autor:

Don Jose Antonio Cribeiro Ramallo

vi

Contents

Abstract ix

1 Introduction 1

1.1 Motivation and objectives . 1
1.2 Structure of the document . 2

2 Introduction to Deep Learning for Computer Vision 3

2.1 Computer Vision . 3
2.2 Incremental Gradient Methods . 4
2.3 Introduction to Neural Networks . 5

3 Related Work 9

3.1 Data Valuation Methods for Data E�ciency . 9
3.1.1 Cooperative Games . 10
3.1.2 Reinforcement Learning . 10

3.2 Subset Selection Methods for Data E�ciency . 11
3.2.1 Theoretical boundings for adaptive data subset selection methods 12

4 Introducing GEDA 15

4.1 GEDA: Gradient norms Empirical Distribution Approximation 15

5 Experiments 19

5.1 Experimental Set up . 19
5.1.1 Data sets . 19
5.1.2 Evaluation Metric . 19
5.1.3 Implementation Details . 20

5.2 Baselines and first approach . 20
5.3 Working with the gradients . 21
5.4 Introducing GEDA . 23
5.5 Comparisons with the S.O.T.A . 23
5.6 Final thoughts and conclusions . 26

6 Future Work 27

6.1 Improving GEDA . 27
6.2 Online GEDA . 27
6.3 GEDA as a warm start method . 28

A Tables and Results 29

Bibliography 31

vii

viii CONTENTS

Abstract

Resumen en español

En el paradigma actual de Machine/Deep Learning se tiende a utilizar bases de datos cada vez más
grandes, lo cual conlleva a un aumento en el coste computacional del modelo. Esto significa, entre otras
cosas, un aumento en el impacto medioambiental y en el coste financiero del modelo. Una forma de
atacar este problema seŕıa reducir el tamaño de las bases de datos empleadas, sin comprometer grave-
mente la precisión del modelo entrenado. En este trabajo, proponemos un nuevo método de selección
de subconjuntos llamado GEDA (Gradient norms Empirical Distribution Approximation), que obtiene
los subconjuntos resolviendo un sencillo problema de programación lineal de enteros mixta. Además,
demostramos la validez de este método a través de una serie de experimentos empleando conjuntos
de datos de visión artificial, en donde encontramos que emplear GEDA conlleva a un aumento en la
velocidad de entrenamiento cuando empleamos un pequeño número de epochs. Finalmente, compara-
mos GEDA con los modelos de selección de subconjuntos del estado del arte actuales, demostrando
que GEDA consistentemente supera los resultados obtenidos con el resto de métodos durante entre-
namientos cortos.

English abstract

In the current Machine/Deep Learning paradigm, there is a tendency to use larger and larger databases,
which leads to an increase in the computational cost of the model. This means, among other things, an
increase in the environmental impact and in the financial cost of said models. One way to attack this
problem would be to reduce the size of the databases used, without compromising the accuracy of the
trained model. In this paper, we propose a new subset selection method called GEDA (Gradient norms
Empirical Distribution Approximation), which obtains subsets by solving a simple mixed integer linear
programming (MILP) problem. Furthermore, we demonstrate the validity of the method through a
series of experiments using computer vision data sets, where we find that employing GEDA leads to
an increase in training speed when we employ a small number of epochs. Finally, we compare GEDA
with current state-of-the-art subset selection models, showing that GEDA consistently outperforms all
other methods during short training runs.

ix

x ABSTRACT

Chapter 1

Introduction

Deep Learning is, without a doubt, one the most impactful technologies of the last decade, inspiring
an entire generation of scientists to explore the field and research on its applications. However, Deep
Learning-based methods are not really new. The first one dates back to 1958: Rosenblatt’s Percep-
tron [1]. A computationally not implementable method until the appearance of the Back-Propagation
algorithm proposed by Werbos [2] 18 years later, in 1974. Although the mathematical definition of
the model was available, its implementation required such a massive level of computational resources
at that time that it simply was not feasible, so the study of the methods was put on hold.

Over the years, the computational capabilities of the modern computer have advanced by leaps
and bounds, which, together with the advances in parallel computing and the incessant increase in
the amount of data collected every day, have put these methods back on the map, gaining a massive
surge in popularity, due to the fact they can be used inside a plethora of di↵erent cases inside Machine
Learning, and even helped solved problems that were previously unfeasible.

Although the power of Deep Learning models is compelling, they presents two major problems:
they are becoming more and more computationally heavy and they tend to be trained with large
volumes of data. This might prove to be a problem for small companies and research groups that
might not have su�cient resources.

1.1 Motivation and objectives

The main resources we have for training Deep Learning models are: computational power and data.
For large companies, increasing their computational power is simple, since they have the necessary re-
sources to scale their servers as needed. This is, sadly, not the reality for the rest of companies or even
university research groups, where buying a dozen of new GPUs to increase their power is not something
viable; therefore, we need to find a di↵erent avenue to reduce the time it takes to compute said models.
Since the computation times comes in hand with the number of data used (the more data, the more
is going to take to train with it), reducing it would lead to a direct time save. This begs the question,
how can we reduce the amount of data used, without hindering the performance of the resulting model?

While seemingly a simple question, the answer is completely unclear, since it deeply depend on how
you want to train your model. There are a plethora of state of the art models that aim to solve this
issue from di↵erent perspectives. For example, some models are really good at detecting and removing
data that has been miss-labeled or that is noisy, others are really good at reducing a substantial amount
of the data (70 to 80 percent) and reach similar results as those obtained during long trainings with
the full data set. Although they have strengths of their own, they also present di↵erent weaknesses

1

2 CHAPTER 1. INTRODUCTION

that might be a deal breaker to us: either they are computationally expensive, extremely complex or
they under-perform with shorter training processes.

In view of the state of the art, our objectives will be to study the e↵ect on model performance of
reducing the training data, and having this knowledge, to design a data selection algorithm capable
of reducing the size of the data set, while still being computationally simple. With these objectives
in mind, we have developed a model capable of reducing the data set, while minimizing the hit in
performance, that we call GEDA. This model yields better results for shorter training processes in
comparison to the other state of the art models, and we are going to achieve that with only minimizing
a simple MILP (mixed integer linear programming) problem at the beginning of the training. Addi-
tionally, we test its e�cacy for Deep Learning models for Computer Vision, a task where we have to
work with images, and where it usually takes a large amount of time to train its models. The main
applications of our method would be:

• Given a desired percentage, , GEDA is capable of removing the (100�)% of the training data
set while having a smaller hit in performance for shorter training, than the other state of the art
models.

• GEDA can be easily adapted into an online algorithm, where instead of selecting once the data,
we are going to select a new subset every R epochs.

• Due to the good results during short trainings, GEDA could work as a great warm start method
when using the entire data set is too prohibitive.

1.2 Structure of the document

Through out the following chapters we will enunciate the solution to the problem of reducing the data
set while minimizing the performance hit. At the same, we will give context to the document, briefly
introducing basic concepts about Deep Learning and Computer Vision.

• In Chapter 2 we will do a brief introduction to deep learning for Computer Vision, where we will
introduce the reader to basic definitions and methodology, with the aim to familiarize the reader
with the basic notation and nomenclature that we are going to use in the next chapters.

• Chapter 3 focuses on introducing the current state of the art methods for data e�ciency and
data valuation.

• Moving on, in Chapter 4 we will introduce the our proposed method for e�cient subset selection:
GEDA.

• In Chapter 5 we will lay down all the research that led to GEDA, as well as a comparison of our
method with the current state of the art.

• Finally, in Chapter 6 we will talk about possible uses of GEDA, as well as improvements that
could be perform on the method, that could prove to be a possible future work on the topic.

Chapter 2

Introduction to Deep Learning for

Computer Vision

The importance of Computer Vision comes from the fact that everything could potentially be pro-
cessed as an image or collection of images. This includes X-rays, faces, videos, PDF files and even
sound files by processing an image of the sound waves. While there are a large number of methods
within Computer Vision, the most widely used today are based on Deep Learning.

The aim of this chapter is to briefly introduce Computer Vision, as well as some concepts and ideas
of Deep Learning, and the methods for its optimization, that are going to be essential for the research
presented afterwards.

2.1 Computer Vision

In general, Computer Vision is the collection of techniques used to provide a computer with the ability
of processing the information that an image or video contains. Once this information is understood,
the computer can carry out a variety of tasks. The most common ones are described below and shown
in Figure 2.1:

• Classification. The task of classifying or categorizing an image based on the pixels within it.
See figure 2.1a.

• Object Detection.The task of localize and classifying objects inside an image, indicating their
location with a bounding box. It can be thought of as the combination of the classification task
with object localization. See figure 2.1b.

• Segmentation. The task of partitioning an image into multiple image segments (set of pixels
within an image). See figure 2.1c.

In modern Computer Vision, Machine Learning, and specifically Deep Learning models, yield the
best results and it has been like this for the last 10 years. In 2010, the ImageNet data set [3], containing
millions of images inside thousandths of categories, became available for researches. On a Computer
Vision competition utilizing the ImageNet data set, Krizhevsky et al. [4] introduced in 2012 the first
Convolutional Neural Network (CNN for short) called AlexNet. This new model managed to revolu-
tionize the state of the art at the time, marking the biggest breakthrough inside Computer Vision.
Since then, Convolutional Neural Networks have been the default inside any Computer Vision task.

A similar breakthrough happened in 2016, when He et al. [5] entered another Computer Vision
competition with the ImageNet data base, with a new type of CNN Residual Net (ResNet). Currently,

3

4 CHAPTER 2. INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION

(a) Classification (b) Object Detection (c) Segmentation

Figure 2.1: Visualisation of the Computer Vision main tasks.

variations of the ResNet are some of the state of the art models, and have been since the introduction
of the first ResNet. Other relevant models are Vision Transformer [6] and I3D [7], among others.

2.2 Incremental Gradient Methods

Gradient descent is one of the (if not the) most well known methods for global optimization of di↵er-
entiable multivariate real functions. It is performed in a iterative fashion by, given said di↵erentiable
function F : Rn ! R and its gradient rF , select the next iterator as:

ai+1 = ai � �rF (ai),

where �, the learning rate, symbolizes the size of the step in the direction given by �rF (known to
be the direction of maximum descent). The learning rate is going to be selected, either by selecting
the optimal value of � on each step, picking a fixed value or defining a function that selects the value
of � on each step (called the scheduler function).

Now consider a given dataset D ⇢ Rn with points xi 2 D, and a di↵erentiable parametric real
function L✓ written as:

L✓(L✓, D) =
nX

i=1

L✓(xi),

with L✓ : D ! R a di↵erentiable parametric function. The gradient of said function L✓, over the
parameters ✓, can be written as:

r✓L✓(L✓, D) =
nX

i=1

r✓L✓(xi).

Note 2.1 Since we are only going to consider the gradients over the parameters ✓, we are going to

write rL✓ = r✓L✓ indistinctly.

Under this hypothesis lays the next definition:

Algorithm 2.1 Given a random subset of D (let’s say B ⇢ D), Stochastic Gradient Descent is an

iterative algorithm for the optimization of multivariate real functions defined by the sum of di↵erentiable

functions. The algorithm performs as follows:

1. Draw a random selection of points B ⇢ D such as: |B| = kbatch

2. Perform an iteration of gradient descent with B over the parameters ✓i:

✓i+1 = ✓i � �
X

x2B

rL✓i(x)

2.3. INTRODUCTION TO NEURAL NETWORKS 5

3. Update D = D �B

4. Repeat step 1 through 3 until D = ;.

Performing the previous steps is commonly known as an epoch. Stochastic Gradient Descent (SGD) is

commonly performed over multiple epochs.

Note 2.2 Keep in mind that, given a random selection of points B ⇢ D, we can say that:

X

x2B

rL✓(x) ⇡
X

x2D

rL✓(x).

All the methods that try to approximate the optimization performed with the full gradient are called

Incremental Gradient Methods. Examples are Stochastic Approximate Gradient Descent [8], SGD with

momentum [9] or SVRG [10].

Stochastic Gradient Descent is employed as an alternative to regular Gradient Descent to fix problems
with the optimization surface (like zig-zagging), to avoid local minima that GD might get into or even
when calculating the full gradient rL✓ is not feasible, all of those being problems that we could face
when working with Neural Networks.

2.3 Introduction to Neural Networks

Deep Neural Networks have become the standard tool for solving a plethora of problems inside Machine
Learning, been wrongly though of like an imitation of the human brain’s working. In the end, neural
networks are just a composition of di↵erentiable parametric functions that, so far, has not been found
to have any relation to an actual human brain. The following definition gives a general understanding
of the type of models that we are going to be working with.

Definition 2.2 Given {fj}klay

j=1 di↵erentiable functions, where each fj has an amount of parameters

nj (not necessary greater than 0) {✓ji }
nj

i=1, a general Neural Network can be defined as the composition

of all the fj (generally called hidden layers, with its components {fji}
Mj

i=1 generally referred as neurons)

with the composition of another function g (known as the output layer):

f✓(x) = g(fklay � · · · � f1 � I(x)),

This last layer g can change between tasks. Generally, for regression, we tend to use g = idX the

identity function, whilst for k-class classification we use the softmax function
1
composed with the

max function. Finally, I, called the input layer, handles the data points to the network in a shape that

can be easily processed. When working with simple data (like tabular data) we use I = idX , but for

more complex data, like images or sentences, I presents a more complex structure (see figure 2.3).

Now, given the model f✓, we are going to determine the value of the parameter via solving the
optimization problem:

min
✓

nX

i=1

L(f✓(xi), yi),

where L is typically chosen to be the cross entropy function inside the k-classification task. In practice,
is typical to sum a term !k✓k2 to the minimization objective function, to help the convergence of the

1The softmax function, � : RK �! [0, 1]K , is defined by:

�(z)j =
ezj

PK
i=1 e

zk

6 CHAPTER 2. INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION

parameters. The term ! is called weight decay. More information about weight decay and any other
hyper-parameter can be found in [11].

Because we are working with the sum of di↵erentiable functions, we are able to use the algorithm
2.1 to solve the optimization problem. The process of obtaining such adjusted parameters ✓̂ is often
referred as the training process, and the data we use during is usually called the training set. At the
same time, we will measure the validity of the model with some performance metric, the calculation
of which is going to be obtained using a di↵erent set than the one which we trained the model with.
We are going to call this last set the validation set.

The general definition of Neural Network allows for complex architectures. This is such the case
for the Networks that we are going to use, Convolutional Networks. Convolutional Networks (or
ConvNets) receive their name for the use of the convolution operation inside each hidden layer. Now,
each layer fl is going to be:

X l
j = flj(X

l�1) = h(bl +

Ml�1X

i=1

Kij ⌦X l�1
i), 8j = 1, . . . ,Ml, 8l = 1, . . . , klay � 1;

where Kij are linear functions2 defined for every pair of neurons of di↵erent layers, bl is a bias term
and h is a non-linear function (called the activation function). At the end of the convolutional layers,
ConvNets add a fully connected layer (derived from the Multi layer Perceptron network), so the last
layer fklay can be defined through its components as follows:

fklayj(X
klay�1) = bklay + wT

l ·Xklay�1, 8j = 1, . . . ,Mklay ;

with wT
l the vector of weights. This way, each neuron output flj(X l�1) = X l

j is going to be a vector3.
ConvNets typically present a pooling layer as well, which is just a dimension reduction, every few
number of layers (check Figure 2.2 for a visual representation).

Note 2.3 Further elaboration for the calculations of the ConvNets Loss function’s gradients can be

found in [12], as well as more in-depth discussion of ConvNets.

We have introduced all the necessary information about Neural Networks, but more information
about it can be found in [13].

2Kij are referred as the convolutional nucleus of the connection of the i-th neuron from the previous layer (Xl�1
i)

with the j-th neuron of the current layer (Xl
j), and are trained alongside all the other parameters of the model.

3Keep in mind that at the convolutional layers each neuron outputs an image handled as a vector (check Figure 2.3),
and at the FC layer the network handle all of the outputs of the last convolutional layer as a unique vector (just like in
the input layer, shown at Figure 2.3)

2.3. INTRODUCTION TO NEURAL NETWORKS 7

Figure 2.2: ConvNets architecture diagram. In this example, the activation function, h, of each hidden
layer is going to be the ReLu function, and the output layer of the network, g, can be defined through
its components like gj(x) = �(x), with �(x) the sigmoid function. Source: http://cs231n.stanford.
edu/slides/2017/cs231n_2017_lecture6.pdf

Figure 2.3: Image handling schema performed on the input layer of Convolutional Networks.

8 CHAPTER 2. INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION

Chapter 3

Related Work

Even though inside the field of Data E�ciency and Data Valuation exists the idea that both refer to
the same field of knowledge, it is important to clarify that this is not really true. Data E�ciency is
the collection of techniques that seek to improve the e�ciency of the training process for a Machine
Learning model. This e�ciency might come in the sense of energy e�ciency [14], memory e�ciency,
storage e�ciency, etc. But, in general, e�ciency is often referred as a reduction of the training set
for obtaining a similar result as the model trained with the full dataset1. It can be though of as the
collection of techniques for answering the question: given a fraction of the dataset, how can I obtain
similar results to those obtained using the full dataset?

Data Valuation has a more simpler definition: the collection of techniques that aim to assign value
to all of our data, based on how useful it is for the training process. It can be though of as the collection
of techniques for answering the question: given my training data, how useful is it?

Usually, the confusion comes because the most common scenario for the use of Data Valuation
techniques is inside Data E�ciency, but it is important to keep in mind that it is not the only applica-
ble scenario. Data Valuation is also used for modeling the data marketplace problem (which was the
first time that it was introduced), and other complex problems that take roots in decision theory (like
federated learning [15]).

It is important to clarify as well, that Data Valuation techniques for Data E�ciency give a more
explainable solution for the E�ciency problem than what a general Data E�ciency method might
give, but they tend to be more computationally heavy. The research presented here is inside the Data
E�ciency framework due to this last reason.

3.1 Data Valuation Methods for Data E�ciency

Let us define for the rest of the chapter DT = {(xi, yi)}n1 as the training set (not necessarily i.i.d.),
DV = {xv

i , y
v
i }m1 as the validation set (not necessarily following the same distribution as the points

in DT), A as a learning algorithm that given DT produces a predictor f , and V (f) = V (A, DT) as a
performance metric.

Now, under the previous hypothesis, Data Valuation tries to find a solution to both this questions:

1. What is an equitable measure of the value of each (xi, yi) to the learning algorithm A, with
respect to the performance metric V ?

1When we are talking about the full dataset, keep in mind that we are talking about the training dataset.

9

10 CHAPTER 3. RELATED WORK

2. How do we e�ciently compute this data value in practical settings?

If we had such data value, we could define a subset X ⇢ DT using some criterion for the data valuator
(removing points with low data value, for example). We identify two main ways to valuate data for
e�cient training: the Cooperative Game approach and Reinforcement Learning.

3.1.1 Cooperative Games

Ghorbani et. al. [16] were the first to answer the previous questions using the Shapley value of a co-
operative game, via a value called Data Shapley. Essentially, they argued that the only way for a data
value �i(DT ,A, V) 2 R, for datum xi 2 DT , to be equitable is by satisfying 3 properties: symmetry,
additivity and fair contribution (if the datum contribution to every coalition is 0, then its value has to
be 0). They find such data values by defining a cooperative game where each datum is a player, so the
training data points x 2 S ⇢ DT have to work together to achieve the prediction score V (A, S). This
way, the Shapley value (a type of solution for a cooperative game) of the previous cooperative game
is the only possible value verifying the previous properties (the full demonstration can be found in [16]).

While having interesting equitability properties, calculating the Data Shapley for our entire train-
ing set is exponentially large in the training set size, and involves learning a new f via A for each
subset S ⇢ DT (i.e, learning 2|DT | predictors). As a result, calculating the exact data Shapley of each
datum ends up being computationally impossible for Deep Learning, since the models are not trivial
computationally speaking. Multiple methods for approximating the Data Shapley are given in the
original paper, using simulation methods like Monte Carlo and other approximations obtained at the
same time as the training process, but even though they work on simpler models, they still require an
elevated amount of evaluations of A.

Ghorbani et. al. [17] expanded on their previous work developing a distributional framework for
Data Valuation that further improves the estimation and reduces the computational complexity, with
the Distributional Shapley, which can be defined as the expected data Shapley value over all the data
set of a given size, k, containing the point: E [�i(DT ,A, V)].

To close the topic of cooperative games, note that other solutions have been proposed as a potential
valuator in [18], where they proposed the Core of the cooperative game defined by the data, achieving
a solution computationally simpler than Data Shapley that yields better results for e�cient learning
with smaller data sets and lower epochs.

Note 3.1 Because the data Shapley of each datum is calculated based on their contribution to all

possible combination of subsets during the training process, data that worsen the training process (poorly

labeled or noisy data, for example), are going to necessarily receive close to 0 or even negative values.

This is a trait specific to Data Valuation methods for Data E�ciency.

3.1.2 Reinforcement Learning

Yoon et. al. [19] introduced a method that involves learning a new model (called the Data Valuator
Estimator, h with parameters �) over the training process of the previous classificator model. This
supposes a considerable increase in complexity, as well as the reduction in explainability of the valua-
tion given to each datum.

3.2. SUBSET SELECTION METHODS FOR DATA EFFICIENCY 11

The problem can be reduced to finding both �⇤ and ✓⇤ such that:

�⇤ = argmin
�

mX

i=1

Lh(f✓⇤(x
v
i), y

v
i)

s.t ✓⇤ = argmin
✓

nX

i=1

ĥ�(xi, yi)Lf (f✓(xi), yi),

where Lf and Lh are (not necessarily di↵erent) loss functions, and ĥ�(xi, yi) is a binary selector con-
structed someway with the output of h�(xi, yi) 2 [0, 1] (for example, by using it as the probability of

success of a Bernoulli experiment). The main complexity of the problem lays on the selectors ĥ�(xi, yi),
due to the non-di↵erentiability of such variables. This, though, is nothing new in Machine Learning, as
selection variables are something that appear on a lot of popular models (like Generative Adversarial
Networks). The authors proposed a joint optimization method for both f and h, where ✓i get updated
based on the current value of �i and the latter is updated using the REINFORCE algorithm proposed
by Williams et al. in [20].

Das et. al. [21] proposed a di↵erent way to solve the selection bottleneck. Instead of utilizing the
REINFORCE [20] algorithm, they solve the optimization bottleneck by updating their function h’s
parameters, �, based on the results of a convex optimization problem. 2

While both of these approaches have been proven to outperform the previous state-of-the-art mod-
els, they present an immense augment in complexity in comparison to the methods seen under the
Cooperative Games approach, and also have an important caveat: The Reinforcement learning meth-
ods find better results for longer training processes due to their online nature. This is a problem, since
training for a large amount of epochs can take a substantial amount of time. For shorter trainings,
a method that can yield good results with a low amount of training epochs and does not have an
elevated computational cost might be preferred, like the subset selection methods.

3.2 Subset Selection Methods for Data E�ciency

While Data Valuation methods for Data E�ciency focus on selecting subsets based on the value ob-
tained through the valuation method, subset selection methods focus on obtaining a subset verifying
some desired similarity properties (usually involves solving a sub-modular optimization problem with
a greedy algorithm). Methods like CRAIG and GRAD-MATCH fit this definition.

Coresets for Accelerating Incremental Gradient Descent [22], or CRAIG for short, is a method
focused on improving the e�ciency of Incremental Gradient Methods by carefully selecting a data set
X ⇢ DT , so that the model is trained only on the subset X while still converging to the globally optimal
solution.3 They achieved this by selecting the smallest weighted subset X that best approximates the
full gradient of DT , with an error at most " > 0. In short, they want to solve the following problem:

min
X✓DT , �j�0 8j

|X |

s.t max
✓2⇥

k
X

xi2DT

rL(f✓(xi), yi)�
X

xj2X
�jrL(f✓(xj), yj)k < ",

(3.1)

but since solving the above problem would lead to a computationally unfeasible problem, they solve a

2This convex problem is the linear convex relaxation of the facility location problem using the distance between all
the training points.

3Keep in mind that finding such X directly leads to a speed up of |DT |/|X | on each epoch of the training process.

12 CHAPTER 3. RELATED WORK

relaxation utilizing an upper bound of the previous restraints:

min
X✓DT

|X |

s.t
X

xi2DT

min
xj2X

max
✓2⇥

krL(f✓(xi), yi)�rL(f✓(xj), yj)k < ".
(3.2)

Later on, they prove that problem 3.2 can be written as a sub-modular set cover problem, that can be
e�ciently approximated using a greedy algorithm.

Recently we saw a growing number of approaches (Mirzasoleiman et al. [22], Killamsetty et al.
[23]) on analysing the convergence bounds of adaptive data subset selection algorithms, where the
algorithm (which selects the data subset depending on specific criteria) is applied in conjunction with
the model training. Killamsetty et al. [25] worked with this boundings to create a Gradient-Matching

algorithm (or GRAD-MATCH), that not only has boundings guarantees for the loss function, but
have a convergence guarantee for the method to obtain such subset.

Since our own work can directly be extended using GRAD-MATCH results for adaptive data sub-
set selection algorithms, we discuss such boundings and results.

3.2.1 Theoretical boundings for adaptive data subset selection methods

Normal data selection techniques focuses on obtaining a single subset that approximates the training
with the full data set (like it is done in CRAIG, and we are going to do in Chapter 4 with GEDA). Now,
in the adaptive data selection approach, we are going to perform the data selection in conjunction with
the training. This refinement of the training subset allows the data selection to adapt to the learning
and produces increasingly e↵ective subsets with the progress of the learning algorithm. In this setting,
we are going to have Xt ⇢ DT , 8t = 1, . . . , Te, where Te is the number of epochs.

Before presenting the result from which GRAD-MATCH subsets are obtained, we need to define
the term:

Err(wt,X t, LT , L,D, ✓t) = k
X

(xi,yi)2X t

wt
irLT (f✓t(xi), yi)�rL✓t(L,D)k2,

where L(L,D) is define like we did in section 2.2, D is a set of points not necessarily related to the
training set DT , L✓t(L,D) =

P
(x,y)2D L(f✓t(x), y) is the loss function of the model over D at epoch

t, and LT is the loss function for the each point of the training set (not necessarily the same as L).
Under this assumptions lays the following theorem:

Theorem 3.1 (Killamsetty et al. [25])
4
Lets assume that the parameters satisfy that k✓tk C. Under

this assumptions, any adaptive data selection algorithm runned with full gradient descent (GD), defined

via weights w
t
and subsets X t

for t = 1, . . . , Te, enjoys the following guarantees:

1. If LT is Lipschitz continuous with parameter K1, optimal model parameters ✓⇤, and ↵ = C
K1

p
T

learning rate, then:

min
t

L✓t(L,D)� L✓⇤(L,D) CK1p
T

+
C

T

Te�1X

t=1

Err(wt,X t, LT , L,D, ✓t).

2. Let LT be Lipschitz smooth with parameter K2, ✓⇤ the optimal model parameters ,and 0T (f✓(x), y)
�, 8(x, y) 2 DT . Then, defining a learning rate ↵ = 1

K2
:

min
t

L✓t(L,D)� L✓⇤(L,D) C2K2 + 2�

2T
+

C

T

Te�1X

t=1

Err(wt,X t, LT , L,D, ✓t).

4The proof can be found in Appendix B.1 of [25].

3.2. SUBSET SELECTION METHODS FOR DATA EFFICIENCY 13

3. If LT is Lipschitz continuous with parameter K1, optimal model parameters ✓⇤ and L is strongly

convex with parameter µ, then, setting a learning rate ↵t =
2

µ(1+t) for each epoch t = 1, . . . , Te;

the following inequality holds:

min
t

L✓t(L,D)� L✓⇤(L,D) 2K2
1

µ(T + 1)
+

TX

t=1

2tC

T (T + 1)
Err(wt,X t, LT , L,D, ✓t).

Note that, if D = DT and L = LT , we are bounding the convergence error of the training process.

Observation 3.2 Theorem 3.1 can be extended to any adaptive selection algorithm runned with SGD

just by adding expectations on both sides of the inequalities. Proof of this can be found in Appendix

B.2 of [25].

The results of Theorem 3.1 gives us a direct way to find adaptive subsets X t, for each epoch t, that
minimize the bounding of the convergence error to the optimal parameters of a loss function L over a
subset D, just by selecting:

w
t,X t = argmin

wt, X t: |X |k
Err(wt,X t, LT , L,D, ✓t). (3.3)

The optimization problem 3.3 might seem complicated, but the authors proved on the same paper
that problem 3.3 can be rewritten as a weakly sub-modular set cover problem, which finds convergence
guarantees using an algorithm called Orthogonal Matching Pursuit (proved in Elenberg et al. in [24]).
We are not going to further elaborate on this, since this is not of relevance for our work.

Observation 3.3 While having a general L and D might seem unnecessary and confusing, having

generality over those two term allows us to bound the convergence error of the training using, for

example, the validation loss LV over the validation set DV , while only training with the training set.

This is an important application of data e�ciency (usually reserved to data valuation methods for

data e�ciency) called the domain adaptation problem, where we want to select the points that better

resemble the validation set (or, in general, any other data set following a di↵erent distribution from

that of the training set). This is common when we want to train with expensive data sets without

enough data (like the skin cancer example in [16]).

14 CHAPTER 3. RELATED WORK

Chapter 4

Introducing GEDA

Current subset selection methods present a problem, and it is that even for non-adaptive methods like
CRAIG, they all focus on obtaining better results during long training processes (see the experiment
section of [22], [23]). For this reason, we identify the need of a model that focuses on obtaining better
results for short training processes, and introduced our own method of subset selection, one that not
only performs better for shorter training processes, but also just needs to optimize a MILP problem
at the beginning of the training process.

In this chapter we introduce the theoretical concepts of our proposed method: GEDA. In the next
Chapter we contextualize the method by showing how the experiments that we performed led to it.

4.1 GEDA: Gradient norms Empirical Distribution Approxi-

mation

Let GDT be the set of gradient norms , where1:

gi 2 GDT :() gi = krL(f✓0(xi), yi)k2, 8(xi, yi) 2 DT ,

and X ⇢ DT : |X | = k a subset. Our proposed method, GEDA, simply finds the subset X such
that GX ⇢ GDT is the subset of norms of gradients that better approximates some estimation of the
distribution function of GDT . Therefore, we want X ⇢ DT such as:

X = argmin
X⇢DT : |X |=k

Z 1

�1
|F̂DT (t)� F̂X (t)| dt.

While this might seems like a hard problem to solve, we can reduce it to a simpler mixed integer
linear programming problem (MILP)2. For this, we are going to take F̂S as the ECDF of S:

F̂S(x) = FnS(x) =
1

|S|

|S|X

i=1

I{Xi x}.

For the integral, we are going to use the composite trapezoidal rule3:
Z B

A
f(t)dt =

B �A

N

f(A) + f(B)

2
+

N�1X

k=1

f

✓
A+ k

B �A

N

◆!
,

1We are considering the model f at epoch 0.
2This is important to us, since we only have access to a MILP solver.
3As it can be deduced by the expression given, we are applying the composite trapezoidal rule to a partition that is

uniformly spaced.

15

16 CHAPTER 4. INTRODUCING GEDA

where N is the desired number of evaluation points for the rule, that have been set by the experimenter.
For our case, since m = inf(DT) and M = sup(DT) exist because DT is finite, and considering that
X ⇢ DT , employing the definition of the ECDF we have that:

8m0 2 R : m0 m =) FnDT
(m0) = FnX (m0) = 0,

8M 0 2 R : M 0 � M =) FnDT
(M 0) = FnX (M 0) = 1.

Therefore,
Z m

�1
|FnDT

(t)� FnX (t)| dt = 0 =

Z 1

M
|FnDT

(t)� FnX (t)| dt,

which means that:

Z 1

�1
|FnDT

(t)� FnX (t)| dt =
Z M

m
|FnDT

(t)� FnX (t)| dt.

So, we are going to consider f(t) = |FnDT
(t) � FnX (t)|, A = m and B = M in the definition of the

composite trapezoidal rule, to obtain:

Z B

A
f(t)dt =

B �A

N

f(A) + f(B)

2
+

N�1X

k=1

f

✓
A+ k

B �A

N

◆!

=
M �m

N

N�1X

k=1

����FnDT

✓
m+ k

M �m

N

◆
� FnX

✓
m+ k

M �m

N

◆����

=
M �m

N

N�1X

k=1

������
1

|DT |

|DT |X

i=1

I
⇢
Xi m+ k

M �m

N

�
� 1

|X |

|DT |X

i=1

�iI
⇢
Xi m+ k

M �m

N

�������
,

where �i = 1 if Xi 2 X , and is 0 otherwise.

Furthermore, since N is defined by the experimenter and the points Xi 2 DT are data, every
I
�
Xi m+ kM�m

N

is going to be a datum as well, thus, the only variables involved are the �i 2 {0, 1}.

Due to this, we can write cik = I
�
Xi m+ kM�m

N

, and so, our problem can be rewritten as:

min
M �m

N

N�1X

k=1

������
1

|DT |

|DT |X

i=1

cik � 1

|X |

|DT |X

i=1

�icik

������

s.t �i 2 {0, 1}.

Now, because the absolute value is not di↵erentiable, we need to reformulate the problem to get rid of
the non-di↵erentiability. Firstly, let’s consider that:

������
1

|DT |

|DT |X

i=1

cik � 1

|X |

|DT |X

i=1

�icik

������
= max

8
<

:
1

|DT |

|DT |X

i=1

cik � 1

|X |

|DT |X

i=1

�icik, � 1

|DT |

|DT |X

i=1

cik +
1

|X |

|DT |X

i=1

�icik

9
=

; ,

and so, our problem can be rewritten as a min-max problem, which we know that can be reformu-

lated adding a variable Zk =
��� 1
|DT |

P|DT |
i=1 cik � 1

|X |
P|DT |

i=1 �icik
��� for each absolute value, and a pair of

restrictions that ensures that the previous equality holds. Doing this, we achieve a reformulation of

4.1. GEDA: GRADIENT NORMS EMPIRICAL DISTRIBUTION APPROXIMATION 17

our original problem into a MILP problem:

min
N�1X

k=1

Zk

s.t
1

|DT |

|DT |X

i=1

cik � 1

|X |

|DT |X

i=1

�icik Zk; 8k,

� 1

|DT |

|DT |X

i=1

cik +
1

|X |

|DT |X

i=1

�icik Zk; 8k,

|DT |X

i=1

�i = ,

�i 2 {1, 0},
Zk 2 R, 8k.

(P)

This way, when solving problem (P), the resulting values of the variables �i are going to give us the
points that conforms our desired subset X .

18 CHAPTER 4. INTRODUCING GEDA

Chapter 5

Experiments

Everything that we are going to do, has to be understood within the context of our employer and
the project which we are working on. Gradiant Technologies is a technological center located in Vigo,
Spain, and specialises on security, AI and connectivity. Inside their AI department, they focus on
giving solution to real life problems using AI models, usually involving training neural networks. Here,
to avoid repetitive code and as a quality of life measure, they deployed a series of templates to heighten
the level of the code and make it more accessible and ready to use. This ecosystem of templates for
AI (called Eco-AI) currently supports the Computer Vision tasks of classification, localization and
segmentation (see figure 2.1), and they were looking for ways to improve the tools provided by Eco-AI.
We focused our e↵orts into researching Data E�ciency methods that could both improve upon the
current state of the art and work inside Eco-AI, specifically for low epoch training processes.

In this section we present how all the experiments that were conducted during our research led
us towards the introduction of our data e�ciency model: GEDA, contextualizing how the research
process evolved from a general problem (we want to reduce our data sets without a big compromise
in accuracy when training with a low amount of epochs) without an available solution, to a proposed
model for solving said problem.

5.1 Experimental Set up

5.1.1 Data sets

We used CIFAR-10 and CIFAR-100 [26] for our data sets. Both CIFAR-10 and CIFAR-100 data
sets consists of 60000 32x32 colour images in 10 and 100 classes, with 6000 and 600 images per class
(respectively). There are 50000 training images and 10000 validation (or test) images on both data
sets (see figure 5.1)

5.1.2 Evaluation Metric

The evaluation metric for our model was the top 1 accuracy, A1:

A1(f✓) =
Number of correct predictions of f✓ over DV

|DV |
,

where f✓ is the trained model and DV is the validation set.

19

20 CHAPTER 5. EXPERIMENTS

Figure 5.1: Example of images for each category of CIFAR-10. Source: https://www.cs.toronto.
edu/~kriz/cifar.html

5.1.3 Implementation Details

We wrote all of our code in Python, employing a multitude of libraries and framework in the process.
For the training of the models, we employed the library mmcls [27] over the PyTorch [28] framework,
parallelizing all of the calculations using CUDA, over a NVidia RTX 3090 GPU. Here, we trained a
ResNet-18 for all of our training, always trying to achieve the best results possible.

All of the results presented in this section have been obtained by selecting the best hyper-parameters
that we could find for the training, thus yielding the best results on our metrics, while always trying
to keep the training under an hour long.

For the learning rate during the training process, we are going to use a cyclical learning rate sched-
uler [29], were the learning rate is going to increase from an initial value up to a maximum set value,
and then decrease to a target value.

For GEDA, we employed the optimization library PulP [30], were we used their available MILP
solver employing a Branch & Cut algorithm, and fixed the number of nodes in the trapezoidal rule to
N = 5 due to empirical results.

5.2 Baselines and first approach

Results for the baselines can be seen in table 5.1. Here, we trained a ResNet-18 over the full training
set for both specified data sets with the disclosed hyper-parameters, and the default weight decay value
set by PyTorch (0.0001).

As a first approach, let us try to eliminate data randomly inside each category until we have reached
our desired % of data on each category1. This is going to work as well as a good comparison for all the
other methods that we are going to present afterwards. We have plotted the results obtained during
our experiments for better visualization and left the full information about the hyper-parameters of
all the experiments at the Appendix A.

Looking at Figure 5.2, we can see how our results are far from what we got at the baselines with
the complete data set (both with and without pretraining, for both CIFAR-10/100), so we are in need
for a better way to remove data from our data sets.

1We are removing the data inside each category to maintain the same proportion of data inside each category. Every
other experiment presented here is going to be performed inside each categories due to the same reason.

5.3. WORKING WITH THE GRADIENTS 21

Data Sets Pretrained Initial Learning Rate Target Learning Rate Batch Size Epochs Loss Accuracy Top-1

Yes 1e-04 1e-06 16 8 0,0013 95,95

CIFAR-10 No 1e-04 1e-06 16 12 0,0055 86,23

Yes 1e-04 1e-06 16 8 0,0110 81,11

CIFAR-100 No 0,01 1e-04 16 12 0,0120 66,08

Table 5.1: Baseline results employing a ResNet-18 model over the full training set and never exceeding
1 hour of training. Weight decay has been set to 0.0001, the maximum learning rate has been set to
100 times the initial value, and the pretraining was conducted over the ImageNet data set [3].

Figure 5.2: Results of training a ResNet-18 model over 80� 20% of the data of both CIFAR-10’s and
CIFAR-100’s training data set. We removed the data randomly.

5.3 Working with the gradients

Inspired by what we have seen in section 3.2 about GRAD-MATCH, we are going to work with the
gradients of the loss function over each data class. Furthermore, we are going to utilize the norm of

22 CHAPTER 5. EXPERIMENTS

each gradient as reference. Let us consider the set of gradient norms GDT defined as in the previous
chapter. The goal would be to find a subset X utilizing GDT in some way, shape or form.

Just as a start, let us do the same random experiment, but this time let us take data out data
randomly between the quartiles of GDT . This way, we are going to randomly remove (1 �)% of
the data between the quartiles, so we would reach the desired percentage of total data points % in
each category, although this time with less randomness involved overall. You can check the results
of training with this method in CIFAR-10 in figure 5.3, where we see a minor improvement over the
completely randomized method of extraction.

While better, randomly selecting which data to remove, even if we do it with more information,
does not seem like a great way to obtain X . It would be better to have some method to obtain such
subsets without any randomness involve.

Another approach to the problem, that does not involve randomness, and stills employs GDT , could
be removing data points over the data’s ranking in GDT . In this case, we are going to remove data from
DT in such a way that every removed data point is evenly spaced in said rankings. As an example2,
if we wanted to remove the 50% of the total data inside DT , once ordered by GDT , we would need to
remove 1 of every 2.

Figure 5.3: Results of training a fine-tuned ResNet-18 model over 80 � 20% of CIFAR-10’s training
data set. We removed the data randomly between each quartile and at random inside each category.

We can see the results of this strategy for removing data points when training on CIFAR-10 in
figure 5.4, where we see a noticeable improvement over the results obtained when we removed the data
randomly between the quartiles.

2Generally speaking, given the ordered points of GDT
, {g(i)}i, we are going to remove the point (x(i), y(i)) if, and

only if, i ⌘ 0 mod |DT |
|X|

5.4. INTRODUCING GEDA 23

Figure 5.4: Results of training a fine-tuned ResNet-18 model over 80� 20% of the data of CIFAR-10’s
training data set. We removed the data evenly over the ranking given by GDT .

5.4 Introducing GEDA

Seen how much of an improvement over randomly taking out gradients we achieved once we started
to work with the ordered data, it might be a good idea to work whit the distribution of GDT . Enter
GEDA, the method that we are proposing as an alternative to CRAIG and GRAD-MATCH inside the
subset selection methods framework. Now, we are going to select the subset X ⇢ DT : |X | = k such as
GX ⇢ GDT is the subset that better approximates some estimation of the distribution function of GDT .

The results of training a ResNet-18 on CIFAR-10, reducing the data set size utilizing this strategy
can be seen in figure 5.5, compared to the results that we achieved with the best method of extraction
as of yet. As we can see, the method presents an improvement on almost all of the scenarios, specially
on low -percentages of data and on CIFAR-100, a tougher data set overall3.

5.5 Comparisons with the S.O.T.A

In practice, adaptive methods achieve better results when they are computed every set number of
epochs R, instead of every epoch. This is important, since having good empirical results with a high
R can lead to a considerable speed up, since it reduces how many times it has to be performed. Since
Gradiant, for the moment, can only implement o✏ine methods, it is in our best interest to test how
powerful all the methods are when R = 0, i.e: when we calculate the subset only at the beginning of
the training process, in comparison to the other S.O.T.A methods.

At figure 5.6 we can see a comparison between GEDA and both GRAD-MATCH and CRAIG. As
we can see, GEDA outperforms both CRAIG and GRAD-MATCH when R = 0 on a healthy dataset
like CIFAR-10, and we get even better results using GEDA on a harder data set like CIFAR-100. While
this is good news for us, it would be disingenuous to not clarify the actual use case of an adaptive
method like GRAD-MATCH. The actual value of GRAD-MATCH comes with the ability to achieve
accuracy results similar to those of the baselines, while having only an small percentage of data, during

3As it can be seen in the results on all of the experiments with CIFAR-100, we obtain lower accuracy when training
a ResNet-18 on it, in comparison with CIFAR-10. The explanation is simple, we have the same amount of data overall,
but have 10 times more categories on CIFAR-100 compared to CIFAR-10.

24 CHAPTER 5. EXPERIMENTS

Figure 5.5: Results of training a fine-tuned ResNet-18 model over 80 � 20% of the data of CIFAR-
10/100’s training data set. We removed the data evenly over the ranking given by GDT and using
GEDA.

longer executions.

As an example of this, we presented a result obtained while training a ResNet-18 over CIFAR-10
for 100 epochs with only 20% of the training data, employing both GRAD-MATCH with R = 20 and
GEDA, in figure 5.7. Not only GRAD-MATCH beats GEDA in this experiment, but the accuracy
obtained this way rivals that of the baselines, and even the one obtained with 80% of the data using
GEDA. Furthermore, Killamsetty et al. [25] included a detailed experiment results section in the
appendix of their work, where they achieved an accuracy of 90.90 with only 10% of data, and 92.15
with 20%. This results not only beats every data e�ciency method that we have tested, but also rivals
the results obtained with a pretrained ResNet on our baselines.

5.5. COMPARISONS WITH THE S.O.T.A 25

Figure 5.6: Results of training a fine-tuned ResNet-18 model over 80� 20% of the data of CIFAR-10’s
and CIFAR-100’s training data sets. We removed using GEDA and both GRAD-MATCH and CRAIG.

Figure 5.7: Evolution of the accuracy during the training of a fine-tuned ResNet-18 model over 20%
of CIFAR-10’s training data set, during 100 epochs. We removed data using GRAD-MATCH with
R = 20 (blue) and GEDA (green).

26 CHAPTER 5. EXPERIMENTS

5.6 Final thoughts and conclusions

GEDA showed better results than both GRAD-MATCH and CRAIG as an o✏ine algorithm, but it
could not keep up with GRAD-MATCH when we set R > 0. Although it might seem pointless to
introduce GEDA if we compare it with the latest results of GRAD-MATCH, it is important to clarify
that the time taken by these experiments vastly exceeds what it took us to obtain the results with
GEDA, and even the baselines (see table 5.2).

With this, we can see a di↵erence on the actual value that each method brings to the table. When
time is not an issue, but we want to achieve the best results possible employing the least amount of
data possible, GRAD-MATCH seems to be the best option inside of the method we have compared4,
while for speed, an o✏ine algorithm like GEDA seems to be the best for the data sets that we used.

Since our objective was always to obtain a method capable to be e�cient in time for low epoch
training, GEDA, an o✏ine algorithm, fits every desired quality that our employer asked for. Although
we have reached to a conclusion, it is important to note that a lot could be done to improve upon
the method outside our contractor limitations, like adapting GEDA to be an online method or even
employing a smoothing of the empirical distribution function. All of this is going to be discussed in
our next, and final section of this work.

Method Accuracy: top 1 (%) Time (minutes)

GEDA: 80% 87,14 6,98

GRAD-MATCH: 20% 86,4 29,988

GRAD-MATCH: 10% 90,9 53,4

Table 5.2: Time analysis of the trainings of a ResNet-18 with CIFAR-10, when removing data em-
ploying GRAD-MATCH (R = 20) and GEDA. Results for the GRAD-MATCH experiment with 10%
where obtained from [25].

4A lengthier comparison between every relevant adaptive subset selection method can be found at appendix C.3 of
Killamsetty et al. (2021), where they reached to our same conclusion.

Chapter 6

Future Work

We presented GEDA, a data e�ciency method based on selecting the subset X that better resemble
the ECDF of the full training set DT . In this last chapter we are presenting a multitude of di↵erent
ideas and extensions of GEDA that can be interesting to explore in the future.

6.1 Improving GEDA

We detect di↵erent ways to improve the method itself. A good first approach might come in utilizing a
smoothing of the ECDF. This could improve the precision of the approximation performed in GEDA,
and still would lead up to a MILP problem. Another thing that could be done is to experiment with
di↵erent numerical integration methods with better error guarantees (like the composite Simpon’s
Rule), and compare their performance in both time and accuracy improvement. Finally, a study of
the optimization model proposed for GEDA it is still to be made. As a MILP problem, we could study
specific cuts for the Branch & Cut algorithm that could lead to a tighter formulation of our problem.

6.2 Online GEDA

The most obvious extension to GEDA is to extend it as an adaptive subset selection method, using
the same strategy that GRAD-MATCH used with the boundings in section 3.2.1. This way, we can
use the following algorithm:

Algorithm 6.1 Employing the notations of section 3.2.1, we can define GEDA as an online algorithm

as follows:

1. Calculate the subset X t
using GEDA

2. Calculate the weights w
t
that:

w
t = argmin

w2R|X|
Err(w,X t, LT , L,D, ✓t) + �kwtk,

with � 2 R, and LT , L, D and ✓t as defined originally in section 3.2.1.

3. Repeat each t ⌘ 0 mod R, otherwise (X t,wt) = (X t�1,wt�1).

We end up having an unconstrained convex problem, that can be easily solved using, for example,
Gradient Descent.

27

28 CHAPTER 6. FUTURE WORK

While easier than GRAD-MATCH’s approach, we have to keep in mind that the pair of subset
and weights obtained at each epoch are going to have, necessarily, a higher Err than that of GRAD-
MATCH. That is, using the same model f✓t at epoch t during training, the pair of subset and weights
(X t

G,w
t
G) obtained using GEDA, and another pair (X t

GM ,wt
GM) obtained using GRAD-MATCH, are

going to fulfill the following inequality:

Err(wt
G,X t

G, LT , L,D, ✓t) � Err(wt
GM ,X t

GM , LT , L,D, ✓t),

with LT , L, D and ✓t as defined originally in section 3.2.1, for all t congruent with 0 mod R.

6.3 GEDA as a warm start method

Seeing how GEDA have worse guarantees than GRAD-MATCH as an online method, this begs the
question: could there be another way to use GEDA inside an adaptive subset selection method with
good guarantees?

Killamsetty et al. performed in [25] a lengthy study on all state-of-the-art subset selection methods
at the time, where they studied both the accuracy and the time taken to perform the training. They
found out that the best results were obtained when a warm start was performed at the beginning of
the training process. We define a warm start inside an adaptive subset selection method as taking the
full training set DT as the first subset X 1.

Now, because GEDA’s subset can be obtained solving a rather simple MILP problem and how
well they perform when R = 0, we could think of using the GEDA subsets as a warm start for an
adaptive subset selection method. This would lead to an overall speed up of |DT |

|X | during the first R
epochs when using the GEDA subsets, instead of the full training set. This might be interesting when
training with the full dataset might be computationally expensive, specially when utilizing large R.

Appendix A

Tables and Results

The goal of this appendix is to summarize all the information regarding the hyper-parameters employed
during all training processes.

Database Method Percentage of data (%) Initial Learning Rate Target Learning Rate Batch Size Epochs Accuracy: top 1

80 10�3 10�5 20 12 85, 11

60 10�3 10�5 20 12 83, 22

40 10�2 10�4 20 12 79, 69

GRAD-MATCH 20 10�2 10�4 20 12 71, 72

80 10�3 10�5 20 12 84, 12

60 10�3 10�5 20 12 83, 23

40 10�3 10�5 20 12 80, 34

CIFAR-10 CRAIG 20 10�3 10�5 20 12 71, 32

80 10�3 10�5 32 12 58, 86

60 10�3 10�4 32 12 53.3

40 10�3 10�5 32 12 43, 89

GRAD-MATCH 20 10�3 10�5 32 12 30, 17

80 10�3 10�5 32 12 58, 85

60 10�3 10�5 32 12 53.17

40 10�3 10�5 32 12 44, 54

CIFAR-100 CRAIG 20 10�3 10�5 32 12 29, 45

Table A.1: Results table of all the experiment with both GRAD-MATCH and CRAIG. Every experi-
ment was conducted with a Kaggle notebook employing a single NVidia K80 GPU.

29

30 APPENDIX A. TABLES AND RESULTS

D
a
t
a
b
a
s
e

M
e
t
h
o
d

P
e
r
c
e
n
t
a
g
e
o
f
d
a
t
a
(
%
)

I
n
it
ia
l
L
e
a
r
n
in
g
R
a
t
e

T
a
r
g
e
t
L
e
a
r
n
in
g
R
a
t
e

B
a
t
c
h

S
iz
e

E
p
o
c
h
s

L
o
s
s

A
c
c
u
r
a
c
y
:
t
o
p

1

80
10

�
3

10
�
5

64
12

10
�
3

83.24

60
10

�
3

10
�
4

64
12

2
10

�
3

80.46

40
10

�
3

10
�
4

64
12

3
10

�
3

76.61

R
an

d
om

20
10

�
3

10
�
4

64
12

4
10

�
3

68.81

80
10

�
3

10
�
5

64
12

2
10

�
3

83.75

60
10

�
3

10
�
5

64
12

2
10

�
3

82.11

40
10

�
3

10
�
4

64
12

2
10

�
3

76.89

R
an

d
om

over
th
e
qu

antiles
20

10
�
3

10
�
4

64
12

3
10

�
3

69.66

80
10

�
3

10
�
5

64
12

4
10

�
3

86.18

60
10

�
3

10
�
5

64
12

10
�
3

84.65

40
10

�
3

10
�
5

64
12

6
10

�
3

80.86

E
ven

ly
sp
aced

selection
20

10
�
3

10
�
4

64
12

3
10

�
3

68.35

80
10

�
3

10
�
5

64
12

6
10

�
3

87.14

60
10

�
3

10
�
4

64
12

6
10

�
3

84.55

40
10

�
3

10
�
4

64
12

7
10

�
3

81.1

C
I
F
A
R
-
1
0

G
E
D
A

20
10

�
3

10
�
5

64
12

1.1
10

�
2

72.91

80
10

�
3

10
�
4

64
12

5
10

�
3

55.74

60
10

�
3

10
�
4

64
12

2.30
10

�
2

50.55

40
10

�
3

10
�
4

64
12

2.80
10

�
2

43.81

R
an

d
om

20
10

�
3

10
�
4

64
12

9.70
10

�
2

33.22

80
10

�
3

10
�
4

32
12

6
10

�
3

54.64

60
10

�
3

10
�
4

32
12

2.20
10

�
2

50.84

40
10

�
3

10
�
4

32
12

2.80
10

�
2

44.08

R
an

d
om

over
th
e
qu

antiles
20

10
�
3

10
�
4

32
12

7.30
10

�
2

34.36

80
10

�
3

10
�
4

32
12

4.40
10

�
2

62.28

60
10

�
3

10
�
4

32
12

2.20
10

�
2

51.75

40
10

�
3

10
�
4

32
12

3
10

�
2

45.16

E
ven

ly
sp
aced

selection
20

10
�
3

10
�
4

32
12

1.04
10

�
1

33.37

80
10

�
3

10
�
4

64
12

3.49
10

�
1

64.83

60
10

�
3

10
�
4

64
12

1.10
10

�
1

59.51

40
10

�
3

10
�
4

64
12

2.06
10

�
1

51.5

C
I
F
A
R
-
1
0
0

G
E
D
A

20
10

�
3

10
�
4

64
12

5.79
10

�
1

39.28

T
ab

le
A
.2:

R
esu

lts
tab

le
of

all
ou

r
exp

erim
ents

w
ith

th
eir

hyp
erp

aram
eters.

T
h
e
exp

erim
ents

w
ere

con
d
u
cted

u
sin

g
p
arallel

com
p
u
tin

g
w
ith

a
R
T
X

3090
G
P
U

Bibliography

[1] Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review (Vol. 65 - 6).

[2] P. Werbos, Beyond regression: New tools for prediction and analysis in the behavioral sciences,
Ph.D. dissertation, Committee on Appl. Math., Haivard Univ., Cambridge, MA, Nov. 1974.

[3] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2009). ImageNet: A Large-Scale
Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR).

[4] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet Classification with Deep Convolu-
tional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger (Eds.), Advances
in Neural Information Processing Systems (Vol. 25). Curran Associates, Inc. Cornell Aeronautical
Laboratory.

[5] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-77.

[6] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2021). An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning

Representations.

[7] Carreira, J. Zisserman, Andrew. (2017). Quo Vadis, Action Recognition? A New Model and
the Kinetics Dataset. In proceedings of 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 4724-4733.

[8] Qiu, Y., Wang, X. (2020). Stochastic Approximate Gradient Descent via the Langevin Algorithm.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), pp. 5428-5435.

[9] Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks:
The O�cial Journal of the International Neural Network Society, 12 1, 145–151.

[10] Johnson, R., Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pp. 315-323.

[11] Smith, L. (2018). A disciplined approach to neural network hyper-parameters: Part 1 - learning
rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820.

[12] Simard, P., Steinkraus, D., Platt, J. (2003). Best practices for convolutional neural networks
applied to visual document analysis. Seventh International Conference on Document Analysis and

Recognition. Proceedings., 2003, pp. 958-963.

[13] Hastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning: Data Min-

ing, Inference, and Prediction. 2nd ed., Springer, New York.

31

32 BIBLIOGRAPHY

[14] Strubell, E., Ganesh, A., McCallum, A. (2019). Energy and policy considerations for deep learning
in nlp. arXiv preprint arXiv:1906.02243.

[15] Wang, T., Rausch, J., Zhang, C., Jia, R., Song, D. (2020) A Principled Approach to Data Valua-
tion for Federated Learning. In: Yang, Q., Fan, L., Yu, H. (eds). Federated Learning. Lecture Notes

in Computer Science, vol 12500. Springer, Cham.

[16] Ghorbani, A., Zou, J. (2019). Data Shapley: Equitable Valuation of Data for Machine Learning.
arXiv preprint arXiv:1904.02868v2.

[17] Ghorbani, A., Kim, M. P., Zou, J. Y. (2020). A Distributional Framework for Data Valuation.
International Conference on Machine Learning (ICML).

[18] Yan, T., Procaccia, A. (2021). If You Like Shapley Then You’ll Love the Core. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(6), pp. 5751-5759.

[19] Yoon, J., Arik, S., Pfister, T. (2020). Data Valuation using Reinforcement Learning. Proceedings
of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning

Research 119:10842-10851.

[20] Williams, R.J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach Learn 8, 229–256.

[21] Das, S., Singh, A., Chatterjee, S., Bhattacharya, S. (2021). Finding High-Value Training Data
Subset Through Di↵erentiable Convex Programming. In: Oliver, N., Pérez-Cruz, F., Kramer, S.,
Read, J., Lozano, J. (eds)Machine Learning and Knowledge Discovery in Databases. Research Track,
pp. 666–681. ECML PKDD 2021. Lecture Notes in Computer Science, vol 12976. Springer, Cham.

[22] Mirzasoleiman, B., Bilmes, J., Leskovec, J. (2020). Coresets for Data-e�cient Training of Machine
Learning Models. International Conference on Machine Learning (ICML) 2020, July.

[23] Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., Iyer, R. (2021a). Glister: Generalization
based data subset selection for e�cient and robust learning. In AAAI, 2021.

[24] Elenberg, E. R., Khanna, R., Dimakis, A. G., Negahban, S., et al. Restricted strong convexity
implies weak submodularity. The Annals of Statistics, 46(6B):3539–3568, 2018.

[25] Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., De, A., Iyer, R. (2021b). GRAD-
MATCH: Gradient Matching based Data Subset Selection for E�cient Deep Model Training. Inter-
national Conference on Machine Learning (ICML) 2021, February.

[26] Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

[27] MMClassification Contributors. (2020). OpenMMLab’s Image Classification Toolbox and Bench-

mark (Version 0.15.0) [Computer software]. https://github.com/open-mmlab/mmclassification

[28] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems 32 (pp. 8024–8035).
Curran Associates, Inc.

[29] Smith, L., Cyclical Learning Rates for Training Neural Networks (2017). IEEE Winter Conference

on Applications of Computer Vision (WACV) , 2017, pp. 464-472.

[30] Roy,J.S., Mitchell, S.A. and Peschiera, F. (2003). PulP 2.6.0. Python Package Index - PyPI. (n.d.).
Python Software Foundation. Retrieved from https://pypi.org/project/PuLP/

		2022-02-02T13:38:11+0100
	BAPTISTA RIOS MARCOS - 09043584F

		2022-02-02T13:54:14+0100
	SESTELO PEREZ MARTA - 76998300G

