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Resumen

Resumen en español

Las redes de gas deben garantizar el transporte de gas a un coste mínimo desde los proveedores hasta los
consumidores y al mismo tiempo tienen que cumplir restricciones físicas. Aunque esta tarea se pueda modelar
analíticamente usando modelos matemáticos complejos, es difícil para los solucionadores actuales encontrar
soluciones óptimas globales o a veces incluso locales.

Por lo tanto, este trabajo investiga distintas configuraciones de solucionadores de redes de gas para mejorar
el proceso de resolución. Las configuraciones propuestas consisten en pasos secuenciales que usan la solución
previa como solución inicial del paso siguiente. En cada paso se pueden elegir distintos parámetros de la
configuración, por ejemplo el solucionador empleado o los componentes de la red de gas considerados. Para
comparar configuraciones diferentes hemos desarrollado una herramienta informática que permite testear
rendimientos de las configuraciones complejas para escenarios generados.

Nuestros resultados muestran que empleando pasos secuenciales se puede mejorar significativamente la
proporción de escenarios solucionados. Secuencias de pasos incluyendo todos los solucionadores fueron las
únicas configuraciones que pudieron solucionar todos los escenarios solucionados por alguna configuración
testeada.

English abstract

Gas networks should ensure a cost-minimal supply of gas from providers to consumers while fulfilling various
physical constraints. Although this task may be modeled analytically with complex mathematical models, for
current solvers it is difficult to find global - and sometimes even local - optima for these models.

Therefore, this master’s thesis investigates various gas network solver configurations to enhance the solution
process. The solver configurations we propose consist of sequences of steps that use the solution of a previous
step as initial solution for the succeeding step. In each step different configuration parameters can be chosen,
for example the solver to employ or the gas network model components to take into consideration. To
compare different configurations we developed a software framework that enables us to test the performances
of complex configurations on solving generated gas network scenarios.

Our results show that using sequences of steps can significantly improve the proportion of solved scenarios.
Step sequences comprising all solvers were the only configurations that could solve all scenarios that were
solved by any tested configuration.
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1 Introduction

Maintaining gas networks imposes a difficult task on the distributor and operator of the network. While
being bound by physical gas laws, at the same time the operator strives to optimize its costs. Figure 1
gives an overview of the setup of the gas network in Europe. In this setup we can distinguish various
components: supply points, consumption points, compressor stations to regulate the pressure in the network,
valves, pipelines, junctions and in detail many more. These components and natural gas laws lead to certain
restrictions the operator has to bear in mind, in particular on the physical quantities involved (esp. pressure
and flow). For example, naturally at every node the sums of incoming and outgoing gas flows have to coincide.

Figure 1: European gas network (Image: ETH Zurich)
with planned pipelines in red, green spots represent
dense population

So, in a gas network we can distinguish between
optimization goals and constraints. Typical opti-
mization goals are for example the minimization of
gas consumed in the network or the minimization
of the number of compressor stations. Constraints
result primarily from the laws of physics, e.g. the
gas laws, and the interaction of the components (Á.
M. G. Rueda 2017). Optimization goals as well as
constraints can to a certain degree be modeled as a
mathematical optimization problem. Furthermore,
modern software packages allow to employ sophis-
ticated solvers to find optimal solutions for these
problems. Nevertheless, the resulting models may
turn out to be too difficult for some or all solvers to
minimize.

Moreover, a general problem of multimodal math-
ematical optimization, which we also face in gas
network models, lies in the fact that the solutions
returned by most solving algorithms depend heavily
on an initial solution (Fourer, Gay, and Kernighan
1989 ), which can be specified by the user or is chosen
by the algorithm. Often, it is challenging to provide an initial solution that leads to a “good” result of the
algorithm1.

Therefore, this thesis investigates the performance of different solvers and validates approaches to support
the solvers in finding promising solutions by providing them with further hints in multiple steps, exploiting
the characteristics of the gas network setup. These hints consist in simplifications and extensions of the
gas network model which serve to give clues to the solvers. The clues might indicate with which initial
configurations to start searching for optimal solutions or the clues might consist in formulating the model in
a way that makes it easier for the solvers to optimize, for example.

This master’s thesis is structured as follows: in the chapter Mathematical optimization of basic gas networks
we first explain gas networks in general and summarize existing modeling and solving techniques for gas
networks. We continue with an example of the mathematical modeling of gas networks and end the chapter
with the formulation of our research problem, which consists in identifying parameters that have an effect on
the solution process and in optimizing the selection of these parameters. The chapter Gas network solver
configuration strategies elucidates the techniques we apply to reach our research goal, that is, we identify
tuning parameters and propose to simulate various networks and sequential configurations. In the course of
carrying out this research thesis we developed a software framework that allows us to launch test batteries
against different gas network scenarios, which we sketch in chapter 4. Along with the software framework, in
chapter 4 we also clarify core concepts of this thesis and analyze the relationships between these concepts.
Chapter 5 describes the experimental setup of the test batteries along with the results of the test batteries.

1In the section Research goal we will discuss by what criteria we judge the quality of a solution in this master’s thesis,
respectively, what we consider to be a “good” result.
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Concluding, we give recommendations on configurations for different objectives , describe the shortcomings of
this thesis and outline future work that would make sense to precede this thesis.

The section Definitions in the appendix lists definitions of reappearing key terms of this thesis. Also in the
appendix, we give an introduction to mathematical programming.
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2 Mathematical optimization of basic gas networks

2.1 Mathematical modelling of gas networks

In this master’s thesis we apply mathematical programming techniques (see section introduction to mathemat-
ical programming) to the modeling of gas networks. Therefore, we devote this chapter to explaining existing
approaches and open questions regarding the modeling of gas networks. Mathematically, gas networks are
typically represented in the form of connected graphs as is illustrated by the European gas network presented
in figure 1. In these graphs edges mainly define pipelines or compressor stations through which the gas flows.
Nodes usually represent consumption or supply points.

When modeling a gas network we are typically confronted with various optimization goals and different
physical restrictions that have to be taken into account (Á. M. G. Rueda 2017). The starting position for the
optimization approaches we undertake in this thesis is as follows: we assume that the structure of the network
- comprising the physical components like pipelines, compressors and supply and consumption points - is
given and cannot be changed. Furthermore, the structure of the network, which we also call scenario, as well
as the real gas demand establish boundaries on physical magnitudes like pressure or mass flow at different
points in the network. What can be changed, however, is for example the amount of gas we introduce into
the network at each supply point, as long as the specified boundaries are fulfilled. That is to say, we do not
aim to improve the network structure. Instead, we strive to optimize the gas flow configuration for a given
network structure. Furthermore, we assume the gas network to be in steady state. Above that, we restrict
the resulting optimization problem to gas network systems that minimize the gas consumption with the help
of compressor stations and under the constraint of preserving gas quality.

In the following section we will give a complete mathematical specification of the gas networks we consider
in this thesis. We call such a specification a model. A more thorough presentation of the mathematical
modeling of gas networks can be found in (Á. M. G. Rueda 2017).

2.2 Gas network specification

The basic elements of our gas network specification, i.e. of our model, are variables and parameters. Variables
stand for all possible values of the quantities we are interested in and can be changed by solvers, which we
employ to solve models. Parameters, on the other hand, are fixed and cannot be changed by the solvers.
We distinguish between two different types of parameters. The first kind of parameters are given by the
network scenario and its resulting physical constraints. The second kind of parameters, which we call alpha
parameters, are used to calibrate terms in the model, in particular in the objective function.

Tables 1, 2 and 3 show the mathematical symbols we use throughout this thesis for variables, parameters and
sets. The values of parameters with no default value will be assigned by the scenario.

Table 1: Variable notations, definitions and bounds

Variable Definition Lower bound Upper bound

∆q(j,k) difference of square pressures in
compressor between nodes j and k

0

cinik mass flow rate exchanged with the
exterior at node k

cinimink
cinimaxk

cvk calorific value at node k cvmink cvmaxk

9



Table 1: Variable notations, definitions and bounds (continued)

Variable Definition Lower bound Upper bound

g(j,k) self-consumption of a compressor 0

p2
k squared pressure at node k p2

mink
sp

p2
maxk
sp

+
p2

extramaxk
sp

pavg(j,k) square root of the average of the square
pressures of the pipe

0

pextrak extra pressure at node k 0 pextramaxk

q−(j,k) mass flow in the direction from node k
to node j

0 max(|qmink |, |qmaxk |)

q+
(j,k) mass flow in the direction from node j

to node k
0 max(|qmink |, |qmaxk |)

q(j,k) mass flow from node j to node k, the
sign determines the direction

qmink qmaxk

Z(j,k) compressibility factor of the pipe
between the nodes j and k

Table 2: Parameter notations and definitions

Parameter Definition Default value

αabsqual penalty associated to the gas quality 0.0001

αdifpres penalty associated to the pressure difference in compressors 1e-13

αgc penalty associated to gas consumption in compressors 1

αpextra penalty associated to the surplus pressure 1

εc(j,k) mechanic efficiency of the compressor

η(j,k)c optimal isentropic efficiency of the compressor.

γ ratio of specific heats 1.3031118413795963

λ(j,k) friction factor that describes the losses due to the viscious friction in
a pipe

1
ef2

0.009427
3
√
D(j,k)
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Table 2: Parameter notations and definitions (continued)

Parameter Definition Default value

θ average of the gas temperature in the pipes 288.15000000000026
K

θc critical temperature 198.03994571477782
K

ξc(j,k) efficiency of the gas turbine which drives the compressor

cinimink
upper bound of the mass flow rate exchanged with the exterior at
node k

cinimaxk
lower bound of the mass flow rate exchanged with the exterior at
node k

cvmaxk upper bound of the calorific value at node k

cvmink lower bound of the calorific value at node k

D(j,k) diameter of the pipe between the nodes j and k

ef Weymouth’s efficiency coefficient 0.95

g acceleration of the gravity 9.81 m
s2

hj height at the the beginning of the pipe

hk height at the the end of the pipe

L(j,k) length of the pipe between the nodes j and k

pextramaxk
maximum extra pressure at node k 1

pmaxk maximum pressure at node k

pmink minimum pressure at node k

pc critical pressure 4.605692623049976
MPa

qmaxk maximum mass flow at edge k

qmink minimum mass flow at edge k

R gas constant 487.6288819794937
kJ

kmolK
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Table 2: Parameter notations and definitions (continued)

Parameter Definition Default value

s∆q
pressure difference in compressors scaling factor 1e-10

scv calorific value scaling factor 1

sg gas consumption in compressors scaling factor 1

sl pressure loss scaling factor 1

spavg mean pressure scaling factor 1

sZ compressibility scaling factor
√

1e− 10

sp pressure scaling factor 1e-10

sq flow scaling factor 1e-10

Table 3: Set notations and definitions

Set Definition

E set of edges

EC set of compressor stations

EP set of edges with potential pressure loss, in particular compressor stations

V set of nodes

The gas networks we strive to optimize shall fulfill the following constraints (1) to (10). We multiply both
sides of the equations for each constraint with a scaling factor to keep all magnitudes within “compatible
ranges” (Bazaraa, Sherali, and Shetty 2006, 29).

Flow conservation:

sq
∑

(k,l)∈E

q(k,l) = sq
∑

(j,k)∈E

(
q(j,k) + cinik

)
∀k ∈ V (1)

That is, the sums of incoming and outgoing flows at every node k have to coincide except for an allowed
amount of flow cini that is exchanged with the exterior.

Pressure upper bound:

slspp
2
k ≤ sl (sppmaxk + sppextrak) ∀k ∈ V (2)
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The variable pextrak is intended to help the solvers in finding feasible solutions by first allowing surplus
pressure in the constraints for the node k and later on penalizing the surplus pressure in the objective function
(see equation (11)).

Pressure loss:

sl
(
spp

2
j − spp2

k

)
= sl(

16λ(j,k)L(j,k)Z(j,k)Rθ|q(j,k)|q(j,k)

π2D5
(j,k)

+
2 g p2

avg(j,k)

Rθ
(
1−20 + Z(j,k)

) (hk − hj)) ∀(j, k) ∈ EP
(3)

Determination of the compressibility factor Z using the AGA8 model for edges with potential
pressure loss:

sZZ(j,k) = sZ

(
1 +

0.257 pavg(j,k)

pc
−

0.533 pavg(j,k)θc

pcθ

)
∀(j, k) ∈ EP (4)

Determination of the compressibility factor Z using the AGA8 model for compressor stations:

sZZ(j,k) = sZ

1 +
0.257

√
spp2

j

pc
−

0.533
√
spp2

jθc

(pcθ)

 ∀(j, k) ∈ EC (5)

We can make use of compressors to increase the pressure at the cost of consumed gas (see equation (11) for
the objective function). Analogously, we can implement valves that decrease the pressure.

The compressibility factor Z tells us how the gas behaves in comparison with an ideal gas.

Mean pressure:

spavg

√
sppavg(j,k) = spavg

2
3

√spp2
j +

√
spp2

k −

√
spp2

j

√
spp2

k)√
spp2

j +
√
spp2

k

 ∀(j, k) ∈ EP (6)

Difference of square pressures in compressor:

s∆q
∆q(j,k) = s∆q

(spp2
k − spp2

j ) ∀(j, k) ∈ EC (7)

The difference of pressures between nodes will be penalized in the objective function (see equation (11)).

Gas consumption:

sgg(j,k) = sg

(
1

εc(j,k)ξ
c
(j,k)η(j,k)cLCV

γ

γ − 1Z(j,k)Rθ((
spp

2
k

spp2
j

)
γ−1
2γ − 1)|q(j,k)|

)
∀(j, k) ∈ EC (8)

Gas quality:

scv cvk

 ∑
(k,l)∈E

q−(k,l) +
∑

(j,k)∈E

q+
(j,k)

 = scv

 ∑
(k,l)∈E

q−(k,l)cvl +
∑

(j,k)∈E

q+
(j,k)cvj

 ∀k ∈ V (9)
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The calorific value cvk is a specific property of a substance, in our case of a gas mixture. The gas quality
constraint enforces that the calorific value at each node remains within given bounds. As equation (9) shows,
we estimate the calorific value of the gas mixture at a node by the average of the calorific values of the
components of the mixture weighted by their mass, which we determine by the mass flow at the node. As the
following constraint (10) postulates, for each edge the mass flows in both directions add up to the total gas
flow at the edge.

Directed absolute value decomposition of the total mass flow:

sq(q(j,k)) = sq(q+
(j,k) − q

−
(j,k)) ∀(j, k) ∈ E (10)

In addition to the constraints regarding the gas quality listed in equations (9) and (10), we add a term to the
objective function (11) that penalizes the sum of q+ and q−, so that at least one of the two variables should
adopt the smallest value possible, which is 0.

The objective function, which we aim to minimize, is given in equation (11):

Objective function:

f = αpextra
∑
k∈N

pextrak + αgc
∑

(j,k)∈EC

g(j,k) + αdifpres
∑

(j,k)∈EC

∆q(j,k) + αabsqual
∑

(j,k)∈E

(
q+
(j,k) + q−(j,k)

)
(11)

As we already mentioned respectively for equations (2), (7) and (10), the first and last two summands of the
objective function can be interpreted as mere constraints written as penalizations. The remaining second
summand represents the actual goal considered in this thesis: minimizing the amount of gas consumed in
compressor stations (cp. eq. (8)).

In summary, the problem of optimizing gas networks as specified in this section can be written as a nonlinear
program as defined in the section introduction to mathematical programming.

The gas network model described in this section, including its implementation in Python and AMPL, had
already been created at the beginning of writing this master’s thesis, with the exception of gas quality
components (see equations (9) and (10) as well as the respective term in the objective function). All elements
of the model are integral parts of the GANESO software, which has been developed in cooperation between the
University of Santiago de Compostela and the Technological Institute for Industrial Mathematics (ITMATI)
for the energy company REGANOSA (Bermúdez et al. (2015)). REGANOSA is a Galician company “engaged
in the transmission and regasification of natural gas” (REGANOSA (2018)). Currently, gas quality restrictions
are being integrated into the GANESO software. In this context, the objective of this thesis was to test the
performances of different approaches to solve the optimization problem resulting from the addition of gas
quality constraints to the existing model.

2.3 Example gas network scenario

In the following we visualize and elucidate the structure of the gas networks investigated in this thesis by
gradually adding components to a very simple example network. Accordingly, we begin with the basic gas
network shown in figure 2, which only comprises the requirements of flow conservation (see equation (1)) at
nodes (including a maximum flow difference cini) and lower and upper bounds for the squared pressure p2 at
nodes and the gas flow q at edges. The concrete requirements are drawn in red color. Restrictions concerning
nodes are drawn next to the nodes, restrictions concerning edges are drawn next to the edges. For example,
we model the squared pressure p2 in the network as an attribute of the nodes. Also, we omit units of physical
quantities. Parameters that we do not explicitly mention are set to their default values (see table 2).
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1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 80]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

p² in [4900, 9061]
cini in [0, 0]

p² in [1600, 9061]
cini in [0, 0]

supply point

p² in [1600, 4525]
cini in [0, 120]

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

Figure 2: Basic gas network model restrictions

Nodes 1 and 5 of the basic example network represent supply points, meaning places where gas can be
introduced into the network, but limited to a surplus (cini) of 80 at node 1 and 120 at node 5. Node 2 takes
on the role of a consumption point, requiring a flow of 100 which gets consumed at the node.

We do not draw arrows representing the direction of the gas flow as the direction of the flow depends on the
result of the optimization. In these examples, the flow is assumed to be positive if the gas flows from the
node with the lesser number to the node with the greater number and negative in the opposite case.

In this basic example gas network we regard compressors as usual edges and in particular we do not take the
consumption of gas at compressors (equation (8)) into account. Neither do we consider gas quality restrictions
(equation (9)) or optimization goals (formula (11)) .

Thus, in the basic network the main requirement is that the flow from the left and the flow from the right at
consumption node 2 have to add up to 100. Figure 3 gives us an arbitrary valid solution in blue color with a
flow of 21.27 coming from the left and a flow of 78.73 coming from the right.

1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 80]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

p² in [4900, 9061]
cini in [0, 0]

p² in [1600, 9061]
cini in [0, 0]

supply point

p² in [1600, 4525]
cini in [0, 120]

p²: 6171.3
cini: 78.73

p²: 5625
cini: -100

p²: 5664.89
cini: 0

p²: 1600
cini: 0

p²: 1639.89
cini: 21.27

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

q: 78.73 q: -21.27 q: -21.27 q: -21.27

Figure 3: Basic gas network model restrictions and solution

Now, if we take into account that compressor stations consume gas which causes costs that we want to
minimize, we have to add these costs to the objective function as laid out previously (see formula (11)) .

It becomes evident that under these premises we should insert as much gas as possible from supply point
1 into the network, thereby avoiding gas flow through the only compressor station in the network between
nodes 3 and 4. However, as the maximum flow surplus in node 1 is 80, we are obliged to insert a flow of at
least 20 from node 5 as well. More precisely, introducing an amount of exactly 20 units of gas from node 5
and 80 units from node 1 will lead to a global minimum of the objective function as we thereby minimize the
amount of gas consumed at the compressor station. Figure 4 shows the gas network model including gas
consumption at compressors and the resulting optimal solution.
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1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 80]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

p² in [4900, 9061]
cini in [0, 0]

p² in [1600, 9061]
cini in [0, 0]

supply point

p² in [1600, 4525]
cini in [0, 120]

p²: 6189.11
cini: 80

p²: 5625
cini: -100

p²: 5660.26
cini: 0

p²: 4489.74
cini: 0

p²: 4525
cini: 20

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

q: 80 q: -20 q: -20
gc: 2.32

q: -20

Figure 4: Gas network model including gas consumption with solution

Finally, let us add gas quality restrictions (equation (9)) to our example network as specified in figure 5.
That is, we assume a calorific value cv of 10 for the gas introduced at node 1, a calorific value of 100 for the
gas introduced at node 5, a valid range of 95 to 100 for the calorific value at the consumption node and a
valid range of 10 to 100 for the remaining nodes.

Under these circumstances it is not sufficient to provide 20% of the gas coming from node 5, as this would
result in a calorific value of 20% ·10+80% ·100 = 82 < 95 in the consumption point (see equation (9)). In order
to reach the required gas quality of at least 95 in the consumption point we have to introduce a flow of about
94.4 from node 5, and a flow of about 5.6 from node 1, yielding a gas quality of 5.6% · 10 + 94.4% · 100 ≈ 95
in the consumption point as is illustrated in figure 5.

1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 80]
cv in [10, 10]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

cv in [95, 100]

p² in [4900, 9061]
cini in [0, 0]

cv in [10, 100]

p² in [1600, 9061]
cini in [0, 0]

cv in [10, 100]

supply point

p² in [1600, 4525]
cini in [0, 120]

cv in [100, 100]

p²: 5627.72
cini: 5.56

cv: 10

p²: 5625
cini: -100

cv: 95

p²: 6411.2
cini: 0

cv: 100

p²: 3738.8
cini: 0

cv: 100

p²: 4525
cini: 94.44

cv: 100

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

q: 5.56 q: -94.44 q: -94.44
gc: 11.05

q: -94.44

Figure 5: Gas network model including gas consumption and gas quality restrictions with solution

The examples in this chapter so far have been pretty simple and could easily be solved manually. However, for
more complex networks this is not the case and sometimes not even standard solvers find a feasible solution
for a given model. Let us consider for example a gas network with the restrictions shown in figure 6. If we
apply the solver Ipopt with its default configuration to this network model, Ipopt does not find a feasible
solution. However, the solver Knitro started with its default configuration returns the feasible solution drawn
in figure 7 (with a rounded objective function value of 28.35). In the section Step sequences we will show a way
to configure Ipopt in such a way that it finds the same solution Knitro found with its default configuration.
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1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 120]
cv in [10, 10]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

cv in [95, 100]

p² in [1600, 9061]
cini in [0, 0]

cv in [10, 100]

p² in [1600, 9061]
cini in [0, 0]

cv in [10, 100]

supply point

p² in [1600, 9061]
cini in [0, 120]

cv in [100, 100]

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

Figure 6: Gas network not immediately solvable by ipopt solver

1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 120]
cv in [10, 10]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

cv in [95, 100]

p² in [1600, 9061]
cini in [0, 0]

cv in [10, 100]

p² in [1600, 9061]
cini in [0, 0]

cv in [10, 100]

supply point

p² in [1600, 9061]
cini in [0, 120]

cv in [100, 100]

p²: 5627.72
cini: 5.56

cv: 10

p²: 5625
cini: -100

cv: 95

p²: 6411.2
cini: 0

cv: 100

p²: 6411.2
cini: 0

cv: 100

p²: 7197.4
cini: 94.44

cv: 100

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

q: 5.56 q: -94.44 q: -94.44
gc: 28.32

q: -94.44

Figure 7: Gas network of figure 6 solved by knitro solver

As the solvers started with default configuration are not always able to find optimal solutions, the necessity
for advanced solution methods arises which will be the topic of the next section.

2.4 Research goal

As we can see by the example in figure 6, it is not a trivial task to find a solver setup that can generate
an at least feasible solution for a given gas network, let alone a feasible solution with a “low” objective
function value. To enhance the process of choosing a promising solver configuration, in this thesis we aim to
systematically analyze possible strategies to find configurations that have the potential to lead to desirable
feasible solutions as stated by our research goal:

The objective of this thesis is to optimize the selection of configurations to solve gas network models. That is
to say, we strive to systematically analyze which configurations are possible and compare the performance of
different configurations in respect to

• their ability to solve gas network problems to feasibility,
• their objective function values,
• their slacks and
• their computation time.

Figure 8: Research Goal

Thus, we are confronted with a multiobjective optimization problem.

As gas networks vary in their characteristics, the performance of a configuration might depend on the concrete
gas network scenario under consideration. Therefore, we aim to investigate the performance of configurations
for different scenarios.
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Part of our underlying assumptions is that we can apply the findings of optimizing configurations for the gas
network model that we restrict ourselves to in this thesis to more complicated network models.

In the next section we will present strategies to achieve the objectives postulated above. To this end we will
make use of existing techniques to solve mathematical optimizations problems described in the appendix,
i.e. existing solvers and the AMPL modeling language.
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3 Gas network solver configuration strategies

In this section we describe the techniques we apply in order to enhance the solution process of gas network
optimization problems:

That is, we

• split the solution process into step sequences with different configurations per step (section 3.1),
• use a variety of simplifications and extensions of our gas network model in each step of a step sequence

(section 3.2) and
• launch test batteries against different gas network scenarios (section 3.3).

3.1 Step sequences

As described in chapter 1, a difficult and important task in mathematical optimization consists in providing
helpful initial solutions for the solvers. To tackle this problem and to discover promising initial solutions we
propose to use sequences of steps with different step configurations. In each step of a sequence we consider a
variation of the actual gas network problem of interest as specified in section 2.2. The solution of the model
of a preceding step serves as initial solution for the next step. The actual gas network problem of interest
always forms the last step of every step sequence.

Thus, just as we have gradually added components to the basic example network model in section 2.3, our
approach to solve complicated gas network models involves employing sequences of network models with
different components, generally - but not necessarily - starting with simpler network models.

For instance, as a proof of concept for this approach we might again consider the network shown in figure 6 of
section 2.3: If we immediately try to solve this network with the solver Ipopt and its standard configuration,
we do not obtain a valid solution - the solver regards the problem as “infeasible”. Therefore, let us first
contemplate a simplified version of the network, which ignores the gas quality restrictions but preserves all
other requirements. For this simplified network Ipopt comes up with a solution, which is shown in figure 9.

1 2 3 41 2 3 4 5

supply point

p² in [1600, 8900]
cini in [0, 120]

consumption point

p² in [5625, 8584]
cini in [-100, -100]

p² in [1600, 9061]
cini in [0, 0]

p² in [1600, 9061]
cini in [0, 0]

supply point

p² in [1600, 9061]
cini in [0, 120]

p²: 8179.59
cini: 0

p²: 8179.59
cini: -100

p²: 9061
cini: 0

p²: 1600
cini: 0

p²: 2481.42
cini: 100

q in [-454.24, 454.24] q in [-454.24, 454.24]
compressor

q in [-454.24, 454.24] q in [-454.24, 454.24]

q: 0 q: -100 q: -100
gc: 29.11

q: -100

Figure 9: Simplified version of the gas network solved by ipopt solver

Interestingly, if we use the solution of this simplified network as initial solution for the complete network
in figure 6, Ipopt is able to solve the complete network, that is, including the gas quality requirements and
returns the solution given in figure 7. This works although the solution of the simplified network - i.e. the
initial solution of the original network under study - is not the optimal solution returned by Ipopt for the
original network when providing this solution as initial solution.

Having motivated our idea, our straightforward goal is to generalize this procedure and to try to solve generic
- not immediately solvable - gas network models by varying its components and using the solutions of the
modified networks as initial solutions for the solvers to obtain solutions for the actual network of interest.
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In addition to simplifying and extending models and their alpha parameters we will also examine the effects
of the following configuration parameters, which likewise may vary per step:

• AMPL options,
• solvers, including
• solver options

In the next section we will concretize our approach by listing all simplifications and extensions we allow for
the gas networks under consideration in this thesis.

3.2 Model components

3.2.1 Model decomposition

We decompose the complete gas network specification (see section Gas network specification), i.e. the actual
model of interest, into three components called base, gas consumption (abbreviated gc) and gas quality (gq).
Thereby, we seek to generate simpler models that are easier to solve and that might lead to promising initial
solutions for the solvers when solving the actual model of interest. Table 4 shows the elements of the complete
specification (see section Gas network specification) that the three components comprise, respectively:

Table 4: Decomposition of the complete model specification into
components

Model
component

Variables
with bounds

Constraints Objective function terms

base q(j,k), p
2
k,

pavg(j,k) ,
pextrak , cinik ,
Z(j,k)

Flow conservation (1), Pressure upper
bound (2), Pressure loss (3),
compressbility factor (4), (5), Mean
pressure (6)

αpextra
∑
k∈N pextrak

gas consumption
(gc)

g(j,k), ∆q(j,k) Difference of square pressures in
compressor (7), Gas consumption (8)

αgc
∑

(j,k)∈EC g(j,k),

αdifpres
∑

(j,k)∈EC ∆q(j,k)

gas quality (gq) cvk, q+
(j,k),

q−(j,k)

Gas quality (9), Decomposition of the
mass flow (10)

αabsqual
∑

(j,k)∈E(q+
(j,k) +

q−(j,k))

In each step of a step sequence we can solve a model consisting of a combination of the components shown in
table 4. However, every valid combination has to contain the base model component. Every valid combination
of model components is a model itself.

3.2.2 Model extensions

In addition to the decomposition of the complete model, we introduce a new gas quality penalized (gqp)
component, which can be added to a model. The specification of the gas quality penalized component as an
extension to a given model is presented in table 5.
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Table 5: Model extensions

Model extension
component

Removed constraint New objective function term

gas quality
penalized (gqp)

Gas quality (9) αgq
∑
k∈N (cvk(

∑
(k,l)∈E q

−
(k,l) +

∑
(j,k)∈E q

+
(j,k))−

(
∑

(k,l)∈E(q−(k,l)cvl) +
∑

(j,k)∈E(q+
(j,k)cvj)))2

Instead of ensuring gas quality via the gas quality constraint (9), the gas quality component penalizes
gas quality deviations in the objective functions to help the solvers in the solution process (see section
Mathematical optimization). The parameter αgq has a default value of 0.01.

3.2.3 Model simplifications

Furthermore, we propose model simplifications to simplify models and facilitate the search for promising
initial solutions. Table 6 shows the three simplifications that we consider in this thesis. These simplifications
redefine and simplify constraints of the complete model.

Table 6: Model simplifications

Model
simplification
component

Redefined constraint New constraint definition

delete heights
(dh)

Pressure loss (3) sl(p2
j − p2

k) = sl
16λ(j,k)L(j,k)Z(j,k)Rθ|q(j,k)|q(j,k)

π2D5
(j,k)

∀(j, k) ∈
EP

mean pressure
without
denominator
(mpwd)

Mean pressure (6) spavg(3pavg(j,k)(
√
spp2

j +
√
spp2

k)) =

spavg(2(spp2
j + spp

2
k + (

√
spp2

j

√
spp2

k))) ∀(j, k) ∈ EP

simple mean
pressure (smp)

Mean pressure (6) spavg(pavg(j,k)) = spavg(1/2(
√
p2
j +

√
p2
k)) ∀(j, k) ∈ EP

3.3 Configuration simulations

To recapitulate, the given combination of scenario and configuration determines if and how well we can reach
our objectives, which means solving the scenario to feasibility with low objective function value, little slack
and little computation time (see section Research Goal). The model that we ultimately try to solve is always
the actual model of interest. In the last two sections we have identified possible configuration parameters.
In this section we address the problem of evaluating the performance of configurations for multiple scenarios.

In this master’s thesis it is infeasible to compare the performance of configurations analytically due to the
complexity of the problem. Therefore, we propose to tackle the problem of evaluating the performance of
different configurations by computationally launching different types of test batteries consisting of combinations
of configurations and simulated scenarios and by measuring the performance of these combinations in respect
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to our objectives when solving the actual model of interest. To solve models with a given combination of
configuration and scenario we make use of an existing software described in (Bermúdez et al. (2015)).

The scenarios are generated randomly, based on the example gas network of section 2.3. The sheer quantity
of possible combinations of configurations and scenarios makes it impossible to test all possible configurations
on all possible scenarios, so that representative samples have to be drawn. In our simulations the generated
gas networks function as experimental units to which we apply the treatment - i.e. the configuration - and
for which we measure the results (objective function value, time and slack). In the Results chapter we will
present the combinations we chose and their respective performances.

Summing up this chapter, our approach to enhance the solution process of gas networks models consists
in computationally comparing different solver configurations. These configurations are made up of steps in
which the solution of a previous step serves as initial solution for the succeeding step. We have identified
the following configuration parameters per step: solver, gas network model, (penalizing) alpha parameters,
AMPL options and solver options.

As a technical basis for this master’s thesis serves an already existing software, which includes utilities to
launch the solution process of gas network models with given scenarios and configurations (Bermúdez et al.
(2015), Á. M. G. Rueda (2017)). In the next chapter we present a software framework, which extends the
functionality of the existing software by providing tools to easily execute and analyze simulations of different
configurations. The developed simulation framework is a key contribution of this thesis as it enables us to
carry out our research approach.
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4 Simulations framework

4.1 Conceptual model

In the course of this thesis we have developed an object-oriented software framework, which enables us to
launch and analyze the test batteries proposed in section 3.3. In this chapter we will explain the elements of
the conceptual model of the framework as sketched in figure 10. The notation mostly follows the conventions
of the Unified Modeling Language (UML) (Rumbaugh, Jacobson, and Booch (2004)). Blue and yellow
rectangles represent classes, lines represent relationships between the classes. A line with an open arrowhead
symbolizes a navigable relationship in the direction of the arrow. For example, we can navigate from steps to
their configuration. Unfilled arrowheads resemble generalizations, for example GasConsumption objects
are specializations of ModelComponent objects. Diamonds at the end of an arrow denote that objects of
the class at the end of the arrow are made up of objects of the class at the other side of the arrow, e.g. a
StepSequence object consists of Step objects. Selected meaningful scalar attributes are drawn inside the
rectangles, for example alpha parameters for ModelComponent objects. Ellipses drawn with dotted lines
represent non-scalar attributes.

A step sequence forms part of a configuration simulation, which is the unit of of execution. A
configuration simulation is linked to a unique scenario. Thus, all steps of the configuration simulation
operate on the same gas network scenario. Conceptually, scenarios consist of objects of the classes Node and
Edge. Steps implement the logic to launch the solution process of a given scenario with a given configuration.
Also, steps store references to the results we obtain. In particular, we need to analyze constraint results
(see section 2.2) to verify whether a configuration has solved a scenario to feasibility. Attributes of a
step configuration are the solver, the model, solver options and AMPL options.

In every step we launch a distinctive model, i.e., a specification consisting of an objective function and
restrictions. Models consist of model components in a variation of the composite pattern (Gamma et al.
(1995)). A model always includes the base class, which provides basic functionality, especially access to the
underlying AMPL API calls. All combinations of model components constitute new model components
themselves. Nevertheless, not all combinations of model components are valid models, for example a model
may not be composed of the gas quality penalized component without simultaneously also comprehending the
gas quality component (see section 3.2).

Model component objects may be

• parts of the complete model specification, for example the gas consumption component (see
sections 2.2. and section 3.2.1), or

• model extensions, for example the gas quality penalized component (see section 3.2.2), or
• model simplifications, for example the simple mean pressure component (see section 3.2.3), or
• combinations of other model components.

The GasConsumption+GasQualityModel is an example of a model component class that is generated
by combining and thereby specializing multiple model component classes.

4.2 Implementation of the conceptual model

We implemented the conceptual model in Python. Blue rectangles in figure 10 represent classes which are
not defined in the Python code but whose objects are generated via duck typing, i.e. by implementing the
attributes and methods of the base classes. Thereby, we can cope with the large number of possible model
classes. Thus, the inheritance arrows in figure 10 are not really specified in the program, but enforced by
means of contract. Hence, relying on duck typing in our implementation we define a model to be the sum of
model components, where the sum includes an object of the Base class as a summand. This allows for
a valid concise Python syntax to create a complete model based on overloading the “+”-operator. In the
following code chunk we create the object for the actual model of interest in Python syntax by summing
up its components:
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Figure 10: Simulations framework class diagram
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actual_model_of_interest = (base_model_component + gas_consumption_component +
gas_quality_component)

Thereby, model component objects themselves serve as prototype objects for the generation of more complex
model components. The launch() method of the model gets dispatched to the actual implementation in the
model components. Objects of classes labeled with the UML stereotype <<persistent>> are stored to an
SQLite database for further analysis. The object-relational mapping between objects in the framework and
entities in the database is handled by the sqlalchemy Python package.
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5 Results

5.1 Experimental setup

In each of the following six sections we investigate the effect of changing one particular configuration parameter
and show the resulting outcomes. More precisely, we usually fix the values of the remaining configuration
parameters - that is, the configuration parameters that we do not change in the respective section - to the best
performing configuration settings of the previous section, as testing all possible combinations of configuration
settings is infeasible.

Thus, per section we will describe the results of one particular test battery. We created test batteries focusing
on:

• Model sequences
• AMPL presolve option
• Solver options
• Simplified and penalized model sequences
• Alpha parameters
• Solver ensembles

In the Discussion section we will summarize the results of all sections.

All parameters of the models were set to their default values (see table 2), if not specified otherwise.

A configuration has a complex structure, consisting of an arbitrary number of steps with arbitrary configuration
settings per step. Therefore, it is not a trivial task to extract meaningful single independent factors to predict
the outcomes.. For example, in each step the solver could be changed, so that a factor “solver” on its own
would not necessarily be helpful. Hence, we mostly restrict our analysis to complete configurations as factors.

We created 259 different scenarios for our simulations. These scenarios were generated computationally with
random elements and are based on the example network in the section Example gas network scenario. The
scenarios are the connected components which resulted from random Erdos-Rényi graphs with 20 nodes
and with a probability of an edge between two nodes of 6% (Erdös and Rényi (1959)). The attributes
of the nodes and edges, for example whether a node is a supply point or a consumption point, were also
randomly set, usually according to normal and uniform distributions, while paying attention to keeping the
scenarios solvable. Nevertheless, we also created - by chance - some scenarios that could not be solved by any
configuration and that might not have a valid solution at all.

The maximum number of nodes of a scenario is 18 and the maximum number of edges of a scenario is 21.
Figure 11 shows the joint frequency distribution of nodes and edges of the generated scenarios.
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Figure 11: Joint Frequency distribution of nodes and edges of the generated scenarios

To make the results of different configurations comparable, we launched each tested configuration on every
generated scenario so that we are dealing with paired data.

We compared the performance of four different solvers: BARON (Sahinidis (1996)), Ipopt (Wächter and
Biegler (2006)), Knitro (Byrd, Nocedal, and Waltz (2006)) and MINOS (Murtagh and Saunders (2003)).
If not specified otherwise, we launch all solvers with their default solver options. As BARON searches
optimization problems to global optimality, this solver tends to take more time than would be practicable for
our experiments. Thus, we start BARON with a timeout of one minute.

We conducted our experiments on a computer with an Intel Core i5-7200 processor and 8 GB of RAM.

5.2 Model sequences

We begin the presentation of our results with a test battery consisting of configurations with different models
in each step. In each step of the same configuration the same solver was used. To allow comparisons with
simpler configurations we also included configurations consisting of one single step. Moreover, we included
replications of some configurations to verify if and in how far our results change when running the same
test configurations multiple times on the same scenarios. The results of the replications were obtained by
launching a second test battery.

In detail, we investigated the following model sequences (see section Model simplifications and extensions) :
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1. one model sequence containing only one model, which of course has to be the gas quality model, as this
is the model we are actually aiming to solve and therefore this model is always the last model launched
(see section 3.1). This model includes base, gas consumption and gas quality components and is the
actual model of interest. In the figures we abbreviate this model sequence by gq.

2. one model sequence with three different models, with the model used in each step being successively
more difficult, that is the base model in the first step, the gas consumption model in the second step and
the gas quality model in the third step. The gas consumption model includes base and gas consumption
components. We abbreviate this model sequence by base gc gq.

3. To check whether possible effects of the model sequence described under 2. were due to the model
sequence or - instead - due to the mere fact of launching multiple steps, we created a control group.
This control group was composed of a model sequence with three models in which every model is the
same model - the actual model of interest. The abbreviation for this model is gq gq gq.

We launched every model sequence with every solver available (BARON, Ipopt, Knitro and MINOS) .

The result of a configuration is equivalent to the result of the last step of the step sequence of the configuration,
with the exception of the total time, which is the sum of the times of all steps (see section 3.1).

In figures 12 until 15 we show the results per configuration. As we launched each configuration with a specific
solver, to compose the labels of configurations in the graphics we prefix the name of the the model sequence
with the name of the solver used. We launched the single step model sequences described under 1. a second
time on the same scenarios and suffixed these configurations with replicate. We will preserve these naming
conventions throughout this chapter. Other configuration parameters not described here were set to their
default values. In the figures we have sorted the configurations by solver name and by model sequence name.

In this and in the following sections we usually show the same following diagrams:

• a feasibility diagram, in which we show the number of solved scenarios per configuration. We considered
a scenario to be solved if the minimum slack of all constraints was greater than -0.1. This threshold
was the lowest value for which a solver reported “solved” for all our test batteries.

• a quality diagram, which demonstrates the quality of the objective function value returned. The quality
is measured relatively to the lowest objective function value of all configurations that have solved the
scenario. solved.

• a boxplot diagram indicating the distribution of the minimum slack per configuration.

• a boxplot diagram indicating the distribution of the sum of the computation times of all steps per
configuration. The times are given as reported by AMPL.

In the last three diagrams mentioned we only consider configurations that have solved a minimum
number of 10 scenarios. In the quality diagram and in the slack diagram only scenarios that all listed
configurations have solved are taken into account.

The whiskers in the boxplots are drawn at a distance of 1.5 times the difference between the third and
the first quartile from the edge of the box. Points outside the whiskers depict outliers. As outliers may
be widely spread, the diagrams with the boxplots do not necessarily show all outliers.
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Figure 12: Number of scenarios solved to feasibility by model sequence configuration
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Figure 13: Quality of objective function by model sequence configuration relative to best performing
configuration. Only scenarios that were solved by all of the listed configurations were considered.
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Figure 14: Boxplots of minimum slack by model sequence configuration. Only scenarios that were solved by
all of the listed configurations were considered.
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Figure 15: Boxplots of sum of times of all steps of sequence by model sequence configuration
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The solver Knitro in conjunction with the model sequence base model - gas consumption model - gas quality
model solved most scenarios - 114, as can be seen in figure 12. Knitro also achieved the highest quality of the
objective function value (figure 13) while MINOS in general reported solutions with the lowest amount of
slack (figure 14) and took the shortest time to solve (figure 15).

In the replicate runs the numbers of solved scenarios slightly changed. Thus, when interpreting our results
we have to take into account that our results are not deterministic, but instead include a certain degree of
uncertainty. On the other hand, the number of scenarios solved in the replicate runs only differs by at most
one. Therefore, it seems that at least for this test battery the differences between configurations are much
greater than between replications of the same configuration.

Accordingly, we observed differences between configurations that do appear to be systematic, for example,
Ipopt and MINOS with their default options perform much better if run in sequence.

The only solver that solved scenarios that no other solver solved was MINOS. That is to say, every minimal
configuration combination contains a configuration with the solver MINOS.2

5.3 AMPL presolve option

In this section we investigate configurations launched with the AMPL presolve option set to false, i.e. without
the presolve phase. We chose the same configurations as in the previous section but added configurations that
only differed in the AMPL presolve option. As stated in (Fourer, Gay, and Kernighan 1989, 275), “AMPL’s
presolve phase attempts to simplify a problem instance after it has been generated but before it is sent to
a solver”. Per default AMPL carries out a presolve phase, as happened in the test battery of the previous
section as well. However, based on previous experiences the presolve phase might affect the results, so that
we studied the effect of turning it off.

In figures 16 until 19 we show the results of this test battery. Figures 17 and 18 only include configurations
that solved at least 10 scenarios.

2There were 14 different minimal configuration combinations, which we do not list here. In following sections with a smaller
number of minimal configuration combinations we will show the respective minimal configuration combinations.
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Figure 16: Number of scenarios solved to feasibility by AMPL presolve option configuration
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Figure 17: Quality of objective function by AMPL presolve option configuration relative to best performing
configuration. Only scenarios that were solved by all of the listed configurations were considered.
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Figure 18: Boxplots of minimum slack by AMPL presolve option configuration. Only scenarios that were
solved by all of the listed configurations were considered.
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Figure 19: Boxplots of sum of times of all steps of sequence by AMPL presolve option configuration

33



The number of solved scenarios of two configurations that only differ in the presolve option was always higher
for the configuration with the presolve option set to false. Furthermore, the performance of the configurations
in respect to the objective function value was also better without a presolve phase. Thus, for the test batteries
that we will describe in the following sections we always set the presolve option to false.

Like in the previous section, the model sequence base model - gas consumption model - gas quality model
with the solver Knitro solved most scenarios, albeit this time with the presolve option set to false. This
configuration without the presolve phase solved 202 scenarios, whereas the same configuration with a presolve
phase solved 114 scenarios.

5.4 Solver options

In addition to the AMPL presolve option in the last section we also tested specific solver options for the
solvers Knitro and Ipopt based on previous experience. The results are shown in figures 20 until 23
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Figure 20: Number of scenarios solved to feasibility by solver options configuration
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Figure 21: Quality of objective function by solver options configuration relative to best performing configura-
tion. Only scenarios that were solved by all of the listed configurations were considered.
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Figure 22: Boxplots of minimum slack by solver options configuration. Only scenarios that were solved by all
of the listed configurations were considered.
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Figure 23: Boxplots of sum of times of all steps of sequence by solver options configuration

As can be seen from figures 20 to 23, the specific solver options did not in general improve the performance
of the solvers Ipopt and Knitro. In particular, the quality of the solutions worsened if compared with the
respective configuration without solver options. In the following sections we will launch all solvers with their
default options again.

It remains to be said, that the only minimal configuration combination of the test battery of this section
consists of the three configurations Ipopt gq gq gq with solver options, Ipopt base gc gq with
solver options and Knitro base gc gq. Hence, neither only configurations with Knitro as solver nor
only configurations with Ipopt as solver solved all scenarios that were solved with any configuration of
this test battery. Interestingly, although the configuration Ipopt base gc gq solved most scenarios of all
configurations with the solver Ipopt, it is not part of the minimal configuration combination.

5.5 Simplified and penalized model sequences

Having analyzed different model sequences in the previous sections without detecting a general best-performing
model sequence, we continued with testing model sequences with larger differences between the different
models of the sequence. More precisely, we launched models with simplifications and penalizations (see
section Model simplifications and extensions):

• The first model of the model sequence smp base gq is a model that consists of the base component
simplified by the simple mean pressure component (see section Model simplifications and extensions).
The names of the next two models in the sequence follow our usual naming convention, i.e. they consist
of the base model component and the gas quality component, respectively.

• The model sequence gqp gqp gq contains a penalized model as the first and second model in the
sequence, consisting of the actual model of interest with the addition of the gas quality penalized
component.
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Also, we included the configurations of section 5.3 without the AMPL presolve phase as control groups.

In figures 24 until 27 we show the results of this test battery. Figures 25 and 26 only include configurations
that solved at least 10 scenarios.
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Figure 24: Number of scenarios solved to feasibility by simplifications and penalizations configuration
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Figure 25: Quality of objective function by simplifications and penalizations configuration relative to best
performing configuration. Only scenarios that were solved by all of the listed configurations were considered.
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Figure 26: Boxplots of minimum slack by simplifications and penalizations configuration. Only scenarios that
were solved by all of the listed configurations were considered.
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Figure 27: Boxplots of sum of times of all steps of sequence by simplifications and penalizations configuration

As long as two configurations were of the same length, we could not detect a particular step sequence that
performs best for all solvers, which includes the penalized and simplified model sequences.

In other respects, the results of this section confirm what we already observed in the previous sections. For
example in general Knitro solved most scenarios and the objective function value of the solved scenarios using
Ipopt is often higher and the objective function value of the solved scenarios using Baron is usually lower than
the objective function value of the other solvers tested. MINOS excels regarding slack and computation time.

5.6 Alpha parameters

In this section we investigate different alpha parameters of the models. To this aim we selected the best
performing configurations per solver of the previous section but launched them with different alpha parameters.
While in the previous sections we always chose default values for the alpha parameters, for the test battery of
this section we multiplied the default alpha parameters by discrete powers of 10.

Specifically, we parametrized each model with the following alpha parameter values:

• For each alpha parameter and each selected configuration we created two configurations in which we set
the alpha parameter to 10 times and 0.1 times its default value (see table 2, respectively). For example,
the configuration Knitro base gc gq alpha gc*10 denotes the configuration with the solver Knitro
and the model sequence base - gas consumption - gas quality and the parameter alpha_gc set to 10
times its default value (albeit that the parameter alpha_gc does not affect the first base model)

• Also, for each configuration we created two configurations in which we set all alpha parameters
simultaneously to 10 times and 0.1 times their default values, respectively, for example denoted by
Knitro gq gq gq all alphas*10.

We did not change the alpha parameters in the last step as that would change the objective function value
and make comparisons with other test batteries difficult.
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Figures 28 until 31 show the results for the different alpha parameter values.
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Figure 28: Number of scenarios solved to feasibility by alpha parameters configuration
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Figure 29: Quality of objective function by alpha parameters configuration relative to best performing
configuration. Only scenarios that were solved by all of the listed configurations were considered.
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Figure 30: Boxplots of minimum slack by alpha parameters configuration. Only scenarios that were solved by
all of the listed configurations were considered.
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Figure 31: Boxplots of sum of times of all steps of sequence by alpha parameters configuration

All in all the effects on the performances of the selected configurations when changing alpha parameter values
appear to be rather small in comparison to other parameters like the employed solvers.

Also, as we had shown in the section Model sequences the results contain a certain degree of randomness, so
that a difference of one more solved scenario might be due to chance.

Clearly, Knitro combined with the model sequence base - gas consumption - gas quality solved most scenarios
(up to 203), followed by Ipopt with the simplified model sequence (up to 192). In fact, the number of
solved scenarios for all configurations with Knitro was always higher than the number of solved scenarios of
configurations with any other solver.

Figure 32 shows scenarios grouped by their number of nodes that were solved by four selected configurations.

From the graphic in figure 32 we could not detect clear evidence that a certain configuration might be more
suited for certain scenarios dependent on the number of nodes. Nevertheless, it comes as a surprise that
the configuration MINOS gqp gqp gq, a configuration with relatively few solved scenarios, was the only
configuration that was able to solve three scenarios with the highest number of nodes (18).

Summing up the results of this section, it can be said that the solvers and step sequences seem to have a
much larger impact than the alpha parameters - at least in respect to the parameter values we restricted
ourselves to.

5.7 Solver ensembles

In the last test battery we investigated effects of solver ensembles. By “solver ensembles” we mean step
sequences with different solvers in different steps, where as usual the solution of the previous step serves as
initial solution for the next step.

Again, we selected well-performing configurations of previous sections per solver, this time including the best
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Figure 32: Solved scenarios by number of nodes and configuration

alpha parameter values of the configurations as retrieved in the previous section. We launched the selected
configurations in sequence, for example first the best sequence with Knitro, then the best sequence with
BARON - started with the initial value given by the preceding sequence with Knitro - and so forth.

We tested different orders of the selected configuration sequences with each sequence being once at every
position in the total sequence. For example, the configuration Knitro base gc gq MINOS gqp gqp gq
BARON gq gq gq Ipopt smp base gq consists of twelve steps in total, of which the first three steps
belong to the selected step sequence for the solver Knitro, comprising the model sequence base gc gq.

To measure the effect of these extensive configurations we compare these configurations with two different
other types of configurations:

• configurations that launch the actual model of interest directly with each solver in a single step.

• configurations that launch the actual model of interest directly with each solver in a single step, yet also
concatenating the different configurations in sequence, resulting in four steps per configuration in total.

In figures 33 to 36 we present the results of the different ensembles.
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Figure 33: Number of scenarios solved to feasibility by solver ensembles configuration
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Figure 34: Quality of objective function by solver ensembles configuration relative to best performing
configuration. Only scenarios that were solved by all of the listed configurations were considered.
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Figure 35: Boxplots of minimum slack by solver ensembles configuration. Only scenarios that were solved by
all of the listed configurations were considered.
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Figure 36: Boxplots of sum of times of all steps of sequence by solver ensembles configuration
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As we can see in figures 33 to 36, the two configurations with ensembles of the solvers in the order BARON -
Kitro-Ipopt-MINOS solved most scenarios (212), regardless of whether they were run individually in step
sequences or in a single step. Moreover, each of these configurations represents a minimal configuration
combination. No other combination of configurations of this test battery constitutes a minimal configuration
combination. The second highest number of scenarios solved by a configuration was 205, which was reached
by both ensemble configurations with the solver order MINOS-Knitro-Ipopt-BARON.

Thus, launching sequences with different solvers in different steps yielded better results in respect to the
number of scenarios solved than running the solvers individually and combining the results. However, the
length of the sequences did not seem to have an effect: directly launching the solver configurations with
the actual model of interest in sequence, we obtain results which appear to be in general just as good as
launching step sequences with multiple steps for each solver in sequence.

The order of the ensembles also plays an important role in the quality of the objective function value: if
BARON with its default configuration is the last solver in the sequence, the objective function value is
generally lower, and if Ipopt with its default configuration is the last solver in the sequence, the objective
function value is generally higher.

Finally, we examined whether the differences we observed between the proportion of solved scenarios per
configuration are statistically significant for the distribution behind the randomly generated scenarios. To
this aim we compared two well-performing configurations of the test battery of this section:

• Knitro gq, the best performing configuration of a single solver in a single step with 195 solved scenarios,
and

• BARON gq Ipopt gq Knitro gq MINOS gq, the best performing configuration of all test batteries
with 212 solved scenarios.

The contingency table of these two configurations in respect to the number of solved scenarios is as follows:

Table 7: Contingency table of solved scenarios for best ensemble
configuration and best single-solver configuration

BARON gq Ipopt gq Knitro gq MINOS gq

not solved solved

Knitro gq

not solved 47 17

solved 0 195

To this table we apply the McNemar test to check for differences between the proportions of individuals of
two populations that verify a certain characteristic given paired samples (Cao Abad et al. (2001)). As a
result, the McNemar test with the Edward’s correction yields a p-value of 0.0001042. Thus, we have observed
significant differences between the proportions of solved scenarios by the two configurations at a significance
level of 0.01

5.8 Discussion

Summarizing our results, solvers run in sequence in general performed better than being run in a single step,
i.e. they solved more scenarios and reached a higher quality of the objective function. Solvers that in a single
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step solved fewer scenarios than all single-step configurations did on average, i.e. the solvers MINOS and
Ipopt, reacted more strongly to being run in sequences than other solvers (BARON and Knitro).

Launching different models per step had an effect, albeit small and hard to predict. We did not observe
large systematic effects of solver options or of using simplified and penalized models or of switching alpha
parameters. Turning the presolve phase off always increased the number of solved scenarios.

Configurations with the solver Knitro and the model sequence base - gas consumption - gas quality were
the best performing single-solver configurations with respect to the number of solved scenarios for all test
batteries. With the presolve phase turned off this configuration reached a total of 202 solved scenarios (of
a total of 259 scenarios) and by multiplying all alpha parameter values by 0.1 we increased the number of
solved scenarios marginally by 1 to 203.

Solver ensembles, i.e. configurations with different solvers in different steps, reached the highest number of
solved scenarios (up to 212). The best solver ensembles solved all scenarios that any other configuration of
all test batteries found and also solved scenarios that no other configuration of all test batteries found.

The quality of the objective function was usually best with BARON and worst with Ipopt. MINOS in general
achieved minimum slack and time.

Also, we confirmed that we have observed statistically significant differences between the proportions of
solved scenarios of different configurations for our randomly generated network scenarios.
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6 Conclusion

In this thesis we have identified and analyzed possible configuration parameters for the solution process
of gas network models. The configuration parameters we proposed consist in sequences of steps where the
solution of a previous step serves as initial solution for the succeeding step. In each step a combination of
solver, gas network model, penalization parameters (alphas), AMPL options and solver options forms the
step configuration.

To compare performances of different configurations we generated random gas network scenarios and solved
these scenarios computationally with different configurations.

While the solvers Ipopt and MINOS with their standard options profit from being run in sequence, we could
not detect a systematic effect of different simplifications and extensions of gas network models on the final
solution. Setting the AMPL presolve option to false allowed for more scenarios to be solved.

Configurations that consist of different solvers in different steps (solver ensembles) yielded the highest number
of solved scenarios and could solve all scenarios that were solved by any configuration we tested. Thus, in
general, we recommend to use solver ensembles to solve gas network models.

Different solvers with their standard options excel at different tasks under equal conditions: the solver Knitro
could in general solve more scenarios than all other solvers (except for solver ensembles), BARON (with a
timeout of one minute) usually achieved the lowest objective function values and MINOS returned solutions
with the lowest amount of time and slack.

Due to the manifold of different configurations and scenarios we could not analyze all possible configuration
parameters and scenarios. In particular, it might well be possible that adapted individual solver options
might lead to improved results. Moreover, the distribution which we used to generate network scenarios might
not be representative for real gas networks, although it was based on experience with existing gas networks.

Also, in this master’s thesis we restricted ourselves to mean performances of solver configurations for arbitrary
scenarios. An interesting starting point for future research would be an analysis of performances of solver
configurations for individual scenarios. That would imply identifying meaningful features of scenarios and
predicting the best configuration for a given feature combination, i.e., for a given scenario. Simple features of
a scenario might for example be the number of nodes or the number of compressor stations. This task could be
approached by machine learning algorithms, if sufficient data is available (Bishop (2006)). Furthermore, such
approaches could individually weigh the importance of different objectives, for example one could introduce
weights for the time needed or for the objective function value of the model under investigation. The findings
in this master’s thesis might prove beneficial for such further research, e.g. the configurations and objectives
we identified and the effects we already pointed out might be applicable to individual scenarios and objectives
as well.

48



Appendix

Definitions

This section is intended to serve as a quick lookup of relevant terms used throughout this thesis. For the
purpose of employing a concise common language we define the main concepts in a rather informal but
intuitive way as follows:

Scenario: concrete real-world application which should be optimized. In this thesis we focus on scenarios
given by gas networks, made up of components like pipes, compressor stations, consumption points,
entry points, etc., and modeled for example with pipes as edges and consumption and exit points as
nodes (see section 2.2).

Model: mathematical formulation of an optimization problem for a given range of scenarios as input, i.e. the
formulation of an objective function and restrictions. A model can be parameterized by alphas, which
in general are real numbers used to calibrate terms in the model (see section 2.2).

Model component: part of a model, e.g. gas quality restrictions (see section 3.2.1).

Actual model of interest: Our goal in this thesis is to optimize a special gas network model that consists
of all components specified in section 2.2, including gas consumption and gas quality components. We
call this model the actual model of interest, hoping that our findings will also apply to more complicated
gas network models. However, in order to find good feasible solutions for the actual model of interest
we make use of more complicated as well as of simpler models, which may provide us with helpful initial
solutions for the actual model of interest (see section 3.2.1).

AMPL: mathematical modelling language (“AMPL - Streamlined Modeling for Real Optimization” 2018)
that allows specifying models in .mod files and data of the models in .dat files. Also, models can
be solved by launching .run-files and employing solvers. AMPL is at the same time the name for a
commercial software package that supports the AMPL modelling language and various solvers (see
section AMPL).

Solver: tool that can be used to solve a model. AMPL provides an interface to solvers. Solvers can be free
or commercially licensed (see section 2.2).

Step configuration: combination of solver, model, alpha parameters, AMPL options and solver options
(see section 3.1).

Step: pair of step configuration and result. The result is obtained by solving the model of the configuration
with the other components specified by the configuration, i.e. the solver, alpha parameters, ampl options
and solver options (see section 3.1).

Step sequence: sequence of steps, where the solution of a previous step serves as initial solution for the
succeeding step. The last model of a step sequence is always the actual model of interest and the result
of a step sequence is the result of the last step of the sequence (see section 3.1).

(Solver) Configuration: sequence of step configurations. A configuration belongs to a step sequence. As
the models of a configuration are evaluated by solvers we will also refer to a configuration as “solver
configuration”. In this thesis we compare the performances of different configurations with respect
to their ability to solve gas network problems to feasibility (see section Experimental setup), their
objective function values, their slacks (see section Nonlinear programming) and their computation time
(see section 3.1).

Configurations simulation: unit of execution of a set of step sequences for a given scenario (see section
3.3).

Solved to feasibility: We say that a configuration has solved a given scenario (to feasibility) if the sequences
of the steps launched with the respective step configuration returned a feasible solution, that is, a
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solution that only violates each constraint by a specified amount of slack (see section Mathematical
optimization).

Minimal configuration combination (of a test battery): Let SB be the set of scenarios solved by a
test battery B. A set of of configurations C is a minimal configuration combination if every scenario
s ∈ SB is solved by at least one of the configurations of C and if no subset of C solves every s ∈ SB
(see section 5.2).

Solver ensembles: configurations where in different steps different solvers are used (See section 5.7).
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Mathematical optimization

Nonlinear programming

As outlined in the introduction, this thesis deals with mathematical optimization problems for which no
general solution methods exist that reliably return global optima of arbitrary problem instances in a reasonable
amount of time.

Serving as a reference point, in the following section we briefly define what is commonly understood by terms
like “optimization problem” and show some standard optimization techniques. By convention we write vectors
in bold letters like x. The terminology used mostly stems from Bazaraa, Sherali, and Shetty (2006), and
from the lecture notes of a class in mathematical programming held by Julio González Díaz at the University
of Santiago de Compostela in 2017.

Accordingly, González defines an optimization problem in a general manner as given by a pair (F, c),
where F is the domain of feasible points and c is the cost (or objective) function. The problem consists
in finding a feasible point x ∈ F such that

∀y ∈ F, c(x) ≤ c(y).

Every point x that fulfills this condition is a global optimum.

More specifically, a nonlinear programming problem (or program) P consists in solving the problem
P, i.e. finding an x, such that:

minimize c(x),x ∈ Rn

subject to the inequality and equality constraints (or restrictions), respectively:

gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., l

where c, g1, ..., gm, h1, ..., hl are functions defined on Rn. In this thesis we will also refer to nonlinear
optimization problems simply as optimization problems (similar to Snyman and Wilke 2018, 3). We call all
vectors x ∈ Rn solutions of the problem P and we say that a vector x, that satisfies all constraints of P, is
a feasible solution of P . To give an exact definition of local and global optima we follow (Bazaraa, Sherali,
and Shetty 2006, 2, 45) and quote: «If x̄ ∈ S and f(x) ≥ f(x̄) for each x ∈ S, x̄ is called a [. . . ] global
optimal solution. [. . . ] If x̄ ∈ S and if there exists an ε-neighborhood Nε(x̄) around x̄ such that f(x) ≥ f(x̄)
for each x ∈ S ∩ Nε(x̄), x̄ is called a local optimal solution.[. . . ] An ε-neighborhood [. . . ], given a point
x ∈ Rn,» is defined as «the set Nε(x) = {y : ||y < −x|| < ε}».

We define the slack of a constraint gi(x) as −gi(x) and we define the slack of a constraint hj(x) as −|hj(x)| .
Therefore, if the slack of a constraint is negative for a given x, this constraint is violated and the slack shows
the negative amount of the violation. For numerical reasons we will allow a small amount of infeasibility
in our results. That is to say, we will still regard x as a feasible solution if the slacks of all constraints are
greater than a specified threshold, although the constraints might not be strictly satisfied.

Furthermore, we refer to optimization problems, in which the objective c and the constraints gi and hj are
linear functions, as linear optimization problems. While to solve linear optimization problems there exist
polynomial-time algorithms and the well-proven non-polynomial simplex algorithm, general – nonlinear –
mathematical programming is NP-hard (Hochbaum 2007), meaning that for nonlinear optimization problems
no general solving algorithm with a polynomial number of computation steps is known and might not even
exist.
To solve nonlinear problems without restrictions we can for example useNewton’s method or the conjugate
gradient method by starting from an initial solution and following in the direction of descent for a certain
distance, as long as we do not leave the feasible region. We can obtain a direction of descent of a function
by calculating the gradient, as the gradient points in the opposite direction of the direction of the steepest

51



descent (Bazaraa, Sherali, and Shetty 2006, 384).
A popular technique to solve constrained nonlinear optimization is the penalty method, which eliminates
constraints by adding them as penalty functions to the objective function to obtain a series of unconstrained
nonlinear optimization problems or constrained nonlinear optimization problems with constraints that are
easy to satisfy. Thereby, the penalty method penalizes leaving the feasible region so that a minimum is
searched for in which the penalizations or slacks are 0. Alternatively, and similar to the penalty method,
there exist barrier methods, that add a term B to the objective function. The term B grows unboundedly
when the objective function approaches the border of the feasible region, impeding that the feasible region is
left (see Bronstein, Semendjajew, and Musiol 2008, 945–46).

Under certain regularity conditions the so-called Karush-Kuhn-Tucker conditions give us a necessary
condition for the local optimality of a solution x, which might be helpful in finding an optimum (Bazaraa,
Sherali, and Shetty 2006, 190). In the case that the problem is convex, the Karush-Kuhn-Tucker conditions
in conjunction with the regularity condition are both necessary as well as sufficient conditions for local
optimality (Bazaraa, Sherali, and Shetty 2006, 195). An optimization problem is convex if c and all gi are
convex and all hj are linear. As each local minimum of a convex program is also a global minimum (Bazaraa,
Sherali, and Shetty 2006, 125), for convex problems the Karush-Kuhn-Tucker conditions are necessary and
sufficient conditions for global optimality under regularity conditions.

Problems in which some variables can only take on integer values form another category of nonlinear
programming problems called integer programming. Like nonlinear programming, integer programming,
which as well as convex and linear programming is a subset of nonlinear programming, also is NP-complete
(Hochbaum 2007, 290). A renowned algorithm to solve integer programming problems is for example the
branch-and-bound algorithm (Land and Doig 1960).

Besides the difficulty of finding global optima, another problematic aspect in mathematical programming is
that when solving difficult mathematical optimization problems in practice with the help of computers we are
often facing numerical problems.

Nonlinear programming example

To illustrate some of the definitions of the previous section let us consider the following mathematical program
S:

minimize f(x) = (x1 − 3)2 + (x2 − 4)2,x ∈ R2

subject to :
g1(x) = 6x1 + 4x2 − 24 ≤ 0,
g2(x) = x1 + 2x2 − 6 ≤ 0,
g3(x) = x1 + x2 − 1 ≤ 0,
g4(x) = x2 − 2 ≤ 0.

Figure 37 shows a graphical representation of the program S. The red lines embody contour lines, i.e. the
value of the objective function is equal for all points x = (x1, x2) that lie on the same line. In this example
the contour lines are concentric circles around the point x = (3, 4), the global optimum of the function f
without considering the restrictions. The feasible region is colored in gray and is bordered by the functions g1,
g2, g3 and g4. All points within the feasible region are feasible solutions. The arrows point in the direction of
the gradient of the given functions at the points x1, x2 and x3. The only optimal solution of this simple
example is x3 = (2, 2) with an objective function value of 5.
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Figure 37: Graphical representation of the program S

AMPL

A tool to formulate and solve mathematical optimization problems is the AMPL (A Mathematical Programming
Language) system which we will employ in this thesis ((Fourer, Gay, and Kernighan 1989)), (“AMPL -
Streamlined Modeling for Real Optimization” 2018).

AMPL allows to specify the objective function and restrictions of a mathematical optimization problem in a
standard definition language and provides access to solvers which can solve the given problem.

Additionally, in AMPL we distinguish between parameters and variables. Parameters represent concrete
numbers that are passed to the solvers and cannot be changed by the solvers. The values of variables on
the other hand represent components of the vector x as presented in the previous sections. The values of
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variables are chosen by the algorithms to minimize the objective function and to satisfy the constraints.

The following code snippet shows the formulation and solution of the example problem S of the previous
section in AMPL and the output (preceded by “>>” ) of the solver BARON which returns the correct
solution x = (2, 2):
var x;
var y;
subject to g_1: 6*x+4*y <= 24;
subject to g_2: x+2*y <= 6;
subject to g_3: -x + y <= 1;
subject to g_4: y <= 2 ;
minimize f:(x-3)^2 + (y-4)^2;
option solver baron;
solve;
>>BARON 17.4.1 (2017.04.01). 0 iterations, optimal within tolerances.
>>Objective 5
ampl.display x;
>>x = 2
ampl.display y;
>>y = 2
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Code excerpt - Launching test batteries

The following two python files illustrate the launching of test batteries taking as example the test battery of
the section Model sequences.

File battery_model_sequence.py:
from test_battery_launcher import *
from model_sequence import ModelSequence
from pretty_print import get_configuration_name

def get_model_sequences_configurations():
selected_model_sequences = [ModelSequence.GQ,

ModelSequence.GQ_GQ_GQ,
ModelSequence.BASE_GC_GQ]

selected_configurations = []

for solver_name in domain.get_all_solver_names():
for model_sequence in selected_model_sequences:

list_of_steps = []
for model in model_sequence.get_models():

list_of_steps.append(Step(model, solver_name,
alpha_parameters=None,
ampl_options=None))

# in this test battery we use the same solver in
# every step of the same step sequence
# and default alpha and ampl parameters

step_sequence = StepSequence(list_of_steps)
step_sequence.step_sequence_name = get_configuration_name(

solver_name=solver_name,
model_sequence=model_sequence)

selected_configurations.append(step_sequence)

return selected_configurations

def main():
scenarios = sqlalchemy_session.get_session().query(domain.Scenario)
for scenario in scenarios:

test_battery = ConfigurationSimulation(get_model_sequences_configurations(),
scenario,
"model_sequences")

test_battery.launch()
sqlalchemy_session.get_session().add(test_battery)

sqlalchemy_session.close_session_and_commit()

if __name__ == "__main__":
main()
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File model_sequence.py:
from model_component_objects import *
from enum import Enum

class ModelSequence(Enum):
GQ = ("gq",

# we return new model objects
# so that the caller can change them
# (e.g. their alpha parameters)
# without affecting other model sequences:
lambda: [create_gq_model()])

BASE_GC_GQ = ("base_gc_gq",
lambda: [create_base_model_component(),

base_model_component
+ gas_consumption_component,
# addition of model components
# returns new ModelComponent instance
create_gq_model()])

GQ_GQ_GQ = ("gq_gq_gq",
lambda: [create_gq_model(),

create_gq_model(),
create_gq_model()])

BASE_GQP_GQ = ("base_gqp_gq",
lambda: [create_base_model_component(),

create_gq_model()
+ gas_quality_component_penalized,
create_gq_model()])

GQP_GQP_GQ = ("gqp_gqp_gq",
lambda: [create_gq_model()

+ gas_quality_component_penalized,
create_gq_model()
+ gas_quality_component_penalized,
create_gq_model()])

SMP_BASE_GQ = ("smp_base_gq",
lambda: [base_model_component

+ simple_mean_pressure_component,
create_base_model_component(),
create_gq_model()])

def __init__(self, model_sequence_name, get_models):
self.name = model_sequence_name
self.get_models = get_models

def create_gq_model():
return (base_model_component + gas_consumption_component +

gas_quality_component)
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