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Resumen

Resumen en español

Se han formulado varios algoritmos que intentan reconstruir la arquitectura subclonal del tumor re-
solviendo problemas de optimización; sin embargo, la mayoría de ellos utilizan heurísticas o son al-
tamente exigentes computacionalmente. Además, no suelen considerar la posible historia evolutiva
común de las mutaciones ni considerar todas las posibles fuentes de ruido aleatorio que se transmitirán
a lo largo del proceso de reconstrucción. Por lo tanto, después de una breve búsqueda, dado que este
trabajo no pretende realizar un análisis sistemático de todos los algoritmos que cubren el área, decidí
centrarlo en un algoritmo publicado recientemente y desarrollado con la intención de corregir fallos
en algoritmos anteriores. Este algoritmo se llama "DeCiFer" y se explica en el artículo "DeCiFering
the elusive cancer cell fraccion in tumor heterogeneity and Evolution". El algoritmo DeCiFer pretende
inferir la historia evolutiva compartida por los SNVs en función de diferentes restricciones. Una de
esas limitaciones es la verosimilitud entre los valores de VAF y las estimaciones de pureza del tumor.
Consecuentemente, en este estudio se realiza una evaluación de la robustez del algoritmo ante varia-
ciones en los datos de pureza de entrada del algoritmo, debido a errores más que plausibles que pueden
ocurrir en los pasos anteriores (posibles fuentes de ruido aleatorio), tanto a nivel de laboratorio como
a nivel del ámbito de la bioinformática/estadística utilizada para su estimación. El objetivo de este
trabajo de �n de máster es analizar la sensibilidad del algoritmo DeCiFer a perturbaciones en el valor
de pureza de entrada.

English abstract

Several algorithms have been formulated that attempt to reconstruct the tumor subclonal architecture
by solving optimization problems, however, most of them use heuristics or are highly computationally
demanding. Furthermore, they do not usually consider the possible common evolutionary history of
the mutations or consider all the possible sources of random noise that will be carried throughout the
reconstruction process. Therefore, after a brief search, since this work does not intend to perform a
systematic analysis of all the algorithms that cover this area, I decided to focus it on a recently published
algorithm developed with the intention of amending �aws in previous algorithms. This algorithm is
called "DeCiFer" and it is explained in the paper "DeCiFering the elusive cancer cell fraction in tumor
heterogeneity and evolution". The DeCiFer algorithm states to infer the evolutionary history shared
by SNVs based in di�erent constraints. One such constraint is the plausibility between VAF values and
tumor purity estimates. Consequently, in this study an evaluation of the robustness of this algorithm
to variations in the input purity data due to more than plausible errors that can occur in the previous
steps (possible sources of random noise), both at the laboratory and bioinformatics/statistic level used
for its estimation. The aim of this master's thesis is to analyze the sensitivity of the DeCiFer algorithm
to perturbations in the input purity value.
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Prefacio

Several algorithms have been formulated that attempt to reconstruct the tumor subclonal architecture
by solving optimization problems, however, most of them use heuristics or are highly computationally
demanding. Furthermore, they do not usually consider the possible evolution of the mutations or
consider all the possible sources of random noise that will be carried throughout the reconstruction
process. Therefore, after a brief search, since this work does not intend to perform a systematic analysis
of all the algorithms that cover this area, I decided to focus it on a recently published algorithm
developed with the intention of amending �aws in previous algorithms, even though I also refer to
other algorithms that the authors mention or are based on. This algorithm is called "DeCiFer" and
it is explained in the paper "DeCiFering the elusive cancer cell fraction in tumor heterogeneity and
evolution".

An evaluation of the accuracy of this and other algorithms, had been compared in simulated data
produced by an algorithm called "clevRsim" whose results are summarized in the recently published
paper called "Reconstructing Clonal Evolution�A Systematic Evaluation of Current Bioinformatics
Approaches" with not very good results for the DeCiFer algorithm. One of the plausible causes
that could account for these di�erences could be the tested method the authors used to evaluate these
algorithms, since as point out a recent pre-print "Evaluation of simulation methods for tumor subclonal
reconstruction" most of the reconstruction algorithms test their accuracy using their own custom-made
simulation data, which does not allow a comparison among them. Simulation algorithms, on the other
hand, also have their own limitations such as not considering all the possible alterations that a tumor
can su�er.

Therefore, several reasons can account for the di�erences in the evaluation and comparison of the
reconstruction algorithms, from the type of data used (real or simulated) for their evaluation, to the
�aws when considering all the possible alteration that can be produced in the tumor or, as it will be
explained in the following section, di�erent sources of variability and uncertainty in the input data,
that are not always considered into the reconstruction algorithms.

How consistent these algorithms are to small variations in the input data due to more than plau-
sible errors that can occur in the previous steps (this is the previously mention possible sources of
random noise that will be carried throughout the reconstruction process), both at the laboratory and
bioinformatics/statistic level, is another important point of consideration.

The aim of this master's thesis is to analyze how the DeCiFer algorithm behaves due to these
disturbances in the input data, this is the sensitivity of the algorithm to changes, speci�cally, in the
tumor purity.

Some of the steps of the DeCiFer algorithm are common to previous algorithms so I will explain
them as a general process while I will refer those steps that are particular to the DeCiFer algorithm.
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Chapter 1

Introduction

Cancer is a disease of genetic origin that initiates in a cell or group of cells that undergo alterations
that cause a higher than normal rate of mutation and confers them di�erent characteristics, including
a growth advantage over normal cells. This produces a mass of tumor cells that inherits the previous
genetic background to which new mutations are added, giving rise to a heterogeneous group of cells
(Figure 1.1).

Figure 1.1: Cancer evolution. Taken from Nik-Zainal, S., et al., 2012

Therefore, the evolution of the tumor cells from their origin is characterized by these mutational
changes which allows to identify di�erent cellular clones, de�ned as a group of tumor cells with
a common evolutionary history derived from the ancestral cell , and subclones, de�ned as a sub-
group of tumor cells with a common evolutionary history derived from a cellular clone. However,
as it is currently not possible to observe this process directly, the data acquired are snapshots of a
moment in this evolution, whether in one or several samples, but always in a fraction of the total tu-
mor, several models of tumor evolution have been proposed trying to explain the observed data, which
are portrayed in phylogenetic trees once the subclonal architecture has been reconstructed (Figure 1.2).
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2 CHAPTER 1. INTRODUCTION

Figure 1.2: Models of tumour evolution. Taken from Vendramin et al., 2021

The subclonal architecture of the tumor is reconstructed using the information provided by the
genetic sequences of the analyzed biopsies. From these sequences, an attempt is made to infer the suc-
cession of genetic alterations produced in the tumor through subclonal reconstruction. These methods
not only help to identify the veracity and precision of the proposed models, but also to identify which
model is acting in that tumor and also formulate new hypotheses about its evolution. These methods
provide key information to identify subclonal driver mutations, patterns of parallel evolution, and dif-
ferences in mutational signatures between cell populations. The information derived from knowledge
of these evolutionary models is essential in the clinical setting, as it reveals mechanisms of resistance
to therapy, tumor dissemination and metastasis. (Nik-Zainal, S., et al., 2012)

Subclonal reconstruction methods follow these steps:

1. Variant calling process

2. Characterization of tumor clones

3. Phylogenetic reconstruction



Chapter 2

Variant calling

The variant calling process is intended to identify the variants present in the tumor samples, and
implies a series of successive steps, "sequencing, read mapping or de novo assembly, variant calling,
�ltering of false positives, and sometimes phasing." (Olson, N.D., et al., 2023)

Sequencing
The �rst step in subclonal tumor reconstruction is to obtain the DNA sequences of the tumor

cells. Once the patient sample is extracted, it is processed to isolate and label the DNA so that it is
readable by the sequencing platforms. This involves several chemical reactions whose e�ciency is high
but not without technical artifacts. To reduce random noise, all laboratory procedures are performed
in parallel with reference samples. This process is usually referred as wetlab. (Figure 2.1.1)

Subsequent steps involves bioinformatic analysis to interpret the labeled DNA as the nucleotide
sequence using algorithms (outside of the scope of this work) that call the sequence, that is, interpret
a �uorescent signal and assign the corresponding nucleotide call (Figure 2.1.2). Di�erent parameters
in�uence in the quality of the sequences obtained, from the type (blood, tissue...) and purity of the
sample (this is, the percentage of the tumor cells relative to normal cell in the sample), DNA extraction
method and sequencing protocol, to the sequenced region itself, since there are regions that are more
di�cult to analyze and more prone to introduce artifacts. (Olson, N.D., et al., 2023)

Read mapping or de novo assembly
Once the raw sequences are obtained, it is necessary to assemble them, this is mapping their po-

sition in the genome, using a reference sequence (Figure 2.1.3). This is another source of possible
errors since base-calling accuracy, length of the sequence and the sequenced region itself in�uence in
the correct assembly. (Olson, N.D., et al., 2023)

Variant calling
Variant calling algorithms (outside of the scope of this work) identify the variants present (alleles)

on each chromosomal copy of the genome in the sample compared to a reference genome. (Figure
2.1.3). (Bagger, F.O., et al., 2024)

Filtering of false positives
Once the variants have been identi�ed, false positives are �ltered due to poor reading quality

or the appearance of possible artifacts. Filtering of false positives were initially based on features
speci�ed by experts, nowadays the algorithms make use of machine learning or deep learning to �lter

3



4 CHAPTER 2. VARIANT CALLING

them, currently, the most used architecture is convolutional neural networks, which considers the
characteristics of the sequences of the patient and the reference sample (Figure 2.1.4).

In the best scenario, somatic variants (variants speci�c of the tumor) are identify by their
comparison with germline samples (samples taken from normal cells) from the same patient using
algorithms based on bayesian statistics adjusted by di�erent factors (outside of the scope of this work)
that estimate the genotype of both samples, normal and tumor, and determine whether the observed
di�erences are real or a consequence of technical artifacts. In a not so optimal scenario, in cases
where a matched normal sample is not available, the tumor sequences are compared to a database
of genetic variation, with the further problem derived from not being processed at the same time so
random noise cannot be controlled, or a panel of normal samples, with the inconvenient of calling
somatic variants when, in fact, they are germline variants speci�c to each individual, which might not
be a problem depending on the number of normal samples in the panel. (Cortes-Ciriano, I., et al., 2022)

Whatever the case may be, the expected frequency when analyzing germline samples versus tumor
samples di�ers, the variant allele frequency (VAF) of a heterozygous (di�erent alleles in a
speci�c location) variant in a germline sample of a diploid genome (the complete set of chromosomes
in a human, one chromosome proceeds from the father, the other from the mother) is around 50%,
however, the variant allele frequency of a variant in a tumor sample can theoretically vary due to tumor
aneuploidy (variations from diploidy in a human due to a missing chromosomes or one or more extra
chromosomes) and purity, over a continuous range ∈ (0, 100%). Therefore, sequence variants from
tumor samples undergo additional �ltering steps based on their:

� Read depth. The read depth is the number of replicates obtained from the same ampli�ed region,
the greater the sequencing depth, the greater the reliability of the results, since the results must
be redundant. However, the sequencing platforms have limitations, so a balance must be struck
between the coverage of the genome to be analyzed and the sequencing depth.

� Variant frequency. Very low frequency mutations are usually di�cult to estimate and their
accuracy depends on the read depth of the sequence. Algorithms usually set a threshold value
to consider them a true variant.

� Relevance. Depending on the goal of the study, additional �ltering steps can be included that
consider the known relevance of a speci�c mutation.

Hence, from the initial 500000 somatic variants that can be found in a tumor, after the �ltering
steps, between 20 and 1500 variants may remain for further evaluation. (Bagger, F.O., et al., 2024)

Haplotype phasing
A haplotype is a DNA fragment that tend to be inherited in bloc since there is a low probability

of recombination (an exchange between the mother's and father's chromosomes after the fusion of the
sperm and the egg) within the fragment, hence, single nucleotide polymorphisms (SNPs), (a DNA
variation at a speci�c location present in at least 1% of the population), inside of the fragment are
inherited together. Each haplotype can then proceed from the mother or the father. Phasing refers to
ordering heterozygous SNPs into haplotypes considering the chromosome to which they belong, that
of the mother or the father. Phasing can be accomplished by comparing reads to samples from the
mother or father or by using large population panels to impute the most likely order of alleles. (Olson,
N.D., et al., 2023)



5
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Bagger et al. 2024
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Chapter 3

Characterization of tumor clones

Characterization of tumor clones is intended to determine the tumor composition in terms of purity,
nº of subclones and their prevalence, and mutational load (this is, the total number of mutations),
by inferring the cellular prevalence or fraction of cancer cells, and, subsequently, determining the
mutational pro�les of those subclones using clustering algorithms. (Salcedo, A., et al., 2020) (Figure
3.1)

Tumor subclonal reconstruction algorithms based on cell genetics usually employ the same ap-
proach. One the distinctive features the di�erent clones are distinguished by are the mutations that
harbor, therefore, the �rst step is the identi�cation and analysis of the mutations present in the tumor
from the sequencing data. These mutations can be single nucleotide variants (SNV) (variations
in only one nucleotide), copy number alterations (alterations in the number of copies of a DNA
segment), or small insertions, deletions (indels). Once the frequency of these alterations is calcu-
lated, the cellular prevalence (CP) is estimated, this is, the fraction of cells that harbor a mutation
in the sample, and/or, the cancer cell fraction (CCF), this is, the fraction of cancer cells that
harbor at least one copy of the mutation. Subsequently, it is performed the clustering of SNVs in
cellular subclones based on the similarity of CP/CCF values. Once the clusters are de�ned it can be
deduced the phylogenetics trees.

7



8 CHAPTER 3. CHARACTERIZATION OF TUMOR CLONES

Figure 3.1: Standard Work�ow and Input Data for Subclonal Reconstruction. (a) A simpli�ed example of tumor clonal
genotypes. We illustrate a tumor containing two subclones at 50% (purple) and 25% (yellow) CCF, both descended
from a common ancestral clone (100% CCF, black). The remaining 25% of tumor cells are indistinguishable from the
ancestor. (b) First, somatic mutations are called from aligned reads. Read depth must be much higher (coverage
>60x) than illustrated for mutation calling and subclonal reconstruction. Similarly, an elevated local mutation burden
is illustrated. A somatic variant caller identi�es somatic SNVs by comparing to a matched normal, although germline
SNP contamination may occur. (c) Second, CNA reconstruction is performed. It typically uses read depth and B-allele
frequency (BAF) data for heterozygous SNPs. (d) Third, CNAs are used to translate the measured SNV VAF to a
CCF/CP estimate. This procedure relies on an accurate SNV multiplicity estimates which are typically inaccurate in
subclonal CNAs so we exclude these regions from the analysis. SNV CCFs are then clustered to identify (sub)clonal
lineages in the sample. False positive SNVs or inaccurate CNAs can cause spurious superclonal clusters (i.e. with
CCF>1). Finally, phylogenetic reconstruction infers the ancestral relationships among lineages. Taken from Tarabichi
et al. (Tarabichi, M., et al., 2021) Reproduced with permission from Springer Nature
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3.1 Inference of the cellular prevalence or cancer cell fraction.

The cellular prevalence of a tumor, or the cancer cell fraction, is inferred from the relation between
the frequency of mutations detected in the analyzed sample and its purity.

Sequences Identi�cation of SNPs

Estimation of the purity

Estimation of CP/CCF

Inference of the variant allele frequency /copy numbers

3.1.1 Variant allele frequency, tumor purity and ploidy and allele-speci�c
copy number inference

The variant allele frequency (VAF) is the ratio of the variant allele to the germline allele, therefore
it is calculated based on the ratio of paired sequences; being vi the estimated VAF, for a biallelic SNVi
in a position i, it goes as follows:

vi =
rmut,i

rmut,i + rref,i
(3.1)

where rmut,i and rref,i are the number of reads of the mutant variant and the reference variant,
respectively. (Dentro, S.C., et al., 2017)

Tumor purity and ploidy , this is, the number of sets of chromosomes, as well as allele-speci�c copy
number can be inferred by optimization algorithms from the information provided by the SNPs.
Di�erent algorithms have been developed that estimate these values from the sequencing data but they
all have an error in the precision of any of the inference. In this section I choose to explain two of
them. The �rst one is one of the most used algorithms to this aim is the ASCAT algorithm that
uses the B-allele frequency (BAF) and Log R estimates. (VanLoo et al., 2010))
The second, the HATCHet (Holistic Allele-speci�c Tumor Copy-number Heterogeneity) algorithm, was
developed by the same group that developed the DeCiFer algorithm and uses the read-depth ratio
(RDR) and also the BAF estimates. (Zaccaria, S. and B.J. Raphael, 2020)

B-allele frequency (BAF) is the normalized frequency of the two possible alleles in heterozygous
SNPs (allele A and B). Being nA,i y nB,i the copy number of alleles A and B at a location i, that are
inferred by the number of reads at that location rA,i and rB,i, respectively, its estimation follows:

bi =
nB,i

nA,i + nB,i
(3.2)

In the absence of chromosomal alterations, the BAF value is 0.5, deviations from this value indicate
somatic alterations. Considering the tumor and normal cells in the sample and knowing the purity of
the tumor ρ, the estimation of BAF, bi, can be expressed as:

bi =
ρ nB,t + (1− ρ)nB,n

ρ (nA,t + nB,t) + (1− ρ)(nA,n + nB,n)
(3.3)

The logR is another parameter that can be extracted from the sequenced samples, this value
indicates the total signal intensity. For a diploid sample in a 100% tumor sample it goes as:
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ri = γ log2

(
nA,i + nB,i

ψn

)
(3.4)

where γ is a technology-speci�c constant ≤ 1, ψn indicates ploidy in normal cells which are assume
to be diploid, therefore, ψn = 2 and ri = 0.

While aneuploidy does not a�ect BAF values, Log R values are a�ected not only by the tumor
purity but ploidy, therefore:

ri = γ log2

(
2 (1− ρ) + ρ (nA,i + nB,i)

ψn(1− ρ) + ρψt

)
(3.5)

being ψt the tumor ploidy and ρ ∈ (0, 1).

The ASCAT algorithm

The ASCAT algorithm attempts to infer allele-speci�c copy number and optimal values for purity and
ploidy of a tumor by calculating the local minima of the genome-wide error between observed and
expected allele-speci�c copy numbers values starting from a combination of a predetermined pairs of
values of ρ and ψt. (Van Loo, P., et al., 2010, Tarabichi, M., et al., 2021)

This algorithm includes a previous step with a segmentation and �ltering algorithm (the Allele-
Speci�c Piecewise Constant Fitting (ASPCF) algorithm) that reduces the noise from the input
LogR and BAF data. (Figure 3.1.C) The ASPCF algorithm simultaneously �ts piecewise constant
regression functions to the data coercing segmentation to the same location in both, LogR and BAF
functions.

Let be a data set of di�erent locations, where x1 < x2 < ... < xn denotes the probes locations with
an associated LogR (r1, ..., rn) and BAF (b1, ..., bn) values, the ASPCF algorithm aims to infer how
the region has been segmented by grouping the probes into subsets I1, ..., IQ, through a segmentation
that minimizes the penalized optimization criterion with respect to the number of segments Q and the
assignment of the probes to segments.

Q∑
j=1

∑
i∈Ij

[w(ri − (ave {rs}s∈Ij ))
2 + (1− w)(bi − ave({bs}s∈Ij ))

2] + λQ (3.6)

The terms in the brackets are the goodness of �t to the LogR and BAF data, respectively, where
ave {rs}s∈Ij and ave {bs}s∈Ij indicates the average of rs and bs, concordantly, for probes s in the
segment I, while the last one is a penalty for discontinuities, being λ > 0 a constant, which must be
provided as well as the minimal length of the segment, while w = 0.5 by default. This implies a het-
erozygous SNP is needed to start a new segment. (VanLoo et al., 2010, Dentro, Stefan Christiaan, 2020)

The next step it to compute the mean deviation from 0.5 (named d) and the SD (called s) for each
previously determined segment. If there is no allelic bias, this is, the alleles are balanced (As ≈ Bs),
for a given constant τ > 0, if d < τs the single BAF value returned is 0.5, otherwise, if allelic bias
exists, this is, d ≥ τs, two symmetric values around 0.5 are obtained.

The input for the ASCAT algorithm is the ASPCF-smoothed data.
Considering the number of copies is a non-negative integer (NNI), the algorithm assumes the expected
value of the allele-speci�c copy numbers would be the NNI value closest to the germline, therefore,
rounds the observed value to its nearest NNI. The algorithm, then, minimizes the distance between
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this value and the observed allele-speci�c copy number starting from a previously set grid of values of
purity, ρ ∈ (0, 1) and ploidy ψt. (VanLoo et al., 2010, Tarabichi, M., et al., 2021)

d(ρ, ψt) =
∑
i

wi((n̂A,i(ρ, ψt)− round(n̂A,i(ρ, ψt)))
2 + (n̂B,i(ρ, ψt)− round(n̂B,i(ρ, ψt)))

2) (3.7)

for segments with allelic bias the weight is wi = 1, while for those without allelic bias wi = 0.05.

A goodness-of-�t score (g) can be calculated for each local minima determined, rescaling the
previous result to a percentage of g = 100% when d = 0, and g = 0 when d = the distance obtained when
the allele-speci�c copy numbers for each SNP di�er 0.25 from nonnegative integer (d =

∑
1 wi(2·0.252),

value chosen as a reasonable maximum distance (averaged over all probes).

After excluding improbable inferences, the algorithm gives one or multiple plausible results (Figure
3.2).

Figure 3.2: ASCAT pro�les and their calculation. Two examples are given: (A) a tumor with ploidy close to 2n and
(B) a tumor with ploidy close to 4n. (Left) ASCAT �rst determines the ploidy of the tumor cells ψt and the fraction
of aberrant cells ρ. This procedure evaluates the goodness of �t for a grid of possible values for both parameters (blue,
good solution; red, bad solution). On the basis of this goodness of �t, the optimal solution is selected (green cross).
Using the resulting tumor ploidy and aberrant cell fraction, an ASCAT pro�le is calculated (Upper Right), containing
the allele-speci�c copy number of all assayed loci [copy number on the y axis vs. the genomic location on the x axis;
green, allele with lowest copy number; red, allele with highest copy number; for illustrative purposes only, both lines
are slightly shifted (red, down; green, up) such that they do not overlap; only probes heterozygous in the germline are
shown]. Finally, for all aberrations found, an aberration reliability score is calculated (Lower Right). Taken from VanLoo
et al., 2010

For this algorithm to be able to infer purity, it requires that aneuploidy exists (which is expected
in most tumors), there is no power to infer purity in a mixture with tumor cells in a diploid state.
(Tarabichi, M., et al., 2021)

Solving the optimization problems of the ASCAT algorithm gives inferences about tumor purity and
ploidy and subsequently assigns a copy number status to each segment using the following equations:

n̂A,s =
ρ− 1− (1− bs) 2

ls (2(1− ρ) + ρψt)

ρ
(3.8)
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n̂B,s =
ρ− 1 + bs 2ls (2(1− ρ) + ρψt)

ρ
(3.9)

where n̂A,s and n̂B,s are the copy number inferred for allele A and B, respectively, of the segment
s, bs and ls the BAF and logR value for that same segment and ψt is the average ploidy for the tumor
cells in the analyzed sample. (Van Loo, P., et al., 2010)

The HATCHet algorithm

HATCHet approaches the identi�cation of allele and clone speci�c CNAs clones and their proportion
by clustering the read-depth ratio (RDR) (the ratio between observed and expected reads in a
chromosomal position) and BAFs from several samples, accounting for the presence of CNAs and whole-
genome duplications (WGDs). Therefore, HATCHet algorithm di�erentiates from previous algorithm
in that it directly infers fractional copy numbers instead of using tumor ploidy and purity to model the
RDRs and BAFs and inferred the CNAs, since the authors do not consider these estimators appropriate
to analyze tumor heterogeneity.

The HATCHet algorithm returns for each segment s in each clone i the copy-number states
(as,i, bs,i), in its matrix form A = as,i and B = bs,i and for each sample, p the clone proportions
ui,p, in its matrix form U = ui,p.

The algorithm inferences these matrix by two modules. The �rst one infers for each segment s in
each sample p the allele-speci�c fractional copy numbers

fAs,p =
∑
i

as,iui,p −− > matrix FA (3.10)

fBs,p =
∑
i

bs,iui,p −− > matrix FB (3.11)

Neither FA nor FB are identi�able from the DNA sequences, but they can be inferred under some
assumptions knowing the state of the WGDs.

The second module solves the matrix factorization problem

FA = AU

FB = BU

using further constraints to infer allele and clone-speci�c copy numbers and clone proportions.

The ensuing optimization problem is solved by a coordinate-descent algorithm and, to avoid over-
�tting, uses a model selection criteria to obtain the optimal in a balance between solutions with many
subclonal CNAs and solutions with WGD.

The tumor purity is calculated as the sum of the proportion of all tumor clones present in a sample,

ρp =

n∑
i=2

ui,p (3.12)

being the clone proportions represented as a matrix U = [ui,p]
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3.1.2 Estimation of CP/CCF

Knowing the estimated VAF, vi, and tumor purity ρ in a tumor without chromosomal aberrations,
ψ = 2, in a region with a heterozygous SNV, the estimated value of CCF, ci, can be computed as:
(Satas, G., et al., 2021)

ci ≈
ψ vi
ρ

(3.13)

Nonetheless, tumor cells ploidy can di�er from ploidy in normal cells, therefore, it is required to
infer the copy number state of the SNV and identify which is the altered allele, whether it harbors the
SNV or not. This copy number state in a cell or cellular clon is calledmultiplicity of the mutation .
In other words, multiplicity of a mutation refers to the number of copies of that SNV that a cell harbor.

Satas, G., et al., 2021, exposes this concept with a formal notation de�ning the genotype of a cell
as a function of 3 parameters considering the number of copies is a non-negative integer (NNI), the nº
of maternal copies, x, the nº of paternal copies, y, and the multiplicity of a mutation, m, the genotype
of a cell is de�ned by (x, y,m), being m ≤ x+ y and, CCF the fraction of cells with m ≥ 1.

Considering the possibility of aneuploidy in the tumor cells and the multiplicity of the mutation,
the CCF, ci, calculations are generalized as:

ci ≈
F

M

vi
ρ

(3.14)

being F the estimation of the fractional copy number , this is, the mean of the number of copies
in all the cells, normal and tumor cells included.

F = ρntot,t,i + (1− ρ)ntot,n,i (3.15)

where ntot,t,i and ntot,n,i is the tumor and normal mean, respectively, of the number of chromoso-
mal copies.

Some methods group SNVs as a fraction of all cells in the sample, normal and tumor cells included,
this is the estimated CP, cpi,:

cpi = ciρ (3.16)
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3.1.3 Multiplicity inference

Most of the methods infer multiplicity based on the assumption that all cells harboring a SNP have
the same multiplicity value, which is known as the "constant mutation multiplicity" assumption.
(Satas, G., et al., 2021)

The equation 3.14 implies that m =M is �xed for all the cells that harbors the SNV, Satas, G., et
al., 2021, formulate it as "At every SNV locus, there exists an integerM ≥ 1 such that all genotypes at
the locus have the form (x, y, m) where either m = 0 or m =M ." (Satas, G., et al., 2021) Therefore,
there is a CCF value for each SNP. To infer this M value, there are methods that round its multiplicity
value to its nearest NNI, using an heuristic approach, as follows:

being ui

ui = vi
1

ρ
[ρntot,t,i + (1− ρ)ntot,n,i] (3.17)

the percentage of alleles that harbor a mutation, the CFFi is,

ci =
ui
mi

(3.18)

so, knowing the ui it could be inferred the mutation multiplicity mi and the CCF that harbor that
mutation, under the following reasoning (Dentro, S.C., et al., 2017):

� the mutation is clonal, CCF = 1, since all the cells harbor the SNV and in each cell the number
of chromosomal copies, mi, is an integer

� the mutation is subclonal, CCF < 1, and, if it is only harbored by a chromosomal copy, its
mi = 1, therefore ui will be <1

In these conditions, mi can be deduce from ui

mi

{
|ui|, ui ≥ 1
1, ui < 1

(3.19)

However, multiplicity is not a constant parameter among cells in a tumor due to the possibility
of alterations in the subclonal copy number, which could lead to non-identi�ability issues, this is a
parameter inferred by modeling that is not reliable.(Satas, G., et al., 2021)

Some methods apply di�erent approaches based in evolutionary models that evaluate both, the
SNVs and copy number alterations, but to a highly computational cost. (Satas, G., et al., 2021)
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3.1.4 DeCiFer: Inference of CCF and DCF under the single-split copy
number assumption

Satas, G., et al., 2021, highlighted the "overly simplistic assumptions" that algorithms until then
made when estimating the CCF based on the "constant mutation multiplicity" assumption. To make
more genetically realistic inferences about the prevalence of the subclones in a tumor they construct
a novel statistic, the descendant cell fraction (DCF) that considered (more complex evolution)
chromosomal deletion after a mutation occurs. The DCF consider the mutation prevalence at the time
of sample analysis but also allows reconstructing its history in order to avoid erroneous inferences in
the evolutionary history of the mutations and generate more parsimonious tumor phylogenetic trees.

Besides (to solve previous problems) Satas, G., et al., 2021 developed an algorithm DeCiFer that
"estimates DCFs and clusters mutations using a phylogenetic model".

Previously explained, tumor samples, processed and then analyzed by the sequencing platform, are
presented in the form of nucleotide reads (overlapping and repeated) that, collate against a reference
sample, allow to identify the mutations the tumor harbors. The DeCiFer algorithm, subject to the
restrictions imposed by a plausible evolutionary process, deciphers the parameters that can explain
the observed data with the aim of segregating these mutations into clusters that allow determining the
fraction of cancer cells with similar genetic background, since they come from the same evolutionary
line. Like previous methods they do not assume multiplicity as a constant, and introduce the �single-
split copy number assumption� for CCF calculation based on standard evolution models and copy
number alterations. (Satas, G., et al., 2021)

Inference of CCF under DeCiFer notation

Being Γ the "genotype set" at the SNV locus, for each genotype (x, y,m) its sample prevalence
is speci�ed as g(x,y,m). The proportion of genotypes in Γ is de�ned by:

g = [g(x,y,m)](x,y,m)∈Γ that satisfy

{
g(x,y,m) ≥ 0∑

(x,y,m)∈Γ g(x,y,m) = 1
(3.20)

Therefore, for a given purity, ρ, knowing the pair (Γ,g), the CCF is calculated "uniquely" by:

c =
1

ρ

∑
(x,y,m)∈ΓCCF

g(x,y,m) (3.21)

being ΓCCF = (x, y,m) ∈ Γ|m ≥ 1 ⊆ Γ the genotype set that harbor the SNV 3.1.4 .

Γ and g cannot be inferred from the data, but it can the proportion of cells with a given number
of copies µ = µ(x,y) at a locus (using e.g. Battenberg, explained in section 3.2.2),

µ(x,y) =
∑

(x,y,m)∈Γ

g(x,y,m) (3.22)

as well as the VAF, for all copy numbers (x, y).

v =
1

F

∑
(x,y,m)∈Γ

m · g(x,y,m) (3.23)

where F is the fractional copy number de�ned as
∑

(x,y)(x+ y) · µ(x,y).
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Figure 3.3: The �gure shows the calculated CCF knowing the genotype set and the prevalence of each genotype for a
given sample whose purity value is also known. A tumor sample is illustrated (normal cells are rounded and colored in
blue, and the tumor cells are colored in a range of violet). Each cell contains its DNA chain with the mutations indicated
in red. The VAF values for the reads obtained are also indicated.

Single-split copy number assumption

Since di�erent genotypes (Γ,g) can explain the data, their method is based in establishing restric-
tions to the possible values that can �t with the VAF, v, and µ statistics.

With that aim, they establish the "single-split copy-number assumption" which implies that at
each locus of a mutation there are exactly a number of copies (x∗, y∗) with two di�erent genotypes
(x∗, y∗, 0) and (x∗, y∗,m∗), which basically means assuming the heterozygosity of the locus subject to
the evolutionary rules 3.1.4.

Figure 3.4: Representation of the Single-split copy number assumption. A tumor sample is illustrated
(normal cells are rounded and colored in blue, and the tumor cells are colored in a range of violet).
Each cell contains its DNA chain with the mutations indicated in red.

If a set of genotypes, Γ, adheres to this assumption, it is denoted as Γ∗.
These sets, Γ∗, have two desirable properties:

1. "They arise from standard evolutionary models for SNV and copy number aberrations".
Evolutionary events with low probability, such as homoplasy, this is, the occurrence of the same
mutation that arises independently in di�erent subclones or chromosomes, that were allowed
under constant mutation multiplicity, are restricted under this assumption.

2. "If genotype proportions g satisfying equations 3.22 and 3.23, then they are unique."
If this condition is met, Γ is consistent with µ and VAF, but the CCF remains non-identi�able
since µ and VAF are not enough to determine Γ∗.
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To prove the 2º statement Satas, G., et al., 2021, developed the reasoning to state the following
lemmas:

Considering the following possible cases:

� if (x, y) = (x∗, y∗) → (x∗, y∗) = g(x∗,y∗,0) + g(x∗,y∗,m)

{
g(x∗,y∗,0) = (1− λ)µ(x∗,y∗)

g(x∗,y∗,m) = λ µ(x∗,y∗)
for λ ∈ [0, 1]

where λ is the proportion of cells with copy-number state (x, y) that have the mutation.

� if (x, y) ̸= (x∗, y∗)y under the single-split copy number assumption (x′, y′,m) ∈ Γ∗

(x, y) = (x′, y′)
satisfy−−−−−−−→
Eq.3.22

g(x,y,m) = µ(x,y)

Therefore,

Lemma 1 Given v, µ, Γ∗, if ∃ g | Con({Γ∗,g, v,µ}), g are "uniquely determined as":

g(x, y,m) =


µ(x, y), if(x, y) ̸= (x∗, y∗),

(1− λ)µ(x⋆, y∗), if(x, y) = (x∗, y∗) and m = 0,

λµ(x∗, y∗), if(x, y) = (x∗, y∗) and m = m∗,

(3.24)

Substituting in equation 3.23

v =
1

F

0 · (1− λ)µ(x∗,y∗) +m∗ · λµ(x∗,y∗) +
∑

(x,y,m)∈Γ
(x,y)̸=(x∗,y∗)

m · µ(x,y)

 (3.25)

and solving for λ

λ =
1

mµ(x∗,y∗)

vF −
∑

(x,y,m)∈Γ
(x,y)̸=(x∗,y∗)

m · µ(x,y)

 (3.26)

Lemma 2 Given v,µ,Γ∗,

∃ g | Con({Γ∗,g, v,µ}) ⇐⇒
{
∀(x, y) such that µ(x,y) > 0, ∃ state (x,m, y) ∈ Γ for some m
λ ∈ [0, 1]

(3.27)
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Lemma 3 If v ∈ [v−, v+], v is possible for µ and a Γ∗ being Con({Γ∗,µ}).

From equation 3.25 being Con({g,µ}). Since g(x∗,y∗,m∗) = λµ(x∗,y∗) and λ ∈ [0, 1]; when λ = 0, g
is minimized, g(x∗,y∗,m∗) = 0.

v− = min
λ

1

F

0 · (1− λ)µ(x∗,y∗) +m∗ · λµ(x∗,y∗) +
∑

(x,y,m)∈Γ
(x,y) ̸=(x∗,y∗)

m · µ(x,y)

 (3.28)

Thus,

v− =
1

F

 ∑
(x,y,m)∈Γ∗

(x,y) ̸=(x∗,y∗)

m · µ(x,y)

 (3.29)

And when λ = 1, g is maximized, g(x∗,y∗,m∗) = 1.

v+ =
1

F

m∗µ(x∗,y∗) +
∑

(x,y,m)∈Γ∗

(x,y)̸=(x∗,y∗)

m · µ(x,y)

 = v− +
m∗µ(x∗,y∗)

F
(3.30)

Lemma 4 Given µ, Γ and ρ, the CCFs c resulting from g such that Con({Γ,g,µ}) are "uniquely
determined as":

c =
1

ρ

λ · µ(x∗,y∗) +
∑

(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

µ(x,y)

 (3.31)

Deduced from equation 3.21 having into account that ΓCCF refers to the genotype set Γ where
m ≥ 1, and substituting the g(x,y,m) by the split state µ(x∗,y∗) from 3.24.

Theorem 1 : Given v, ρ, µ, and Γ∗ being Con({Γ∗, v,µ}), "the CCF c is uniquely determined by"

c =
1

ρm∗

vF −
∑

(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

(m+m∗) · µ(x,y)

 (3.32)

where ΓCCF = (x, y,m) ∈ Γ|m ≥ 1 ⊆ Γ.

This expression is achieved by solving for λ · µ(x∗,y∗) from equation 3.25

λ · µ(x∗,y∗) =
Fv

m∗ − 1

m∗

∑
(x,y,m)∈Γ

(x,y)̸=(x∗,y∗)

m · µ(x,y) (3.33)

Substituting λ · µ(x∗,y∗) in 3.21
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c =
1

ρ

Fvm∗ − 1

m∗

∑
(x,y,m)∈Γ

(x,y)̸=(x∗,y∗)

m · µ(x,y) +
∑

(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

µ(x,y)

 (3.34)

For m ≥ 1, (x, y,m) ∈ ΓCCF∑
(x,y,m)∈Γ

(x,y)̸=(x∗,y∗)

m · µ(x,y) =
∑

(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

m · µ(x,y) (3.35)

c =
1

ρ

Fvm∗ − 1

m∗

∑
(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

m · µ(x,y) +
∑

(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

µ(x,y)

 (3.36)

Probabilistic model for CCF

Satas, G., et al., 2021 also present a probabilistic model that includes the uncertainty due to
sequencing errors and coverage in the VAF estimation in the DeCiFer algorithm.

The probabilistic model for CCF for an individual SNV calculates the posterior probability Pr(c|a, t,µ,Γ)
of the CCF considering the observed data and a single split copy number set. Solving VAF from equa-
tion 3.14 and using a change of variable, CCF by VAF, it can be derived the "probability distribution
Pr(c) for the CCF from any probability distribution Pr(v) on the VAF" as

Pr(c|a, t, ρ,µ,Γ) = ρm∗

F
Pr(V (c)|a, t,µ,Γ) (3.37)

where V(c) is obtained solving the equation 3.32 for v

V (c) =
cρm∗

F
+

1

F

∑
(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

(m+m∗) · µ(x,y) (3.38)

To resolve Pr(c|a, t,µ,Γ) the authors apply the Bayes´ Theorem

Pr(V (c)|a, t,µ,Γ) ∝ Pr(V (c)|t,µ,Γ)Pr(a|V (c), t,µ,Γ) (3.39)

Considering equation 3.22 and 3.23, the authors assume that given µ and Γ VAF is conditionally
independent of the total read count t, while, given VAF V (c) and t, the variant read count a is
conditionally independent of µ and Γ (is the v̂ = a/t) which gives the posterior probability for VAF
V(c)

Pr(V (c)|a, t,µ,Γ) ∝ Pr(V (c)|µ,Γ)Pr(a|V (c), t) (3.40)

For a given VAF value the likelihood of the observed variant read counts is Pr(a|V (c), t) while the
prior probability of the VAF given copy-number proportion and a genotype set is Pr(V (c)|µ,Γ)

The prior Pr(V (c)|µ,Γ) has support only on the range [v−, v+]

For the likelihood DeCiFer uses a binomial or beta-binomial distribution and a uniform prior for
the "feasible range" of VAFs, Pr(v(c)|µ,Γ) ∝ 1V (c)∈[v−,v+]
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"The following posterior distribution over the CCF c"

Pr(V (c)|a, t,µ,Γ) = 1

Z
1V (c)∈[v−,v+]B(a|V (c), t, ...) (3.41)

being B the binomial or beta-binomial distribution and Z a normalization constant.
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Descendant cell fraction

The statistic DCF consider potential SNV deletion, therefore, generalizes the CCF statistic. "The
DCF of a mutation is the proportion of cells in a sample that are descendants of the ancestral cell
where the mutation was �rst introduced." 3.1.4

Figure 3.5: Representation of the di�erence between CCF and DCF. A tumor sample is illustrated
(normal cells are rounded and colored in blue, and the tumor cells are colored in a range of violet).
Each cell contains its DNA chain with the mutations indicated in red.

The authors formally de�ne DCF using a term coined as "genotype tree" TΓ = (Γ, E), whose
roots are the genotype set Γ and the branches E indicates the relations between the genotypes. A
"genotype tree" describes the evolutionary history of a single SNV.

Since the DCF synopsizes a genotype tree TΓ and genotype proportions g, a genotype tree is
assigned to each SNV considering the parsimony contraint imposed by the possible number of distict
DCF values.

Analogous to the CCF (equation 3.21), the DCF, d, of an SNV is de�ned as,

DCF =
1

ρ

∑
(x,y,m)∈Γ(DFC)

g(x,y,m) (3.42)

where Γ(DCF ) ⊆ Γ indicates the genotypes that descent from the genotype (x∗, y∗,m∗).

In an analogous way to the theorem 1, the following theorem is de�ned.

Theorem 2 : Given v, ρ, µ, and Γ∗ being Con({Γ∗, v,µ}), "the DCF c is uniquely determined by"

DCF =
1

ρm∗

vF −
∑

(x,y,m)∈ΓDCF

(x,y) ̸=(x∗,y∗)

(m+m∗) · µ(x,y)

 (3.43)
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where ΓDCF is the set of genotypes in genotype tree TΓ∗ that are descendants of the state
(x∗, y∗,m∗).

Probabilistic model for DCF

The probabilistic model for DCF is analogue to the one for CCF.

where V(d) is obtained solving the equation 3.43

V (d) =
cρm∗

F
+

1

F

∑
(x,y,m)∈ΓCCF

(x,y)̸=(x∗,y∗)

(m+m∗) · µ(x,y) (3.44)

In this case V(d) also depends on TΓ, therefore

Pr(d|a, t, ρ,µ,Γ, TΓ) =
ρm∗

F
Pr(V (d)|a, t,µ,Γ) (3.45)

and the posterior distribution over the DCF c for an individual SNV in one sample

Pr(d|a, t,µ,Γ, TΓ) =
1

Z
1V (d)∈[v−,v+]B(a|V (d), t, ...) (3.46)

In the next graphs (Figure 3.1.4 and Figure 3.1.4) are shown a summary of the previously explained
statistics in a situation when all the parameters are known.
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Figure 3.6: Summary of the calculations performed to infer the di�erent statistics, CCF under the assumption of
constant multiplicity, and CCF under the assumption of non-constant multiplicity and DCF implemented in the DeCiFer
algorithm.
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Figure 3.7: Summary of the calculations performed to infer the di�erent statistics, CCF under the assumption of
constant multiplicity, and CCF under the assumption of non-constant multiplicity and DCF implemented in the DeCiFer
algorithm.
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3.2 Clustering

The next step is clustering mutations with similar CCFs.

3.2.1 SNV-based subclonal reconstruction - A Bayesian Dirichlet process

Nik-Zainal et al. used a Bayesian Dirichlet process to simultaneously infer the "unknown fraction
of tumor cells" in each "unknown number of subclones" that harbor an "unknown proportion of all
somatic mutations".

SNV-based subclonal reconstruction is based on clustering the SNVs with similar CCF or CP.
However, VAF reckoning, and therefore the CCP or CP, is a�ected by methodological variables such
as sequencing depth (i.e., the number of reads in each region), since precision of inference increases with
the number of readings. Although the initial depth is a chosen parameter, the distribution of sequences
throughout the genome depends on the physical-chemical properties of the region in question, there are
regions of the genome that are more di�cult to sequence than others, therefore, a di�erent distribution
of values can be observed in the CCF estimates from di�erent mutations, for a given clone or subclone.
This variability, namely, the observed variability in CCF estimation from a tumor can be modeled by
a binomial distribution (Dentro, S.C.et al., 2017, Nik-Zainal, S., et al., 2012):

ri ∼ Bin(rtot,i, pi) (3.47)

being ri the nº of reads with the variant allele in the i location, rtot,i the total depth reads in the
i location (known from data) and pi the probability of observe the variant allele, that could be de�ne
as:

pi = ζiπi (3.48)

where ζi is the proportion of expected reads if mutation is clonal (since is unknown if it is clonal
or subclonal, probability is maximized) given purity and copy number for that locus, and πi ∈ (0, 1)
the true fraction of tumor cells that harbor the mutation.

The inference of πi, this is, the CCF, is the base of subclonal reconstruction. There are di�erent
methods to this endeavor, but since there is not information about the distribution of πi, one of the
most prevalent is to use a Dirichlet process (DP) as a prior distribution that models subclonal fractions,

πi ∼ DP (αP0) (3.49)

being DP (αP0) a DP with a base probability distribution P0 and a dispersion parameter α > 0.
(Dentro, S.C., et al., 2017, Nik-Zainal, S., et al., 2012, Dunson, D., 2010)

The Dirichlet distribution can represents a sampling of an unknown number of distributions,
which allows to coestimate both the nº of distributions (nº of subclones or clusters), h, and their
properties (the CCF and the somatic mutation they harbor), being P0 the observed sampling, it can
be used to infer each cluster, h, and its probability weight ωh, through the stick-breaking representation,
where the true probability distribution P is discrete, and its probability mass function is formulated as
the sum of the product of the probability weight of the each mutation cluster, ωh, and, δπh

represents
a point mass (indicator function) of the location in the CCF space, π, while the locations πh are
independent and identical distributed according to P0, and δπh

value is equal to 0 for all locations
except δπh

(πh) = 1 (Dentro, S.C., et al., 2017, Nik-Zainal, S., et al., 2012):

P (π) =

∞∑
h=1

ωhδπh
(π), πh ∼ P0 (3.50)
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being

ωh = Vh
∏
l<h

(1− Vl), Vh ∼ β(1, α) (3.51)

where V represents the proportion of the remaining stick that is broken o�.

Therefore, in order to capture low frequency subclones, the weight was corrected by considering
the probability of identifying a mutation in a fraction of tumor cells, this is its sensitivity, Sπh

, whose
model parameters can be estimated by bootstrap using simulated data.

ωh.corrected =
khSπh∑
i kiSπi

(3.52)

Once set the prior distribution for P0 and α, the posterior distribution is usually inferred using
Markov chain Monte Carlo (MCMC) algorithms. The accuracy of this approach was evaluated using
simulated data (Figure 3.8).

Figure 3.8: (Left) Mutations (blue histogram) from an "in silico" simulation of a tumor in which fully clonal mutations
account for 20% of mutations, 40% mutations are found in a subclone representing 60% of tumor cells, 10% mutations
in a subclone at 30% and 20% mutations in a subclone at 20% of tumor cells (pink bars). The simulated mutations
have also been subject to correction for the sensitivity of detection at di�erent fractions of tumor cells, hence there are
fewer "observed" mutations at 20% of tumor cells than at 100% despite there being more "true" mutations at this level.
Statistical modeling by a Bayesian Dirichlet process of the simulated mutations is shown as a dark green line. Also
shown are the 95% posterior con�dence intervals for the �tted distribution (pale green area). (Right) Mutations (blue
histogram) from an "in silico" simulation of a tumor in which there are 40 subclones, evenly spread from 0%�100%
of tumor cells and each contributing 2.5% of mutations (pink bars). The simulated mutations have been subject to
correction for the sensitivity of detection at di�erent fractions of tumor cells, hence there are fewer "observed" mutations
at 20% of tumor cells than at 100% despite there being the same number of �true� mutations at this level. Statistical
modeling by a Bayesian Dirichlet process of the simulated mutations is shown as a dark green line. Also shown are the
95% posterior con�dence intervals for the �tted distribution (pale green area). Taken from Nik-Zainal et al., 2012
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And then test in real data (Figure 3.9).

Figure 3.9: (Left) Statistical modeling of the distribution of clonal and subclonal mutations by a Bayesian Dirichlet
process. The empiric histogram of mutations is shown in pale blue, with the �tted distribution as a dark green line. Also
shown are the 95% posterior con�dence intervals for the �tted distribution (pale green area). Four separate clusters of
mutations, named A�D, are identi�ed. (Right) Estimated number of mutations found in clusters A�D, with the error
bars representing the 95% posterior con�dence intervals. Taken from Nik-Zainal et al., 2012

The power to detect clonal or subclonal mutations depends on the coverage of the sequenced region,
cs, the purity of the sample, ρ, and the tumor ψt and normal ψn ploidy, and can be aproximate by the
following metric (Dentro, S.C., et al., 2017):

ps = cs
ρ

ρψt + (1− ρ)ψn
(3.53)
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3.2.2 CNA based subclonal reconstruction. The Battenberg algorithm

Nik-Zainal et al. developed the Battenberg algorithm that tries to improve the statistical power
by analyzing haplotypes, instead of individual SNPs, in order to detect subclonal population. This
algorithm is based on the ASCAT algorithm.

Inferring haplotypes allows more accurate estimates of BAF, which in turn, allows subclonal pop-
ulations to be detected more accurately. Once germline haplotypes are inferred, the next step is to
phase a somatic mutation to a nearby heterozygous SNP to cluster mutations into the haplotypes,
which is accomplished by analyzing whether there are reads that contain both and, if so, count the
number of read. If a somatic mutation is a�ected by alteration alterations in the copy number and/or
belong to a subclone, the percentage of the reads would be above or below 50%, if this is signi�cant,
the mutation will be assigned into the deleted or retained allele. (Figure 3.10).

Figure 3.10: Phasing of mutations

(stars) with adjacent germline heterozy-
gous SNPs (vertical lines) allows determi-
nation of whether a mutation is on the
retained or subclonally deleted parental
copy of a chromosome. Taken from Nik-
Zainal et al., 2012

To identify whether two close somatic mutations are mutually exclusive or are part of the same
subclonal population (subclonal evolution), similarly, it is necessary to �nd reads that decipher the
right combination of alleles (Figure 3.11). ((Dentro, S.C., et al., 2017, Nik-Zainal et al., 2012)

Figure 3.11: (Left) Phasing

of subclonal mutations (stars)
with other nearby subclonal mu-
tations allows determination of
whether they are in separate phy-
logenetic lineages, in which case
no sequencing reads will report
both variants together (mutu-
ally exclusive pair of mutations).
(Rigth) Similar phasing analysis
can identify cases where the later
subclonal mutation has arisen on
an allele linked with a previous
subclonal mutation. Taken from
Nik-Zainal et al., 2012
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The �rst steps of the Battenberg algorithm are similar to the ones previously explained to infer
tumor purity and ploidy and allele-speci�c copy number, in section 3.1.1, using the ASCAT algorithm.

Once inferred the copy number values using the germline heterozygous SNPs for both alleles in the
haplotype, (equations 3.8 and 3.9), BAF values can be calculated. The criteria to decide if a fragment
belongs to a tumor clon or subclone is based on a t-test, that evaluates how far the observed BAF
value is from the expected BAF value if the haplotype was clonal.

The previous equations (3.8 and 3.9) can render non-integer values that must be rounded to obtain

clonal copy number states used to calculate the expected BAF, b̂h:

b̂h =
1− ρ+ ρ nB

2(1− ρ) + ρ (nA + nB)
(3.54)

where nA and nB are the integer allele-speci�c copy number; depending on the rounding up (⌈nA⌉,
⌈nB⌉) or down (⌊nA⌋, ⌊nB⌋), four possibilities can be obtained that the authors of the Battenberg
algorithm presume must be within a maximum error of ±1 for most segments.

Clonal inference

For clonal inference the criterion used to choose between the four values is the one that minimizes
the distance of the observed BAF value bh from the expected BAF value b̂h.
Once the most likely combination of alleles is determined a t-test is performed against the observed
BAF to accept the haplotype as clonal if the test is not signi�cant (α = 0.05). If the BAF value
obtained does not explain a clonal state then the hypothesis to test is if the haplotype is subclonal.

Subclonal inference

If the segment is subclonal, under the assumption that during tumor evolution mutations in a
speci�c location occur once, three types of cell populations coexist: normal cells (1 − ρ), tumor cells
with (ρτ) and without (ρ(1 − τ)) a subclonal mutation (being τ ∈ (0, 1)), which determine the
haplotype frequency and coverage depth/LogR data of the genomic segment.

hf =
1− ρ+ ρτnB,1 + ρ(1− τ)nB,2

2(1− ρ) + ρτ(nA,1 + nB,1) + ρ(1− τ)(nA,2 + nB,2)
(3.55)

This haplotype can be contained in two or more subclones populations, therefore, the most parsimo-
nious approach to estimate τ is to assume that subclones di�er by less than 1 copy, which restrict the
copy number to four combinations, although for a given hf only two of the combinations are possible

(�gure 3.12) that can be inferred using the total copy number nA+nB or ls since nA+nB = 2ρ−2+2lsψ
ρ

Figure 3.12: The two plausible combinations

are ⌊nA⌋+⌊nB⌋ and ⌊nA⌋+⌊nB⌋+1 (in red) or
⌊nA⌋+ ⌊nB⌋+ 1 and ⌊nA⌋+ ⌊nB⌋+ 2 (in blue)

For subclonal inference, the criterion is accepting the segment as subclonal if the observed value
ĥf is signi�cantly di�erent from the theoretical value hf in the four scenarios.

Therefore, if a subclone τ harbors a copy number state nA,1 + nB,1 and another subclone 1 − τ
harbors nA,2 + nB,2, τ can be inferred as

τ =
1− ρ+ ρnB,2 − 2hf (1− ρ)− hfρ(nA,2 + nB,2)

hfρ(nA,1 + nB,1)− hfρ(nA,2 + nB,2)− ρnB,1 + ρnB,2
(3.56)
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where standard deviation and intervals of con�dence can be calculated by bootstrapping. (Dentro,
S.C., et al., 2017)
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3.2.3 DeCiFer: simultaneous clustering and genotype selection using the
DCF

To perform clustering of the DCFs it is necessary to infer the pair (Γ∗, TΓ∗) values, but individual SNVs
cannot provide this type of information and multiple values can �t the observed data. An approach to
this problem is analyze the SNVs together, which allows, assuming a limited number of possible DCF
values, to obtain constraints to reduce ambiguity by making the following assumption:

"There exist DCF values d1, ..., dk such that for every SNV in a tumor sample at least
one dj is a valid DCF for the SNV." (equation 3.43)

Although this assumption allows a partition of the SNVs into k groups according to their DCF, the
di�culty lies in simultaneously select the genotype tree for each SNV and clustering them since SNVs
may have more that one possible DCF value, which leads to set the following problem:

Probabilistic mutation clustering and genotype selection problem

The simultaneous selection and clustering problem in a general setting with p bulk sequencing samples
from the same patient, being ai = [ai,ℓ]ℓ=i,...,p and ti = [ti,ℓ]ℓ=i,...,p variant and total read counts,
respectively, Mi = [µi,ℓ]ℓ=i,...,p copy-number proportions for each SNV at the location i of each sample
ℓ, Gi the pair of (Γ∗, TΓ∗) that are consistent with µ , s = si ∈ 1, ...|Gi|, the set of Gi, and z = zi ∈ 1, ...k
the cluster assignment for the SNV i, is depicted by:

For each SNV at location i, �nd D, a set of DCF values of size k (an integer >0), such as
D∗ = d1, ...dk for each SNV i, and select s∗i , that determines the DCF di and z∗i , so that the
probability distribution of the DCF of cluster j in sample ℓ, d∗z∗i ,ℓ

, knowing the variant, ai, and total,

ti, read counts, copy-number proportions µi and a set Gi of pairs of genotype sets and trees (Γ∗
i , Ti),

is maximized.

D∗, s∗, z∗ = argmax
D,s,z

n∏
i=1

p∏
ℓ=1

Pr(d∗z∗i ,ℓ|ai,ℓ, ti,ℓ,µi,ℓ,Γi,ℓ, Ti,s∗ℓ ) (3.57)

The product is calculated since the variant read counts are conditionally independent for a given z
and DCF.

TheMutation Clustering and Genotype Selection problem is an instance of the Hitting Set
problem, which is known to be equivalent to the Set Cover problem and is NP-complete."

The DeCiFer algorithm is intended to solve this maximization.
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3.2.4 The DeCiFer algorithm

Constraints imposed by DeCiFer are stronger than by single-split copy-number assumption since geno-
type trees TΓ must obey the follow evolutionary model

1. Each mutation occurs once, but subsequent copy-number alterations may result in its loss or
ampli�cation.

2. For a SNV locus, each speci�c copy number of the allele (x, y) is reached exactly once.

Therefore the Dollo´s law of irreversibility applies for SNVs and refers to the fact that
a mutation produced will not revert to the previous state, and the in�nite alleles assumption
applies for copy-number alterations, that speci�es that there is countless number of states for a
locus. (Mallory, X.F., et al., 2020)

3. Mutation multiplicity is due to a change in copy-number alteration.

Under these constraints, the mutation multiplicity for the split copy number (x∗, y∗) is m∗ = 1

Model selection

Satas, G., et al., 2021 used two approaches to estimate the number of clusters k, as schematized below:

k



p+ 2 �xed clusters


truncal cluster �> dT = [ρℓ]ℓ∈[1,...p]

absent cluster �> d0 = [0]ℓ∈[1,...p]

p-clusters

Variable clusters
(model selection criterion) �> min > p+ 2
Standard elbow method


truncal cluster �> dT = [ρℓ]ℓ∈[1,...p]

absent cluster �> d0 = [0]ℓ∈[1,...p]

p-clusters

The �rst approach considers the existence of three groups, �rst, a cluster whose SNVs are present in
all cells, therefore, �xed to the purity of the sample, second, a cluster whose mutations are not feasible
in none of the fraction of cells so their posterior probability would be 0, required for the continuity of
the optimization and third, a p-clusters related to the SNVs distinctive of each sample.

The second approach is select the clusters using a model-selection criterion based on the standard
elbow method, the number of clusters are de�ned by the user and range between a minimal value of
p + 2 clusters, where p is the number of samples to the maximal set. The algorithm then computed
the objective function over that predetermined number of clusters and chooses the minimal number k
that signi�cantly improves the optimal value of the objective function over the previous values, this is
the elbow of the function.

DeCiFer algorithm

The DeCiFer algorithm tries to �nd the values of (D∗, s∗, z∗) that maximizes the probability of the
value of the fraction of descendant cells that contain the SNVs assigned to cluster z∗ in sample ℓ,
according to the �single-split copy number� assumption.

To achieve that aim, to optimize the equation 3.57, the DeCiFer algorithm uses a coordinate
ascent approach to �rst searching for the optimal D value and then search the dℓ,j that maximize
the posterior probability. The algorithm alternatively optimizes the DCF clusters, given the possible
plausible genotypic trees and the assignment of the clusters, which are basically the clustering of
SNVs by their frequency, by the VAFs, and then given the DCFs, optimizes the SNV clusters and the
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assignment of genotypic trees using a coordinante ascent algorithm. To start the algorithm the authors
set a k value and extract as many values from a symmetric Dirichlet distribution as k, the associated
number obtained is used to initiate the algorithm D(0).

But knowing the descendant cell fraction of a given SNVs, D, recalling that this value refers to
the fraction of cells in the same phylogenetic branch, its genotype tree si and the cluster to which
this SNP is assigned zi is conditionally independent (conditional to not be in the same descendant cell
fraction D) of the possible cluster and set of genotype assignments of other SNVs that are not in the
same phylogenetic branch, so each SNVi can be optimized individually,

s
(q)
i , z

(q)
i |D(q−1) = argmax

s∈1,..,|Gi|,z∈1,..,k

p∏
ℓ=1

Pr(d
(q−1)
z,ℓ |ai,ℓ, ti,ℓ,µi,ℓ,Γi,s, Ti,s) (3.58)

by evaluating of the full range of plausible cluster and genotype set assignments. The next step
is to �nd the optimal value for the cluster cell fraction contained in a matrix of dimensions [0, 1](k∗p)

being k the number of possible clusters and p the number of samples, therefore the optimal value
D(q) ∈ [0, 1](k∗p).

In an analogous way, knowing the genotype tree s(q) and the cluster to which that SNP is assigned
z(q) the DCF value dℓ,j in sample ℓ for cluster j is conditionally (conditional to not be in the same
genotype tree s(q) and same cluster z(q)) independent of all other DCF values

Therefore, the algorithm searches its optimal value

d
(q)
ℓ,j |s

(q), z(q) = argmax
s∈d∈[0,1]

∏
i;z

(q)
i =j

Pr(d|ai,ℓ, ti,ℓ,µi,ℓ,Γi,s, Ti,s) (3.59)

that is accomplished by �nding the minimum value in the range [0, 1] using Brent's algorithm.
When the cluster and genotype set assignments reach their optimal value, the following iterations do
not change that value, the algorithm terminates.
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Chapter 4

Sensitivity analysis to purity changes

of the DeCiFer algorithm

Subclonal reconstruction of tumors is based on the inference of various parameters from sequencing
reads. The behavior of the algorithm to perturbations of these parameters is important to establish
the dependence of the precision of the inferred parameters and the robustness of the results and its
reliability. One of the most important parameters that in�uence the estimation of the CCF or DCF,
as explained above, is the purity of the analyzed sample.

One of the approaches to analyse sensitivity is the one-at-a-time method. Although this method
has its disadvantages since it does not take into account the possible interaction between the di�erent
factors considered in the algorithm, in the case of the present study it pinpoints the importance of
considering its uncertainty in the development of clustering algorithms, since the DeCiFer algorithm
includes the uncertainty derived from sequencing errors and coverage for VAF estimations in its prob-
abilistic model for the CCF, but it does not mention any appraisal for uncertainty due to the possible
inaccuracy in purity estimation.

The DeCiFer algorithm does not infer purity; this value is provided as input data. To infer the purity
value of the sample analyzed di�erent algorithms have di�erent approaches, as previously explained,
the ASCAT/Battenberg algorithm infer the optimal value of this parameter simultaneously to the
ploidy inference by minimizing the distance between the expected and observed allele-speci�c copy
numbers, while the HATCHet algorithm reckons the purity value as the sum of the proportion of all
tumor clones present in the sample once this value has been previously obtained. Nevertheless, any of
the methods used entails an error as it can be observed from the ASCAT pro�le grid (Figure 3.2) or
the comparison among several algorithms that are shown in the following graphs (Figure 4) performed
by Zaccaria, S. and B.J. Raphael, 2020, where, as can be seen, the relative error varies considerably
between di�erent analyzed algorithms when simulation data were used.
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Figure 4.1: Relative error of tumor purity and ploidy. The relative error of tumor purity and ploidy is computed when
running seven methods on all the 256 simulated samples, 128 without a WGD and 128 with a WGD, by considering
free values of all parameters. The considered methods are �ve current state-of-the-art methods (Battenberg, TITAN,
cloneHD, Canopy with FALCON, and ReMixT) and HATCHet, which has been applied both separately on single samples
(single-sample HATCHet) and jointly on multiple samples from the same patient (HATCHet). Box plots show the median
and the interquartile range (IQR), and the whiskers denote the lowest and highest values within 1.5 times the IQR from
the �rst and third quartiles, respectively. Adapted from Zaccaria, S. and B.J. Raphael, 2020

Theoretically, following the equation 3.21 for a given purity, ρ, knowing the pair (Γ,g), the CCF is
"uniquely" calculated. But considering the variability in purity inference for given sequences, a lower
purity estimate would increase the estimated CCF, while a higher purity estimate would decrease the
estimated CCF, as it can be seen in the following �gure 4. Analogous results are for the DCF (equation
3.43).



37

Figure 4.2:

Moreover, the DeCiFer algorithm also takes the purity values to initialize the coordinate ascent
algorithm used to solve the probabilistic mutation clustering and genotype selection problem and
anchor the truncal cluster to the purity value of the sample. Thus, this value determines the centroid
of the main clusted infered. Therefore, the simulation performed is intended to analyze the in�uence
of purity perturbations in the clustering of cells performed by the DeCiFer algorithm.
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Chapter 5

Simulation and data analysis

To analyze the clustering di�erences when perturbations in the purity values are introduced the data
from the DeCiFer demo were used (https://github.com/raphael-group/decifer), which provides the
�les for several prostate patients that contain the mutations and the sample´s purity.

The DeCiFer algorithm is written in Phyton and runs in linux. The basic input data, required by
this algorithm to perform clustering, are two �les, a .tsv with the number of the variant and reference
reads, the copy number and their proportion and a .tsv with the tumor purity of each sample analyzed.
As an additional input to �t beta-binomial distributions a .tsv with the read counts of the germline
variants and the number of allele-speci�c copy number per segment is required, but these archives are
not provided in the demo.

The output returns a �le with the selected number of SNVs assigned to clusters and provides the
inferred cluster and state tree for each mutation as well as the point estimate of the mutation DCF
and the inferred CCF under the constant mutation multiplicity assumption.

The DeCiFer algorithm can be running using di�erent input parameters established by the user.
One such parameter is the VAF standard deviation value chosen to establish that an SNV belongs to
a group with respect to the value of the center of the cluster. The default value is 1.5 SD.

Simulations are running introducing perturbations in purity from 1% to 50% with the following
parameters:

1. Using the same parameters given in the DeCiFer algorithm, which are a �xed number of clusters
between 5 and 8, a number of restarts of 20 and for deterministic reproducibility a seed of 17.

2. Modifying the default value of standard deviations set to select the SNVs assigned to a cluster.

For illustrative and comparative purposes, an attempt has been made to reproduce the data and
graphs using the same patient´s data (patient 12 and patient 17) and chromosomal region indicated
in the original paper, taking into account that the article uses a beta-binomial generative model but
the demo runs in the default binomial model mode, and this parameter cannot be changed without
the appropriate �les that the demo does not provide. The original graphics shown in (Satas, G., et al.,
2021) are not reproduced here due to copyright restrictions and reproduction permissions.

39
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Patient 12

As mentioned above, the DeCiFer algorithm is provided with a .tsv �le with the number of variant and
reference reads. The �le for patient 12 contains information from 3554 SNVs. The following �gure 5.1
shows the VAF data calculated from that input �le with the aim of depicting the dispersion of data
that the algorithm intends to cluster.

Figure 5.1: The �gure depicts the VAF data dispersion, reckoned from the variant and reference readings for each of
the SNVs in the �le provided in the DeCifer demo of the patient numbered as 12, which is used as input data of the
algorithm. The �le contains 3554 SNV readings for each sample. In both graphs, the VAF values of the SNVs contained
in sample D are represented on the y axis, in the graph on the left, the VAF values of the SNVs contained in sample A
are represented on the x axis, while in the graph on the right the VAF values of the SNVs contained in sample C are
represented on the x axis.

Simulations performed with the DeCiFer algorithm using di�erent values of purity and values of
standard deviation of the patient 12 are exposed in subsequent graphs.

Figure 5.2 represents the results of the DeCiFer algorithm for patient number 12 resulting from
running the algorithm with the initial purity, provided in the demo �le, and subsequent simulations
in which the algorithm is executed with �les with di�erent percentages of the initial purity values,
indicated in each row of the graph. The �rst row of graphs attempts to reproduce Figure 6 from the
study by Satas, G., et al., 2021, in which data from patient 12 on chromosome 6q are selected and
grouped into the main cluster, considering that the article uses the beta-binomial model instead of
the default binomial model used in this analysis. As shown in the graph, a 1% reduction in the input
purity data does not alter the results but reductions equal or greater than 1.5% have a radical impact
causing the disappearance of the groups of SNVs with the higher VAF values. As consequence, the
inference of CCF and DCF changes drastically. When the input purity data is the initial one, two
cluster of CCF are observed that correspond to the two clusters of VAF data, with di�erent values
for each sample, while by clustering both groups together (as the algorithm infers that both groups of
SNVs belong to the same phylogenetic branch) the inference of the DCF value is equal to 1 for both
groups in the three samples.

The e�ect on the CCF and DCF estimators of a decrease in the input purity value greater than
1.5%, which causes the group with the highest VAF values to be lost, is that both estimators have
similar results. In comparison with the previous result, in the case of the CCF only the cluster with
the lower value remains, but in the case of the DCF, the information that corresponds to the evolution
of the cells is lost, so it is inferred that this group of SNVs belong to a subclone instead of a clone, just
as the CCF estimator does.
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Figure 5.2: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are used
as input data. For illustrative and comparative purposes, an attempt has been made to reproduce �gure 6 from the study
by Satas, G., et al., 2021, in which data from patient 12 on chromosome 6q are selected in the main group (as noted
in the main text the article uses the beta-binomial model instead of the default binomial model used in this analysis).
Similar to the original �gure, the �rst row of the graphs shows the results obtained using the purity values provided
by the demo (named "initials"). The �rst two graphs represents the VAF values of the SNVs selected for clustering,
the next two show the CCF calculated under the assumption of constant multiplicity and the last ones show the results
of the DCF estimator, implemented by the DeCiFer algorithm. The following rows, with decreasing percentages of the
purity values with respect to the initial one, show the SNVs that remain compared to those selected when the input
data is the initial purity, for the same estimators. Additionally, the axes indicate the purity values for each sample, as
well as the best objective and elbow values returned by the algorithm, and the number of SNVs selected for the clusters
with the default standard deviation of 1.5. Data colored in pink and green belong to the same cluster and only di�ers by
their VAF value. Data colored blue indicates additional values included in the main group when modifying input purity
values that were not selected when running the algorithm with the initial purity value.
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The following tables (Figure 5.3) shows the SNVs selected for clustering when the input purity
values are -5%, -20% and -50% in comparison to the initial value, respectively. In the last two tables
it is seen that the SNVs with the highest VAF value are not selected when the purity value decreases
from the previous value.

Figure 5.3: The tables show part of the output �le returned by the DeCiFer algorithm and the VAF
calculated from the variant and reference readings for each SNV.

When the input purity value increases, the group of SNVs with higher VAF values remains, although
the selection of SNVs di�er somehow in comparison to those selected with the initial purity values.
As expected, as the centroid of the clusters changes, the algorithm permute the SNVs included in the
cluster until it reaches its optimal value for the given values. In blue are indicated the additional
selected SNVs that are not included with the initial purity values. In this case the CCF and DCF
estimates agree with theory; an increase in the inferred purity value decreases the CCF and DCF
estimate (Figure 5.4).
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Figure 5.4: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are used
as input data. For illustrative and comparative purposes, an attempt has been made to reproduce �gure 6 from the
study by Satas, G., et al., 2021 in which data from patient 12 on chromosome 6q are selected in the main group (as noted
in the main text the article uses the beta-binomial model instead of the default binomial model used in this analysis).
Similar to the original �gure, the �rst row of the graphs shows the results obtained using the purity values provided
by the demo (named "initials"). The �rst two graphs represents the VAF values of the SNVs selected for clustering,
the next two show the CCF calculated under the assumption of constant multiplicity and the last ones show the results
of the DCF estimator, implemented by the DeCiFer algorithm. The following rows, with increasing percentages of the
purity values with respect to the initial one, show the SNVs that remain compared to those selected when the input
data is the initial purity, for the same estimators. Additionally, the axes indicate the purity values for each sample, as
well as the best objective and elbow values returned by the algorithm, and the number of SNVs selected for the clusters
with the default standard deviation of 1.5. Data colored in pink and green belong to the same cluster and only di�ers by
their VAF value. Data colored blue indicates additional values included in the main group when modifying input purity
values that were not selected when running the algorithm with the initial purity value.
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The e�ect of increasing input purity values over the selection of SNVs is seen in the �gure (Figure
5.5) which re�ects that inferring a higher purity value has a slight impact on the SNVs clustering,
di�erence that increases as the inferred purity value does.

Figure 5.5: Comparison between the results of the selected SNVs when the input data is the initial purity value versus
increasing proportions of 5%, 10% and 15% in the input purity values. VAF data values that are common between the
results of running the algorithm with the two indicated purity values are colored green, in red are those unique to the
�le run with the initial purity, and blue are those unique to the �le run with the other purity value indicated.
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One of the main constraints over the selected SNVs are their distance to the center of the cluster.
Increasing the input parameter referred to the standard deviation from a SD = 1.5 to SD = 20 causes
the selection of all the SNV in that chromosomal region, and barely any di�erences are observed in
reference to the input purity value (Figure 5.6).

Figure 5.6: Comparison between the results of the selected SNVs, when the input data is the initial purity value versus
an increment in the 15% in its inferred value, modifying the input parameter referred to the standard deviation from
SD = 1.5 to SD = 20. VAF data values that are common between the results of running the algorithm with the two
indicated purity values are colored green, in red are those unique to the �le run with the initial purity, and blue are
those unique to the �le run with the other indicated purity value.

The authors states in the DeCiFer web page of the algorithm (https://github.com/raphael-group/decifer)
that "This default behavior �lters out noisy data or germline contamination that manifests as e.g. SNVs
being assigned to the truncal cluster yet having very low DCF values in the point estimate DCF col-
umn of the output �le."
This e�ect is not seen in the data; when the input standard deviation parameters are increased the
included SNVs do not have distributed point estimate DCF values di�erent from the initial one as seen
in �gure 5.7 however, an alteration is observed in the DCF inference when modifying this parameter
when the input purity value is lower than the initial one (Figure 5.8).
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Figure 5.7: The �gure show in the �rst two rows a comparison of the results obtained when running the algorithm
with the initial values of purity but modifying the input standard deviation parameter (SD=1% and SD=1.5%), in the
next two rows a comparison when the input value of purity is increased in a 15% and the input standard deviation
parameters is also modi�ed (SD=1.5% and SD=20%). The last two rows show in detail a comparison of the distribution
of the point DCF values when the standard deviation is increased (blue dots).

By increasing the input standard deviation parameter, it can be observed that the SNVs that had
disappeared when decreasing the input purity value, reappear. This does not a�ect the CCF estimate
much but has a profound impact on the DCF estimate due to the inference this estimator realizes
about the evolutionary history of SNVs. Unlike the previous analysis, under these circumstances a
common evolution is not inferred, so the DCF estimator assigns the SNVs to di�erent fraction of tumor
cells (Figure 5.8).
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Figure 5.8: Comparison between the results of the selected SNVs when the input data is the initial purity value versus a
5% decrease in its inferred value and comparison between the results of increasing the standard deviation from SD = 1.5
to SD = 20 when the input purity data assumes a 5% decrease in its inferred value.

The previous results are also observed when all the genome is analyzed (Figure 5.9 and Figure
5.10). When input purity values decrease, there is a noticeable tendency to not select SNVs with the
highest VAF values, which can denote a border e�ect in the algorithm due to link the truncal cluster
to the purity value. The border e�ect observed when the input purity value decreases in not seen when
the input purity value increases (Figure 5.10).
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Figure 5.9: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are used
as input data for all the SNVs analyzed of the patient 12. The �rst row of the graphs shows the results obtained using
the purity values provided by the demo (named "initials"). The �rst two graphs represents the VAF values of the SNVs
selected for clustering, the next two show the CCF calculated under the assumption of constant multiplicity and the last
ones show the results of the DCF estimator, implemented by the DeCiFer algorithm. The following rows, with decreasing
percentages of the purity values with respect to the initial one, show the SNVs that remain compared to those selected
when the input data is the initial purity, for the same estimators. Additionally, the axes indicate the purity values for
each sample, as well as the best objective and elbow values returned by the algorithm, and the number of SNVs selected
for the clusters with the default standard deviation of 1.5. Data are colored according to each cluster.
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Figure 5.10: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are
used as input data for all the SNVs analyzed of the patient 12. The �rst row of the graphs shows the results obtained
using the purity values provided by the demo (named "initials"). The �rst two graphs represents the VAF values of
the SNVs selected for clustering, the next two show the CCF calculated under the assumption of constant multiplicity
and the last ones show the results of the DCF estimator, implemented by the DeCiFer algorithm. The following rows,
with increasing percentages of the purity values with respect to the initial one, show the SNVs that remain compared
to those selected when the input data is the initial purity, for the same estimators. Additionally, the axes indicate the
purity values for each sample, as well as the best objective and elbow values returned by the algorithm, and the number
of SNVs selected for the clusters with the default standard deviation of 1.5. Data are colored according to each cluster.
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As can be seen in the following table 5.11, the optimization improves when the input purity value
increases (the best objective value decreases), while it worsens when the input purity value decreases
(the best objective value increases).

Figure 5.11: Table summarizing the values of best objective and elbow or silhouette score returned by the DeCiFer
algorithm when analyzing the data of the patient 12 for each input purity value
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In the following graphs (Figure 5.12 is shown a comparison between the limits of each cluster, which
indicates the location of the centroid, for each sample. Note that the y axis is adjusted to the lower
and upper limit of the cluster, therefore only the tendency can be compared.

For the main clusters, in the three samples, there is a tendency to lower the cluster limits as the
input purity value increases, which agrees with theory, for a given VAF value, if the inferred purity
increases, the reckoned CCF and DCF decrease.

Figure 5.12: Comparison of the limits of each cluster as the percentage of the input purity values varies for each
sample of the patient 12. The upper limit is indicated with a red line and the lower limit with a black line. Note the y
axis values varies between the clusters.
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The following table 5.13 shows the clustering analysis comparison for the results of variations in
the input purity values compared to the initial input purity value.

Figure 5.13: Table summarizing di�erent metrics for clustering analysis

The Rand index (RI) and its adjusted value (ARI) measure the similarity between the clusters.
Variations in the input purity value barely a�ects the clustering results but the input purity value
of -20%. The analysis shows a linear but slight decrease in the similitude of the clustering when the
di�erence with respect to the initial purity value increases. The results of the Chi2 and its p− value
associated also supports that the null hypothesis of no di�erences between the clusters cannot be
rejected.

The normalized information distance (NID) value is a measure of the distance between the elements
of a cluster, "the minimal information distance between x and y is the length of the shortest program
for a universal computer to transform x into y and y into x" Vitányi, P., et al., 2008. A similar trend
to the previous values is observed.

The normalized variation of information (NVI) is a measure of the distance of two clusters while
the normalized mutual information (NMI) is a measure of the mutual dependence between the clusters.
These measures also support the similarity of the clustering obtained by increasing the input purity
values but a higher di�erence when decreasing the input purity values which may be related to the
loss of information between the clustering when DCF estimator is inferred. As observed in the Figure
5.8 increasing the standard deviation parameter and decreasing the input purity value decreases the
similarity with the results obtained with the initial purity values, as expected, since SNVs are included
in the same group that should be segregated into di�erent clusters, if the algorithm did not induce
this border e�ect due to the initial purity value.

Figure 5.14: Comparison of the metrics for clustering analysis (in compararison to the results obtained with the input
initial purity value) when the input parameter of standard deviation is increased from 1.5 to 20 when the input purity
data assumes a 5% decrease in its inferred value.
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Patient 17

The �le for patient 17 contains information from 12658 SNVs. The following �gure 5.15 shows the VAF
data calculated from that input �le with the aim of depict the dispersion of data that the algorithm
intends to cluster.

Figure 5.15: The �gure depicts the VAF data dispersion, reckoned from the variant and reference readings for each
of the SNVs in the �le provided in the DeCifer demo of the patient numbered as 17, which is used as input data of the
algorithm. The �le contains 12658 SNV readings for each sample. The VAF values of the SNVs contained in sample F
are represented on the y axis while the VAF values of the SNVs contained in sample D are represented on the x axis.

Figure 5.16 represents the results of the DeCiFer algorithm for patient number 17 resulting from
running the algorithm with the input data with the initial purity, provided in the demo �le, and
subsequent simulations in which the algorithm is executed with �les with di�erent percentages of the
initial purity values, indicated in each row of the graph. The �rst row of graphs attempts to reproduce
Figure 5 from the study by Satas, G., et al., 2021, in which data from patient 17 on chromosome 6q are
selected and grouped into the main cluster, considering that the article uses the beta-binomial model
instead of the default binomial model used in this analysis.

As shown in the graph, and unlike what was observed with patient 12, the VAF graph does not
change until the input purity values decrease signi�cantly up to 20%, as do the inferred CCF and DCF
values. In this case, from this value of -20%, no similarity is observed between the inferred CCF and
DCF values.

However, when all the patient's SNVs are analyzed, areas in which SNVs are not selected are
observed with an input purity value of -1%, and as observed with patient 12 data, as the input value
of purity decreases, these di�erences increase, and the SNVs with higher VAF also disappear (Figure
5.17).
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Figure 5.16: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are
used as input data. For illustrative and comparative purposes, an attempt has been made to reproduce �gure 5 from
the study by Satas, G., et al., 2021, in which data from patient 17 on chromosome 5q are selected in the main group
(as noted in the main text the article uses the beta-binomial model instead of the default binomial model used in this
analysis). Similar to the original �gure, the �rst row of the graphs shows the results obtained using the purity values
provided by the demo (named "initials"). The �rst graph represents the VAF values of the SNVs selected for clustering,
the next show the CCF calculated under the assumption of constant multiplicity and the last one shows the results of
the DCF estimator, implemented by the DeCiFer algorithm. The following rows, with decreasing percentages of the
purity values with respect to the initial one, show the SNVs that remain compared to those selected when the input data
is the initial purity, for the same estimators. Additionally, the axes indicate the purity values for each sample, as well as
the best objective and elbow values returned by the algorithm, and the number of SNVs selected for the clusters with
the default standard deviation of 1.5. Data colored in orange and blue belong to the same cluster and only di�ers by
their VAF value. Data colored blue indicates additional values included in the main group when modifying input purity
values that were not selected when running the algorithm with the initial purity value.
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Figure 5.17: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are
used as input data for all the SNVs analyzed of the patient 17. The �rst row of the graphs shows the results obtained
using the purity values provided by the demo (named "initials"). The �rst graph represents the VAF values of the SNVs
selected for clustering, the next show the CCF calculated under the assumption of constant multiplicity and the last one
show the results of the DCF estimator, implemented by the DeCiFer algorithm. The following rows, with decreasing
percentages of the purity values with respect to the initial one, show the SNVs that remain compared to those selected
when the input data is the initial purity, for the same estimators. Additionally, the axes indicate the purity values for
each sample, as well as the best objective and elbow values returned by the algorithm, and the number of SNVs selected
for the clusters with the default standard deviation of 1.5. Data colored blue indicates additional values included in
the main group when modifying input purity values that were not selected when running the algorithm with the initial
purity value.
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And, similar to patient 12, the border e�ect observed when the input purity value decrease is not
seen when the input purity value increases (Figure 5.18).

Figure 5.18: The graphs show the results of simulations of the DeCiFer algorithm when di�erent purity values are
used as input data for all the SNVs analyzed of the patient 17. The �rst row of the graphs shows the results obtained
using the purity values provided by the demo (named "initials"). The �rst graph represents the VAF values of the SNVs
selected for clustering, the next show the CCF calculated under the assumption of constant multiplicity and the last
one show the results of the DCF estimator, implemented by the DeCiFer algorithm. The following rows, with increasing
percentages of the purity values with respect to the initial one, show the SNVs that remain compared to those selected
when the input data is the initial purity, for the same estimators. Additionally, the axes indicate the purity values for
each sample, as well as the best objective and elbow values returned by the algorithm, and the number of SNVs selected
for the clusters with the default standard deviation of 1.5. Data colored blue indicates additional values included in
the main group when modifying input purity values that were not selected when running the algorithm with the initial
purity value.
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The following table 5.19 shows the best objective value corresponds to the initial purity value, the
increase or decrease of this value worsens the optimization, although it is more noticeable when the
input purity value decreases.

Figure 5.19: Table summarizing the values of best objective and elbow or silhouette score returned by the DeCiFer
algorithm when analyzing the data of the patient 17 for each input purity value

A comparison between the limits of each cluster, which indicates the location of the centroid, for
each sample is shown in the following graphs. Note that the y axis is adjusted to the lower and upper
limit of the cluster, therefore only the tendency can be compared.

For all clusters in both samples there is a clear tendency to lower the cluster limits as the input
purity value increases, which agrees with theory, for a given VAF value, if the inferred purity increases,
the reckoned CCF and DCF decrease (Figure 5.20).
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Figure 5.20: Comparison of the limits of each cluster as the percentage of the input purity values varies
for each sample of the patient 17. The upper limit is indicated with a red line and the lower limit with
a black line. Note the y axis values varies between the clusters.
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The following table 5.21 shows the clustering analysis comparison for the results of variations in the
input purity values compared to the initial input purity value. All metrics show similarity between the
clustering performed with the initial purity value and the di�erent variations of this value, although
it gets slightly worse as the input value of purity decreases.

Figure 5.21: Table summarizing di�erent metrics for clustering analysis
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Chapter 6

Conclusions

Since the information gathered from the sequencing reads is limited and su�er from non-identi�ability
problems, the methods used for genotype clustering are maximizing algorithms and need to use con-
straints to limits the possible solution that can explain the observed data.

One such constraint is the plausibility between VAF values and tumor purity estimates. Given
that high values of VAF are no plausible with low tumor purity estimations, the DeCiFer algorithm
establish a limit for the selection of feasible VAF values to performed the clustering, which is observed
as a border e�ect when the input purity value decreases under a certain threshold. The DeCiFer
algorithm achives this aim by initializing the coordinate ascent algorithm �xing the cell fraction values
to the sample purity to perform clustering and infer the DCF values. This also allows for �ltering out
possible artefacts that could happen during the sequencing or the variant calling process.

The di�erence between the robustness of the results observed for the selected region analyzed for
each patient may actually be explained by an underestimation of the purity of sample 12 (the purity
value provided in the demonstration), very close to the lower threshold for plausible values of VAF,
as the algorithm returns a better optimization value with higher input purity values. Likewise, the
robustness of the results observed in the region analyzed for patient 17 to greater decreases in the input
purity value can be explained for that same reason, reinforced by the fact that the algorithm also uses
information from the other samples to perform clustering, which is highlighted by the authors as an
improvement of this algorithm compared to others. Thus, in the case of patient 17, the clustering
is performed using information from 5 samples, with the value of the sample with the highest purity
being ρ = 0.91, while the clustering performed for patient 12 uses information from 3 samples being
the value of the sample with the highest purity of ρ = 0.83, these di�erences appear to allow for higher
plausible VAF values for clustering of SNVs belonging to patient 17.

Furthermore, the variation in the selection of SNVs for close VAF values re�ects the interaction
between the constraints imposed by the DeCiFer algorithm, as SNVs with similar VAF values do not
have to belong to the same phylogenetic branch.

Although the imposed constrains for clustering allows to avoid implausible results and the robust-
ness of the results of the DeCiFer algorithm increases with the number of samples, in a similar way
to the probabilistic model implemented for the uncertainty due to sequencing errors and coverage for
VAF estimates, the uncertainty in the estimation of tumor purity should also be modeled to avoid
drastic interpretation of the data due to small errors in its inference.
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