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Abstract

Resumen

Los modelos de super�cie de tendencia tratan de relacionar las observaciones de un proceso espacial
que varía de forma continua (proceso geoestadístico) con las coordenadas geográ�cas en las que dichas
observaciones son tomadas, usando modelos de regresión. La diferencia fundamental entre estos modelos
y los clásicos de regresión lineal, es que los errores de regresión presentan una estructura de dependencia,
que suele ser desconocida, pero debe ser incluida en el modelo.

La estimación de los modelos de super�cie de tendencia solo fue abordada en el caso de procesos
estadísticos �sencillos�, bajo la suposición de normalidad. Sin embargo, incluso bajo esa premisa distri-
bucional, las muestras observadas o los propios procesos pueden presentar ciertas complejidades, como
la presencia de datos atípicos, que pueden distorsionar los resultados obtenidos por procedimientos
inferenciales.

En este trabajo, se revisan las técnicas exploratorias existentes en la literaura para la detección de
datos atípicos y posteriormente, se propone un procedimiento de estimación de modelos de super�cie
de tendencia que mitigue el efecto de estas observaciones anómalas, introduciendo una variable arti�-
cial (pseudo-datos, una versión suavizada de la respuesta original). Se realiza un estudio de simulación
y una ilustración con datos reales.

Abstract

Trend surface models try to relate the observations of a spatial process which varies continuously
(geostatistic process) with the geographic locations in which those observations are taken, using re-
gression models. The fundamental di�erence of these models with respect to classical linear regression
is that the regression errors presents a dependence structure, which is usually unknown, but which
must be included in the model.

Trend surface estimation has only been discussed in the case of �simple� statistical processes, under
the assumption of normality. However, even under this distributional premise, the observed samples
or own process itself may present certain complexities, as the presence of outliers, which may distort
the results obtained by inferential procedures.

In this work, a review of exploratory tools for detecting spatial outliers existing in the literature
is initially performed. A procedure for estimating trend surface models which mitigates the e�ect of
these anomalous observations is proposed, introducing an arti�cial variable (pseudo-data, a smoothed
version of the response). Some simulations and an illustration with real data are also presented.
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Introduction

This work is framed in the context of spatial stochastic processes, which consists of collections
of random variables indexed on a certain domain of Rd, with a well-de�ned joint distribution. In this
setting, the nature of the variable index (which can vary continuously, discretely or randomly), provides
a common classi�cation of spatial processes (see Cressie (1993)), being geostastistic a collection of tools
and methods developed under the premise of continuous variation of the index. This type of processes
(spatial processes indexed continuously, or geostatistics processes) are the data generating mechanism
in many applied sciences such as geology, hydrology or environmental sciences.

In all these �elds, the observed data tend to exhibit an important feature: close observations tend
to be more similar than observations which are far apart. Therefore, such observations cannot be
treated as independent and the dependence structure should be taken into account in any descriptive
or inferential procedure. In particular, from the perspective of regression models (trend surfaces), the
dependence structure should be considered and properly introduced into the model.

Trend surface models (see Diggle and Ribeiro (2007) for a exhaustive description), try to relate
the observations of a spatial process which varies continuously (geostatistic process) with the geograp-
hic locations in which those observations are taken, using regression models (usually linear). In these
models, two sources of variability can be distinguished (see Cressie (1993)): a regression function or
trend which would gather large-scale variability and the error term, which would represent small-scale
variability. One of the fundamental di�erences of these models with the classical linear regression is
that the errors present a dependence structure, which is usually assumed to be intrinsically stationary
or second-order (when working with Gaussian processes, both stationarity conditions are equivalent).
That dependence structure is usually unknown but should be included in the model, through the co-
variogram (if the process is second-order stationary) or the variogram (if the process is intrinsically
stationary). See Cressie (1993), Cressie and Hawkins (1980) and Journel and Huijbregts (1978), among
others. Estimation of the variogram is preferred to estimation of the covariogram, because it avoids a
previous estimation of the trend. In addition, it should be noted that the inclusion of dependence struc-
tures is not only relevant for estimating trend surfaces, but also for prediction via spatial interpolators
such as kriging.

The problem of trend surface estimation can be solved through least squares tools (where pilot
estimations of the variogram are used) or maximum likelihood (the estimation of the parameters of
the trend and of the dependence are approached jointly, under the assumption of normality), as it is
described in Diggle and Ribeiro (2007). Even so, the trend surface estimation has only been discussed in
the literature in the case of �simple� statistical processes, under the assumption of normality. However,
even under this distributional premise, observed samples may present certain complexities. In this work
we will approach the trend surface estimation when the observations of the process have characteristics
that make their treatment more complex, speci�cally the presence of outliers.

The study of spatial data outliers was approached by exploratory tools, as Moran Scatterplot (see
Anselin (1996)) and through observation of the variogram cloud (see Cressie (1993)). The aim of these
tools is to identify the possible outliers to remove them before applying any statistical procedure. Ho-
wever, the performance of these tools is far from satisfactory in practice, and requires the intervention
of the practitioner. The e�ect of the presence of outliers or how to handle them in trend surface estima-
tion has not been considered in the statistical literature. After a thorough analysis of the descriptive
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xii INTRODUCTION

tools, we will try to analyze the e�ect of the presence of outliers in surface trend models and propose
an appropriate estimation procedure.

This work is organized as follow. In Chapter 1, a brief description of the univariate geostatistics is
realized: di�erent distributional properties of the spatial stochastic processes are revised as well as the
estimation of the dependence structure (variogram and covariogram, as required).

Chapter 2 presents the concept of spatial outlier and di�erent coe�cients to detect global or local
patterns of spatial association, as the Moran I and the Geary's c, and their local counterparts, among
others. The review of exploratory tools for detecting spatial outliers existing in the literature, as Moran
Scatterplot and variogram cloud, is also performed. A simulation study and an illustration with real
data of these techniques are carried out.

Given that existing exploratory tools do not allow a correct identi�cation of spatial outliers, in
Chapter 3 we propose a new procedure for estimating trend surface models which mitigates the e�ect
of these anomalous observations. The idea would be to combine the trend surface models estimation
using iterative least squares (taking into account the dependence structure) with the use of pseudo-
data coming from a previous smoothing of the observed sample (see Akritas (1996) or Cristobal et al.
(1987)). Some simulations are performed to ckeck the correct performance of the proposed procedure.
The method is also illustrated with real data.



Chapter 1

A brief background on geostatistics

In this chapter, the main concepts and results about geostatistics will be introduced, constituting
the basis of this document. Di�erent types of stationarity conditions, which are usually in practice
assumed, are revised as well as the estimation of the dependence structure: variogram and covariogram,
as required.

As it was mentioned in the Introduction, spatially dependent data and speci�cally, geostatistical
data appear in a variety of applied �elds such as geology, hydrology or environmental sciences. Its
applications have expanded original mining applications to include modeling soil properties, ground
water studies, rainfall precipitation, public health, among others. The generating mechanism of such
data is given by a spatial stochastic process:

{Z(s)|s ∈ D}, (1.1)

consisting of collections of random variables indexed in a particular domain D ⊂ Rd (observation
region) with a well de�ned joint distribution. The nature of the index provides a classi�cation of
spatial processes: geostatistical, lattice data and point patterns (see Cressie (1993)). Geostatistics
names a collection of tools and methods developed under the premise of continuous variation of the
spatial index.

For each location s, Z(s) is a unidimensional or multidimensional random variable. Consider n
locations {s1, . . . , sn} on the region D. The set of random variables corresponding with those locations
will be represented by {Z(s1), . . . , Z(sn)} and {z(s1), . . . , z(sn)} will denote a realization of this set.

To emphasize the randomness, (1.1) is sometimes written as {Z(s, ω)|s ∈ D,ω ∈ Ω}, where (Ω,F ,P)
is a probability space (Ω is the sample space which is not empty, the σ−algebra F is a family of subsets
of Ω, containing Ω and the empty set, which is closed under the formation of complementary and joints
and countable intersections. The probability P is an application that assigns to each element of F a
number in [0, 1] such that P(∅) = 0 and P(Ω) = 1, ful�lling that, if {Ai, i = 1, . . . , n} ⊂ F , with
Ai ∩ Aj = ∅, i 6= j, then P(∪∞i=1Ai) =

∑∞
i=1 P(Ai)). Consequently, the realization {z(s)|s ∈ D} would

correspond to a particular value of ω. Matheron (1962) calls the quantity z(·) a regionalized variable
in order to stand out the continuous spatial nature of the index set D.

Usually, a random process has a deterministic and a random (erratic) part, that is to say, Z(s) =
m(s) + ε(s) where m(·) usually denotes the deterministic (not random) part and represents large-
scale changes, while ε(·) denotes the random component and shows the local behavior or small-scale
evolution. The error process ε(·) is assumed to be zero-mean, so that the whole trend is captured by
m(·). Therefore, m(·) would give the �rst order structure (mean) and ε(·) explains the second-order
part (as the mean is zero, what contributes is the part of covariance). The large-scale spatial structure
of the process (global, over the entire region) is represented by the mean function while the small-scale
structure (local, highly localized region) is explained by the covariogram or the variogram, as will be
shown below.

1



2 CHAPTER 1. A BRIEF BACKGROUND ON GEOSTATISTICS

1.1. Distributional properties

The stochastic behaviour of (1.1) can be explained through the �nite dimensional distributions

Fs1,...,sn(z1, . . . , zn) = P(Z(s1) ≤ z1, . . . , Z(sn) ≤ zn)), n ≥ 1, si ∈ D, i = 1, . . . , n.

which must satisfy Kolmogorov's conditions of symmetry (F remains invariant when zj and sj are sub-
jected to the same permutation) and consistency (Fs1,...,sk+l

(z1, . . . , zk,∞, . . . ,∞) = Fs1,...,sk(z1, . . . , zk)).
In any case, we will focus our attention in Gaussian spatial processes, that is to say, those processes

whose �nite-dimensional distribution is normal or Gaussian. These processes are important for two
reasons: �rstly, under the assumption of normality, prediction, estimation and distribution theory
are easier; moreover, many small order e�ects (possibly non-Gaussian) are asymptotically Gaussian
(central limit theorem), as it can be seen in Lindgren (1976).

When considering Gaussian processes, and bearing in mind the decomposition of the process in
large and small variability sources, then there is no need to control the whole distribution and just the
�rst two moments are required. In fact, in most practical applications, available information does not
allow to infer higher order moments. The �rst moment is the expectation, which is de�ned as

E[Z(s)] = m(s), s ∈ D.

If this exists for all s ∈ D, it is called the trend (sometimes drift) of the random process. The three
second order moments considered in geostatistics are the variance or second order moment of Z(s)
with respect to m(s),

σ2(s) = Var[Z(s)] = E{[Z(s)−m(s)]2},

the covariance of two random variables Z(s) and Z(s′) (which is just function of s and s′),

C(s, s′) = Cov[Z(s), Z(s′)] = E{[Z(s)−m(s)][Z(s′)−m(s′)]},

and the variogram which is de�ned as the variance of the di�erence process:

2γ(s, s′) = Var[Z(s)− Z(s′)].

To perform an exploratory data analysis, the traditional numerical summaries (mean, median,
mode, standard deviation, range, interquartile range) reduces the data to a few numbers. This approach
may not be suitable for a geostatistical analysis, provided that location information is ignored. Methods
to explore spatial data include the scatterplot of the index variable versus the variable, means and
medians of rows and columns, variogram cloud (see Section 2.2.2.) among others.

In general, it is not possible to make statistical inference from a single realization {z(s1), . . . , z(sn)}.
To enable statistical inference in this approach, it is essential to introduce additional assumptions about
the process {Z(s)|s ∈ D}, assuming stationarity of some kind: strict, second-order (or weak) and
instrinsic stationarity, that will be de�ned below. The type of stationarity which is assumed indicates
the type of statistical inference that can be made with the probabilistic model: if the random process
{Z(s)|s ∈ D} is second-order stationary or intrinsically stationary, the dependence structure of the
stochastic process will be speci�ed by the covariogram in the �rst case and by the variogram in the
second case.

De�nition 1.1. A spatial process {Z(s)|s ∈ D} is strictly stationary if its �nite-dimensional dis-
tribution is invariant to translations, that is, Fs1,...,sn(z1, . . . , zn) = Fs1+t,...,sn+t(z1, . . . , zn), t ∈ Rd,
(si + t) ∈ D ∀i = 1, . . . , n, and n ∈ N.

This condition is not usually checked in real data examples. For this reason, other less restrictive
hypotheses are assumed. Since geostatistics (in Gaussian processes) is based on the �rst two moments,
it is su�cient to assume that these two moments exist and limit the hypothesis of stationarity for the
�rst two moments. The following de�nitions, among many other results related to spatial data, can be
found in Cressie (1993), a classical reference in this topic.
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De�nition 1.2. A spatial process is second-order stationary if E[Z(s)] = m, ∀s ∈ D and C(s, s′) =
C(s− s

′), ∀s, s′ ∈ D.

That is, second-order structure is just a function of the di�erence vector between the locations
where the observations are taken. The function C(·) is called covariogram or covariance function.

Such processes satisfy that σ2(s) = Var[Z(s)] = C(0) = σ2, ∀s ∈ D, that is, the variance of
a second-order stationary process is �nite and independent of the spatial location s. Note that the
previous de�nition implies that the mean of the process is constant. So, in the presence of a trend
(that is, m(·) is not constant), this trend is usually estimated �rst and stationarity is checked over the
residual process.

Note that if the last condition in De�nition 1.2 is replaced by Cov[Z(s), Z(s′)] = C(‖s−s′‖), where
‖·‖ represents the euclidean norm, then the second-order stationary process is also isotropic. That is,
second-order stationarity means that dependence between two observations is only a function of the
di�erence vector between the locations where the observations are taken, while isotropy goes further,
considering that dependence is only a function of distance, ignoring direction. Otherwise, the process
will be anisotropic.

Second order stationarity does not imply strict stationarity. Conversely, a stationary process may
not be second-order stationary, as its �rst two moments may not be de�ned. To illustrate this feature,
consider a process Z(s) de�ned in the following way. At each location s, an observation z(s) is drawn
at random from the Cauchy distribution. For this particular case, none of the moments (mean and
variance) exist because the corresponding integrals do not converge absolutely, but the distribution is
exactly the same at all points and is translation invariant. Hence, the process is strictly stationary, but
does not satisfy the de�nition of second-order stationarity given above.

For a Gaussian random process, second-order stationarity implies strict stationarity, because a
Gaussian process is characterized by its mean and its covariance function. Of course, strict stationarity
implies second-order stationarity whenever F yields a �nite second moment.

It is possible that the assumption of second-order stationarity is too strong. As given by Mat-
heron (1971), the form of stationarity implied by the intrinsic hypothesis is essentially second-order
stationarity, not for the process Z(s), but for the di�erence, Z(s+ u)− Z(s):

E(Z(s+ u)− Z(s)) = 0, ∀u ∈ Rd, ∀s, s+ u ∈ D (1.2)

Var(Z(s+ u)− Z(s)) = 2γ(u), ∀u ∈ Rd, ∀s, s+ u ∈ D. (1.3)

De�nition 1.3. Suppose {Z(s)|s ∈ D} satis�es (1.2) and (1.3). Then Z(·) is said to be intrinsically
stationary (or, equivalently, to satisfy the intrinsic hypothesis).

The function 2γ(·) has been called variogram (and γ(·) has been called semivariogram) by Matheron
(1962), although earlier appearances can be found in the literature. It has beeen called a structure
function by Yaglom (1957) in probability theory and a mean squared di�erence by Jowett (1952) in
time series.

Later, it will be seen that average squared di�erences are used to estimate 2γ(·), however, modeling
γ(·) is all that is needed. That is why γ(·) is sometimes called �variogram� by abuse of notation, as in
this document.

Note that, considering that dependence is only a function of distance then the intrinsic process
is isotropic. Otherwise, the process is anisotropic. This hypothesis does not require that Var[Z(s)] is
�nite and independent of the spatial location s, but usually it is.

Second order stationarity implies intrinsic stationarity while the reciprocal is true only when the
variance is constant and �nite. The best known example of a process that is intrinsic, but not second-
order stationary, is the Wiener-Levy process or, as it is often called, Brownian motion (see Mörters
and Peres (2010)).



4 CHAPTER 1. A BRIEF BACKGROUND ON GEOSTATISTICS

1.2. Variogram and covariogram

Suppose that the random process {Z(s)|s ∈ D} is second-order stationary or intrinsically stationary,
the dependence structure of the stochastic process will be speci�ed by the covariogram in the �rst case
and by the variogram in the second case.

It can be seen that γ(·) is a symmetric function since γ(u) = γ(−u), ∀u ∈ D. Furthermore, γ(u) ≥ 0
and lim‖u‖→∞ γ(u)/‖u‖2 = 0, ∀u ∈ D, that is to say, the variogram should increase more slowly than
‖u‖2. Moreover, a variogram is valid if it satis�es the conditionally negative de�nite property:

n∑
i=1

n∑
j=1

aiajγ(si − sj) ≤ 0, ∀s1, . . . , sn ∈ D and ∀a1, . . . , an ∈ R such that

n∑
i=1

ai = 0.

It is always true that γ(0) = 0, but if γ(u)→ c0 6= 0, as u→ 0, then c0 has been called the nugget
e�ect by Matheron (1962). This is because it is believed that microscale variation (small nuggets) is
causing a discontinuity at the origin (this cannot happen for L2−continuous processes, since these
ones satisfy that E(Z(s + u) − Z(s))2 → 0, as ‖u‖ → 0, ∀s, s + u ∈ D). Hence, if continuity of the
phenomenon is expected at the microscale, the only possible reason for c0 > 0 is measurement error
(let us just call cME at the error variance). Given that only observations {Z(si), i = 1, . . . , n} are
available and nothing can be said about the variogram at lag distances smaller than min{‖si − sj‖},
it is not known whether the microscale variation is continuous or not, but Matheron typically makes
the assumption that it is not. To model the process at very small scales, Matheron adds a white-noise
process (zero mean, constant variance and zero covariance) to a process with continuous sample paths
(call the variance of this white-noise process cMS , which represents the nugget e�ect of the microscale
process). Thus, c0 = cMS + cME . Therefore, c0 can be included as a parameter in the variogram
model, but it is hard to determine its value from data whose separations are too large to give accurate
microscale information. Typically, it is determined by extrapolating variogram estimates from lags
closes to zero.
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Figure 1.1: A generic variogram (left) and its corresponding covariogram (right) showing the sill and
range parameters, with the nugget e�ect.

Now if γ(·) is bounded and there is lim‖u‖→∞ γ(u), this limit is called the sill and does not always
exist. If the process is second-order stationary then the sill coincides with the variance σ2. When the
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semivariogram has nugget e�ect, the di�erence σ2 − c0 is called partial sill. If σ2 is the sill, the range
(if it exists) is a real value r such that if ‖u‖ ≥ r, then γ(u) = σ2 (it is equivalent to say that the
variables Z(s) and Z(s + u) are uncorrelated). When the process is second-order stationary then the
asymptotic range can be de�ned as a real value r′ such that if ‖u‖ ≥ r′, then γ(u) ≥ c0 + 0.95(σ2− c0)
(see Chilès and Del�ner (1999)). Figure 1.1 (left) shows a generic variogram identifying the role of
the parameters. There are several parametric models of the variogram which will be introduced later.
These are valid models which satisfy the assumptions mentioned.

The covariogram or covariance function characterizes the dependence structure for second-order
stationary stochastic process {Z(s)|s ∈ D}, and has the following properties. C(·) is a symmetric
function, and it holds that C(0) = Var(Z(s)) ≥ 0, ∀s ∈ D. In addition, by Cauchy-Schwarz inequality,
it can be seen that |C(u)| ≤ C(0). It must be positive de�nite,

n∑
i=1

n∑
j=1

aiajC(si − sj) ≥ 0, ∀s1, . . . , sn ∈ D and ∀a1, . . . , an ∈ R.

In this case, the sill is the covariance at zero distance, while the range is the distance at which
covariance reaches zero (could be in�nity). The partial sill is the limit of the covariance at ‖u‖ → 0,
from the right. The nugget is the sill minus the partial sill. The Figure 1.1 (right) shows a generic
covariogram identifying the role of the parameters.

The study of the variogram is more common than the covariance, since intrinsic processes are more
general than second-order stationary processes. Furthermore, the estimation of the variogram does not
requires knowledge of the process mean or its estimate. If the process is second-order stationary, an
estimator of the covariogram can be obtained from an estimator of the variogram just considering that

γ(u) =
1

2
Var[Z(s)− Z(s+ u)]

=
1

2
Var[Z(s)] +

1

2
Var[Z(s+ u)]− Cov[Z(s), Z(s+ u)]

= σ2 − C(u). (1.4)

In addition to the variogram and covariogram, a related function is the correlogram. If C(0) > 0,
the correlogram is de�ned as

ρ(u) =
C(u)

C(0)
.

It can be seen that ρ(·) is a symmetric function since ρ(u) = ρ(−u), ∀u ∈ D, and that ρ(0) = 1.
Furthermore, as a result, from (1.4) it can be seen that

ρ(u) = 1− γ(u)

C(0)
.

1.3. Estimation of the variogram

In order to provide an estimator of the variogram, a simple option is to consider its empirical
counterpart: the empirical variogram. Consider an intrinsic stationary process. Then E(Z(s + u) −
Z(s)) = 0 and Var(Z(s + u)− Z(s)) = 2γ(u). So the problem of estimating the variogram is reduced
to estimate E[(Z(s+ u)− Z(s))2] from a random sample {Z(si), i = 1, . . . , n}.

The classical empirical estimator of the variogram proposed by Matheron (1962) is based on the
method of moments and is given by

2γ̂(u) =
1

|N(u)|
∑

(i,j)∈N(u)

(Z(si)− Z(sj))
2, (1.5)
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where |N(u)| is the number of pairs in N(u) ≡ {(i, j) : si − sj = u}. If there are few data pairs whose
di�erence is u, N(u) may be substituted by a region of tolerance A(u) ≡ {(i, j) : si − sj ≈ u}, where
di�erences (si − sj) are close to u at according to a speci�ed tolerance. The isotropic version of (1.5)
only depends on the distance between points and can be represented in two dimensions.

The empirical estimator is unbiased. However, it possesses very poor resistance properties, where
the word �resistant� refers to a statistic that is arithmetically stable under gross contamination of the
data values. It is badly a�ected by outliers due the (·)2 term in the addend of (1.5). The variogram
cloud (see Cressie (1993)) shows all pairwise distance vectors combined with the squared di�erences
of the observations Z(s1), . . . , Z(sn). Cressie (1993), claims that it is di�cult to distinguish atypical
observations from skewness using the variogram cloud. This is because for a Gaussian process Z(·),
(Z(s)−Z(s+u))2 is distributed as 2γ(u)χ2

1 since E(Z(s+u)−Z(s)) = 0 and Var(Z(s+u)−Z(s)) =
2γ(u). Thus, 2γ(u) is the �rst moment of a chi-squared random variable on one degree of freedom,
which is highly skewed.

If the data are normally distributed, the estimator obtained by the method of moments coincides
with that obtained by maximum likelihood. This would indicate that 2γ̂(·) provides a good approxima-
tion of the function 2γ(·). However, if the data do not show a close behavior to the normal distribution,
it may be advisable to use a robust estimator of the variogram.
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Figure 1.2: Empirical and robust estimators of the variogram. Sample size: 121. Regularly simula-
ted data from a Gaussian spatial process on unit square with exponential covariogram (1.13) with
parameters c0 = 0, ce = 1 and ae = 2.

Cressie and Hawkins (1980) present a more robust approach to the estimation of the variogram by
transforming the problem to location estimation for an approximately symmetric distribution (to avoid
skewness), in particular, the estimation of a center of symmetry. The class of power transformations
{Z(s+ u)−Z(s)}λ was chosen. A theoretical study showed that the fourth-root of χ2

1 has a skewness
of 0.08 and a kurtosis of 2.48, compared with 0 and 3 for the Gaussian distribution (see Bowman and
Crujeiras (2013) to compare the density function of the fourth-root transformation of a χ2

1 random
variable with the density function of a normal random variable with the same mean and standard
deviation). Estimators of location parameters, such as the mean and the median, can then be applied
to the |N(u)| transformed di�erences {|Z(si)− Z(sj)|1/2 : (i, j) ∈ N(u)}. Finally, these estimates are
raised to the fourth power, to bring them back to the correct scale, and adjusted for bias. This results
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in variogram estimators,

2γ̄(u) =
1

(0.457 + 0.494/|N(u)|)

 1

|N(u)|
∑

(i,j)∈N(u)

|Z(si)− Z(sj)|1/2


4

(1.6)

and

2γ̃(u) =
1

B(u)

[
med

{
|Z(si)− Z(sj)|1/2 : (si, sj) ∈ N(u)

}]4
, (1.7)

where med{·} denotes the median function and B(u) corrects for bias (asymptotically, B(u) = 0.457).
A simulation is performed to illustrate the bahavior of empirical and robust estimators of the

variogram. A sample of size 121 is simulated regularly from a Gaussian spatial process considering the
unit square as support and taking the exponential model given in (1.13) as covariance function with
c0 = 0, ce = 1 and ae = 2. Note that the range value, 2, is greater than any of the distances in the
unit square, leading a strong dependence (see Figure 1.2).

Anisotropy

Before �tting a variogram it should be determined if it can support the hypothesis of isotropy or,
if not, what kind of anisotropy exists.

To determine (in an exploratory way) if the isotropy hypothesis can be assumed, an alternative is
to build the empirical variograms in several directions and establish if they follow the same pattern.
For the latter, one can construct the variogram, under isotropy conditions, and it can be compared
with those obtained in di�erent directions. If variograms are di�erent then there will be anisotropy.
Empirical variograms (of the same simulated data used in the Figure 1.2) in the directions of 0◦, 45◦, 90◦

and 135◦ are in the Figure 1.3. It can be seen that empirical variograms are di�erent, especially when
the directions of 45◦ and 135◦ are considered, which indicates the presence of a possible anisotropy.

It is also useful to draw variogram lines, consisting in computing the values of the variogram for
di�erent distances in di�erent directions and join distances for which the same values of the variogram
would be achieved. If this representation gives rise to concentric circles, the condition of isotropy is
supported. If these lines represent concentric ellipses, then there will be geometric anisotropy. In the
two-dimensional case, to transform the previous ellipse in a circle in a circle, it would be enough to
make the following change of coordinates:x′

y′

 =

λ cos θ λ sin θ

− sin θ cos θ


x
y

 ,

where λ is the anisotropy ratio (ratio between the minimum and maximum range) and θ is the direction
of maximum range or angle anisotropy.

Some formal tests for isotropy have been proposed in the literature, based on asymptotic results
for the empirical variogram (1.5). Lu and Zimmerman (2005) use the spectral density, which requires
regularly spaced data. Guan et al. (2004) use sub-sampling to construct an estimate of the covariance
matrix and this requires selection of the size of the sub-samples as well as the number of lags. These
authors also recommend identifying particular directions of interest. Bowman and Crujeiras (2013)
proposed a test of isotropy too. Consider

γ̂?(u) =
1

|N(u)|
∑

(i,j)∈N(u)

|Z(si)− Z(sj)|1/2,

which is an estimate of γ?(u) = 0.977741{γ(u)}1/4 (see Bowman and Crujeiras (2013)). Variograms
which are una�ected by a change in angle θ will also lead to absence of e�ect on the fourth-root scale.
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The mean and covariance descriptions of γ̂?(·) provide a quantitative assessment of the evidence for
anisotropy. In this case, γ̂?(u, θ) can be estimated by constructing bin means db over a two-dimensional
grid of values of (u, θ). Evidence for anisotropy then rests on comparing an estimate based on (u, θ)
with an estimate based on u alone. Denoting the vector of bin means by d, �tted values based on
smoothing can be expressed as γ̂?1 = M1d and γ̂?0 = M0d , where M1 and M0 are smoothing matrices
which incorporate distance and angle, and only distance, respectively. Since angle lies on a cyclical
scale, this feature should be incorporated into the angle component of the smoothing matrix M1.
This is done with a two-dimensional p-spline basis. Under the assumption of isotropy, the di�erence
between the smooth estimators, (M1 −M0)u, has mean 0. Therefore, global evidence for anisotropy
can be quanti�ed through the test statistic

dTMT V̂0
−1
Md (1.8)

where M = M1 −M0 and V0 is the covariance matrix for the isotropic case. The use of smoothing
matrices means that statistic (1.8) has a χ2 distribution.
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Figure 1.3: Empirical variograms in the directions of 0◦, 45◦, 90◦ and 135◦. Sample size: 121. Regularly
simulated data from a Gaussian spatial process on unit square with exponential covariogram (1.13)
with parameters c0 = 0, ce = 1 and ae = 2.

The anisotropy may be of two kinds: geometric and zonal. The geometric anisotropy occurs when
the range varies with the direction, while the zonal occurs when there is an additional source of
variability in one direction, and therefore the sill depends on the direction. For geometric anisotropy,
the estimation of the variogram is reduced to �nd a matrix A such that γ(u) = γ0(‖Au‖), ∀u ∈ D,
where γ0(·) is isotropic. Note that, before studying the anisotropy it is necessary to consider that the
directional behaviour may result from the process is not stationary, or not even intrinsically stationary.

1.3.1. Isotropic variogram models

The methods described in the previous section are useful for estimating the values of the variogram
at certain distances or lags, however, some practical application may require all values of the variogram
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function or semivariogram. In addition, the variograms and covariograms must satisfy the properties
mentioned above. In particular, semivariogram must be conditionally negative de�nite.

The empirical variogram is a function that is not de�ned for all lags and it is not guaranteed that
all the properties required for a variogram to be valid are satis�ed. In practice, it is calculated and
adjusted to a semivariogram model.

Given that u is a vector and γ(·) is a scalar function, γ(·) may depend on the distance u = ‖u‖ as
well as on the orientation. A great simpli�cation is obtained by assuming that dependence structures
are functions only of the distance, that is to say, assume isotropy (u = ‖u‖). The three basic isotropic
models given in Journel and Huijbregts (1978) are the linear, spherical and exponential models. In all
these models the parameter c0 represents the nugget e�ect.

• The linear model is valid in Rd, d ≥ 1, and it is de�ned as

γ(u;θ) =


0, u = 0,

c0 + blu, u 6= 0,

(1.9)

where θ = (c0, bl)
′, with c0 ≥ 0 and bl ≥ 0. If the parameter bl = 0, then we are in the presence of

an indicative model of a phenomenon without spatial autocorrelation, and is called pure nugget
e�ect model. This model is linear and di�erentiable on its parameters (other models are nonlinear
in its parameters although di�erentiable on them). The linear variogram has no sill, and so the
variance of the process is in�nite. Figure 1.4 (full line) is a linear variogram with c0 = 0.5 and
bl = 3.
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Figure 1.4: Linear (full line), spherical (dashed line) and exponential (dotted line) semivariograms
models with θ = (c0, bl)

′ = (0.5, 3), θ = (c0, cs, as)
′ = (0.5, 3, 1) and θ = (c0, ce, ae)

′ = (0.5, 3, 1),
respectively.

• The spherical model is valid in R, R2 and R3 (but for higher dimensions it fails the non-positive
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de�niteness condition), and it is de�ned as

γ(u;θ) =


0, u = 0,

c0 + cs{(3/2)(u/as)− (1/2)(u/as)
3}, 0 < u ≤ as,

c0 + cs, u ≥ as,

(1.10)

where θ = (c0, cs, as)
′, with c0 ≥ 0, cs ≥ 0 (partial sill) and as ≥ 0 (range). It increases from 0

when u is small, levelling o� at the constant c0 + cs at u = as. The slope at the origin is equal
to 1.5(co + cs)/as. To see the e�ect of these parameters, it is useful to consider the spherical
variogram shown in Figure 1.4 (dashed line) with c0 = 0.5, cs = 3 and as = 1.

The spherical covariogram corresponding to expression (1.10) is immediately obtainable from
(1.4), and is given by:

C(u;θ) =


c0 + cs, u = 0,

cs{1− (3/2)(u/as)− (1/2)(u/as)
3}, 0 < u ≤ as,

0, u ≥ as.

(1.11)

While the spherical model is smooth in the sense of continuous di�erentiability, it makes the
implicit assumption that correlations are exactly zero at all su�ciently large distances. However,
in some cases it may be more appropriate to assume that while correlations may become small
at large distances, they never vanish completely. The simplest model with this property is the
exponential variogram.

• The exponential model is valid in Rd, d ≥ 1, and it is de�ned for all u ≥ 0 by

γ(u;θ) =


0, u = 0,

c0 + ce{1− exp(−u/ae)}, u 6= 0,

(1.12)

where θ = (c0, ce, ae)
′, with c0 ≥ 0, ce ≥ 0 (partial sill) and ae ≥ 0 (range). The exponential

model reaches the sill asymptotically,

lim
u→∞

c0 + ce{1− exp(−u/ae)} = co + ce.

Practical range is usually taken as the distance at which γ(u) = 0.95(c0 + ce). The slope at the
origin is equal to (co+cs)/as, which is less than the slope in a spherical variogram with the same
parameter range.

Here it is clear that the sill, ce, and nugget, co, play the same role as in the spherical model.
However, the range parameter, ae, is more di�cult to interpret. Figure 1.4 (dotted line) is a
exponential variogram with c0 = 0.5, ce = 3 and ae = 1.

The corresponding exponential covariogram is de�ned for all u ≥ 0 by

C(u;θ) =


c0 + ce, u = 0,

ce{exp(−u/ae)}, u 6= 0.

(1.13)

Other variogram models are the following: Gaussian, wave and power models.
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• The Gaussian model is valid in Rd, d ≥ 1, and it is de�ned by

γ(u;θ) =


0, u = 0,

c0 + cg{1− exp(−u2/a2g)}, u 6= 0,

(1.14)

where θ = (c0, cg, ag)
′, with c0 ≥ 0, cg ≥ 0 (partial sill) and ag ≥ 0 (range). The Gaussian

semivariogram approaches its sill asymptotically too. A practical range is used which is equal
to the distance at which the semivariogram is equal to 95 % of the sill. The left hand panel of
Figure 1.5 (full line) shows a Gaussian variogram with c0 = 0.5, cg = 3 and ag = 1. A modi�ed
function can be used with an extra parameter ω replacing the squared exponent in the Gaussian
model given in (1.14).

The corresponding Gaussian covariogram is de�ned for all u ≥ 0 by

C(u;θ) =


c0 + cg, u = 0,

cg{exp(−u2/a2g)}, u 6= 0.

(1.15)
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Figure 1.5: The left hand panel shows Gaussian (full line) and wave (dashed line) variograms models
with θ = (c0, cg, ag)

′ = (0.5, 3, 1) and θ = (c0, cw, aw)′ = (0.5, 3, 1), respectively. The right hand
panel shows power semivariograms models with parameters θ = (c0, bp, λ)′ = (0.5, 3, 0.5) (full line),
θ = (c0, bp, λ)′ = (0.5, 3, 1) (dashed line) and θ = (c0, bp, λ)′ = (0.5, 3, 1.5) (dotted line).

• A semivariogram model that exhibits negative correlations caused by periodicity of the process
is the wave (or hole-e�ect) model (valid in R, R2 and R3). Variations in the depth of the ocean
due to the action of the waves on the surface would be a practical example. The semivariogram
model is de�ned as

γ(u;θ) =


0, u = 0,

c0 + cw{1− aw sin(u/aw)/u}, u 6= 0,

(1.16)
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where θ = (c0, cw, aw)′, with c0 ≥ 0, cw ≥ 0 (partial sill) and aw ≥ 0 (range). To interpret
these parameters, it can be useful to consider the wave variogram shown in the left hand panel
of Figure 1.5 (dashed line) with c0 = 0.5, cw = 3 and aw = 1.

The corresponding wave covariogram is de�ned by

C(u;θ) =


c0 + cw, u = 0,

cw{aw sin(u/aw)/u}, u 6= 0.

(1.17)

• The power model is valid in Rd, d ≥ 1, and it is de�ned by

γ(u;θ) =


0, u = 0,

c0 + bpu
λ, u 6= 0,

(1.18)

where θ = (c0, bp, λ)′, with c0 ≥ 0, bp ≥ 0 and 0 ≤ λ < 2. The power variogram has no sill, so the
variance of the process is in�nite. The linear variogram is a special case of the power model. It
presents di�erent behaviors at the origin depending on the value of λ. The right hand of Figure
1.5 (full line) is a power variogram with c0 = 0.5, bp = 3 and λ = 0.5 while the dotted line of the
same panel is a power variogram with c0 = 1, bp = 3 and λ = 1.5. If λ = 1, then the model is
linear (see Figure 1.4 (full line) and the right hand panel of Figure 1.5 (dashed line)).

An example of a random process in R which has variogram 2γ(u) = |u|λ, 0 ≤ λ < 2, is the
fractional Brownian motion (see Mandelbrot and Van Ness (1968)). To prove it, it would be
su�cient taking into account that the fractional Brownian motion is de�ned by its stochastic
representation

BH(t) =
1

Γ(H + 1/2)

(∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dB(s) +

∫ t

0

(t− s)H−1/2dB(s)

)
,

with parameterH = λ/2, and its moments. This is a zero-mean Gaussian process withBH(0) = 0,
stationary increments and Cov(BH(t), BH(t′)) = (1/2){|t|2H + |t′|2H − |t − t′|2H}, 0 < H < 1
and 0 < t ≤ t′. Note that H = 1/2 corresponds to the standard Brownian motion.

1.3.2. Variogram model �t

It is not guaranteed that the di�erent variogram estimators, γ̂, γ̄ and γ̃ (empirical, robust and the
correction for bias, respectively), satisfy the conditionally negative de�nite property. As a consequence,
it is possible that some spatial predictions obtained from these estimators present negative variances.
To avoid this problem, the estimators γ̂, γ̄ and γ̃ are replaced by a parametric model, which satis�es
conditionally negative de�nite assumption.

The idea is to look for a valid variogram which represents (as accurately as possible) the spatial
dependence between the observed data. In general, if

{γ : γ(·) = γ(·;θ),θ ∈ Θ}

is the set of valid variograms, then an element of the set that best �ts the sample variogram must be
found. Two approaches are the most widely used: maximum likelihood and least squares. The maximum
likelihood requires assumptions about the distribution of {Z(si), i = 1, . . . , n} (usually Gaussian), while
criteria based on ordinary, generalized and weighted least squares do not require these assumptions
to estimate θ. Note that, maximum likelihood allows an approximation of the trend and of the error
simultaneously.

In general, as variograms estimated by likelihood methods are not based on empirical variograms,
there are di�erences between these and the estimators based on least squares.
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Maximum likelihood

Maximum likelihood method could be considered in order to obtain a valid parametric variogram
estimator. This estimation procedure relies on the Gaussian assumption, whereas the least squares
method only depends on the asymptotic second-order structure of the process.

Consider a Gaussian process, for simplicity denoted as Z ∼ N(Xβ,Σ(θ)), where Z refers to the
vector of observations (n-dimensional), X is a matrix of covariables (size n× q, with q < n), β is a q-
dimensional vector and Σ(θ) is the covariance matrix of the observations. Given that Z ∼ N(Xβ,Σ(θ))
then its density function will be

f(z) = (2π)−n/2det(Σ(θ))−1/2 exp

{
−1

2
(Z−Xβ)′Σ(θ)−1(Z−Xβ)

}
,

and the negative log-likelihood will be

L =
n

2
log(2π) +

1

2
log(det(Σ(θ))) +

1

2

{
(Z−Xβ)′Σ(θ)−1(Z−Xβ)

}
.

A maximum likelihood estimator (MLE) is a vector (β̂, θ̂) that maximizes L. Generally a MLE
must be found by numerical optimization routines, as Newton-Raphson. Thus starting values and
convergence criteria must be selected. Besides, the MLE may present a serious bias, although this
problem can be mitigated using a restricted maximum likelihood (REML) approach (an example of
MLE bias is obtained when ε = σ2I).

REML is an approach that produces unbiased estimators for these special cases, and produces less
biased estimates than ML in general. The REML method consist in �nding n − rank(X) = n − r
linearly independent vectors a1, . . . ,an−r such that a′iX = 0 for all i = 1, . . . , n − r. It must �nd the
maximum likelihood estimate of θ ∈ Θ using w1 = a1Z, . . . , wn−r = an−rZ as data.

In general, REML estimation provides better results than ML estimation, as it gives rise to estima-
tors with smaller deviations (for samples with few data). Moreover, REML estimation is widely used
in geostatistics.

Least squares

Suppose that the variogram γ(·) is estimated in a �nite set of distances, and that the goal is to �t
a parametric model γ(·;θ) (the vector θ contains the nugget e�ect, the sill and the range). Suppose
that the method of moments estimator γ̂ has been used and let be γ̂ the vector which contains the
estimated values. γ(θ) will denote the vector of values obtained by the parametric model in the same
values of u.

• Ordinary least squares (OLS), in which θ is chosen as the vector that minimizes the expression
{γ̂ − γ(θ)}′{γ̂ − γ(θ)} (where ′ denote the transpose of a matrix).

• Weighted least squares (WLS), in which θ is chosen as the vector that minimizes the expression
{γ̂ − γ(θ)}′W−1{γ̂ − γ(θ)}. W is a diagonal matrix which elements of the diagonal are the
variances of γ̂.

• Generalized least squares (GLS), in which θ is chosen as the vector that minimizes the expression
{γ̂ − γ(θ)}′V (θ)−1{γ̂ − γ(θ)}. V (θ) denotes the covariance matrix of γ̂, which depend on θ.

Determining V (θ) for minimizing the expression {γ̂−γ(θ)}′V (θ)−1{γ̂−γ(θ)} is not always easy.
Cressie (1993) proposed as �nding V (θ) in the case of the classical estimator.
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Chapter 2

Spatial outliers

The identi�cation of outliers is important since the behavior of these data is unusual with respect
to the whole dataset and their inclusion in statistical procedures (or their consideration without furt-
her re�nements) may compromise the derived conclusions. They are di�erent de�nitions of outliers.
Hawkins (1980) de�ned an outlier as an observation which deviates so much from other observations
as to arouse suspicions that it was generated by a di�erent mechanism. An alternative de�nition of
outlier was given by Beckman and Cook (1983), who de�ned an outlier as a contaminant or a discor-
dant observation, where a discordant observation refers to any observation that appears surprising or
discrepant to the investigator, and a contaminant is any observation that is not a realization from the
target distribution. Barnett and Lewis (1994) established an outlier as an observation (or subset of
observations) which appears to be inconsistent with the remainder of that set of data. It is a matter
of subjective judgement on the part of the observer whether or not he picks out some observation (or
set of observations) for scrutiny.

Since the goal of this chapter is the review of techniques for the detection of spatial outliers, speci�c
features of spatial data need to be de�ned �rst. Spatial data is a collection of spatially referenced
objects which have two categories of dimensions of special interest: spatial and non-spatial. Spatial
attributes of a spatially referenced object include location (geographic coordinates, for example), while
non-spatial attributes include the observation taken. Furthermore, according to Shekhar et al. (2003),
a spatial neighborhood of a spatially referenced object is a subset of the spatial data based on a
spatial dimension, generally, location. These neighborhoods may be de�ned from spatial attributes
using spatial relationships, such as distances. More precisely, if si ∈ D is a location (spatial attibute)
and Z(si) is the observation taken in this location (non-spatial attribute), then based on a distance u,
its neighborhood may be de�ned as {Z(sj) : j ∈ D, ‖si − sj‖ ≤ u}.

Consequently, a spatial outlier is de�ned as a spatially referenced object whose non-spatial attri-
bute values are signi�cantly di�erent from those of other spatially referenced objects in its spatial
neighborhood. More precisely, a spatial outlier is a local instability (in values of non-spatial attributes)
or a spatially referenced object whose non-spatial attributes are extreme relative to its neighbours,
although they may not be signi�cantly di�erent from all data. Knowledge of the local behaviour as
well as detecting spatial outliers is useful in many applications of geographic information systems
and spatial databases, including transportation, ecology, public safety, public health, climatology, and
location-based services.

The detection of local patterns of spatial association is an important concern in spatial process. In
this chapter, local indicators of spatial association (LISA) will be introduced, and how they allow for
the decomposition of global indicators, such as Moran's I, into the contribution of each observation.
These LISA statistics serve two purposes. On the one hand, they may be interpreted as indicators
of clusters, or hot spots. On the other hand, they may be used to assess the in�uence of individual
locations on the magnitude of the global statistic and to identify outliers. An initial evaluation of the
distribution of LISA statistics as well as the review of other exploratory techniques to detect outliers, as

15
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the Moran scatterplot (see Anselin (1995)) or the variogram cloud (see Cressie (1993)), are carried out.
Some simulations will be done to check these tools. An application to real data will also be performed.

Note that, in this chapter we denote by {z1, . . . , zn} the set of observations to simplify the notation.

2.1. Indicators of spatial association

To verify the existence or absence of spatial autocorrelation, di�erent coe�cients can be used
(the Moran's I is the best known and used in practice). All these coe�cients try to test the null
hypothesis of no spatial autocorrelation against the alternative hypothesis of spatial autocorrelation.
Spatial autocorrelation indicators may have a global or local nature. Global indicators are limited to the
hypothesis of spatial autocorrelation in whole territory studied, but do not allow to determine whether
the scheme of spatial autocorrelation detected throughout the whole territory is also maintained locally.
Local indicators detect the possible presence of spatial autocorrelation in a particular subset. Thus,
an index can be obtained for each spatial unit studied, allowing to analyze the degree of individual
dependence of each spatial unit relative to the others (positive or negative). In the next sections, both
types of indicators will be revised.

2.1.1. Global indicators

Global indicators show the presence or absence of a stable pattern of spatial dependence that is
true for the whole dataset. Of all global coe�cients, the Moran's I is the most used and is given by
the following expression (see Moran (1948); Cli� and Ord (1973)):

I =
n

S0

n∑
i=1

n∑
j=1

wij z̃iz̃j

n∑
i=1

z̃2i

, (2.1)

where n stands for the number of observations z̃i
1, wij is the ij-element of the spatial weights matrix

W and S0 is the sum of all elements in the spatial weights matrix (S0 =
∑
i

∑
j wij). When the spatial

weights matrix is row-standarized such that the elements in each row sum to 1, the expression (2.1)
simpli�es to

I? =

n∑
i=1

n∑
j=1

wij z̃iz̃j

n∑
i=1

z̃2i

, (2.2)

since in this case, the factor S0 equals n (since each row sums to 1), and the statistic simpli�es to a
ratio of a spatial cross product to a variance.

Values for Moran's I do not need to be constrained to the interval [−1, 1], however, usually |I| ≤ 1,
unless regions with extreme values of z̃i (remember that they are in deviations from their mean) are
heavily weighted. In the absence of autocorrelation and regardless of the speci�ed weight matrix, the
expectation of Moran's I statistic is −1/(n − 1), which tends to zero as the sample size increases. A
Moran's I coe�cient larger than −1/(n− 1) indicates positive spatial autocorrelation, and a Moran's
I less than −1/(n− 1) indicates negative spatial autocorrelation.

A second popular global index of spatial autocorrelation is Geary's c (see Geary (1954);Cli� and Ord
(1981)), which is based on a weighted average of the similarity values observed for all pairs assigning

1z̃i denotes centred observations.
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weights by spatial proximity. This weighted average is scaled by a measure of overall variation around
the sample mean. The coe�cient is de�ned as

c =
(n− 1)

2S0

n∑
i=1

n∑
j=1

wij(z̃i − z̃j)2

n∑
i=1

z̃2i

, (2.3)

using the same notation as before. Geary's c ranges from 0 (maximal positive autocorrelation) to 2
(indicating perfect negative spatial autocorrelation). Its expectation is 1 in the absence of autocorre-
lation and regardless of the speci�ed weight matrix (if the value of Geary's c is less than 1, it indicates
positive spatial autocorrelation).

In addition to the previous quantities, there are other coe�cients such as Mantel's Γ (see Mantel
(1967)), which is de�ned as

Γ =

n∑
i=1

n∑
j=1

aijbij , (2.4)

where aij and bij are the elements of two matrices of similarity. Measures of spatial association are
obtained by expressing similarities by means of matrices: spatial similarity (for example, the spatial
weight matrix) and value similarities. Di�erent measures of value similarity yield di�erent indices for
spatial association. For example, using aij = z̃iz̃j yields a Moran's measure and setting aij = (z̃i− z̃j)2
yields a Geary's index.

Moreover, spatial autocorrelation may be measured as a distanced-based or spatial clustering mea-
sure. For the following test, two spatial units are neighbors if they are located at a certain distance d.
Getis and Ord (1992) de�ned the G(d) coe�cient as

G(d) =

n∑
i=1

n∑
j=1

wij(d)z̃iz̃j

n∑
i=1

n∑
j=1

z̃iz̃j

, (2.5)

where W (d) = (wij(d)) is a spatial weight matrix with ones for all pairs de�ned as being within
distance d of a given i and for all other pairs are zero including the pair of point i to itself. G(d) will
not show negative spatial autocorrelation. Note that G(d) does not include the i-th attribute, but there
is another version G?(d) which also takes into account this attribute as well as neighborhood values.

Moran's I coe�cient depends on the di�erence between each value of the attribute and its mean.
However, Geary's coe�cient depends on the (absolute) di�erence between neighboring values of a
variable.

Moran's I is a more global measurement and sensitive to extreme values of the attribute, whereas
Geary's c is more sensitive to di�erences in small neighborhoods. However, Moran's I and Geary's c
generally result in similar conclusions. Cli� and Ord (1973, 1981) showed that Moran's I is consistently
more powerful than Geary's c, so Moran's I is usually prefered.

Moran's I and Geary's c only indicate global clustering. They can not report if these are hot
spot (a region where high values cluster together) or cold spots (a region where low values cluster
together). However, the G(d) statistic distinguishes between hot spots and cold spots. It identi�es
spatial concentrations: G(d) is large if high values cluster together, while G(d) is low if low values
cluster together.

2.1.2. Local indicators

Local indicators provide a value for each observation, since di�erent patterns may occur in di�erent
parts of the region, but an equivalent local coe�cient can be calculated for most global measures.
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The local form of Moran's I, given in (2.1), for the i-th observation is de�ned as

Ii = z̃i

n∑
j=1

wij z̃j , i = 1, . . . , n, (2.6)

where the observation z̃i is in deviation from the mean too, and the summation over j is such that
only neighboring values j ∈ {1, . . . , n} are included. For ease of interpretation, the weights wij may be
in row-standardized form (though this is not necessary), and by convention, wii = 0.

Using the same principles as before, a local Geary's c statistic of (2.3) for each observation may be
de�ned as

ci =

n∑
j=1

wij(z̃i − z̃j)2, i = 1, . . . , n, (2.7)

using the same notation as before.

Since the Γ index given in (2.4) is a simple sum over i, a local Gamma index for a location i may
be de�ned as

Γi =

n∑
j=1

aijbij , i = 1, . . . , n. (2.8)

Similar to what holds for the global Γ, di�erent measures of value similarity will yield di�erent
indices of local association.

The G(d) statistic given in (2.5) for an observation, measures the concentration of the weighted
sum of values of the attributes in a subregion of j locations around i in the global region. It is de�ned
as

Gi(d) =

n∑
j=1

wij(d)z̃j

n∑
j=1

z̃j ,

, i = 1, . . . , n, (2.9)

for j 6= i and where W (d) = (wij(d)) is a spatial weight matrix with ones for all pairs de�ned as being
within distance d of a given i and for all other pairs are zero including the pair of point i to itself. The
numerator is the sum of all z̃j within d of i but not including z̃i. The denominator is the sum of all
z̃j not including z̃i (see Getis and Ord (1992)), there are a version of Gi(d) which is denoted by G?i (d)
and de�ned as

G?i (d) =

n∑
j=1

wij(d)z̃j

n∑
j=1

z̃j ,

, i = 1, . . . , n, (2.10)

for all j. This statistic di�ers fromGi(d) in thatG?i (d) includes the value of the point in its computation.
Gi(d) excludes this value and only considers the value of its nearest neighbours against the global
average (which also does not inclue the value at i). G?i (d) is the more common of the two statistics
because it considers all values.

The �rst interpretation of LISA is the identi�cation of local spatial clusters. A positive value of Ii
indicates a spatial clustering of similar values (either high or low) and a negative value a clustering of
dissimilar values (a location with high values surrounded by neighbors with low values, or vice versa).
A positive value of G?i (d) indicates a spatial clustering of high values, and a negative value a spatial
clustering of low values. The individual Γi may be interpreted as indicators of signi�cant local spatial
clusters.
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The second interpretation of a LISA is a diagnosis for outliers with respect to a measure of global
association previously given. The distribution of Ii statistics can provide an indication of outliers,
by means of a 2σ rule (percentage of values that lie within a band around the mean in a normal
distribution with a width of two standard deviations, 95.45 % of the values). Observations exceeding
this threshold are considered. Although this is not a test, it provides useful insight into the special
nature of these observations (the identi�cation of outliers may realise in the box plot of the Ii too).
Note that this notion of extremeness does not imply that the corresponding Ii are signi�cant in the
sense outlined earlier, but only indicates the importance of observation i in determining the global
statistic. A diagnostic for outliers can be carried out by comparing the distribution of the Γi to Γ/n.

The moments for Ii under the null hypothesis of no spatial correlation can be derived using the
principles outlined by Cli� and Ord (1981). A test for signi�cant local spatial correlation may be
based on these moments, although the exact distribution of such a statistic is still unknown. The
probability distribution may be badly represented by a normal distribution. Alternatively, a conditional
randomization approach by permutation (unknown distribution function) may be taken. Given the
structure of the statistic in (2.6), it follows that only the quantity

∑n
j=1 wij z̃j to be computed for each

permutation. Following the suggestion by Ord annd Getis (1994), a Bonferroni bounds procedure is
used to assess signi�cance. With a α level of 0.05, the individual signi�cance levels for each observation
should be taken as 0.05/n.

The only aspect of equation (2.9) that changes with each permutation is the numerator, since
the denominator does not depend on the spatial allocation of observations. This is the same term as
the varying part of (2.6). The randomization method applied to (2.6) will yield the same empirical
reference distribution as when applied to Getis and Ord Gi(d) and G?i (d) statistics. Hence, inference
based on this nonparametric approach will be identical for the two statistics. The signi�cance levels
(that is, the generated with a permutation approach applied to the Ii statistic will be identical for
Gi(d) and G?i (d) statistics.

2.2. Exploratory techniques for detecting spatial outliers

Global outliers detection methods ignore the spatial location of each data points while spatial
outliers methods separate spatial attributes from non-spatial attributes. According to Anselin (1996),
methods of spatial association can be classi�ed in two di�erent groups, depending on the way in which
spatial interaction is conceived.

Firstly, based on geographical information, this association could be seen as a covariation between
neighbouring observations. Moran scatterplot (see Anselin (1995, 1996)) is a exploratory tool to visua-
lise and identify the degree of spatial instability in spatial association by means of Moran's I. As for
Moran's I, the neighborhood structure of a dataset is collected in a spatial weights matrix W , with
elements wij = 0 when i and j are not neighbours and non-zero otherwise (as a rule, wii is assumed to
be zero). This tool is based on the interpretation of the Moran's I statistic as a regression coe�cient.

Secondly, based on geostatistics, the spatial interaction is conceptualised as a continuous function
of a metric distance. The method of choice is the variogram or semivariogram, which is based on the
squared di�erence between values observed at a given distance (see Cressie (1993)).

There are other tools to detect spatial outliers, including the box map, the map of percentiles and
the cartogram (see Anselin (2005)).

2.2.1. Moran scatterplot

Firstly, based on geographical information, according to Anselin (1995), the Moran sccaterplot com-
bined with a classical linear regression will be used to detect spatial outliers. Abusing of notation, to
explain this exploratory tool, we denote by zi the standarized observations, (zi− z̄)/sz, i = 1, . . . , n (z̄
and sz denote the sample mean and standard deviation of the values of the attributes zi, i = 1, . . . , n,
respectively). The Moran scatterplot gives a formal indication of the degree of linear association bet-
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ween a vector of normalized observed values zi, and a weighted average of the neighbouring normalized
attributes, Yw,i =

∑
j wijzj , i = 1, . . . , n, where wij > 0 and

∑
j wij = 1. The k-Nearest Neighbors

algorithm will be used to compute the weight matrix wij and as a consequence, the detected outliers
will depend on k. Note that the presence of outliers may also point to problems with the speci�cation
of the spatial weights matrix.

Since the zi are observations in deviations from their mean, and Yw,i is the associated spatial
lag, the scatter plot is centred at (0, 0). The four quadrants in the plot represent di�erent types of
association between zi and Yw,i. The upper right and lower left quadrants represent positive association
in the sense that a observation in a location has similar values to those in its neighborhood. For the
upper right quadrant, it is a association between high values (above the mean) while for the lower
left quadrant it is between low values (below the mean). The upper left and lower right quadrants
correspond to negative association, that is, low values are rounded by high values (upper left) and
high values are surrounded by low values (lower right). As mentioned, the pairs (Yw,i, zi) are given
for standardize values, so that outliers may be easily visualized as points further than two units away
from the origin.

According to Anselin (1995), the application of regression diagnostics for leverage and residuals to
the scatterplot suggest that observations may deserve closer scrutiny. Points in the scatterplot that
are extreme with respect to the central tendency re�ected by the slope may be outliers in the sense
that they do not follow the same process of spatial dependence as the bulk of the other observations.
An intuitive indication of outliers can be based on the normalized residuals from the regression of Yw
on z.

The classical linear regression model will be

Yw,i = β0 + β1zi + εi, i = 1, . . . , n (2.11)

where ε1, . . . , εn ∈ N(0, σ2) and independent. Consequently, the �tted values Ŷw,i would be

Ŷw,i = β̂0 + β̂1zi, i = 1, . . . , n,

where β̂0 and β̂1 are the estimators of β0 and β1, respectively. In short, it would have the following
prediction errors or residuals,

ε̂i = Yw,i − Ŷw,i = Yw,i − β̂0 − β̂1zi, i = 1, . . . , n.

The idea is to choose the estimators β̂0 and β̂1 which give the smaller regression residuals. It can be
shown, using least squares, that β̂0 = Ȳw− β̂1z̄, β̂1 =

∑n
j=1(zi− z̄)Yw,j/Szz and Szz =

∑n
j=1(zj− z̄)2.

Therefore,

Ŷw,i = Ȳw + β̂1(zj − z̄) =
1

n

n∑
j=1

Yw,j +

n∑
j=1

(zj − z̄)
Szz

Yw,j(zi − z̄)

=

n∑
j=1

[
1

n
+

(zi − z̄)(zj − z̄)
Szz

]
Yw,j =

n∑
j=1

hijYw,j , (2.12)

where

hij =
1

n
+

(zi − z̄)(zj − z̄)
Szz

.

So, the �tted value Ŷw,i will be a weighted average of all the responses Yw,j with weights hij . Then,
the weight exerted by an individual in its own prediction would be

hii =
1

n
+

(zi − z̄)2

Szz
,
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which will be large if its abscissa is far from the mean. The amount hii is known as dataset of the i-th
data. It depends only on the value of explanatory variable, in this case zi, and indicates the weight
that Yw,i in his own �tting, Ŷw,i. Therefore it is interpreted as the attractiveness of the individual over
the �tted line. Note that hij are elements of an idempotent and simetric matrix H. As a consequence
hii =

∑n
j=1 h

2
ij .

To detect spatial outliers, regression residuals will be used. Note that the residuals may be written
as

ε̂i = Yw,i − Ŷw,i = β0 + β1zi + εi −
n∑
j=1

hijYw,j = β0 + β1zi + εi −
n∑
j=1

hij(β0 + β1zj + εj)

= β0 + β1zi + εi − β0
n∑
j=1

hij − β1
n∑
j=1

hijzj −
n∑
j=1

hijεj = εi −
n∑
j=1

hijεj .

The last equality is obtained by considering the following two expressions.

n∑
j=1

hij =

n∑
j=1

[
1

n
+

(zi − z̄)(zj − z̄)
Szz

]
=
n

n
+

(zi − z̄)
Szz

n∑
j=1

(zj − z̄) = 1.

n∑
j=1

hijzj =

n∑
j=1

[
1

n
+

(zi − z̄)(zj − z̄)
Szz

]
zj = z̄ +

(zi − z̄)
Szz

n∑
j=1

(zj − z̄)zj

= z̄ +
(zi − z̄)
Szz

n∑
j=1

(zj − z̄)2 − z̄
(zi − z̄)
Szz

n∑
j=1

(zj − z̄) = zi.

Under the assumption made by Anselin (1995), let εi be independent random variables, zero-mean
with common variance σ2. Using expectation and variance properties we �nd that

E(ε̂i) = E

εi − n∑
j=1

hijεj

 = E(εi)−
n∑
j=1

hijE(εj) = 0.

Moreover, following Anselin (1995),

Var(ε̂i) = Var

εi − n∑
j=1

hijεj

 = Var(εi) + Var

 n∑
j=1

hijεj

− 2Cov

εi, n∑
j=1

hijεj


= σ2 +

n∑
j=1

h2ijσ
2 − 2hiiσ

2 = σ2(1− hii).

Since each residual has di�erent variance, depending on its dataset, standardized residuals will
be used to detect outliers. Given that the error variance is often unknown, it must be estimated. A
natural estimator would be the sample variance, which will be denoted by σ̂2. Consequently, these new
regression residuals are de�ned as

di =
ε̂i

σ̂
√

1− hii
.

Thus, observations with too large standardized residuals (in absolute value) show that the data
is outlier in some way. It can be considered candidate to be an outlier the observations which have
standardized residuals greater or less than 2 or -2, respectively, which would be approximately the
quantiles of a standard normal containing more of the 95 % of the observations.
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2.2.2. Variogram cloud

From a geostatistical perspective, the variogram cloud will be used as a graphical tool to detect
spatial outliers. The variogram cloud, introduced by Cressie (1993), shows pairs of points attached by
neighborly relations, providing an estimate of the dependence structure of the spatial process. That is,
it would be an estimate of the basic geostatistical tool, the variogram, which was de�ned previously
as follows

2γ(u) = Var(Z(s+ u)− Z(s)), ∀u ∈ D. (2.13)

Since the dependence structure is often unknown, (2.13) must be estimated. In this case, the estimator
proposed by Cressie and Hawkins (1980) is considered:

2γ̄(u) =
1

(0.457 + 0.494/|N(u)|)

 1

|N(u)|
∑

(i,j)∈N(u)

|Z(si)− Z(sj)|1/2


4

, (2.14)

where |N(u)| is the number of pairs in N(u) ≡ {(i, j) : si − sj = u}. If the process is isotropic), then
the estimator of the variogram may be written as a function of ‖u‖ = u. Therefore, in the variogram
cloud, for each distance u, the value of the estimation of the variogram given in (2.14) is plotted. Small
distances but with large values of the semivariogram may indicate a spatial outlier, although values in
both locations do not represent outliers if the spatial dimension is omitted.

Variogram cloud requires non-trivial post-processing of highlighted pairs to separate spatial outliers
from their neighbors, particularly when multiple outliers are present.

2.3. Some simulated examples

A simulation is performed to illustrate indicators and exploratory techniques introduced in the
previous sections. Firstly, a sample is simulated regularly from a Gaussian spatial process (its �nite-
dimensional distribution is normal or Gaussian) considering the unit square as support and taking the
exponential model given in (1.13) as covariance function. Based on this simulation scenario, di�erent
parameter values of the range and the sill in the covariance function (1.13) are considered, to see their
e�ect regarding the presence of spatial outliers. Finally, an alteration of an observation is realized: a
non spatial attribute excessively high for the simulated sample is chosen, so this observation would be
an outlier.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
2

−
1

0
1

2

Figure 2.1: Scatterplot (right) and box-plot (right) omitting the spatial dimension. Sample size: 121.
Regularly simulated data from a Gaussian spatial process on unit square with exponential covariogram
(1.13) with parameters c0 = 0, ce = 1 and ae = 2.
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With a sample size of 121, considering the unit square as support, data have been drawn taking
the exponential model given in (1.13) as covariance function with c0 = 0, ce = 1 and ae = 2. Figure
2.1 (left) plots the sample data points of the spatial process simulated with symbol area proportional
to observation measure. Observations will be numbered from 1 to 121, starting from the bottom-left
corner, and advancing by rows until the upper-right corner in the unit square. It is worth noting that
realizations of a process with constant mean, but strong spatial correlation, frequently seem to present
trends, as it can be seen in Figure 2.1 (left). In this case, the range value, 2, is greater than any of the
distances in the unit square, leading a strong dependence. The box-plot of the attribute values (see
Figure 2.1, right) shows that there is no global outliers (omitting the spatial dimension). Nevertheless,
to detect spatial outliers it is necessary to go beyond.
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Figure 2.2: Histogram (left) with Gaussian kernel density estimator and boxplot (right) of Ii. Sample
size: 121. Regularly simulated data from a Gaussian spatial process on unit square with exponential
covariogram (1.13) with parameters c0 = 0, ce = 1 and ae = 2.

When the nearest neighbor (k = 1) is used to compute the weight matrix, Moran's I coe�cient is
0.9495, larger than −1/(n−1), which indicates positive spatial autocorrelation. Similar conclusions are
obtained from Geary's c, which value is 0.075, being close to zero (maximal positive autocorrelation).
Regarding local indicators, as it was mentioned previously, the distribution of Ii statistics for the
sample can provide an indication of outliers by means of a 2σ rule. The mean of the distribution of
the Ii is Moran's I, or 0.9495, and twice the standard deviation from the mean to the value of 2.9159.
This is exceeded by the observation 9, with a value of 3.1178 for Ii, by the observation 10, with a
value of 3.0703 for Ii, by the observation 20, with a value of 3.9145 for Ii, by the observation 21, with
a value of 3.0214 for Ii and by the observation 91, with a value of 3.5989 for Ii. Although it is not a
test, it provides useful insight into the nature of these �ve observations. Four of them (9, 10, 20 and
21) located in the bottom right corner of Figure 2.1 (left).

Figure 2.2 (left) plots the histogram of Ii, a non-parametric estimator of the density function, with
Gaussian kernel density estimator (the method of Sheather and Jones to select the bandwidth is used).
There are �ve observations which exceed the 2σ threshold. Figure 2.2 (right) shows the boxplot of Ii,
which indicates that there is not any outlier in the sample of Ii.

Figure 2.3 (left) plots the variogram cloud for these simulated data. There are few pairs of data
for which have small distances and large semivariogram values. There are not observations candidates
to be spatial outliers. Figure 2.3 (right) shows the Moran scatterplot for this simulate data with the
regression line that best �ts the data by least squares. In this case, the single nearest neighbour (k = 1)
will be used to compute the weight matrix, W . It can be seen that many of the observations fall into
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the lower left and upper right quadrants (109 out of 121), showing a positive association. Since the
pairs are given for standardized values, outliers may be easily visualized as points further than two
units away from the origin. The observation 20 has the value for the attribute that is higher than two
standard deviations from mean (on the vertical axis of the Figure 2.3, right), while the observation 21
also has values for the spatial lag that are twice the mean (horizontal axis of the Figure 2.3, right).
Observations 10, 18, 69, 80 and 91 could be outliers too, since they are almost two deviations of the
origin.

If standarized regression residuals of the linear regression made in the corresponding Moran Scat-
terplot are considered, then there are ten observations which have standarized residuals greater or less
than 2 or −2, respectively.
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Figure 2.3: Exploratory tools for detecting spatial outliers: variogram cloud (left) and Moran scatterplot
with k = 1 (right). Sample size: 121. Regularly simulated data from a Gaussian spatial process on unit
square with exponential covariogram (1.13) and parameters c0 = 0, ce = 1 and ae = 2. Outliers in the
Moran scatterplot, solid points.

Other values of k have been also considered to check the e�ect of this tuning parameter. When
k = 60 is considered to compute the matrix of weights, the spatial association is still positive, although
lower, and the mean of Ii or Moran's I is 0.4702. Furthermore, twice the standard deviation from the
mean to the value is 1.3541. This is only exceeded by the observation 20, with a value of 1.4684 for
Ii. Figure 2.4 (left) presents the Moran scatterplot considering k = 60. The observation 20 has the
value for the attribute that is are more than two standard deviations higher than the mean (on the
vertical axis of the Figure 2.4 (left)), then it may be an outlier. Observations 9, 19 and 80 could be
outliers too, since they are almost two deviations of the origin. If standarized regression residuals of
the linear regression made in the corresponding Moran Scatterplot are considered, then there are �ve
observations which have standarized residuals greater or less than 2 or −2, respectively.

When k = 120 is considered to compute the matrix of weights, there are not spatial association,
since the mean of the distribution of the Ii or Moran's I is −0.0083 (equal to −1/(n−1)). Furthermore,
twice the standard deviation from the mean to the value is −0.0252 or 0.0085, which is exceeded by
the observation 9, with a value of −0.0304 for Ii, by the observation 19, with a value of −0.0311 for Ii,
by the observation 20, with a value of −0.0342 for Ii, by the observation 80, with a value of −0.0329
for Ii and by the observation 91, with a value of −0.0274 for Ii. These �ve observations deserve closer
scrutiny. Figure 2.4 (right) shows the Moran scatterplot considering k = 120. The observation 20 has
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the value for the attribute that is are more than two standard deviations higher than the mean (on
the vertical axis of the Figure 2.4 (right)), then it may be an outlier. Observations 9, 19 and 80 could
be outliers too, since they are almost two deviations of the origin. If standarized regression residuals
of the linear regression obtained from the corresponding Moran Scatterplot are considered, then there
are two observations which have standarized residuals greater or less than 2 or −2, respectively.

In this case the choice of k varies the possible candidates to be outliers. The observation 20 could
be an spatial outlier, but in all cases, this observation is in the limit of the two standard deviations
higher than the mean in the Moran scatterplot. However, from variogram cloud does not seem to have
outliers.
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Figure 2.4: Moran scatterplots with k = 60 (left) and k = 120 (right). Sample size: 121. Regularly
simulated data from a Gaussian spatial process on unit square with exponential covariogram (1.13)
with parameters c0 = 0, ce = 1 and ae = 2. Outliers in the Moran scatterplot, solid points.

2.3.1. E�ect of the range parameter

Under the same simulation scenario (121 regularly spaced Gaussian data in the unit square with
exponential covariance), di�erent parameter values in the covariance function (1.13) are considered, to
see their e�ect regarding the presence of outliers. Now, a sample of size 121 is simulated regularly from
a Gaussian spatial process considering the unit square as support, taking c0 = 0, ce = 1 and ae = 0.1
as parameters in the covariance function (1.13). In this case the range is smaller than in the previous
simulation, resulting in a weaker dependence. So, the e�ect of the range parameter will be re�ected.
The single nearest neighbour (k = 1) will be used to compute the weight matrix, W .

Moran's I coe�cient is 0.6417, larger than −1/(n − 1), which indicates positive spatial autoco-
rrelation. Similar conclusions are obtained from Geary's c, which value is 0.4781, being close to zero
(maximal positive autocorrelation). The autocorrelation is smaller than in the previous simulation.
Moreover, the threshold value is 3.1641. This is exceeded by nine observations, however, varying the
value of k, the observations which exceed twice the standard deviation from the mean to the value
corresponding are di�erent. For example, if k = 120 is considered, then observations 8, 19, 34 and 80
exceed the 2σ threshold.
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Figure 2.5: Exploratory tools for detecting spatial outliers: variogram cloud (left) and Moran scatterplot
with k = 1 (right). Sample size: 121. Regularly simulated data from a Gaussian spatial process with
exponential covariogram (1.13) with parameters c0 = 0, ce = 1 and ae = 0.1. Outliers in the Moran
scatterplot, solid points.
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Figure 2.6: Moran scatterplots with k = 2 (left) and k = 70 (right). Sample size: 121. Regularly
simulated data from a Gaussian spatial process on unit square with exponential covariogram (1.13)
with parameters c0 = 0, ce = 1 and ae = 0.1. Outliers in the Moran scatterplot, solid points.

Figure 2.5 (left) plots the variogram cloud of this data. It can be seen that there are many pairs
of data which represent small distances and large semivariogram values (larger than when ae = 2 was
considered in the exponential covariogram (1.13)). Observations 8, 19, 49, 51 and 80 can be identi�ed as
spatial outliers since they appears in the data pairs mentioned. Figure 2.5 (right) is the corresponding
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Moran scatterplot with k = 1. There are many observations which are more than two units of the
origin. However, these observations are not spatial outliers, because, according to the choice of k,
the conclusions are not the same. Figure 2.6 (left) presents the Moran scatterplot of this data (with
k = 2), as it can be seen that observations 9, 20, 45, 69 and 91 are not candidates to be outliers. If
k = 80 is considered, observations 7 and 18 are not too (see Figure 2.6, right). According to the Moran
scatterplot, the observations 8, 19, 34 and 80 are candidates to be outliers.

If standarized regression residuals of the linear regression made in the corresponding Moran Scat-
terplot are considered, then there are four, two and three observations (considering k = 1, 2, 70, res-
pectively) which have standarized residuals greater or less than 2 or −2, respectively.

In this case, spatial outliers are in�uenced by the choice of the range parameter.

2.3.2. E�ect of the sill parameter

Now, a sample of size 121 is simulated regularly from a Gaussian spatial process considering the
unit square as support, and taking c0 = 0, ce = 0.1 and ae = 2 as parameters in the covariance function
(1.13). So, the e�ect of the sill parameter will be re�ected (a value smaller of the sill is considered now,
which was ce = 1 before). The single nearest neighbour (k = 1) will be used to compute the weight
matrix, W .
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Figure 2.7: Exploratory tools for detecting spatial outliers: variogram clouds. Sample size: 121. Re-
gularly simulated data from a Gaussian spatial process on unit square with exponential covariogram
(1.13) with parameters c0 = 0, ce = 0.1 and ae = 2 (left). Sample size: 121. Regularly simulated data
from a Gaussian spatial process on unit square with exponential covariogram (1.13) with parameters
c0 = 0, ce = 10 and ae = 2 (right).

Moran's I coe�cient is 0.9495, larger than −1/(n − 1), which indicates positive spatial autoco-
rrelation. Similar conclusions are obtained from Geary's c, which value is 0.0746, being close to zero
(maximal positive autocorrelation). This values are equal than in the �rst simulation (local Moran
statistics are equal too). So, same conclusions about spatial outliers are obtained that when the �rst
simulation was performed (remember that the sill is the covariance at zero distance).

Moran scatterplot is exactly the same than in Figure 2.3 (right). Variogram cloud for these data
is plotted in Figure 2.7 (left). This representation di�ers from the Figure 2.3 (left) in that the range
of values of the semivariogram is less comprehensive, but the conclusions about spatial outliers are
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identical. If standarized regression residuals of the linear regression made in the corresponding Moran
Scatterplot are considered, then there are ten observations (the same as in the �rst simulation done)
which have standarized residuals greater or less than 2 or −2, respectively.

Now, a sample of size 121 is simulated regularly from a Gaussian spatial process considering the
unit square as support, and taking c0 = 0, ce = 10 and ae = 2 as parameters in the covariance function
(1.13). A value larger than the sill is considered now.

Moran scatterplot is exactly the same than when other values of the sill were considered, hence
the possible outliers would be the observation 20 . Figure 2.7 (right) plots the variogram cloud for this
simulated data. In this case, for all distances, values of he semivariogram are larger than when ce = 0.1
and ce = 1 were considered. However, same conclusions about spatial outliers are obtained (see Figure
2.3 and Figure 2.7 (left) and (right) for comparison). If standarized regression residuals of the linear
regression made in the corresponding Moran Scatterplot are considered, then the results obtained are
identical to when di�erent values of ce are chosen. Therefore, the sill parameter does not seem to a�ect
the possible outliers.

2.3.3. Alteration of an observation

A sample of size 121 is simulated regularly from a Gaussian spatial process considering the unit
square as support and taking the exponential model given in (1.13) as covariance function with c0 =
0, ce = 1 and ae = 2. The observation 61 (central square) is modi�ed with the value of 5.1365
(median+3IQR, where IQR denotes the interquartile range of the observed values of the process): a
non spatial attribute excessively high for the simulated sample, so this would be an outlier. The single
nearest neighbour (k = 1) will be used to compute the weight matrix, W .
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Figure 2.8: Exploratory tools for detecting spatial outliers: variogram cloud (left) and Moran scatterplot
with k = 1 (right). Sample size: 121. Regularly simulated data from a Gaussian spatial process on unit
square with exponential covariogram (1.13) with parameters c0 = 0, ce = 1 and ae = 2.

Moran's I coe�cient is 0.8248, larger than −1/(n − 1), which indicates positive spatial autoco-
rrelation. Similar conclusions are obtained from Geary's c, which value is 0.1167, being close to zero
(maximal positive autocorrelation). The mean of the distribution of the Ii is Moran's I, or 0.8248, and
twice the standard deviation from the mean to the value of 2.5161. This is exceeded by the observation
9, with a value of 2.5263 for Ii, by the observation 20, with a value of 3.1872 for Ii, by the observation
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61, with a value of 2.7373 for Ii, by the observation 91, with a value of 3.1687 for Ii and by the
observation 101, with a value of 2.5311 for Ii.

Figure 2.8 (left) shows the variogram cloud for these simulated data. It can be seen that there are
many pairs of data which represent small distances and large semivariogram values. The observation
61 can be identi�ed as a spatial outlier since it appears in all data pairs mentioned. Figure 2.8 (right)
is the Moran scatterplot for this simulate data with the regression line that best �ts the data by least
squares. Since the pairs are given for standardized values, outliers may be easily visualized as points
further than two units away from the origin. The central observation has the value for the attribute
that is are more than two standard deviations higher than the mean (on the vertical axis of the Figure
2.8 (right)), then it is candidate to be a spatial outlier.

If standarized regression residuals of the linear regression made in the corresponding Moran Scat-
terplot are considered, then there are two observations (61 and 69) which have standarized residuals
greater or less than 2 or −2, respectively.

If the value of k-nearest neighbors is larger, then the number of observations which exceed twice
the standard deviation from the mean to the value corresponding are smaller than �ve. Moreover, in
the Moran scatterplot the only observation which would still have the value for the attribute that is
are more than two standard deviations higher than the mean is the central observation. Therefore,
the central observation is candidate to be outlier. To emphasize that, from a boxplot this observation
could be identi�ed as a global outlier, thus omitting the spatial dimension. If a smaller value for ae
in the expression (1.13) is considered, both tools would detect the central observation as atypical, as
long as this value of ae is greater than 0.8. For lower values, exploratory techniques could identify as
outliers other observations too.

2.4. A �nal comment on exploratory tools

Once again, a sample of size 121 is simulated regularly from a Gaussian spatial process considering
the unit square as support and taking the exponential model given in (1.13) as covariance function
with c0 = 0, ce = 1 and ae = 0.15. The observation 61 (central square) is modi�ed with the value of
4.4232 (median+3IQR, where IQR denotes the interquartile range).
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Figure 2.9: Symbol area proportional to atributtes concentration (left) and Box-plot (right) omitting
the spatial dimension. Sample size: 121. Regularly simulated data from a Gaussian spatial process on
unit square with exponential covariogram (1.13) and parameters c0 = 0, ce = 1 and ae = 0.15.
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Figure 2.9 (left) plots the sample data points of the spatial process simulated with symbol area
proportional to measured. The box-plot of the attribute values (see Figure 2.9, right) shows that there
are four global outliers, 8, 19, 61 and 80 (omitting the spatial dimension).

Figure 2.10 (left) plots the variogram cloud for these simulated data. It can be seen that there are
many pairs of data which represent small distances and large semivariogram values. The observation
61 can be identi�ed as spatial outliers since in appears in all data pairs mentioned. In this case, there
is just an outlier. However, when multiple outliers are present, it is di�cult detect outliers in the
variogram cloud, as there may be many points which are at small distances and have large variogram
value. Some algorithm of exhaustive search should be used.

Figure 2.10 (right, full line) shows the number of spatial outliers (observations further than two
units away from the origin) in Moran Scatterplot, for di�erent values of k. The number of outliers
decreases with increasing k, stabilizing to 5 from k = 4 (it is always the same �ve candidate data).
Figure 2.10 (right, dashed line) presents the number of spatial outliers for di�erent values of k too,
based on standarized regression residuals of the linear regression realized in the Moran scatterplot.
The behaviour is not monotonous, and the possibles candidates to be outliers are di�erent in function
of the value of k. This criterion gives less outliers than the others. Figure 2.10 (right, dotted line) plots
the number of spatial outliers for di�erent values of k, using the 2σ threshold for the distribution of
Ii. Again, the behaviour is not even monotone, in fact, a stable pattern is not obtained varying the
value of k. However, when the same number of outliers are obtained, the same data are candidates to
be outliers.
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Figure 2.10: Variogram cloud (left). Number of spatial outliers in function of k in Moran Scatterplot
(right, full line), using standarized regression residuals (right, dashed line) and using the 2σ threshold
(right, dotted line). Sample size: 121. Regularly simulated data from a Gaussian spatial process on
unit square with exponential covariogram (1.13) and parameters c0 = 0, ce = 1 and ae = 0.15.

In this case the choice of k varies the possible candidates to be outliers. Moreover di�erent methods
are inconsistent in their conclusion. They propose di�erent candidates to be outliers, considering the
same value of k.

We should also notice that there is a possibility too strong simpli�cation in Anselin (1995) pro-
cedure. In the construction of Moran scatterplot described in the Section 2.2.1, the error term in
2.11 is considered as independent. However, by the constructing of Yw,i, i = 1, . . . , n, this is not true.
The covariance matrix of Yw (being this vector the one that collects all the Yw,i values) is given by
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Cov(Yw,Yw) = WΣ (where Σ is the original covariance matrix and W is the weight matrix), which
is not a diagonal matrix. It would be interesting to explore what happens with Moran scatterplot if
outliers are identi�ed according for this dependence, which would require a pilot estimator of Σ.

The problem of detection of outliers in spatial data is not solved given that existing exploratory
techniques do not allow a correct identi�cation of such data (even if it is certain that its de�nition is
not precise). However, the consideration of outliers in inferential procedures may provide questionable
results, therefore it is necessary the use of techniques that mitigate their e�ect. In the next chapter, a
proposal for the spatial trend estimation (when there are spatial outliers) will be carried out.

2.5. Illustration with real data

In the present illustration, we use measurements of mercury concentration2 (Hg in ppb) in moss
sample surveys collected in Galicia in July of 2000 (see Fernández et al (2005)). Sampling stations were
located at the vertices of a 15× 15 km UTM grid. A total of 148 sampling sites was distributed over
the entire region and the adjacent border area. The principal moss species collected was Scleropodium
purum and in its absence, Hypnum cupressiforme was collected. Samples were collected at least 300m
from main roads and any populated areas and at least 100m from other kinds of roads and isolated
houses. Where possible, samples were collected from open areas, otherwise, they were collected from
clearings within forest areas.

Figure 2.11 (left) is the sample data point for mercury (ppb), with symbol area proportional to
measured concentration. The box-plot of the attribute values (see Figure 2.11, right) shows that there
is no global outliers (omitting the spatial dimension).
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Figure 2.11: Symbol area proportional to atributtes concentration (left) and Box-plot (right) omitting
the spatial dimension. Measurements of mercury concentration (Hg in ppb) in moss sample surveys
collected in Galicia in July of 2000.

When the nearest neighbor is used to compute the weight matrix, Moran's I coe�cient is 0.3756,
larger than −1/(n − 1), which indicates positive spatial autocorrelation. Regarding local indicators,
the distribution of Ii statistics for the sample may provide an indication of outliers by means of a 2σ

2The author acknowledge the group of Ecotoxicoloxía e Eco�sioloxía Vexetal of the University of Santiago de Com-

postela for providing the dataset used for illustrating the methods.
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rule. The mean of the distribution of the Ii is Moran's I, or 0.3756, and twice the standard deviation
from the mean to the value of 2.1057. This is exceeded by the observation 11, with a value of 2.5133
for Ii, by the observation 12, with a value of 2.5133 for Ii, by the observation 33, with a value of 2.7575
for Ii, by the observation 34, with a value of 2.7575 for Ii and by the observation 126, with a value of
3.5894 for Ii.

Figure 2.12 (left) plots the variogram cloud for these sample data. It can be seen that there are
many pairs of data which represent small distances and large semivariogram values. However, only the
observation 133 can be identi�ed as spatial outliers since it appears in many data pairs mentioned.

Moran scatterplot for these concentrations of mercury with the regression line that best �ts the
data by least squares is plotted in the Figure 2.12 (right). In this case, the single nearest neighbour
(k = 1) will be used to compute the weight matrix, W . It can be seen that many of the observations
fall into the lower left and upper right quadrants (94 out of 148), showing a positive association. Since
the pairs are given for standardized values, outliers may be easily visualized as points further than
two units away from the origin. The observations 7, 125 and 133 have values for the attribute that are
higher than two standard deviations from mean (on the vertical axis of the Figure 2.12, right), while
the observations 123 and 126 also have values for the spatial lag that are twice the mean (horizontal
axis of the Figure 2.12, right).

If standarized regression residuals of the linear regression made in the corresponding Moran Scat-
terplot are considered, then there are four observations which have standarized residuals greater or
less than 2 or −2, respectively. These observations would be 75, 122, 123 and 126.

Possible common candidate for the methods that derive of Moran Scatterplot will be the observation
126. However, this conclusion is not true, as shown below.
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Figure 2.12: Exploratory tools for detecting spatial outliers: variogram cloud (left) and Moran scatter-
plot with k = 1 (right). Measurements of mercury concentration (Hg in ppb) in moss sample surveys
collected in Galicia in July of 2000. Outliers in the Moran scatterplot, solid points.

Other values of k have been also considered to check the e�ect of this tuning parameter. When
k = 2 is considered to compute the matrix of weights, the spatial association continue being positive,
however this is lower, the mean of the distribution of the Ii or Moran's I is 0.3321. Furthermore, twice
the standard deviation from the mean to the value is 1.8427. This threshold is exceeded by eleven
observations. Figure 2.13 (left) presents the Moran scatterplot considering k = 2. The observations
7, 125 and 133 have values for the attribute that are higher than two standard deviations from mean
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(on the vertical axis of the Figure 2.13, left), while the observations 6, 113 and 126 also have values for
the spatial lag that are twice the mean (horizontal axis of the Figure 2.13, left). Note that, observation
113 is a candidate to be an outlier for this value of k. This is due to the two nearest neighbors are
observations 114 and 125 (which is also candidate to be an outlier), while, the nearest neighbor is the
observation 114.

If standarized regression residuals of the linear regression made in the corresponding Moran Scat-
terplot are considered, then there are eight observations which have standarized residuals greater or
less than 2 or −2, respectively.

In this case, increasing k, methods based on Moran Scatterplot detect more possible candidates to
be outliers.

When k = 147 is considered to compute the matrix of weights, the spatial association continue
being positive. Furthermore, twice the standard deviation from the mean to the value is 1.7343, which
is exceeded by twelve observations. Figure 2.4 (right) shows the Moran scatterplot considering k = 3.
The observations 7, 125 and 133 has the value for the attribute that is are more than two standard
deviations higher than the mean (on the vertical axis of the Figure 2.13 (right)), then they may be
outliers.

If standarized regression residuals of the linear regression made in the corresponding Moran Scat-
terplot are considered, then there are six observations which have standarized residuals greater or less
than 2 or −2, respectively. These observations would be 6, 54, 55, 113, 133 and 141.

In this case the choice of k varies the possible candidates to be outliers. Furthermore, it can be seen
that the methods, including variogram cloud, are inconsistent in the sense that they detect di�erent
outliers, as we had mentioned in the Section 2.4.
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Figure 2.13: Moran scatterplots with k = 2 (left) and k = 3 (right).Measurements of mercury concen-
tration (Hg in ppb) in moss sample surveys collected in Galicia in July of 2000. Outliers in the Moran
scatterplot, solid points.
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Chapter 3

Dealing with outliers in spatial

regression

In geostatistics the observed data tend to exhibit an important feature: close observations tend to be
more similar than observations which are far apart. Such observations cannot be treated as independent
and the dependence structure should be taken into account in any descriptive or inferential procedure.
In particular, from the perspective of regression models, for example through trend surface models,
the dependence structure should be considered and properly introduced into the model.

Trend surface models try to relate observations of a spatial process which varies continuously with
the geographic locations in which those observations are taken, trying to establish patterns of increase
or decrease with respect to the coordinates through (usually linear) regression models. In these models,
two sources of variability can be distinguished (see Cressie (1993)): a regression function or trend which
would gather large-scale variability and the error term, which would represent small-scale variability.
The main di�erence between these models and the classical linear regression is that the errors present
a dependence structure, which is usually assumed to be intrinsically stationary or second-order. That
dependence structure is usually unknown but should be included in the model, through the covariogram
(if the process is second-order stationary) or the variogram (if the process is intrinsically stationary).

The problem of trend surface estimation can be solved through least squares tools (where pilot
estimations of the variogram are used) or maximum likelihood (the estimation of the parameters of
the trend and of the dependence are approached jointly, under the assumption of normality), as it is
described in Diggle and Ribeiro (2007). Even so, the trend surface estimation has only been discussed
in the literature in the case of �simple� statistical processes, under the assumption of normality (see
Crujeiras and Van Keilegom (2010)). However, as it was mentioned in the Introduction, even under this
distributional premise, observed samples may present certain complexities, as the presence of outliers.

The aim of this chapter is to propose a new procedure to perform the trend surface models esti-
mation which protect the conclusions against the in�uence of outliers. The idea would be to combine
the trend surface models estimation using iterative least squares (taking into account the dependence
structure) with the use of pseudo-data (obtained by a previous smoothing procedure) to mitigate the
e�ect of outliers (see Akritas (1996) or Cristobal et al. (1987)).

In this chapter, the trend surface models estimation is reviewed, as well as the use of �pseudo-data�
in order to mitigate the e�ect of outliers in regression. We will also propose a procedure of trend surface
models estimation with outliers. A simulation study is also performed, as well as illustration with real
data. Some discussion on the possible �aws of the method and issues for further study will be also
mentioned.

35
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3.1. Trend surface models

A widely used class of regression models in the spatial setting is the so called trend surface models
(see Zimmerman and Stein (2010)), where the trend is considered as a polynomial function of the
geographic coordinates (planar and quadratic, for instance).

Consider a random spatial process {Z(s), s ∈ D}. Assume that the behavior of the process is
described by the following spatial regression model:

Z(s) = X(s)′β + ε(s), s ∈ D, D ⊂ Rd, (3.1)

where X(·) ∈ Rq denote the spatial regressors that may be geographic coordinates and m(·) = X(·)′β
is a linear trend component (the superscript ′ denotes the transpose), which captures the large-scale
variability of the process. ε(·) denotes the random component and shows the local behavior or small-
scale evolution. The error process ε(·) is assumed to be zero-mean and second-order stationary.

When the mean functionm(·) is taken to be just a polynomial function of the geographic coordinates
(as in the regression model given in (3.1)), then such models are called trend surface models. For
example, the �rst -order (planar) and second -order (quadratic) polynomial trend surface models for
the mean of a two-dimensional process are respectively as follows, where s = (s1, s2):

m(s) = β0 + β1s1 + β2s2, (3.2)

m(s) = β0 + β1s1 + β2s2 + β11s
2
1 + β12s1s2 + β22s

2
2. (3.3)

Using a full qth-order polynomial (a polynomial that includes all pure and mixed monomials of
degree less than q) is recommended because this will ensure that the �tted model is invariant to the
choice of origin and orientation of the coordinate system.

3.1.1. Estimation

Consider a random spatial process {Z(s), s ∈ D} and suppose that its behaviour is described by the
spatial regression model given in (3.1). Assume that ε(·) is a zero-mean and second-order stationary
process.

For modelling the behaviour of the process, as well as for model-based spatial prediction, it is needed
to know the structure of the process, that is, we must have an estimation of the components. Therefore,
two sets of parameters must be estimated: β ∈ Rq, from the trend part and θ, the parameters from the
dependence structure. Usually, θ includes the range, the point variance (sill) and possibly the nugget
e�ect (microscale variation).

With the decomposition given in (3.1), it is not clear which structure (�rst order or second order)
must be estimated �rst. In practice, iterative procedures are a solution: estimate trend, compute
residuals, estimate dependence and adjust trend. Maximum Likelihood methods overcome this problem,
at the cost of specifying a full parametric model.

In trend surface models, the method of iteratively least squares is often used to approximate the
model coe�cients (see Diggle and Ribeiro (2007)). Nevertheless, this procedure is not very robust in
the presence of outliers in the response.

Crujeiras and Van Keilegom (2010) proposed an estimation procedure which is a generalization
of the method suggested by Gallant and Goebel (1976) in the context of temporally autocorrelated
errors. Their purpose is to adapt the method suggested by Gallant and Goebel (1976) to a more general
setting, for a spatial regression model (non-linear, our case will be linear) with spatially dependent
errors, but without imposing any structural assumption.

The estimation procedure consists on three steps: (1) unweighted least squares estimation of β,
ignoring the dependence structure of the errors; (2) estimation of the variance-covariance matrix of
the errors based on the estimator of β found in the �rst step; (3) weighted least squares estimation of
β, taking the dependence structure of the errors into account.
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3.2. Outliers in regression. The use of �pseudo-data�

The idea of use �pseudo-data� in regression to mitigate the e�ect of certain complexities in data
has been suggested by Akritas (1996) and Cristobal et al. (1987). In this last reference, with the goal
of robustifying the estimation procedure, while Akritas (1996) proposes a procedure which works when
incomplete data occur due to censoring and truncation.

Both procedures basically consists in replacing the observed responses by a nonparametric estima-
tor. Let Y be the variable of interest, and let X denote an observable covariate. It will be assumed
that X is univariate. The idea proposed by Akritas (1996) is to associate with each observed covariate
value xi an estimate m̂(xi) of location of the conditional distribution of the response variable Y given
X = Xi. For each covariate value xi, m̂(xi) = T (F̂i), where F̂i is an estimator of the distribution
(product-limit estimator for the cases considered in Akritas (1996)), evaluated from the response va-
riable of the data points that belong to the window around Xi, and T is a functional (similar to a
trimmed mean) speci�ed by (3.5) and (3.6) in next sections.

3.3. Outliers in trend surface models

The usual way for estimating trend surface models (by iterated least squares), as well as the proposal
by Crujeiras and Van Keilegom (2010) for non linear trends with spatial dependence, are not robust in
the presence of outliers in the response. Now, taking into account the use of �pseudo-data�, we propose
a new procedure of trend surface models estimation which mitigates the e�ect of outliers in data.

Let's recall some notation. Consider a Gaussian spatial process {Z(s), s ∈ D} and assume that the
large-scale and small-scale behaviour of Z(s) is described by the spatial regression model

Z(s) = X(s)′β + ε(s), s ∈ D, D ⊂ Rd, (3.4)

where X(·) ∈ Rq denotes the spatial regressors given by geographic coordinates in trend surface
models, and m(·) = X(·)′β is a linear trend component, which captures the large-scale variability of
the process. ε(·) denotes the random component and shows the local behavior or small-scale evolution.
The error process ε(·) is assumed to be zero-mean and second-order stationary, so in particular intrinsic
stationary. Hence the dependence structure may be described from the variogram function, which is
given by

2γ(u) = Var(ε(s+ u)− ε(s)), u ∈ Rd, s, s+ u ∈ D.
Consider n locations {s1, . . . , sn} on the region D. The set of random variables corresponding with

those locations will be represented by {Z(s1), . . . , Z(sn)} and the process will be described by the
spatial regression model Z(si) = X(si)β + ε(si), i = 1, . . . , n. We denote Z = (Z(s1), · · · , Z(sn))′,
m = (m(X(s1)), . . . ,m(X(sn)))′.

Based on a sample, two sets of parameters must be estimated: β ∈ Rq, from the trend part and
θ, the parameters from the dependence structure. Usually, θ includes the range, the point variance
(sill) and the nugget e�ect (microscale variation). Although the goal is the estimation of two sets of
parameters, the estimation β is essential if we would like to do model based prediction.

The estimation procedure consists on four steps: (1) obtain a nonparametric estimator for the vector

of observations Ẑ = (Ẑ(s1), · · · , Ẑ(sn)), considering Ẑ = m̂, where m̂ = (m̂(X(s1)), . . . , m̂(X(sn)))′

(in the geostatistical context, m̂ may be written as m̂ = (m̂(s1), . . . , m̂(sn))′ ); (2) based on the �new

response� Ẑ (pseudo-data), obtain an ordinary least squares estimator for β, ignoring the dependence
structure of the errors; (3) estimate the covariance matrix of the errors based on the residuals from

the trend parameter estimator derived in step (2); (4) based on the �pseudo-data� Ẑ, weighted least
squares estimation of β, taking the dependence structure of the errors, obtained in (3), into account.

We now explain each of these four steps in detail. First, a vector of pseudo-observations is construc-
ted, Ẑ = (Ẑ(s1), · · · , Ẑ(sn))′ = (m̂(s1), . . . , m̂(sn))′. Here m̂(si) = T (F̂i) (see Akritas (1996)), where
F̂i is an estimator of the conditional distribution function of Z(si) given the coordinates si and T (·)
is a functional which for any distribution function F is determined by
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T (F ) =

∫ 1

0

F−1(s)J(s)ds, (3.5)

where J(·) is a given score function satisfying
∫ 1

0
J(s)ds = 1. Let 0 ≤ α1 < α2 < α3 < α4 ≤ 1, with

α2 − α1 = α4 − α3, and de�ne the function J(·) as

J(s) =
1

α4 − α2



0 s < α1

2

(
s− α1

α2 − α1

)2

α1 ≤ s <
α1 + α2

2

1− 2

(
s− α2

α1 − α2

)2
α1 + α2

2
≤ s < α2

1 α2 ≤ s < α3

1− 2

(
s− α3

α4 − α3

)2

α3 ≤ s <
α3 + α4

2

2

(
s− α4

α4 − α3

)2
α3 + α4

2
≤ s < α4

0 α4 < s.

(3.6)

The score function is a�ected by the factor 1/(α4 − α2). Therefore, if the di�erence between α4

and α2 is small, then the function takes large values (or reciprocally). Moreover, it is symmetric about
(α1 + α4)/2. Figure 3.1 plots this function considering di�erent values of its parameters.

This function induces the value zero in the integrand of the expression (3.5) when s < α1 and
α4 < s. If α2 ≤ s < α3 then the contribution of the score function to the integrand would be constant.
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Figure 3.1: J score function with α1 = 0.2, α2 = 0.4, α3 = 0.6 and α4 = 0.8 (full line), with α1 = 0.1,
α2 = 0.2, α3 = 0.8 and α4 = 0.9 (dashed line), and with α1 = 0.1, α2 = 0.2, α3 = 0.3 and α4 = 0.4
(dotted line).

Let Fi(z) = F (z | si) denote the conditional distribution function Z(si) given the coordinates si.
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Based on a sample of size n, let

F̂i(z) = F̂ (z | si), i = 1, . . . , n,

denote the estimation of Fi(·). The estimation of the conditional distributional will be of the nearest
neighbor kind. Following Stone (1977) consider estimators F̂i(·) of the form

F̂i(z) =

n∑
j=1

Wj(si)δZ(sj), i = 1, . . . , n,

where δZ(sj) = IZ(sj)≤z is a point mass at Z(sj) andWj(si) is a weight attached to the j−th observation
out of the �rst n observations, which depends on s1, . . . , sn and on n but not on the attribute values.
Let cj , 1 ≤ j ≤ n be a triangular matrix of real numbers. The nearest neighbor weights are Wj = cr(j),
where r(j) is the rank of ‖sj − si‖. Nearest neighbors weights are called k nearest neighbor weights
(k-nn) when for some k, j > k implies cj = 0. Another alternative for the estimation of the conditional
distribution, in the current setting, is the consideration of a normal distribution, estimating the mean
and standard deviation using a neighborhood criterion. This will be the option used in the simulations
presented below.

Then the vector of pseudo-observations Ẑ = (Ẑ(s1), · · · , Ẑ(sn))′ will be Ẑ = m̂, where m̂ =
(m̂(s1), . . . , m̂(sn))′ = (T (F̂1), . . . , T (F̂n))′. This will be use as pseudo-response in next steps to miti-
gate the e�ect of outliers.
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Figure 3.2: Sample data points with symbol area proportional to atributtes concentration (left) and to
pseudo-data (right). Sample size: 121. Simulation results for a regular Gaussian spatial process whose
trend is given by (3.2) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1.

A sample of size 121 is simulated regularly from a Gaussian spatial process considering the unit
square as support, whose trend is given by (3.2) with β0 = 2, β1 = 1 and β2 = 1. The dependence
structure is explained by a exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. The
observation 120 is modi�ed with the value of median+3IQR, where IQR denotes the interquartile range
of the attributes. Figure 3.2 plots the sample points (left) and the corresponding pseudo-data (right).
We should also notice that simulation of spatial processes with trend and dependence components may
result in samples where both variability contributors may be confused. This fact complicates notably
the design of simulation scenarios. In this case, if the range was chosen larger than one (hence it is
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greater than any of the distances in the unit square), there would be a strong dependence. To avoid
this, we consider range value 0.1. It can be seen that the new pseudo responses mitigate the e�ect of
outliers existing in data. Note that k = 4 and α1 = 0, α2 = 0.1, α3 = 0.9 and α4 = 1 are chosen in the
J(·) score function given in (3.1).

Now, using ordinary least squares using pseudo-data, from the linear regression of Ẑ over X, the
vector βOLSP is obtained as follows, ignoring the dependence structure of the errors. Here X denotes
X = (X(s1), . . . , X(sn))′.

βOLSP = argmin
β

(Ẑ−Xβ)′(Ẑ−Xβ). (3.7)

After obtaining the ordinary least squares estimation of β, the estimation of the variance-covariance
matrix of the errors is performed, based based on the residuals: ε̂(si) = Z(si) − X(si)βOLSP , i =
1, . . . , n. Given that ε(·) is a zero-mean and second-order stationary process, so in particular intrinsic
stationary, the dependence structure may be described from the variogram function.

Given that errors are not used observed then the structure of dependence is estimated from the
residuals of the regression (ε̃(s1), . . . , ε̃(sn)). The classical non parametric estimator for the variogram
is the empirical variogram (see Section 1.3), that for regression residuals is de�ned as

2γ̂(u) =
1

|N(u)|
∑

(i,j)∈N(u)

(ε̃(si)− ε̃(sj))2, (3.8)

where |N(u)| is the number of pairs in N(u) ≡ {(i, j) : si − sj = u}. Cressie and Hawkins (1980)
propose a more robust approach to the estimation of the variogram,

2γ̄(u) =
1

(0.457 + 0.494/|N(u)|)

 1

|N(u)|
∑

(i,j)∈N(u)

|ε̃(si)− ε̃(sj)|1/2


4

. (3.9)

Variogram estimators are not generally valid, since they fail to satisfy the conditional negative
de�niteness property, or it is not easy to prove that this condition holds. However, nonparametric
variogram estimators can be used as pilots for �tting a valid parametric model, by minimizing a
certain criterion, such as least squares.

Suppose that a valid parametric variogram family is given by {2γθ : 2γ(·) = 2γ(·;θ),θ ∈ Θ}.
The parameter vector θ can be estimated by using a weighted least squares approach, comparing the
functions at lags u1, . . . ,uK for some K <∞:

θ̂LS = argmin
θ∈Θ

Γ̂(θ)′W (θ)Γ̂(θ), (3.10)

where Γ̂(θ) = (γθ(u1)−γ̂(u1), . . . , γθ(uK)−γ̂(uK))′ andW (θ) is an appropriate weight matrix. Ideally,
W (θ) = Cov(Γ̂(θ))−1 could be chosen, but it is not easy to �nd an expression for this covariance matrix,
even for quite simple estimators of the variogram. When the errors would be observed and when the em-
pirical estimator (3.8) or its robust version (3.9) is used, the expression for the covariance matrix of Γ̂(θ)
has been derived by Cressie (1985). It is a diagonal matrix with zero's everywhere except for variances
of 2γ̂(ul), l = 1, . . . ,K, on the diagonal, it is said W = W (θ) = diag{var[2γ̂(u1)], . . . , var[2γ̂(u1)]}.
Note that, since we will use the response, without mitigating the outliers, a robust variogram estima-
tor will be considered. A great simpli�cation is obtained by assuming that dependence structures are
functions only of the distance, that is to say, assume isotropy (u = ‖u‖). For choosing the number of
lags K, the recommendations from Journel and Huijbregts (1978) are followed, with K �tting only up
to half the maximum possible lag and considering only lags with |N |(u) larger than 30, and uK ≤ U/2,
where U = max{‖u‖ : N(u) > 0}.

Now, since the process ε(s) is second-order stationary, there is a function Cθ(·), the covariogram,
such that:

Cθ(u) = Cov(ε(s), ε(s+ u)) = σ2 − γθ(u) (3.11)
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which can be recovered from the variogram, and where σ2 is the variance of the spatial process. If
the second-order stationarity of the process does not hold, the covariogram Cθ(·) does not exists. In
practice, this assumption can be checked using the test proposed by Fuentes (2005), whose approach
is based on a spatial spectral analysis. Another problem is that sample covariances do not provide
unbiased estimators of the underlying covariances. A valid estimator of the covariogram Cθ(·) can be
obtained by plugging in (3.11) the corresponding estimator of the variogram and a suitable estimator
σ̂2 of the variance. In most parametric variogram families, the variance parameter can be identi�ed.
In case this parameter can not be explicitly obtained from the model, then (n− 1)−1

∑n
i=1(ε̃(si)− ¯̃ε)2

may be used as an estimator of the variance, where ¯̃ε denotes the average of the residuals.
Once the covariogram estimator has been obtained, consider the covariance matrix of the process

{ε(s1), . . . , ε(sn)}. This matrix is denoted by Σ and its entries are:

Σ(i, j) = Cθ(si − sj), i, j = 1 . . . , n.

This matrix can be estimated by Σ̂ = (Σ̂(i, j))ni,j=1, where Σ̂(i, j) = C
θ̂LS

(si − sj). Now, weighted
least squares estimation of β is performed using pseudo-data, taking the dependence structure of the
errors into account (contrary to the preliminary estimator βOLSP ):

βIGLSP = argmin
β

(Ẑ−Xβ)′Σ̂−1(Ẑ−Xβ). (3.12)

Since Σ̂ is an n× n symmetric and positive de�nite matrix, the Cholesky decomposition allows to
write:

Σ̂ = L̂L̂′,

where L̂ is a lower triangular n × n matrix. Then the estimator of the regression parameter vector
βIGLSP can be written also as follows:

βIGLSP = argmin
β

1

n
(L̂−1Ẑ − L̂−1Xβ)′(L̂−1Ẑ − L̂−1Xβ).

Note that although in the proposed method we consider a least squares procedure for the estimation
of the variogram, it could be replaced by any other pointwise consistent estimator.

A problem that arises is the construction of the third-step estimator for the dependence parameters,
for instance, by a least squares criterion as in (3.10) based on ε̂ = Z−XβIGLSP . When estimating the
variogram of a process based on residuals, the dependence structure in the data and the constraints
required in the least squares procedure have to be taken into account. Therefore, the two-stage esti-

mator of θ, obtained by replacing in the formula of θ̂LS the estimator βOLSP by βIGLSP , will share

with θ̂LS the same asymptotic properties, but the behavior on �nite samples may not be satisfactory,
see Gambolati and Galeati (1987).

3.4. Simulations

In order to study the performance of our procedure for trend surface models estimation with
outliers, we will carry out a simulation study considering di�erent scenarios. Firstly, we check the
correct performance of the use of pseudo-data in simple and multiple linear regression, in presence
of global outliers. This serves as a basis for proving the advantage of using pseudo-data to mitigate
the e�ect of outliers. Finally, we will explore our proposed procedure with di�erent con�gurations of
large-scale (trend) and small-scale (dependence) variabilities.

It should be also noted that, along this section, two di�erent procedures have been considered
for obtaining pseudo-data. The proposal by Cristobal et al. (1987) has been applied in Section 3.4.1.
with the aim of checking the e�ect without the presence of dependence. Nevertheless, the proposal
by Akritas (1996) is considered 3.4.2. for trend surface models. Some discussion about this choice is
presented in Section 3.5, jointly with some further issues which deserver a deeper investigation.
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3.4.1. The use of pseudo-data in regression models

Consider a simple linear regression model:

Yi = β0 + β1xi + εi, i = 1, . . . , n, (3.13)

being ε1, . . . , εn ∈ N(0, σ2), independent. In this case Y andX denote the response and the explanatory
variables, respectively. Data from such a model will be generated, and an outlier will be introduced. A
comparison between estimators obtained by ordinary least squares and by ordinary least squares using
pseudo-data in the response is carried out. The pseudo-data are obtained from a Nadaraya-Watson
regression estimator, as proposed by Cristobal et al. (1987). Bandwidth is selected by cross-validation.

A data sample of size 100 is simulated from a uniform distribution in (0, 1), that would correspond
with the explanatory variable X. The values of the theoretical coe�cients will be β0 = 2 and β1 = 1,
and the errors ε1, . . . , εn ∈ N(0, 0.16). The response observation associated with the maximum value
of the variable X (hence with a high leverage) is modi�ed with the value median(Y ) + 3IQR, where
IQR denotes the interquartile range of the response variable, a value excessively high for the simulated
sample, so this would be a global outlier and by the location of the X value also as an in�uential point.

Mean, median and mean squared error from 100 Monte Carlo experiments are reported for the
trend estimators based on ordinary least squares (OLS) and ordinary least squares using pseudo-data
(OLSP) in the Table 3.1. We use the notation OLS, OLSP and MSE from here on along the text. For
both coe�cients, it can be seen that estimates are better when OLSP is used and the MSE is relatively
smaller using pseudo-data.

OLS OLSP

β0 = 2 β1 = 1 β0 = 2 β1 = 1

Mean 1.9847 1.0481 1.9952 1.0233

Median 1.9842 1.0538 1.9999 1.0247

MSE 0.0053 0.0185 0.0048 0.0154

Table 3.1: Sample size: 100. Simulation results for a simple linear regression (3.13) considering a uniform
distribution in (0,1) as explanatory variableX, β0 = 2 and β1 = 1, and errors N(0, 0.16). Mean, median
and MSE from 100 Monte Carlo experiments are reported for the trend estimators based on ordinary
least squares (OLS) and ordinary least squares using pseudo-data (OLSP).

Now, we check the correct performance of the use of pseudo data (in presence of outliers) from
the coe�cients regressors estimation in multiple linear regression models. The dimension d = 2 is
considered, because it equates to the dimension of geographical coordinates in the spatial case. So, we
consider a model

Yi = β0 + β1xi,1 + β2xi,2 + εi i = 1, . . . , n, (3.14)

being ε1, . . . , εn ∈ N(0, σ2), independent. In this case Y is the response variable, while X1 and X2 are
the explanatory variables. Again, we compare the estimators obtained by ordinary least squares and
by ordinary least squares using pseudo-data in the response.

Two samples of size 100 are simulated from a uniform distribution in (0, 1), which would correspond
with the explanatory variables X1 and X2. The values of the theoretical coe�cients will be β0 = 1,
β1 = 2 and β2 = 1 , and the errors ε1, . . . , εn ∈ N(0, 0.16). The response observation associated with
the maximum of variables X1 or X2 is modi�ed with the value median(Y )+3IQR, where IQR denotes
the interquartile range of the response variable.
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Mean, median and mean squared error from 100 Monte Carlo simulations are reported for the
trend estimators based on ordinary least squares (OLS) and ordinary least squares using pseudo-data
(OLSP) in the Table 3.2. For both coe�cients, estimates are better when OLSP is used. For β0, the
MSE is relatively smaller if we use pseudo-data. However, for β1 and β2, the MSE is slightly smaller
with usual procedure..

OLS OLSP

β0 = 1 β1 = 2 β2 = 1 β0 = 1 β1 = 2 β2 = 1

Mean 0.9699 2.0557 1.0613 0.9801 2.0520 1.0574

Median 0.9713 2.0738 1.0816 0.9804 2.0670 1.0803

MSE 0.0128 0.0386 0.0290 0.0125 0.0390 0.0302

Table 3.2: Sample size: 100. Simulation results for a multiple linear regression (3.14) considering uniform
distributions in (0,1) as explanatory variables X1 and X2, β0 = 1, β1 = 2 and β2 = 1, and errors
N(0, 0.16). Mean, median and MSE from 100 Monte Carlo experiments are reported for the trend
estimators based on ordinary least squares (OLS) and ordinary least squares using pseudo-data (OLSP).

3.4.2. The use of pseudo-data in trend surface models

In order to explore the performance of our proposed method, we will carry out a simulation study
considering di�erent scenarios for the spatial regression model Z(s) = X(s)′β + ε(s), s ∈ D, where
s = (s1, s2). Remember that X(·) ∈ Rq denotes the spatial regressors that are geographic coordinates
in our case, andm(·) = X(·)′β is a linear trend component, which captures the large-scale variability of
the process. ε(·) denotes the random component and shows the local behavior or small-scale evolution.

Di�erent comparisons in terms of the estimators of the linear trend component are made. Consider
the estimator of β obtained using ordinary least squares (OLS) from the linear regression of Z over X.
Analogous to those realized for the estimation given in (3.7), no type of dependence structure will be
considered in the computation of this estimator. This vector, let us call it βOLS , is obtained as follows

βOLS = argmin
β

(Z−Xβ)′(Z−Xβ). (3.15)

The second estimator is the one which is usually computed in trend surface model estimation,
following an iterative least squares procedure, which in the last step, yields a generalized least squares
estimator based on estimated dependence parameters. This estimator is given by

βIGLS = argmin
β

(Z−Xβ)′Σ̂−1(Z−Xβ). (3.16)

Remember that the matrix Σ̂ is an estimator of the covariance matrix of the process {ε(s1), . . . , ε(sn)},
and its entries are Σ̂(i, j) = C

θ̂LS
(si − sj), where θ̂LS are the dependence parameters estimated from

OLS residuals.
We compare the estimator obtained based on ordinary least squares βOLS (without use pseudo-

data and without suppose any type of dependence structure), the estimator obtained based on ordinary
least squares βOLSP (using pseudo-data and without imposing any type of dependence structure), the
estimator obtained based on generalized least squares βIGLS (without using pseudo-data, but taking
into account the dependence structure of the errors) and the estimator obtained based on generalized
least squares βIGLSP using pseudo-data and taking into account the dependence structure of the errors,
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the one proposed in this work. Speci�cally, we compare the estimators given in (3.7), (3.12), (3.15)
and (3.16).

Data samples with size 121 are generated from an isotropic Gaussian spatial process observed at
regularly spaced locations {s1, . . . , sn} in the unit square. The �rst -order (planar) polynomial trend
surface model for the mean of a two-dimensional process, where s = (s1, s2), is considered:

m(s) = β0 + β1s1 + β2s2. (3.17)

Di�erent values of the parameters β0, β1 and β2 are chosen. We have also considered di�erent
isotropic dependence structures: spherical covariogram given in (1.11) and exponential covariogram
given in (1.13), with di�erent values of their parameters. No nugget e�ect is considered in the simulation
scenarios. Moreover, for the compute the pseudo-data, k = 4 will be used to estimate the conditional
distribution.

SCENARIO 1: β = (2, 1, 1)′ and exponential covariogram with weak structure of depen-

dence

Take β0 = 2, β1 = 1 and β2 = 1, and assume that the dependence structure is modeled from a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. The observation 120 (located
in the top right corner of the square) is modi�ed with the value of the own observation adding 3IQR,
where IQR denotes the interquartile range of the observed values of the process. In this case we choose
the values of α1 = 0, α2 = 0.1, α3 = 0.9 and α4 = 1 in the score function J(·) given in (3.1).

OLS OLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9374 1.0716 1.0865 1.9970 1.0057 1.0113

Median 1.9405 1.0807 1.0765 1.9963 0.9965 0.9978

MSE 0.0278 0.0439 0.0374 0.0245 0.0398 0.0302

IGLS IGLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9439 1.0635 1.0884 2.0032 1.0013 1.0065

Median 1.9548 1.0881 1.0895 1.9963 0.9915 0.9984

MSE 0.0241 0.0367 0.0365 0.0245 0.0365 0.0278

Table 3.3: Sample size: 121. Simulation results for a regular Gaussian spatial process whose trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares without using pseudo-data
(IGLS) and generalized least squares using pseudo-data (IGLSP).
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Table 3.3 presents mean, median and MSE from 100 Monte Carlo experiments for the trend es-
timators based on ordinary least squares (OLS), ordinary least squares using pseudo-data (OLSP),
generalized least squares(IGLS) and generalized least squares using pseudo-data (IGLSP). All esti-
mates are better when we use OLSP instead of OLS, and the MSE is smaller if we use pseudo-data.
If we consider the dependence structure, estimates are better when we use IGLSP instead of IGLS.
Finally, a comparison between OLSP and IGLSP is realized. Again, all estimates are better when we
use IGLSP instead of OLSP, and the MSE is smaller if we consider the dependence structure too. As
a conclusion, in all comparisons estimates obtained from IGLSP are better. Note that, although we do
not show the estimations of parameters of the variogram in the Table 3.3, they have been also taken
into account. If we do not consider the pseudo-data, the mean of 100 Monte Carlo outcomes of the
variance is 0.0988, while it is 0.0983 if we consider pseudo-data. As for the estimation of the range, its
estimate is 0.2150, being smaller 0.2131 if we use pseudo-data. Recall that the theoretical values are
ce = 0.1 and ae = 0.1, so in both cases the estimation of the range is not good.

Histograms of the IGLS and IGLSP estimates are plotted in the Figure 3.3, in top and bottom
row, respectively. Just by looking and the plots, it is clear that estimates (IGLS and IGLSP) seemed
centred around the theoretical values.
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Figure 3.3: Histograms of the estimates of IGLS (toprow) and IGLSP (bottonrow) with Gaussian kernel
density estimator (the method of Sheather and Jones to select the bandwidth is used), from 100 Monte
Carlo simulations of a Gaussian spatial process (sample size: 121) with exponential covariogram (1.13)
and parameters ce = 0.1 and ae = 0.1; and β0 = 2, β1 = 1 and β2 = 1.

Now, a sample of size 400 is simulated regularly from a Gaussian spatial process considering the
same trend and the same covariance function than in the previous simulations. The observation 400
(located in the top right corner of the square) is modi�ed with the value of the observation plus 3IQR,
where IQR denotes the interquartile range of the observed values of the process. Again, we choose the
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values of α1 = 0, α2 = 0.1, α3 = 0.9 and α4 = 1 in the score function J(·) given in (3.1).

Results for this scenario are reported in Table 3.4. It can be observed that, in general, the mean
squared error of all estimators reduces with respect to the results with sample size 121. The IGLSP
estimator provides better results also in this case . Regarding the dependence parameter, the mean of
100 Monte Carlo outcomes of the variance is 0.0925, no matter if pseudo-data are considered. For the
estimation of the range, its estimate is 0.1967 with raw data, being smaller 0.1964 if we use pseudo-
data. For the range, it should be noted that better results are obtained when increasing the sample
size.

OLS OLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9674 1.0399 1.0382 1.9934 1.0091 1.0085

Median 1.9767 1.0370 1.0294 2.0007 1.0210 0.9933

MSE 0.0225 0.0358 0.0355 0.0217 0.0352 0.0339

IGLS IGLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.8932 1.1372 1.1303 2.0093 0.9959 0.9916

Median 1.8978 1.1202 1.1214 2.0007 1.0002 0.9855

MSE 0.0332 0.0491 0.0539 0.0217 0.0280 0.0297

Table 3.4: Sample size: 400. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares (IGLS) and generalized
least squares using pseudo-data (IGLSP).

SCENARIO 2: β = (2, 1, 1)′ and spherical covariogram with weak dependence structure

This new scenario is a modi�ed version of the previous one: instead of the exponential covariogram,
the spherical covariogram given in (1.11) is considered (with the same value of parameters). Note that
the same parameters for the trend component are chosen too. Again, we choose the values of α1 = 0,
α2 = 0.1, α3 = 0.9 and α4 = 1 in the score function J(·) given in (3.1).

Mean, median and MSE from 100 Monte Carlo experiments are reported for the four estimators, as
shown the Table 3.5. In this case, the use of pseudo-data mitigate the e�ect of outliers for all coe�cients
of trend component (we are comparing OLS with OLSP and IGLS with IGLSP). Furthermore, if we
consider the dependence structure, we may observe that the estimates obtained by IGLS and IGLSP
are similar than those obtained by OLS and OLSP, respectively. The same is true for the MSE. In all
the comparisons, estimates obtained from IGLSP are better.
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OLS OLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9360 1.0751 1.0884 1.9951 1.0111 1.0129

Median 1.9401 1.0775 1.0881 2.0015 1.0038 1.0074

MSE 0.0097 0.0152 0.0149 0.0059 0.0101 0.0074

IGLS IGLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9360 1.0753 1.0893 1.9956 1.0108 1.0128

Median 1.9402 1.0798 1.0863 2.0015 1.0039 1.0075

MSE 0.0098 0.0152 0.0152 0.0059 0.0101 0.0074

Table 3.5: Sample size: 121. Simulation results for a regular Gaussian spatial process which trend is
given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a spherical
covariogram (1.11) with parameters cs = 0.1 and as = 0.1. Mean, median from 100 Monte Carlo
experiments are reported for the trend estimators based on OLS, and ordinary least squares using
pseudo-data (OLSP), generalized least squares (IGLS) and generalized least squares using pseudo-
data(IGLSP).

SCENARIO 3: β = (2, 1, 1)′ and exponential covariogram with higher variance

Now, consider that the dependence structure is modeled again by an exponential covariogram
(1.13), but the value of the variance is three times larger, ce = 0.3. The values of the parameters of
the trend component chosen are the same that in the above cases, β0 = 2, β1 = 1 and β2 = 1. The
observation 120 (top right corner of the square) is modi�ed with the value of the observation plus
3IQR, where IQR denotes the interquartile range of the observed values of the process. In this case
we choose the values of α1 = 0.3, α2 = 0.4, α3 = 0.5 and α4 = 0.6 in the score function J(·) given in
(3.1).

Table 3.6 shows mean, median and MSE from 100 Monte Carlo outcomes. The correct performance
of the use of pseudo-data may be observed again (if we compare OLS with OLSP and IGLS with
IGLSP). Taking into account the dependence structure of the errors, IGLS provides best results than
OLS. As for IGLSP, this method leads to better estimates than OLSP. In all the comparisons, estimates
obtained from IGLSP are better. If we do not consider the pseudo-data, the mean of 100 Monte Carlo
replies of the variance is 0.2820, while it is 0.2806 if we consider them. As for the estimation of the
range, its estimate is 0.1156, being smaller (0.1150) if we use pseudo-data.
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OLS OLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9190 1.0960 1.1103 1.9258 1.0169 1.0139

Median 1.9271 1.1022 1.1118 1.9371 1.0118 0.9967

MSE 0.0230 0.0370 0.0328 0.0225 0.0294 0.0218

IGLS IGLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9192 1.0963 1.1113 1.9261 1.0168 1.0139

Median 1.9303 1.1042 1.1128 1.9371 1.0126 0.9967

MSE 0.0230 0.0370 0.0334 0.0225 0.0293 0.0219

Table 3.6: Sample size: 121. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.3 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares (IGLS) and generalized
least squares using pseudo-data (IGLSP).

Now, a sample of size 400 is simulated regularly from a Gaussian spatial process considering the
same trend and the same covariance function than in the previous simulation. The observation 400
(located in the top right corner of the square) is modi�ed with the value of the observation plus 3IQR,
where IQR denotes the interquartile range of the observed values of the process. Again, we choose the
values of α1 = 0.3, α2 = 0.4, α3 = 0.5 and α4 = 0.6 in the score function J(·) given in (3.1).

Table 3.7 shows median and MSE from 100 Monte Carlo experiments. Once again, it can be seen
that the MSE of all estimators is smaller when the sample size is larger. The same conclusion can be
drawn regarding the comparison of the estimates of β1 and β2. However, we cannot conclude the same
for the estimation of β0. In this case, the best results seems to be obtained by OLS, which indeed
requires further investigation.

The mean of 100 Monte Carlo replies of the variance is 0.3000, not a�ecting to the use or not of
pseudo-data. As for the estimation of the range, its estimate is 0.1030, the same for both cases too.
Better conclusion can be drawn regarding the behaviour for increasing sample size.

We have consider that the dependence structure is stronger in terms of the variance. However,
we may also consider that the dependence structure is stronger from the range. If we consider that
the dependence structure is explained by a exponential covariogram (1.13) with parameters ce = 0.1
and ae = 0.3 instead of by a exponential covariogram (1.13) with parameters ce = 0.3 and ae = 0.1,
then the results are similar, for this reason we omit them. Note that, in this case we should chose the
parameters α1 = 0, α2 = 0.05, α3 = 0.95 and α4 = 1 in the J(·) function.
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OLS OLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9629 1.0447 1.0474 1.9328 1.0077 1.0098

Median 1.9639 1.0464 1.0434 1.9276 1.0227 1.0138

MSE 0.0127 0.0196 0.0209 0.0166 0.0189 0.0192

IGLS IGLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 1.9416 1.0734 1.0717 1.9371 1.0050 1.0047

Median 1.9399 1.0669 1.0756 1.9276 1.0121 1.0118

MSE 0.0145 0.0216 0.0245 0.0166 0.0183 0.0187

Table 3.7: Sample size: 400. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.3 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares (IGLS) and generalized
least squares using pseudo-data (IGLSP).

SCENARIO 4: β = (2, 3, 2)′ and exponential covariogram with a weak dependence struc-

ture

Finally, consider that the dependence structure is modeled by the exponential covariogram (1.13)
with parameters ce = 0.1 and ae = 0.1. The values of the parameters of the trend component chosen are
larger that in the above cases, β0 = 2, β1 = 3 and β2 = 2. The observation 120 (top right corner of the
square) is modi�ed with the value of the observation plus 3IQR, where IQR denotes the interquartile
range of the observed values of the process. In this case we choose the values of α1 = 0.2, α2 = 0.3,
α3 = 0.5 and α4 = 0.6 in the score function J(·) given in (3.1).

Results are shown in Table 3.8. The correct performance of the pseudo-data may be observed again
(if we compare OLS with OLSP and IGLS with IGLSP). Taking into account the dependence structure
of the errors, for all estimates IGLSP provides best results than IGLS. As for IGLSP, this method leads
to better estimates than OLSP for β0, but not for β1 and β2, although results are quite similar. This is
because, the dependence structure is weaker and the values of the parameters of the trend component
are large, therefore the dependence structure is harder to capture. Note that, these di�erences are
small. Moreover, if we do not consider the pseudo-data, the mean of 100 Monte Carlo outcomes of the
variance is 0.1123, while it is smaller if we consider them, 0.1100. As for the estimation of the range,
its estimate is 0.1216, being also smaller if we use pseudo-data, 0.1189.
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OLS OLSP

β0 = 2 β1 = 3 β2 = 2 β0 = 2 β1 = 3 β2 = 2

Mean 1.8523 3.1708 2.2079 1.9528 2.9179 1.9740

Median 1.8586 3.1723 2.1994 1.9584 2.9167 1.9627

MSE 0.0275 0.0391 0.0501 0.0079 0.0166 0.0080

IGLS IGLSP

β0 = 2 β1 = 3 β2 = 2 β0 = 2 β1 = 3 β2 = 2

Mean 1.8518 3.1713 2.2108 1.9551 2.9149 1.9727

Median 1.8577 3.1755 2.2001 1.9584 2.9154 1.9624

MSE 0.0277 0.0392 0.0515 0.0079 0.0170 0.0081

Table 3.8: Sample size: 121. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 3 and β2 = 2. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares (IGLS) and generalized
least squares using pseudo-data (IGLSP).

Now, a sample of size 400 is simulated regularly from a Gaussian spatial process considering the
same trend and the same covariance function than in the previous simulation. The observation 400
(located in the top right corner of the square) is modi�ed with the value of the observation plus 3IQR,
where IQR denotes the interquartile range of the observed values of the process. Again, we choose the
values of α1 = 0.3, α2 = 0.4, α3 = 0.5 and α4 = 0.6 in the score function J(·) given in (3.1).

Table 3.9 shows mean, median and MSE from 100 Monte Carlo experiments. Once again, it can
be seen that the MSE of all estimators is smaller when the sample size is bigger. The same conclusion
can be drawn regarding the comparison of the estimates of β0, β1 and β2 when increasing the sample
size.

If we do not consider the pseudo-data, the mean of 100 Monte Carlo outcomes of the variance is
0.1017, while it is smaller if we consider them, giving 0.1015. As for the estimation of the range, its
estimate is 0.1032, which continues being also smaller than if we use pseudo-data 0.1030.
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OLS OLSP

β0 = 2 β1 = 3 β2 = 2 β0 = 2 β1 = 3 β2 = 2

Mean 1.9411 3.0717 2.0733 1.9337 2.9781 1.9917

Median 1.9387 3.0728 2.0704 1.9299 2.9864 1.9908

MSE 0.0073 0.0111 0.0116 0.0084 0.0068 0.0065

IGLS IGLSP

β0 = 2 β1 = 3 β2 = 2 β0 = 2 β1 = 3 β2 = 2

Mean 1.9032 3.1202 2.1192 1.9440 2.9660 1.9828

Median 1.9036 3.1116 2.1159 1.9299 2.9717 1.9830

MSE 0.0133 0.0202 0.0209 0.0084 0.0072 0.0065

Table 3.9: Sample size: 400. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares (IGLS) and generalized
least squares using pseudo-data (IGLSP).

3.5. Some discussion and open problems

To perform our proposed of trend surface model estimation with outliers, it is necessary to go
through di�erent steps detailed in the Section 3.3. Each one of these steps contains some estimations.
In this section we review possible not �xed parameters that may have an impact in the estimation
procedure, such as those used to compute the pseudo-data. We also contemplate some open problems
including: some extensions of the procedure and the use of our proposal in kriging, among others.

Tuning parameters for computing the pseudo-data

To obtain the pseudo-data (remember that they are obtained in a non parametric way), it is
necessary to estimate the expression given in (3.5), which implies using a score function J(·) and the
estimation of the conditional distribution function.

• The selection of alpha for the J function

In the simulation study performed in the Section 3.4.2., for each particular simulation, we have
considered �xed values for the parameters α1, α2, α3 and α4. The choice of these parameters
may in�uence in the procurement of pseudo-data. Let us see an example.

Considering a sample size 121 regularly simulated from a Gaussian spatial process whose trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1, with exponential covariogram (1.13) and
parameters ce = 0.1 and ae = 0.1. As usual, the observation 120 is modi�ed with the value adding
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3IQR. Figure 3.4 shows scatterplots of the pseudo-data against data, considering di�erent values
for the parameters of the score function J(·): α1 = 0, α2 = 0.1, α3 = 0.9 and α4 = 1 (left);
α1 = 0.3, α2 = 0.4, α3 = 0.6 and α4 = 0.7 (center); and α1 = 0.3, α2 = 0.35, α3 = 0.4 and
α4 = 0.7 (right). The pseudo-data depend on each value of α1, α2, α3 or α4, but they directly
depend on the center of symmetry (α1 + α4)/2, see Figure 3.4 (left) and (center). The pseudo-
data obtained seem to be the same (they are di�erent in the fourth decimal), even though the
value of the parameters are di�erent. Bearing this issue in mind, the choice of the parameters α2

and α3 is important, because they provide a translation of the data, see Figure 3.4 (right).
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Figure 3.4: Sample size: 121. Regularly simulated data from a Gaussian spatial process whose trend is
given by (3.18) with β0 = 2, β1 = 1 and β2 = 1, with exponential covariogram (1.13) and parameters
ce = 0.1 and ae = 0.1. Scatterplots of the pseudo-data versus data considering di�erent values for the
parameters of the score function J(·). α1 = 0, α2 = 0.1, α3 = 0.9 and α4 = 1 (left), α1 = 0.3, α2 = 0.4,
α3 = 0.6 and α4 = 0.7 (center) and α1 = 0.3, α2 = 0.35, α3 = 0.4 and α4 = 0.7 (right).

IGLSP

α′ β0 = 2 β1 = 1 β2 = 1

(0, 0.1, 0.9, 1)′ 2.0032 1.0013 1.0064

(0.3, 0.4, 0.6, 0.7)′ 2.0032 1.0013 1.0064

(0.3, 0.35, 0.4, 0.7)′ 1.2766 0.6287 0.6300

Table 3.10: Sample size: 121. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Average values from 100
Monte Carlo experiments are reported for the trend estimator based on generalized least squares using
pseudo-data (IGLSP) considering di�erent values for the parameters of the score function J(·): α1 = 0,
α2 = 0.1, α3 = 0.9 and α4 = 1 (left); α1 = 0.3, α2 = 0.4, α3 = 0.6 and α4 = 0.7 (center); and α1 = 0.3,
α2 = 0.35, α3 = 0.4 and α4 = 0.7 (right). The vector α = (α1, α2, α3, α4)′.

Table 3.10 shows mean from 100 Monte Carlo experiments from the IGLSP estimator, considering
di�erent values for the parameters of the score function J(·). It can be seen that the values of
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the estimates in the two �rst cases are the same. As mentioned above, di�erences are found from
the fourth decimal �gure. We omit the MSE of each estimate because they are similar. For the
last case, the estimates are clearly more biased (downwards for all them), and its MSE is larger.
This issue requires further investigation.

• The selection of k for the conditional distribution

The number of k-nearest neighbors chosen to perform the estimation of the conditional distri-
bution function may also in�uence the pseudo-data. If we consider many k-nearest neighbors
then we are not very accurate with the estimation. That is because in spatial data close obser-
vations tend to be more similar than observations which are far apart. Therefore, if we consider
many k-nearest neighbors then we may chose observations which are not very similar or whose
dependence is not relevant. We should not chose too few either.
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Figure 3.5: Sample size: 121. Regularly simulated data from a Gaussian spatial process whose trend is
given by (3.18) with β0 = 2, β1 = 1 and β2 = 1, with exponential covariogram (1.13) and parameters
ce = 0.1 and ae = 0.1. Scatterplots of the data versus pseudo-dataconsidering di�erent k-nearest
neighbors: k = 2 (left), k = 4 (center) and k = 20 (right).

IGLSP

k β0 = 2 β1 = 1 β2 = 1

2 1.9796 1.0106 1.0017

4 2.0032 1.0013 1.0065

20 2.1720 0.8306 0.8367

Table 3.11: Sample size: 121. Simulation results for a regular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Average values from 100
Monte Carlo experiments are reported for the trend estimator based on generalized least squares using
pseudo-data (IGLSP) considering di�erent values of k.

In the simulation study, we have considered k = 4. Given that simulations were realized regularly
in the unit squared, we are chosen as nearest neighbors the north, south, east and west of each
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observation, except which are in the boundary of the unit squared. If we considerer for example
k = 2, then the estimates obtained by our procedure are not better. The same applies when, for
example k = 20 is chosen. Below, the e�ect of the k will be shown graphically.

With a sample size of 121, considering the unit square as support, data have been drawn regularly
taking the exponential model given in (1.13) as covariance function with ce = 1 and ae = 0.1, and
whose trend is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The observation 120 is modi�ed
with the value of the observation plus 3IQR. Figure 3.5 shows scatterplots of these data versus
pseudo-data, considering di�erent k-nearest neighbors chosen to realize the estimation of the
conditional distributional function, k = 2 (left), k = 4 (center) and k = 20 (right).

The estimates of IGLSP considering di�erent values of k are shown in the Table 3.11. It can be
observed that the estimates are clearly more biased when k = 20 is considered (upwards for β0
and downwards for β1 and β2).

Some improvements on the variogram estimation

In the method proposed. the variogram is computed based on residuals from a regression model. As
it is pointed out in Kim and Boos (2004), the empirical variogram based on residuals is seriously biased
downwards, implying an underestimation of the variance when considering the method in (3.10). Figure
3.6 shows histograms of the variance estimation (using pseudo-data) with Gaussian kernel density
estimator (the method of Sheather and Jones to select the bandwidth is used). 100 Monte Carlo
simulations from a Gaussian spatial process (sample size: 121 (left) and 400 (right)) with exponential
covariogram (1.13) and parameters ce = 0.1 and ae = 0.1; and β0 = 2, β1 = 1 and β2 = 1. The
authors monotonize the empirical variogram, applying the pool adjacent violators algorithm (see Kim
and Boos (2004)).
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Figure 3.6: Histograms of the estimates of the variance estimation (using pseudo-data) from 100 Monte
Carlo simulations of a Gaussian spatial process (sample size: 121 (left) and 400 (right)) with exponential
covariogram (1.13) and parameters ce = 0.1 and ae = 0.1; and β0 = 2, β1 = 1 and β2 = 1.

The case of irregularly spaced data

In the Section 3.4.2, all simulations were performed regularly from a Gaussian spatial process
considering as support the unit square. However, data may be drawn irregularly. We have also explore
some scenarios under irregular design, and one of them is reported in Table 3.12. At �rst sight, it
can be noticed that results are considerably worse than for the simulation scenarios presented in the



3.5. SOME DISCUSSION AND OPEN PROBLEMS 55

previous section. Results from OLS and IGLS are quite bad, whereas OLSP and IGLSP see, to try to
capture only the global e�ect β0.

This issue may seem to pose a drawback for the practical application of the proposal. However,
it should be mentioned that data coming from satellite measures are regularly spaced, and there are
many examples of such data. Nevertheless, the adaptation of the method for irregularly sampled data
is required. We could also like to point out a that a cornerstone here is the dependence parameters. If
we do not consider the pseudo-data, the mean of 100 Monte Carlo outcomes of the variance is 0.2836,
while it is 0.2878 if we consider pseudo-data. As for the estimation of the range, its estimate is 0.0432,
being larger 0.0436 if we use pseudo-data. Recall that the theoretical values are ce = 0.1 and ae = 0.1,
so in both cases the estimation of the variance and the range are not good.

OLS OLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 3.0067 -0.0081 0.0335 1.9959 0.0183 0.0272

Median 2.9835 -0.0381 0.0393 2.0038 0.0458 0.0372

MSE 1.0582 1.0846 1.0184 0.0953 1.1334 1.0990

IGLS IGLSP

β0 = 2 β1 = 1 β2 = 1 β0 = 2 β1 = 1 β2 = 1

Mean 3.0082 -0.0093 0.0332 1.9913 0.0247 0.0252

Median 2.9887 -0.0247 0.0318 2.0038 0.0437 0.0337

MSE 1.0619 1.0899 1.0202 0.0953 1.1142 1.1043

Table 3.12: Sample size: 121. Simulation results for a irregular Gaussian spatial process which trend
is given by (3.18) with β0 = 2, β1 = 1 and β2 = 1. The dependence structure is explained by a
exponential covariogram (1.13) with parameters ce = 0.1 and ae = 0.1. Mean, median from 100 Monte
Carlo experiments are reported for the trend estimators based on ordinary least squares (OLS) and
ordinary least squares using pseudo-data (OLSP), generalized least squares (IGLS) and generalized
least squares using pseudo-data (IGLSP).

The use of a local linear smoother

In the simulation study carried out for trend surface models, we have considered the proposal
given by Akritas (1996) to compute the pseudo-data. Although a kernel-type smoother could be used
(imitating Cristobal et al. (1987)). The proposal by Akritas (1996) is more general since it can be
adapted to the incomplete data case (for handling censoring and truncation). Nevertheless, to illustrate
the use of a kernel estimator, we repeat all the scenarios considering the local linear estimator. Similar
results, but more biased (downwards for β0 and upwards for β1 and β2 ), have been observed. We
considered the cross-validation bandwidth for smoothing. Note that, we have also tried with other
bandwidth values, obtaining similar results.
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Some extensions of the procedure

Our procedure is intended for linear trend surface with outliers, however, some extensions could be
obtained.

A �rst modi�cation is the one that arises for non linear trends. So the idea would be to modi�ed
the proposal by Crujeiras and Van Keilegom (2010) which is not robust in the presence of outliers in
the response.

A second modi�cation would be to consider a explanatory variable in the linear trend (and not only
the geographic coordinates). Obviously, non linear trends and spatial covariates in the model could be
introduced.

The use of our proposal in kriging

Kriging is an interpolation method for spatial prediction, which is not robust to the presence of
outliers. Hence, the use of pseudo-data directly on kriging interpolation could be bene�cial. In addition,
our proposal could be quite useful for the particular case of universal kriging or for kriging with external
drift.

Some notes about the theoretical properties

Consider a Gaussian spatial process {Z(s), s ∈ D} and assume that the large-scale and small-scale
behaviour of Z(s) is described by the spatial regression model given in (3.4). Consider n locations
{s1, . . . , sn} on the region D, the set of random variables corresponding with those locations will be
represented by {Z(s1), . . . , Z(sn)}. Therefore, the process will be described by the spatial regression
model Z(si) = X(si)β + ε(si), i = 1, . . . , n. Note that, the errors (ε(s1), . . . , ε(sn)) ∼ N(0,Σ), where
Σ(i, j) = Cθ(si − sj), i, j = 1 . . . , n.

In order to prove the asymptotic properties of the estimator βIGLSP , given that we are working
in a spatial setting, we must �rst describe how this asymptotic framework evolves. This is needed to
guarantee the consistency of the dependence parameters estimators as proved by Lahiri et al. (2002).

The asymptotic framework required is known as �shrinking asymptotics�, a combination of increa-
sing domain and in�lling asymptotics. It is needed for consistent estimators of θ parameter.

Denote by R0 an open subset of (−1/2, 1/2]2 containing the origin (so that the shape is preserved
by in�ation) and consider λn a sequence of real numbers such that λn →∞ and n→∞. The prototype
sampling region is given by:

Rn = λnR0.

Consider now ∆ = diag(δ1, δ2) and Z2 = {∆i, i ∈ Z2} = {(δ1i1, δ2i2), i ∈ Z2} (the integer lattice in
R2 has an increment δ1 in the horizontal direction and an increment δ2 in the vertical direction. For
the sake of simplicity, we will take δ1 = δ2 = 1. If the observations of the random process are taken at
{s, s ∈ Z2 ∩Rn} this is a pure increasing domain asymptotic framework.

For the mixed asymptotic framework (shrinking asymptotics), consider also a a sequence hn → 0
as n → ∞. The sampling points are given by {s1, . . . , sn} = {s, s ∈ hnZ2 ∩ Rn}. In this case, the
scaled lattice hnZ2 becomes �ner as hn tends to zero (as n increases).

Always under the previous framework , and in order to aplly Lahiri et al. (2002) results for the

estimators of the dependence parameters, θ̂LS , the following condition must be satisfy by βOLSP
(obtained with pseudo-data):

λ2n‖βOLSP − β‖4 = oP(1).

This condition implies that βOLSP converges to β at a rate faster than λ
−1/2
n . This result will hold

if we prove the asymptotic normality with rate
√
n. Regarding the properties of βOLSP , in the usual

regression setting, Akritas (1996) proved that

√
n(βOLS − β)→ N(0,Σ),
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so this result should be extended to our asymptotic framework.

With the previous arguments, we would have θ̂LS , which is a strong consistent estimator of θ.
Finally, for obtaining asymptotic properties of βIGLSP , we may write this estimator as

βIGLSP = argmin
β
‖M(β, Ẑ, θ̂LS)‖,

under certain conditions for M . Properties of such an estimator (but just with a single nuisance) have
been studied by Chen et al. (2003). In our case, we have to two nuisances: a non-parametric nuisance
in the pseudo-data and a parametric one in the estimated covariance matrix. So the results of Chen et
al. (2003) should be extended.

Nevertheless, this is only an indication to perform the theoretical properties, we have not prove
them yet.

The development of proper statistical theory for the estimators will enable the quanti�cation of
their uncertainty. In fact, this is something that is missing in the real application presented in the next
section. The lack of theoretical results hampers the assessment of signi�cance for the trend estimators.
In addition, it should be noted that in the spatial setting, resampling techniques for this type of
problems, have not been successfully introduced in the statistical iterature. This is mainly due to the
fact that, in the resampling scheme, one should imitate both large scale and small scale variability
components.

3.6. Illustration with real data

In order to illustrate the performance of our method, we consider in this section a real data set.
This data set, obtained from Gomez and Hazen (1970), collects coal ash for the Robena Mine Property
in Green County, Pennsylvania, which is available in the R package gstat. These data come from
the Pittsburgh coal seam that is associated with a deltaic sedimentation system that includes much
of southwestern Pennsylvania, northwestern Ohio and northern West Virginia. The 208 coal-ash core
measurements at locations with west coordinates greater than 64000 feet are considered. This de�nes
an approximately square grid, with 2500 feet spacing, running southwest to northeast and northwest
to southeast. Figure 3.7 (left) plots sample data points for coal ash with symbols area proportional to
measured concentration. It seems that the observation 60 which is in the location (5, 6) could be an
spatial outlier. Note that the variogram cloud and the Moran scatterplot detect this observation as
outlier.
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Figure 3.7: Sample data points for coal ash with symbols area proportional to measured concentration
(left) and histogram of the measures concentration (right).
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An histogram of this concentration with Gaussian kernel density estimator (the method of Sheather
and Jones to select the bandwidth is used) is plotted in Figure 3.7 (right). In Figure 3.8, we show the
scatterplots of the coal ash against the coordinates, in the East-West and North-South directions.
This representation reveals the presence of linear trend in the East-West direction, but little or not
trend in the North-South direction. From this analysis, we will check the performance of our procedure
considering the �rst-order (planar) polynomial trend surface model for the mean of a two-dimensional
process, s = (s1, s2):

m(s) = β0 + β1s1 + β2s2. (3.18)

where s1 and s2 are, respectively, the coordinates in the East-West and North-South directions.
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Figure 3.8: Coal ash against cordinates. Left plot: East-West direction. Right plot: North-South direc-
tion.

We consider di�erent values of the paramaters of the J(·) function, and we denote with a superscript
each of them (described in Table 3.13 caption). Table 3.13 shows the estimates for the trend based
on ordinary least squares (OLS), ordinary least squares using pseudo-data (OLSP), generalized least
squares(IGLS) and di�erent generalized least squares using pseudo-data. The estimates obtained based
on OLS and OLSP do not take into account the structure of dependence of the errors. Moreover,
according with Cressie (1993) we know that the coal ash data exhibit a strong linear trend in the
East-West direction but there is no trend in the North-South direction. Therefore the estimates β2
should be approximately zero.

We may see that the results obtained by di�erent procedures are quite similar. Unfortunately, we
cannot asses the signi�cance of the estimates for β2, which would be interesting for this particular
example.

The results indicate that, as we move from West to Esat, the concentration of coal ash is reduced,
but again, we should quantify the uncertainty of the estimates obtained.

Note that, if we do not consider the pseudo-data, the variance estimated is 0.9971, while it is 0.9969
if we consider pseudo-data. As for the estimation of the range, its estimate is 1.2991, being smaller
1.2988 if we use pseudo-data.
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β0 β1 β2

OLS 11.2468 -0.1771 -0.0104

OLSP 11.2544 -0.1669 -0.0160

IGLS 11.2121 -0.1756 -0.0085

IGLSP1 11.2193 -0.1648 -0.0147

IGLSP2 11.8865 -0.1543 -0.0298

IGLSP3 10.5914 -0.1777 -0.0011

IGLSP4 10.0167 -0.1892 0.0113

Table 3.13: estimates for the trend based on ordinary least squares (OLS), ordinary least squares using
pseudo-data (OLSP), generalized least squares(IGLS) and di�erent generalized least squares using
pseudo-data: IGLSP1 if α1 = 0, α2 = 0.1, α3 = 0.9 and α4 = 1; by IGLSP2 if α1 = 0.4, α2 = 0.6,
α3 = 0.8 and α4 = 1; by IGLSP3 if α1 = 0, α2 = 0.2, α3 = 0.4 and α4 = 0.; and by IGLSP4 if α1 = 0,
α2 = 0.1, α3 = 0.2 and α4 = 0.3
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