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Abstract
Joint modelling of longitudinal and survival data has received much attention in the

last years and is becoming increasingly used in clinical follow-up programs. Such bio-

medical studies usually include longitudinal measurements that cannot be considered

in a survival model with the standard methods of survival analysis. Furthermore, that

kind of studies can also present more than one possible endpoint, meaning that they

have to cope survival analysis with longitudinal data and in the presence of competing

risks. Although some joint models have been adapted in order to allow for competing

endpoints, this methodology has not been widely disseminated in medical practice. In

this project we aim to show how to combine in the same framework survival analysis,

longitudinal data, and competing risk, as well as the advantages of the resulting joint

model. All those techniques will be applied in the analysis of a database from a peri-

toneal dialysis program of the Peritoneal Dialysis Unit of the Hospital Geral de Santo

António (Portugal).

Resumen en español

El modelado conjunto de análisis de supervivencia con datos longitudinales ha reci-

bido mucha atención en los últimos años. Su uso se ha ido extendiendo cada vez más en

estudios cĺınicos de seguimiento, ya que en ellos solemos encontrar datos longitudinales

para los cuales las técnicas habituales de análisis de supervivencia no siempre resultan

adecuadas. Además, en este tipo de estudios también se puede dar más de un evento de

fallo, lo que conlleva la necesidad de utilizar riesgos competitivos a la hora de analizar la

supervivencia. A pesar de que se han adaptado diversos modelos conjuntos para incluir

la presencia de estos riesgos competitivos, se trata de una metodoloǵıa poco difundi-

da. La intención de este proyecto es ilustrar cómo se pueden combinar el análisis de

supervivencia, los datos longitudinales y los riesgos competitivos, aśı como las ventajas

que aporta este modelado conjunto. Las técnicas estudiadas se aplicarán a unos datos

procedentes de un programa de diálisis peritoneal, realizado en la Unidad de Dialysis

Peritoneal del Hospital Geral de Santo António (Portugal).

ix
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Chapter 1

Introduction

Biomedical studies have always been a source of inspiration for the statistic field:

they provide with data with specific features that need special caution when doing the

analysis, and they keep coming up with situations where new statistical tools have to

be developed in order to be able to handle them.

This is what happens in follow-up studies: they include several longitudinally mea-

sured responses, not always taken at the same time or even with the same number of

measurements, and they may also come with different types of outcomes. In general,

this kind of data can not be analyzed with standard statistical procedures.

Over the last few decades, since the World War II motivated the study in the

reliability of the military equipment, the survival analysis (Cox, 1972) has been a very

important field of research: it studies the time until an event of particular interest

occurs, and with it, it answers questions like what kind treatment is better for a certain

illness, or what variables have an influence in the recovery of a patient.

On the other hand, when taking in to account longitudinal data that comes from

follow-up studies, the survival analysis becomes complicated: time-dependent variables

can be related to the failure mechanism under study, and this lack of independence

causes many problems. It is then when we include the mixed-effects models (Harville,

1977; Laird and Ware, 1982; Verbeke and Molenberghs, 2000) into the equation. To-

gether, they build the joint modelling approach, a model that has become increasingly

popular in clinical studies in the last years.

In addition to this, in the disease or recovery process that are examined in the survi-

val situations , often more than one type of event plays a role. Even if one type of event

can be singled out as the event of interest, the others may prevent that specific type of

failure from occurring. These kind of events are called competing risks (Beyersmann et

1



2 CHAPTER 1. INTRODUCTION

al. 2012), and special caution is needed in these cases, for their presence, if not taken

into account, may produce some bias in the estimation of the event of interest.

Joint modelling in competing risk framework, despite not being as widely used in

medical context as the basic joint modelling or the standard competing risk model, has

recently motivated a serial of studies on the topic. Our goal in this project is then to

present a model suited for analyzing longitudinal data in the survival analysis field in

the presence of competing risks (Rizopoulos, 2012). In particular, we aim to analyze the

data from a peritoneal dialysis program, where the presence of a longitudinal outcome

repeatedly registered along the follow-up time and the occurrence of several specific

events is common.

The progression of end-stage renal disease patients included in a peritoneal dialysis

program is monitored with regular control visit where several clinical parameters are

recorded, as well as the time until the occurrence of endpoints. Then, as in many

other clinical research areas, peritoneal dialysis patients data present different types of

outcomes: apart from the baseline data recorded at the beginning of the study (like

the sex or the age of the patient), they also present longitudinal outcome measured

at several time points (such as albumin, glucose and phosphorus) and time-to-event

outcome, composed of the follow-up time until the occurrence on an event of interest

(which in this case will be death, transfer to hemodialysis or renal transplant). As an

example, Figure 1.1 gathers the longitudinal profiles of albumin of 16 subjects in a

peritoneal dialysis program.

The outline of this work will be as follows. Firstly, in Chapter 2 we will introduce the

blocks of longitudinal data analysis and survival analysis, explaining the basic features

of both matters. Secondly, a review of competing risks is made in Chapter 3. The joint

models approach for longitudinal and time-to-event data is then presented in Chapter 4,

along with the final model in which all three blocks (longitudinal data analysis, survival

analysis and competing risks) are considered. This structure is summarized in Figure

1.2.

Eventually a detailed analysis of the results obtained by applying all this methodo-

logy to the peritoneal dialysis data is shown in Chapter 5, followed by a final chapter

where conclusions and future lines of research are discussed.

All the analysis that have been performed in this project have been implemented in

the R software environment. At the end of Chapter 5 we include a brief discussion on

the available software on this matter.
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Figure 1.1: Albumin longitudinal profiles of 16 subjects. The different colors show the
kind of failure that each of them presented (green for transplant, pink for death or
transfer to hemodialysis and blue for the ones that did not suffer any of the above).

Figure 1.2: Diagram of the methodology that will be introduced in this project.
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Chapter 2

Statistical Background

This chapter introduces the two blocks that we need to understand the joint mode-

lling approach, the first step in our path to be able to analyze our data with longitudinal

measurements and different causes of failure.

In the first place, we explain the basic concepts of the linear mixed-effects model, the

tool that is most frequently used when managing longitudinal data. The second section

is dedicated to the survival analysis, where apart from introducing the functions of

interest we give special attention to the handling of time-dependent covariates.

2.1. Longitudinal data analysis: the linear mixed-

effects model

Our focus on this first section is on longitudinal data, which can be defined as the

data resulting from the observations of subjects that are measured repeatedly over time.

Such data is frequently encountered in health studies, related to human beings, animals

or laboratory samples.

For example, in a longitudinal study in which patients are randomly assigned to take

different treatments and are followed up over time, we could investigate how treatment

means differ at specific time points (cross-sectional effect) or how those means chan-

ge over time (longitudinal effect). Another example is the recounting of CD4+ cells:

this kind of cells are affected by the AIDS virus as their number decreases with the

development of the illness. Therefore, their longitudinal study is very important.

Measuring subjects repeatedly through the duration of the study, we expect posi-

tive correlation, which means that standard statistical tools (like the t-test and simple

regression) that assume independent observation, are not appropriate for this kind of

5



6 CHAPTER 2. STATISTICAL BACKGROUND

data analysis.

Thus, we will introduce the linear mixed-effects model for the analysis of continuous

longitudinal responses, which constitutes the first block of joint modelling.

2.1.1. Linear Mixed-Effects Models

An intuitive approach for the analysis of longitudinal data is based on the idea that

each individual in the population has its own subject-specific mean response profile

over time, with a functional form. In Figure 2.1 we can see a graphical representation

of this idea: the longitudinal responses of two hypothetical subjects (points), their

corresponding linear mean trajectories (dashed lines) and the average evolution (solid

line).

Figure 2.1: Longitudinal responses of two subjects in a simulated longitudinal study.

To introduce this representation, let yij denote the response of subject i, i = 1, ..., n

at time tij, j = 1, ..., ni. A plausible model for the observed responses yij in Figure 2.1,

taking into account that a linear time effect seems adequate and that different subjects

tend to have different intercepts and slopes, could be:

yij = β̃i0 + β̃i1tij + εij,

where the error terms εij are assumed to come from a normal distribution with mean
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zero and variance σ2, and β̃i0 and β̃i1 are the regression coefficients. It is usually assumed

that the distribution of the regression coefficients in the population is a normal bivariate

normal distribution with mean vector β = (β0, β1)T and variance-covariance matrix D.

We can then reformulate the model as:

yij = (β0 + bi0) + (β1 + bi1)tij + εij,

where β̃i0 = β0+bi0 and β̃i1 = β1+bi1. The terms bi = (bi0, bi1)T are called random effects,

following a bivariate normal distribution N(0, D), and they describe the variability of

each individual. On the other hand, the parameters β0 and β1 describe the average

longitudinal evolution in the population and are called fixed effects. Moreover, bi are

assumed to be independent of the error tems ε.

The generalization of this model, allowing additional predictors and regression coef-

ficients to vary randomly, is known as the linear mixed-effects model (Laird and Ware,

1982; Harville, 1997; Verbeke and Molenberghs, 2000):

yi = Xiβ + Zibi + εi,

bi ∼ N(0, D),

εi ∼ N(0, σ2Ini
),

where Xi and Zi are known design matrices for the fixed-effects regression coefficients

β and the random-effects regression coefficients bi respectively, and Ini
denotes the

ni-dimensional identity matrix. The random effects, apart from being assumed to be

normally distributed, are taken as independent of the error εi, i.e., cov(bi, εi) = 0.

Equivalently, we can express the linear mixed models with this form:

y = Xβ + Zb+ ε,

b ∼ N(0, D),

ε ∼ N(0, R),

where X is now a n × p matrix, with p the number of fixed effects, and Z is a n × k
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matrix, with k the number of random effects. Moreover, R = σ2In×ni
, with In×ni

a

(n× ni)-dimensional identity matrix.

The interpretation of the fixed effects is the same as in a simple linear regression

model: assuming we have p covariates in the design matrix X, the coefficient βj ,

j = 1, ..., p denotes the change in the average yi when the corresponding covariate xj is

increased by one unit, while all other predictors are held constant. In the same way, bi

show how a subset of the regression parameters for the ith subject deviates from those

in the population.

With the mixed models we are able to estimate parameters that describe how the

mean response changes in the population of interest (the fixed-effects) and it is also

possible to predict how individual response trajectories change over time (the random-

effects). Another advantage is that mixed models can work with unbalanced data: we

do not need the same number of measurements on each subject nor that these measu-

rements be taken at the same set of occasions.

Random intercepts and slopes

Depending on the behavior of the response yi of each subject, we can adjust different

kinds of mixed models. In particular, this adjustment will affect the design matrix Zi,

i = 1, ...n:

If Zi contains a column of 1’s, it means we are considering a random intercept bi0.

This kind of random effect is used when we observe different departure points of

the longitudinal response for each subject.

In the case where we want to consider a random slope bi1, Zi has to contain a

column with the times of every visit of the patient. This means that each subject

has a different temporal slope than the others.

The rest of the covariates included in Zi will indicate a random effect that is

different for each subject for every covariate.

In Figure 2.2 we can appreciate several models considering different configurations

of Zi. In each graphic the longitudinal response under study is represented separately

for every subject.

In the first one, the model includes a random intercept and a null slope: we can

appreciate that the response of every subject starts with a different value, and that it

does not change much over time. In the second one, we have a random intercept again,
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Figure 2.2: Different longitudinal models considering Zi configuration: the first one has
random intercepts and a null slope; the second one has random intercepts too and a
non-random positive slope; the third one has random slope but common intercept, and
the last one has random intercepts and slopes.

and the slope (though different from zero this time) is still common for all subjects, as

their paths stay parallel. The third one is the opposite to the first graphic: here there is

no random intercept, as all the responses start at the same level, but there is a random

slope: the individuals trajectories differ from each other. The last one shows the case

where we have both random intercepts and slopes: we can see that each of them start

at a different point and then follow different trajectories.
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2.1.2. Estimation of the Linear Mixed-Effects Models

Fixed-effects estimation

One way of obtaining one estimation of β is using the marginal model:

yi = Xiβi + ε∗i , with ε∗i = Zibi + εi.

This model has correlated errors, with

cov(ε∗i ) = Vi = ZiDZ
T
i + σ2Ini

.

If we assume that Vi is known, minimizing the function Q = (y − Xβ)′V −1(y − Xβ),

we obtain the generalized least squares estimator for β:

β̂ =

(
n∑
i=1

XT
i V

−1
i Xi

)−1 n∑
i=1

XT
i V

−1
i yi,

which, on the other hand, is the same as the maximum likelihood estimator of the

fixed-effects vector β.

Random-effects prediction

Being random variables, we can not speak about random-effects estimation, but

instead we are able to predict them. There are different ways of obtaining this predic-

tions. One of the best linear unbiased predictor can be yielded using Henderson’s mixed

model equations (Henderson et al., 2000). It is a procedure that allows us to calculate

the best linear unbiased estimator for Xβ and the best linear unbiased predictor for b.

It considers the joint density distribution of y and b, and the log-likelihood of the linear

model.

Henderson’s mixed model equation are X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z +D−1


 β

b

 =

 X ′R−1y

Z ′R−1y

 ,
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and their solutions:

β̂ = (X ′V −1X)−1)−1X ′V −1y,

b̂ = DZ ′V −1(y −Xβ).

We can not forget that we are doing this calculations under the assumption that we know

the parameters of the covariance matrix V , but it is usually not the case. Therefore,

the next step is to estimate them. The two more common ways of doing this are the

maximum likelihood (ML) and the restricted maximum likelihood (REML).

The principal disadvantage of ML is that it is biased for small samples, due to the

fact that the ML estimate does not take into account that β is estimated from the data

as well as V . On the contrary, the REML estimates the variance components based on

the residuals obtained after the estimation of the fixed effects (y−Xβ), and therefore,

if the sample is small, it will yield better estimates than the ML.

Neither of those methods have, in general, a close form, so in order to obtain V̂ a

numerical optimization routine, such as the Expectation-Maximization (Dempster et

al., 1977) or the Newton-Raphson algorithms (Lange, 2004) are needed.

2.2. Survival analysis: analysis of time-to-event da-

ta

The survival analysis is defined as a set of statistical procedures that study non-

negative random variables associated with the time span from some time origin until the

occurrence of one event of interest. This event is usually called failure, as it is associated

with death in biological studies, and the random variable is called failure time, survival

time or event time.

There are lots of examples of failure times: the time until the death of one patient,

the time of convalescence, the time until some new skill is learned... Although it is used

in several fields, here we will focus in its applications to the biomedicine, like its use in

a clinical follow-up study.

A very important feature of this kind of data is that we don’t always know the

failure time of every subject: sometimes part of the disease history is unobserved. If the

endpoint of interest has not occurred at the end of the observation window (due to lost

to follow up or drop out of the study, or if the study ends before an outcome of interest
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happens), the event time is right censored. This characteristic makes inadvisable the

use of the standard statistical tools to analyze this type of data.

There are different classifications for censoring mechanism: we could have either

left- or right-censoring (when the survival time is less or greater than the observation

time) and interval-censored data (in which the time to the event of interest is known to

occur between to certain time points); we could also distinguish between informative

censoring (which occurs when the subject withdraws from the study for reasons related

to the expected failure time) and non-informant censoring (when those reasons are

unrelated to the study).

In this section we will focus on the non-informative right censoring, but informative

censoring will play an important role in the next chapter. On the other hand, the left

truncated data, in which the individuals have a delayed entry in the study, will be

considered.

In addition to this, the subjects under this type of studies are usually heterogeneous.

This means that one our goals will be identifying the variables that have an influence

in the survival.

2.2.1. Functions of interest

Let T ∗ denote the non-negative random variable of failure time. In the context of

survival analysis, an individual i is represented by the pair (Ti, δi), where Ti denotes

the observed event time for subject i (Ti = mı́n{T ∗i , Ci}, with Ci the censoring time)

and δi is a variable that indicates if the individual has experienced the event ( δi = 1)

or not (in this other case the observation is censored and δi = 0).

The function that is primarily used to describe the distribution of T ∗ is the survival

function. If the event under study is death, it expresses the probability that death

occurs after an instant t, that is, the probability of surviving time t. Assuming that T ∗

is continuous, the survival function is defined as

S(t) = P (T ∗ > t) = 1− F (t) =

∫ ∞
t

p(s)d(s), t ≥ 0.

where p(·) denotes the corresponding probability density function. This density function

can be interpreted as the individual probability of observing an event in a certain instant

in time. The survival function must be non-increasing as t increases, with S(t = 0)

always equal to one.

Another function that plays a prominent role in survival analysis is the hazard
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function. This one describes the instantaneous risk for an event in the time interval

[t, t+ ∆t) provided survival up to t, and is defined as

h(t) = ĺım
∆t→0

P (t ≤ T ∗ < t+ ∆t|T ∗ ≥ t)

∆t
, t > 0.

The hazard completely describes the survival distribution: it can be derived from the

survival function: Likewise, the survival also can be expressed in terms of the risk

function.

h(t) = −d logS(t)

dt
; S(t) = exp

{
−
∫ t

0

h(s)ds

}
= exp{−H(t)}, t > 0,

where H(t) is known as the cumulative risk (or cumulative hazard) function that des-

cribes the accumulated risk until time t. It can also be interpreted as the expected

number of events to be observed by time t.

2.2.2. Survival estimation

When we are interested in estimating these functions from a random sample (T1, δ1),

...,(Tn, δn), censoring must be taken into account. The most well-known estimators of

both functions are the Kaplan-Meier and the Nelson-Aalen estimator.

Kaplan-Meier estimator

To introduce this estimator, proposed by Kaplan and Meyer (1958), let t1 < ... <

tN denote the unique event times in the sample at hand. For each ti, define di to

be the number of observed events at ti, and ri the number of subjects still at risk

at that moment.

The Kaplan-Meier estimator assumes that the distribution is discrete instead

of continuous, with the events only occurring at these observed time points. It

considers the conditional probability of failing at ti, given still alive just before

time ti. This probability can be written as

h(ti) = P (T = ti|T > ti−1),

a discretized form of the hazard function given before.

Under the assumption of uninformative censoring, subjects at risk are represen-

tative for all subjects alive just before ti, so h(ti) can be estimated simply by the
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at risk sample proportion that fail at ti:

ĥ(ti) =
di
ri
.

Using the law of total probability, the probability of surviving at any time t can

be written as the product of the conditional probabilities:

P (T ∗ > t) = P (T ∗ > t|T ∗ > t− 1)P (T ∗ > t− 1)

= P (T ∗ > t|T ∗ > t− 1)P (T ∗ > t− 1|T ∗ > t− 2)...

The probability of surviving up to ti is then the product of the probability of

surviving up to ti−1 and the conditional probability of surviving up to ti given

still alive beyond ti−1:

Ŝ(ti) = (1− ĥ(ti))Ŝ(ti−1) =

(
1− di

ri

)
Ŝ(ti−1).

By repeatedly applying this formula one gets the Kaplan-Meier estimator:

ŜKM(t) =
∏
i:ti≤t

ri − di
ri

.

The Kaplan-Meier estimator is a step function with discontinuities at the observed

event times, coinciding with the empirical survival function if there is no censoring.

If the sample size increases, this estimate approaches a continuous distribution.

Its consistency has been proved by Peterson (1977), and Breslow and Crowley

(1974) have shown that
√
n
(
Ŝ(t)− S(t)

)
converges in law to a Gaussian process

with expectation 0 and a variance-covariance function , ŜKM(t), that can be

calculated using Greenwood’s formula,

ˆV ar(ŜKM(t)) = ŜKM(t)2
∑
i:ti≤t

dj
rj(rj − dj)

,

and using asymptotic normality for ŜKM a confidence interval for S(t) can be

derived.

Nelson-Aalen Estimator

The Nelson-Aalen estimator was developed as an alternative nonparametric esti-
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mator for the cumulative hazard function.

ĤNA(t) =
∑
i:ti≤t

di
ri
,

where ri and di have the same interpretation as for the Kaplan-Meier estimator. It

can be intuitively interpreted as the ratio of the number of deaths to the number

exposed. Breslow (1972) suggested then the following estimator for the survival

function:

ŜB(t) = exp{−ĤNA(t)} =
∏
i:ti≤t

exp{−di/ri}.

To derive a confidence interval for ŜB(t) we estimate teh variance of log ĤNA(t)

using a formula similar to Greenwood’s formula.

The two estimators of the survival function are asymptotically equivalent. However,

in general the Breslow estimator has uniformly lower variance than the Kaplan-Meier,

though it is biased, especially when Ŝ(t) is close to zero.

2.2.3. Parametric maximum likelihood

Sometimes it is appropriate to assume that the survival function S(t) behaves as a

specific parametric form. In this case, the estimation of the parameters of interest is

often based on the maximum likelihood method. In particular, let {Ti, δi}, i = 1, ...n,

denote the random sample from a distribution function F , parametrized by θ, with the

density function p(t; θ).

In the construction of the likelihood function we need to account for censoring: when

a subject failes at time Ti, it contributes p(Ti, θ) to the likelihood, whereas for a subject

who is censored all we know is that he survived up to that moment, and therefore it

contributes Si(Ti; θ) to the likelihood.

Thus, combining the information from the censored and uncensored observations,

we obtain the likelihood function:

L(θ) =
n∏
i=1

p(Ti, θ)
δiSi(Ti; θ)

(1−δi).

Taking the log-likelihood

l(θ) =
n∑
i=1

δi log p(Ti, θ) + (1− δi) logSi(Ti; θ),
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and using the relations seen before, it can be rewritten in terms of the hazard function

as

l(θ) =
n∑
i=1

δi log hi(Ti, θ)−
∫ Ti

0

hi(s; θ)ds.

It is clear that all subjects contribute an amount to the log-likelihood equal to−Hi(Ti; θ),

and the subjects who experienced the event additionally contribute the amount of

log hi(Ti, θ). Thus, censored observations contribute less information to the statistical

inference than uncensored observation, as it could be expected.

Once the log-likelihood has been formulated, there exist several iterative optimiza-

tion procedures (such as the Newton-Raphson algorithm) that can be used to locate

the maximum likelihood estimates θ̂.

2.2.4. Regression methods for censored data

The subjects under this type of survival analysis are hardly ever homogeneous. They

have several characteristics, such as age at baseline, sex, randomized treatment... that

may or may not affect their survival. This makes it necessary to study the effect of this

covariates and to determine which ones influence the most.

There are several methods to relate the outcome to predictors in survival analysis,

like the Cox proportional hazards model or the accelerated failure time model. Here, we

will focus on the Cox model (Cox 1972).

In its simplest form, the hazard for a subject with covariate values wTi = (wi1, ..., wip)

is assumed to be

hi(t|wi) = h0(t) exp{γTwi},

where γT = (γ1, ..., γp) is the vector of regression coefficients and h0(t) is the baseline

hazard or baseline risk function, and corresponds to the hazard function of a subject

that has γTwi = 0.

Note that, writing this model in the log scale,

log hi(t|wi) = log h0(t) + γ1wi1 + ...+ γpwip,

the regression coefficient γj, for predictor wij, denotes the change in the log hazard

at any fixed time point t if wij is increased by one unit while all other predictors are

held constant. Analogously, exp{γj} denotes the ratio of hazards for a subject i with
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covariate vector wi compared to subject k with covariate vector wk is:

hi(t|wi)
hk(t|wk)

= exp{γT (wi − wk)}.

If all the covariates of both subjects were equals but for one, j, (and that difference was

only one unit), then

hi(t|wi) = exp{γj}hk(t|wk).

That is the reason why it is called a proportional hazards model. It is a semi-parametric

model that does not make any assumption for the distribution of the event times, but

assumes that the covariates act multiplicatively on the hazard rate.

To determine the relation between the covariates and the survival time it is neces-

sary to estimate the coefficients in γ. One way of doing this would be to assume a

parametric distribution for the baseline hazard (like the Weibull distribution) and then

estimate the regression coefficients by maximizing the corresponding log-likelihood fun-

ction. However, Cox (1972) showed that the estimation of those coefficients (the primary

parameters of interest) can be estimated without specifying h0(·).

Thus, assuming all event times are distinct, the parameter vector γ is found by

maximizing the partial likelihood, which is a product of a quotient that compares the

hazard ratio of the individual with the event at ti to the hazard of all the individuals

at risk at ti (represented by Ri):

pL(γ) =
n∏
i=1

[
exp{γTwi}∑

k∈Ri
exp{γTwk}

]δi
.

Note that the baseline hazard cancels out. Excluding the censoring terms and taking

logarithms, the coefficients may be estimated on the partial log-likehood

pl(γ) =
r∑
i=1

γTwi − log{
∑
Tj≥Ti

exp(γTwj)}.

Even though this is not equivalent to a full log-likelihood, it can be treated as such.

The maximum partial likelihood estimators are then found by solving their partial log-

likelihood score equations, using in the process some iterative optimization procedures

such as the Newton-Raphson algorithm.

On the other hand, the estimate γ̂ is used in Breslow’s estimate of the baseline
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hazard and of the cumulative hazard:

ĥ0(t) =
1∑

k∈Ri
exp(γ̂Twk)

, Ĥ0(t) =
∑
i:ti≤t

1∑
k∈Ri

exp(γ̂Twk)
.

For further discussion on the matter, we refer to Kalbfleisch and Prentice (2002).

Time-Dependent Covariates

In the risk model just presented we assumed that the hazard depends only on

covariates whose value is constant during follow-up. However, in some studies it may

also be of interest to investigate wether time-dependent covariates are associated with

the risk for an event.

A time-dependent variable is defined as any variable whose value for a given subject

may change over time. We can distinguish two different categories of time-dependent

covariates, namely external or exogenous and internal or endogenous.

To introduce these two types of covariates, let yi(t) denote the covariate vector at

time t for subjecti and Yi(t) = {yi(s), 0 ≤ s < t} denote the covariate history up to

t. Those categories require a different treatment, so it is very important to distinguish

them.

Exogenous covariates

A variable is called an exogenous covariate if its value changes because of causes

not related to the subject of the study, ‘external’ characteristics that affect several

individuals simultaneously. They satisfy the relation

P (Yi(t)|Yi(s), T ∗i ≥ s) = P (Yi(t)|Yi(s), T ∗i = s), s ≤ t,

which means that yi(·) is associated with the rate of failures over time, but its

future path up to any time t > s is not affected by the occurrence of failure

at time s. A exogenous covariate is a predictable process, while the endogenous

covariates are not, and they do not satisfy that relation.

An example of an exogenous covariate is the time of the year, the covariates whose

complete path is predetermined from the beginning of the study, or environmental

factors. The value of these covariates at any time is not affected by the true failure

time. For them we can directly define the survival function conditional on the
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covariate path, using its relation to the hazard function:

Si(t|Yi(t)) = P (T ∗i > t|Yi(t)) = exp

{
−
∫ t

0

hi(s|Yi(s))ds
}
.

Endogenous covariates

On the other hand, the endogenous covariates are time-dependent measurements

taken on the subjects under study, such as biomarkers and clinical parameters.

They typically require the survival of the subject for their existence, so their path

may carry direct information about the failure time. Besides, failure of the subject

at time s corresponds to nonexistence of the covariate at t ≤ s, which violates

the endogeneity condition mentioned above. Because of these characteristics, the

hazard function is not directly related to a survival function, so the log-likelihood

constructions used before will not be appropriate for this type of covariates.

Another feature of endogenous covariates is that they are usually measured with

error and their complete path up to any time is not fully observed: the clinical

parameters of a patient are only known for the specific occasions that this patient

visited the study center, and not in between these visit times.

Extended Cox Model

The Cox model presented previously can be extended to handle exogenous time-

dependent covariates. The intuitive idea behind this formulation is to think about oc-

currence of events as the realization of a very slow Poisson process.

The extended Cox model, also known as the Andersen-Gill model (1982), is written

as

hi(t|Yi(t), wi) = h0(t) exp{γTwi + αyi(t)},

where, as before, Yi(t) = {yi(s), 0 ≤ s < t}, yi(t) denotes a vector of time-dependent

covariates and wi denotes a vector of baseline covariates (such as sex or randomized

treatment). The interpretation of the regression coefficients vector α is the same as for

γ. Thus, assuming there is only a single tie-dependent covariate, exp(α) denotes the

relative increase in the risk for an event at time t that results from one unit increase

in yi(t) at that point. Note that, since yi(t) is time-dependent, the hazard ratio is no

longer constant in time. Estimation of γ and α is again based on the corresponding

partial log-likelihood function.

This formulation of the Cox model is quite flexible: it allows time-dependent co-
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variates, left truncation, multiple time scales... However, it is not appropriate for the

time-dependent endogenous covariates.

This is because the extended Cox model assumes that time-dependent covariates are

predictable processes, measured without error, with their complete path fully specified,

properties that the endogenous covariates do not have. Besides, the time-dependent

covariates the extended Cox model handles are assumed to change value at the follow-up

visits and remain constant in the time interval in between these visits, and it is evident

that this approximation is unrealistic for many endogenous covariates, in concrete for

follow-up studies. As the extended Cox model is not able to work with this kind of

data, we need new statistical tools to study the time-dependent endogenous covariates.



Chapter 3

Competing Risks Models

In clinical studies it is usual to have more that one event playing an important

role in the survival process. Because of that, the independence between the event and

censoring distribution, often assumed without further consideration, may easily fail to

be true. Reasons for the occurrence of right censored event can be categorized as:

End of study. In this case is generally safe to assume that the censoring mechanism

is independent of disease progressions.

Loss to follow-up. This type of censoring time can be negatively or positively

correlated with the event time.

Competing risks. A competing risk (Beyersmann et al. 2012) is defined as an event

that, if it takes places before the outcome under study, it may prevent it from

happening.

The censoring time due to loss to follow-up is negatively correlated with the event

time when healthy participants of the study feel less need for medical services and there-

fore quit.This causes a downward bias of the estimated survival curve: it overestimates

the probability to experience the event, since individuals with worse prognosis are assu-

med to be representative for the censored individuals. Furthermore, if the subjects with

advanced disease progression get too ill for further follow-up, the censoring time will

be positively correlated with the event time, and censoring this individuals will cause

a upward bias of the survival curve.

However, the focus in this chapter will be on the competing risks. They concern

the situation where more than one cause of failure is possible, and where only the first

of these to occur is observed. For example, in a cancer study, death due to cancer

21
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may be of interest, and death due to other causes (surgical mortality, old age) would be

considered as competing risks. Alternatively, one could be interested in time of recovery

from certain illness, where death due to any cause would be a competing risk.

One way of handling this situations is to single out one of the events and consider the

rest of them as censored, but this procedure has a very important problem: doing this,

we will be assuming that upon removal of one cause of failure, the risks of failure of the

remaining causes is unchanged. This assumption may be reasonable in the industrial

setting, but in human studies it will rarely be true. Fortunately, the theory that has

been developed over the past two decades for the analysis of right censored survival

data can be applied to competing risks models by adding extra adjustments.

We could also be interested in what happens after a non fatal event, and study the

transition between different states. These multi-state models are an extension to the

competing risks models, but they will not be discussed in this project.

3.1. Approaches to Competing Risks

The competing risks model is usually represented graphically with an initial state

(called alive or event-free) and a number or different end points (that correspond with

the different events considered), as shown in Figure 3.1.

Figure 3.1: A competing risks situation with K causes of failure.
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3.1.1. The naive Kaplan-Meier

One way of treating this type of data is to consider the failures from the competing

causes as censored observations. The failure probability is then estimated with the

Kaplan-Meier estimate, a method called the naive Kaplan-Meier. However, this method

can be biased: while treating the competing causes as censored, we can be violating one

of the assumptions underlying the Kaplan-Meier estimator: the independence of the

censoring distribution.

If the competing event time distributions were independent of the distribution of

time to the event of interest, this would imply that at each point in time the hazard of

the event of interest is the same for subjects that are still under follow-up (alive) as for

the subjects that have experienced a competing event by that time. However, a subject

that is censored because of failure from a competing risk will not experience the event

of interest. The naive Kaplan-Meier will then overestimate the probability of failure

(and hence underestimate the survival probability), given that those subjects that will

never fail are treated as if they could fail. This bias is greater when the competition is

heavier, when the hazard of the competing events is larger.

This is different form censoring due to end of the study or loss to follow-up: in those

cases, individuals may still fail at a later point.

3.1.2. Cause-specific Hazard and Cumulative Incidence fun-

ctions

To handle different failures types we need to extend the notation for the survival

process. Assuming K different causes of failure, we let T ∗i1, ..., T
∗
iK denote the true failure

times for each one of them. The observed data for the ith subject is composed of the

observed event time Ti = min{T ∗i1, ..., T ∗iK , Ci} (with Ci denoting the censoring time)

and the event indicator δi ∈ {0, 1, ..., K}, where 0 represents the censoring and 1, ..., K

the competing events.

The fundamental concept in competing risks models is the cause-specific hazard

function, the hazard of failing from a given cause k in the presence of the competing

events (D):

hk(t) = ĺım
∆t→0

P (t ≤ T < t+ ∆t,D = k|T ≥ t)

∆t
.

This hazard is estimable from the data, as it is the cumulative cause-specific hazard :
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Hk(t) =

∫ t

0

hk(s)ds.

We can also define

Sk(t) = exp{−Hk(t)},

thought it should not be interpreted as a marginal survival function, that is, Sk(t) =

P (T ∗k > t), which describes the event time distribution in the situation in which there

were no competing risks. Sk(t) and Sk(t) only have the same interpretation when the

event time distributions and the censoring distribution are independent.

Furthermore, we define

S(t) =
K∏
k=1

Sk(t) = exp

(
−

K∑
k=1

Hk(t)

)
.

This survival function is interpreted as the probability of not having failed from any

cause at time t. From this definition we introduce the cumulative incidence function of

cause k, Ik(t), the probability P (T ≤ t, k) of failing from cause k before time t. It can

be expressed in terms of the cause-specific hazard as

Ik(t) = P (T ≤ t, k) =

∫ t

0

hk(s)S(s)ds.

Note that this is not a proper probability distribution, because the cumulative pro-

bability to fail from cause k remains below one, Ik(∞) = P (k).

On the other hand, observe that, as the events from causes other than k are treated

as censored, the naive Kaplan-Meier estimate of the probability of failing from cause k

before or at time t is estimating

1− Sk(t) =

∫ t

0

hk(s)Sk(s)ds,

which is slightly different from the cumulative incidence function: in Ik(t), Sk(s) is

replaced by S(s). Since S(t) ≤ Sk(t), it is obvious that Ik(t) ≤ 1− Sk(t), with equality

at t if there were no competition (i.e. if
∑K

j=1,j 6=kHj(t) = 0), showing the bias in the

naive Kaplan-Meier estimator that was mentioned before.

Both the cause-specific hazard and the cumulative incidence function are the most

used functions for analyzing competing risks. The cumulative incidence function is also

used extensively in calculating state and prediction probabilities in multi-state models,
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but this will not be discussed here.

3.1.3. Estimation

The estimation of this concepts is based on the same principles as for survival

analysis with a single failure type. Let 0 < t1 < t2 < ... < tN be the ordered distinct

time points at which failures of any cause occur. Let dki denote the number of individuals

failing from cause k at ti, and let di =
∑K

k=1 dki denote the total number of failures

(from any cause) at ti. In the absence of ties only one of the dki equals 1 for a given

i, and di = 1, though the formulas are also valid in the presence of ties. Let ni be the

number of individuals at risk (i.e. that are still in follow-up and have not failed from

any cause) at time ti. The survival probability S(t) at t can be estimated, without

considering the cause of failure, by the Kaplan-Meier estimator seen in section 2.2 with

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
.

As we have seen previously, we can consider a discretized version of the cause-specific

hazard, hk(ti) = P (T = ti, k|T > ti−1), which would be estimated by

ĥk(ti) =
dki
ni
,

the proportion of subjects at risk that fail from cause k. According to this, the previous

expression can be written as

Ŝ(t) =
∏
i:ti≤t

(
1−

K∑
k=1

ĥk(ti)

)
.

The probability of failing from cause k at ti, pk(ti) = P (T = ti, k), is the product

of the hazard and the probability of being event-free at tj, which is estimated as

p̂k(ti) = ĥk(ti)Ŝ(ti−1).

Finally, the cumulative incidence Ik(t) of cause k is estimated as the sum of these

terms for all time points before t:

Îk(t) =
∑
i:ti≤t

p̂k(ti) =
∑
i:tj≤t

ĥk(ti)Ŝ(ti−1) =
∑
i:ti≤t

dkini ∏
j:tj≤tj

(
1− dj

nj

) .
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If there were no censoring or left truncation, the estimate of the cumulative incidence

function reduces to a very simple form: at time t, the estimate divedes the cumulative

number of events of type k until time t by the total sample size:

Îk(t) =

∑
j:tj≤t dkj

n
.

To illustrate this concepts, we use the peritoneal dialysis data that was introdu-

ced in the introduction: we recall that this data had two possible competing events:

death/transfer to hemodialysis and renal transplantation. Figure 3.2 shows the estima-

tes of the survival of transplant and the probabilities of death/hemodialysis of the data.

The estimates based on the naive Kaplan Meier are in gray, an those based on the cumu-

lative incidence function are in black. We can see the bias we talked about previously:

the naive Kaplan-Meier overestimates the probability of failure in both competing risks.

Figure 3.2: Estimates of probabilities of death or dialysis and transplant, based on the
naive Kaplan-Meier (grey) and on cumulative incidence (CI) functions (black)

Besides, the naive Kaplan-Meier curves of death and dialysis and transplant cross

after 80 months, which means that the estimated probabilities of both of those events

sum to more than one, which is clearly impossible, since we are in a competing risk

context and they are disjoint events.

Another way of representing this curves is shown at Figure 3.3: the bottom curve

shows Î1(t) and the top curve Î1(t) + Î2(t), where Î1(t) and Î2(t) are the estimates of
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the cumulative incidence functions. The distances between adjacent curves correspond

to the probabilities of the events.

Figure 3.3: Stacked cumulative incidence curves of the two competing events of the
peritoneal dialysis data: the bottom curve shows Î1(t) and the top curve Î1(t) + Î2(t).
The distances between adjacent curves correspond to the probabilities of the events.

3.2. Modelling and estimating covariate effects

Just like in standard survival analysis, the presence of covariates can affect the

different outputs of the model created, so it is very important to add them to the

analysis.

If the covariates under study are two binary covariates, there is a log-rank test deve-

loped for equality of cumulative incidence curves. Thus, the effect of those covariates is

investigated by estimating cumulative incidence curves non-parametrically and testing

whether the curves differ or not.

In a more general situation, Prentice and Kalbfleich (2002) proposed to use the

classic Cox model to estimate cause-specific hazard functions, with the problem that

the coefficients obtained this way do not have a direct interpretation in the cumulative

incidence function.On the other hand, Fine and Gray (1999) proposed another model
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based on the incidence cumulative function that tries to solve that problem. We will

describe both approaches in the next two sections.

3.2.1. Regression on cause-specific hazards

If the covariate is continuous or the simultaneous effect of several covariates on

cause-specific failure is of interest, a competing risks analogue of a Cox proportional

hazards model is needed. With this model, each cause-specific hazard function is mo-

deled separately, treating the competing risks observations as censored.

We model the cause-specific hazard of a cause k for a subject with covariate vector

wi as

hik(t|wi) = hk,0(t) exp{γTk wi},

where hk,0(t) is the baseline cause-specific hazard of cause k, and the vector γk represents

the covariate effects on cause k. At each time some person moves to state k, the covariate

values of this individual are compared with the covariates of all other individuals still

event-free and in follow-up. The exp(γk) is called the cause-specific hazard ratio for

the k event, and it represents the relative risk of failing from that event when the

correspondent variable increases one unit its value.

The covariate effects in that model are proportional for the cause-specific hazards,

as in the traditional Cox model. In the absence of competing risks this would mean

that the survival functions for different values of the covariates were related through a

simple formula. If S1 and S2 were the survival functions for the covariates w1 and w2,

then

S2(t) = S1(t)exp{γT (w2−w1)}.

However, in the presence of competing risks, when the effect of the same covariates

are also modelled for other causes of failure, this relation does not extend to cumulative

incidence functions.

The reason is that the cumulative incidence function for cause k not only depends

on the hazard of cause k, but also on the hazards of all other causes. Recall

Ik(t) =

∫ t

0

hk(s)S(s)ds =

∫ t

0

hk(s) exp

(
−

K∑
k=1

(∫ s

0

hk(r)dr

))
ds.

Hence, the relation of the cumulative incidence functions of cause k for two different

covariate values not only depends on the effect of the covariate on cause k, but also

on the effects of the covariate of all other causes and on the baseline hazards of all
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other causes. As a result, the simple effect of a covariate on the cause-specific hazard of

cause k can be quite unpredictable when expressed in terms of the cumulative incidence

function.

Returning to our example, in Figure 3.4 we can see the cumulative incidence fun-

ctions estimated for the peritoneal dialysis data (where the main event is the death or

the transfer to hemodialysis and the competing risk is the patient receiving a transplant)

for both sexes. This estimation is based on the cause-specific hazards.

Figure 3.4: Cumulative incidence functions for Death/Transfer and Transplantation for
both sexes, based on a proportional hazards model on the cause-specific hazards.

3.2.2. Regression on cumulative incidence functions

Seen the limitations of this previous model, Fine and Gray (1999) introduced a

way to regress directly on cumulative incidence functions. In analogy with the relation

h(t) = −d logS(t)
dt

seen in the chapter 2 between hazard and survival, they defined a

subdistribution hazard :

hk(t) = −d log(1− Ik(t))
dt

.

At the moment of estimating this quantity, the difference between that and the

cause-specific hazard is in the risk set: for the cause-specific hazard, the risk set decreases

at each time point at which there is a failure of another cause; for hk(t), the individuals

who fail from another cause remain in the risk set.
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Fine and Gray (1999) imposed a proportional hazards assumption on the subdistri-

bution hazards:

hik(t|wi) = hk,0(t) exp{γtkwi}.

An example (once again, with the peritoneal dialysis data) of the cumulative inci-

dence functions estimated this way is in Figure 3.5. They are similar to the previous

cumulative incidence functions estimated in the previous section, but here we can see

that the effect of the covariate Sex is proportional in the cumulative incidence: the

separate curves do not cross as they did before.

Figure 3.5: Cumulative incidence functions for Death/Transfer and Transplantation for
both sexes, based on the Fine and Gray method.

The Fine and Gray method is a way of repairing problems with proportional hazards

regression on cause-specific hazards, but there is nothing wrong with that regression.

The problem lies in the fact that we are used to interpreting hazard ratios in the

standard proportional hazards regression with a single endpoint, implying a similar

cumulative effect.

A way of judging the goodnes-of-fit of the two approaches is by comparing the

predicted cumulative incidence curves of the regression models with the non-parametric

cumulative incidence curves obtained by applying

Îk(t) =
∑
j:tj≤t

dkjnj ∏
i:ti≤tj

(
1− di

ni

) .

to the subsets of covariates considerated separately. Figure 3.6 shows these model-free
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cumulative incidence curves.

Figure 3.6: Non parametric cumulative incidence functions for Death/Transfer and
Transplantation for both sexes.

In summary, modelling the effect of covariates on cause-specific hazards may lead

to different conclusions than modelling their effect on subdistribution hazards and cu-

mulative incidence functions.

The standard Cox model can be used to model the effect of covariates on the cause-

specific hazards of the different endpoints, and has the advantage that there is a wealth

of theory and software that has been developed for this purpose. The problem is that

proportionality is lost, and hence covariate effects on cumulative incidence curves can

no longer be expressed by a simple number, as it can be done with the regression on

cumulative incidence curves.
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Chapter 4

Joint Modelling

Once we have explained the basics of the survival, the longitudinal analysis, and the

competing risk, we are in position to build a model that takes into account all three of

those blocks.

We start by introducing the joint modelling approach that studies the association

between the survival and longitudinal process, without considering competing risks. In

the first section we explain its importance and its advantages over the extended Cox

model (Andersen and Gill, 1982). In section 4.2 we specify the longitudinal and survival

submodels of the model, followed by the estimation of the model’s parameters. Next,

in section 4.4, inference to the regression coefficients is discussed.

Finally, in section 4.5 we will focus on the inclusion of the competing risks into the

basic joint model.

4.1. The Basic Joint Model

As mentioned in section 2.2.4, the extended Cox model can study the association

between longitudinal measurements and the survival process, but it has its limitations.

Those drawbacks can be expressed by the example showed in Figure 4.1.

In the top panel of that Figure the solid red line illustrates how the hazard function

evolves in time, i.e., how the instantaneous risk of an event changes in time. On the

other hand, in the bottom panel the asterisk denote the observed longitudinal responses.

The green line represents the underlying longitudinal process.

The joint models approach postulates a relative risk model for the event time out-

come directly associated with the longitudinal process. That process is approximated

using a mixed effects model and the observed data (asterisks). That model contains

33



34 CHAPTER 4. JOINT MODELLING

Figure 4.1: Intuitive idea of joint models. In the top panel the solid red line represents
the hazard function. In the bottom panel the blue line corresponds to the extended Cox
approximation of the longitudinal trajectory, meanwhile the green curve illustrates the
underlying longitudinal process.

fixed effects, describing the average longitudinal evolution in time, and random effects

that describe how each patient deviates from this average evolution.

In their basic form joint models assume that the hazard function at any particular

time point t (in Figure 4.1, the dashed line) is associated with the value of the longi-

tudinal process (green line) at the same point. As for the blue line, it represents the

assumption behind the time-dependent Cox model, which postulates that the value of

the longitudinal outcome remain constant in between the observation times. Hence, the

blue line is staggered.

Through this example we see that using the extended Cox model we would be

introducing some error in the estimation of the longitudinal variable included in the

model. This is why a joint model approach is preferable, as it can be used to account

for both exogenous and endogenous time-depending covariates.

Though they are different proposals of joint approaches, here we will introduce

the one proposed by Rizopoulos (2012), where the main goal is to study the sub-

jects’survival. With this in mind, we will firstly specify the two submodels that com-

pose the joint modelling. Then we will discuss the maximum likelihood estimation of

the model’s parameters, following with the estimation of the random effects and ending
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with a brief summary of inference for those parameters.

4.2. Submodels specification

The joint model is composed of two linked submodels: the longitudinal and the sur-

vival submodel. The notation here will be similar to the one used in previous chapters;

let T ∗i denote the true event time for the ith subject, Ti the observed event time (defined

as the minimum of the potential censoring time, Ci, and T ∗i ) and δi = I(T ∗i ≤ Ci) the

event indicator.

Besides, let yi(t) be the observed value of the time-dependent covariate at time

point t, and equivalently, yij = {yi(tij), j = 1, ..., ni}. Thus, mi(t) will denote the true

and unobserved value of the respective longitudinal outcome at time t, uncontaminated

with the measurement error value of the longitudinal outcome (and, because of this,

different from yi(t)).

4.2.1. The Survival Submodel

Our aim is to associate the true an unobserved value of the longitudinal outcome

at time t, mi(t), with the risk for an event. As stated in section 2.2.4, the relative risk

model can be written as

hi(t|Mi(t), wi) = h0(t) exp{γTwi + αmi(t)},

whereMi(t) = {mi(t), 0 ≤ s < t} denotes the history of the true (unobserved) longitu-

dinal process up to time t. Let h0(t) denote, as before, the baseline risk function, and

wi the vector of baseline covariates. The interpretation of the regression coefficients is

the same as in previous models:

exp(γj) denotes the ratio of hazards for one unit change in the j−th covariate at

any time t.

exp(α), in the other hand, denotes the relative increase in the risk for an event at

time t that results from one unit increase in mi(t) at the same time point.

Note that this expression depends only on a single value of the time-dependent marker

mi(t). However, this does not hold for the survival function. To take into account the

whole covariate history Mi(t) to determine the survival function we use the relation
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S(t) = exp
{
−
∫ t

0
h(s)ds

}
to obtain

Si(t|Mi(t), wi) = P (T ∗i > t|Mi(t), wi)

= exp

{
−
∫ t

0

h0(t) exp(γTwi + αmi(t))ds

}
.

We keep in mind that both the survival and the hazard functions are written as fun-

ctions of a baseline hazard h0(t). Regardless of the fact that the literature recommends

to leave h0(t) completely unspecified, in order to avoid the impact of misspecifying the

distribution of survival times, in the joint modelling framework it can lead to an unde-

restimation of the standard error of the parameter estimates (Hsieh et al., 2006). Thus,

we will need to explicitly define h0(·).
One option is to assume that the risk function corresponds to a known parametric

distribution, such as the Weibull, the log-normal or the Gamma. For example, the

Weibull model assumes that the hazard takes the form

h(t) = λp(λt)p−1,

where, if p > 1 the failure rate increases with time, if p < 1 it decreases and remains

constant over time if p = 1 (also called the exponential model).

But it is more desirable to have a more flexible model for the baseline risk function.

Among the proposals encountered, we highlight this next two options:

The piecewise-constant model where the baseline risk function takes the form

h0(t) =

Q∑
q=1

ξqI(vq−1 < t ≤ vq),

where 0 = v0 < v1 < ... < vQ denotes a partition of the time scale, with vQ being

larger than the largest observed time, and ξq denoting the value of the hazard in

the interval (vq−1, vq].

The regression splines model, where the log baseline risk function log h0(t) is given

by

log h0(t) = k0 +
m∑
d=1

kdBd(t, q),

where kt = (k0, k1, ..., km) are the spline coefficients, q denotes the degree of the

B-splines basis functions B(·) (de Boor, 1978), and m = m̈ + q − 1, with m̈ the
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number of interior knots. This is the option that we will be using when applying

the joint modelling in the real data in the next chapter.

In both models, the specification of the baseline hazard becomes more flexible as the

number of knots increases. In particular, in the limiting case of the piecewise-constant

model where each interval contains only a single true event time, this model is equivalent

to leaving h0 unspecified and estimating it using nonparametric maximum likelihood.

In both approaches, we should keep a balance between bias and variance and avoid

overfitting. Although there is not an ideal strategy, Harrel (2001) gives a standard rule

of thumb based on keeping the total number of parameters between 1/10 and 1/20 of

the number of events in the sample. After the number of knots has been decided, their

location is usually based on percentiles of the observed event times Ti.

4.2.2. The Longitudinal Submodel

In the above definition of the survival model we used the true unobserved value of

the longitudinal covariate mi(t). Taking into account that the longitudinal information

yi(t) is collected with possible measurement errors, the first step towards measuring the

effect of the longitudinal covariate to the risk for an event is to estimate mi(t) in order

to reconstruct the complete true historyMi(t) to each subject. Then, the linear mixed

model can be rewritten as 

yi(t) = mi(t) + ui(t) + εi(t),

mi(t) = xTi (t)β + zTi (t)bi,

bi ∼ N(0, D),

εi(t) ∼ N(0, σ2Ini
),

where we notice that the design vectors xi(t) for the fixed effects β and the zi(t) for

the random effects bi, as well as the error terms εi(t), are time-dependent. Similarly to

section 2.1, we assume that error terms are mutually independent, independent of the

random effects and normally distributed with mean zero and variance σ2.

This mixed model formulation allows to settle that the longitudinal outcome yi(t)

is equal to the true level mi(t) plus an error term. The main difference from the model

in section 2.1 is that, in addition to the random error term εi(t) we incorporate an
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additional stochastic term ui(t). This last term is used to capture the remaining serial

correlation in the observed measurements, which random effects are unable to capture.

Besides, ui(t) is considered as a mean-zero stochastic process, independent of bi and

εi(t).

4.3. Estimation

In chapter 2 the estimation of the parameters was based on the maximum likelihood

approach for both longitudinal and survival processes. Rizopoulos (2012) has also used

the likelihood method for joint models, as it is the most commonly used approach in the

joint literature. Though the two-stages approach for the parameters estimation is less

complex than those methods in a computationally aspect, the approximations applied

with this second approach produces bias.

In this section we first describe the joint likelihood process in order to estimate

the joint model’s parameters, followed by a brief presentation of how to estimate the

random effects in joint modelling.

4.3.1. Joint Likelihood Formulation

The likelihood method for joint models is based on the maximization of the log-

likelihood of the joint distribution of the time-to event and longitudinal data {Ti, δi, yi}.
Let the vector of time-independent random effects bi account for the association

between the longitudinal and the event process, and the correlation between the repea-

ted measurements in the longitudinal outcome. In fact, we have that the longitudinal

process and the survival process are conditionally independent given bi.

p(Ti, δi, yi|bi; θ) = p(Ti, δi|bi; θ)p(yi|bi; θ),

where p(·) denotes the corresponding probability density function, and

p(yi|bi; θ) =
∏
j

p(yi(tij)|bi; θ),

where θ = (θTt , θ
T
y , θ

T
b )T denotes the parameter vector for the event time outcome, for

the longitudinal outcomes and for the random-effects covariance matrix respectively.

Under the modelling assumptions presented in previous sections and these above

conditional independence assumptions, the joint log-likelihood contribution for the i−th
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subject has the form

log p(Ti, δi, yi; θ) = log

∫
p(Ti, δi, yi, bi; θ)dbi

= log

∫
p(Ti, δi, |bi; θt, β)

[∏
j

p(yi(tij)|bi; θy)

]
p(bi; θb)dbi,

where the likelihood of the survival part takes the form

p(Ti, δi|bi; θt, β) = hi(Ti|Mi(Ti); θ)
δiSi(Ti|Mi(Ti); θ),

with hi(·) and Si(·) the ones described in section 2.2. On the other hand, the joint density

for longitudinal responses together with the random effects is performed through the

following expression,∏
j

p(yi(tij)|bi; θy)p(bi; θb) = (2πσ2)−ni/2 exp
{
−||yiXiβ − Zibi||2/2σ2

}
× (2π)−qb/2 det(D)−1/2 exp(−bTi D−1bi/2),

where qb denotes the dimensionality of the random-effects vector, and || · || denotes the

Euclidean vector norm.

Then,the maximization of the log-likelihood with respect to θ for all the observed

data , formulated as,

l(θ) =
∑
i

log p(Ti, δi, yi; θ),

requires a combination of numerical integration and optimization algorithms. Due to

the fact that both the integral with respect to the random effects and in the survival

function do not have an analytical solution, a numerical integration technique is needed.

Despite some authors have employed standard numerical integration techniques,

such as Monte Carlo or Gaussian quadrature, the Expectation-Maximization (EM)

algorithm described by Wulfsohn and Tsiatis (1997) has been traditionally preferred.

The intuitive idea behind the EM algorithm is to maximize the log-likelihood in two

steps: the Expectation step, where missing data are filled, so we replace the log-likelihood

of the observed data with a surrogate function, and the Maximization step, where this

surrogate function is then maximized.

Besides these techniques, Rizopoulos et al. (2009) have introduced a direct maximi-
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zation of the observed data log-likelihood, which is a quasi Newton algorithm. Therefore

hybrid optimization approaches start with EM and then continue with direct maximi-

zation.

4.3.2. Estimation of the Random Effects

Until now we have focus our attention on the estimation of the parameters β, γ

and α, but in many settings interest may lie in deriving patient-specific predictions for

their outcomes. To derive such predictions, an estimate of the random effects vector bi

is required. Since the random effects are assumed to be random variables, it is natural

to estimate them using the Bayesian theory.

This is what Rizopoulos (2012) does when estimating the random effects. Assuming

that p(bi; θ) is the prior distribution, and that p(Ti, δi|bi; θ)p(yi|bi; θ) is the conditional

likelihood part, the corresponding posterior distribution is,

p(bi|Ti, δi, yi; θ) =
p(Ti, δi|bi; θ)p(yi|bi; θ)p(bi; θ)

p(Ti, δi, yi; θ)

∝ p(Ti, δi|bi; θ)p(yi|bi; θ)p(bi; θ),

which does not have a closed form solution so it has to be numerically computed.

However, as the number of longitudinal measurements ni increases, this distribution

will converge to a normal distribution.

To describe this posterior distribution, standard summary measures (such as the

mean and the mode) are often utilized. Thus, two types of estimators typically used

are: 
bi =

∫
bip(bi|Ti, δi, yi; θ)dbi, and

b̂i = arg máxb{log p(bi|Ti, δi, yi; θ),

and they correspond, respectively, with the mean and the mode.

4.4. Model testing

It has been shown in previous sections that the joint models’ parameters can be

estimated by maximum likelihood. The next step would be to do some inference tests.
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In general, if we are interested in testing the null hypothesis

H0 : θ = θ0,

H1 : θ 6= θ0,

there are different methods we could use:

the Likelihood Ratio Test, with the test statistic defined as

LRT = −2{l(θ̂0 − l(θ̂)},

where θ̂0 and θ̂ denote the maximum likelihood estimates under the null and

alternative hypothesis respectively;

the Score Test, with the test statistic defined as:

U = ST (θ̂0){I(θ̂0)}−1S(θ̂0), with I(θ̂) = −
n∑
i=1

∂Si(θ)

∂θ
|θ=θ̂,

where S(·) denotes the score function and I(·) the observed information matrix

of the model under the alternative hypothesis,

or the Wald Test, with the test statistic defined as

W = (θ̂ − θ0)TI(θ̂)(θ̂ − θ0).

Under the null hypothesis, the asymptotic distribution of each of these tests is a chi-

squared distribution on p degrees of freedom, with p denoting the number of parameters

being tested. In particular, the Wald test for a single parameter θj is equivalent to

(θ̂j − θ0j)/s.e.(θ̂j), which under the null hypothesis follows an asymptotic standard

normal distribution.

Despite of being asymptotically equivalent, the behavior of the tests is different

in finite samples. The election of any of these procedures depends on the limitations

of each one. Specifically, regarding the computational cost of fitting, the Wald test

only requires to fit the model under the null hypothesis, and the score test under

the alternative. However, the likelihood ratio test requires to fit the model under both

hypotheses, being more computationally expensive. But other issues must be considered,
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such as the fact that the Wald test does not take into account the variability introduced

by estimating the variance components, apart from ignoring that we need to estimate

the survival process. Also, the implementation of the score test needs extra steps to

calculate the required components.

A general drawback of these tests is that they are only appropriate for the compa-

rison of two nested models. In order to carry out the comparison of non-nested models,

information criteria could be used, such as the Akaike’s Information Criterion (AIC,

Akaike 1974), and the Bayesian Information Criterion (BIC, Schwarz 1978), defined as

AIC = −2l(θ̂) + 2p,

BIC = −2l(θ̂) + p log(n),

where p denotes the number of parameters in the model.

Apart from these topic procedures to models’comparison, we could also be interested

in testing whether an extra random effect should be included in the joint model or not.

However, this specific field is forgotten in the joint modelling framework, so it could be

an interesting future line of research.

4.5. Extension of the standard joint model: compe-

ting risks

Joint modelling of longitudinal and survival data has received much attention in the

last years and is becoming increasingly used in clinical studies. Although some joint

models were adapted in order to allow for competing endpoints, this methodology has

not been widely disseminated.

Despite the fact that there are well-established models that allow to analyze longi-

tudinal and time-to-event outcomes separately, this models are not suitable to analyze

data when the longitudinal outcome and survival competing endpoints are associated.

In those cases, a joint modelling approach is required.

In this section, we will focus on studying the association between a single endogenous

time-dependent covariate and time to different types of failure, for it could be of interest

to distinguish between the events and investigate how covariates affect the risk for each

one of them. One of the traditional types of analysis in such settings is the cause-

specific hazard regression, which postulates separate relative risk models for each of the

competing events.
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To handle different failure types we need to extend the notation for the survival

process. Assuming K different causes of failure, we let T ∗i1, ..., T
∗
iK denote the true failure

times for each one of those. The observed data for de ith subject comprise of the

observed event time Ti = mı́n(T ∗i1, ..., T
∗
iK , Ci), with Ci denoting the censoring time.

The event indicator takes values δi ∈ {0, 1, ..., K}, with 0 corresponding to censoring,

and 1,...,K to the competing events. For each of the K causes, and as mentioned above,

we postulate the standard relative risk model

hik(t|Mi(t)) = h0k(t) exp{γTk wi + αkmi(t)},

which includes the effects of the baseline covariates wi and the effects of the current

value of the longitudinal marker mi(t), and whereMi(t) = {mi(t), 0 ≤ s < t} as before.

The specification of the joint model is completed by positing a suitable mixed-effects

model for the observed longitudinal responses yi(t), as the one detailed in the previous

section:

yi(t) = mi(t) + εi(t) = xTi (t)β + zTi (t)bi + εi(t), bi ∼ N(0, D) and εi(t) ∼ N(0, σ2Ini
).

Estimation of such joint models is based on exactly the same principles as for joint

models with a single failure type. The only difference is in the construction of the

likelihood part for the event process. In particular, it takes the form:

p(Ti, δi|bi; θt, β) =
K∏
k=1

[
h0k(Ti) exp{γTk wi + αkmi(Ti)}

]I(δi=k)

× exp

(
−

K∑
k=1

∫ Ti

0

h0k(s) exp{γTk wi + αkmi(s)}ds

)
.

On the other hand, for the estimation of the baseline risk function h0k(s) it is

required the use of the regression spline method. For each event k, the log baseline risk

function log h0(t) is expanded into B-spline basis functions as follows:

log h0(t) = k0 +
m∑
d=1

kdBd(t, q),

where, as in section 4.1, kt = (k0, k1, ..., km) are the spline coefficients, q denotes the

degree of the B-splines basis functions B(·), and m = m̈+ q− 1, with m̈ the number of

interior knots.
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Chapter 5

Application to real data

Throughout this past chapters we have seen how to approach a situation where we

have interest in the survival of some data with longitudinal measurements and in the

presence of competing risks. This chapter presents an application for joint modelling

and competing risk process to a real data, that will illustrate the potential benefits of

using this techniques.

The data includes patients in the peritoneal dialysis program from the Peritoneal

Dialysis Unit, Nephrology Department, Hospital Geral de Santo António - Centro Hos-

pitalar de Porto, Portugal. As explained in the introduction, along the permanence in

the peritoneal dialysis program, this data presents different types of information about

each patient: baseline characteristics taken at the beginning of the study (like the sex or

the age), several clinical parameters measured over time (albumin, calcium and phosp-

horus score) and the event that forced the patient to abandon the treatment program

(Figure 5.1).

Figure 5.1: Diagram for the competing events of the peritoneal dialysis data.

From the biomedical perspective, low albumin level is usually associated with kidney

failure, while calcium levels of the blood tend to drop. As for the phosphorus, it stays

45
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in the body when the kidneys can no longer remove it.

The main objective of the application study is to compare different regression models

for the patient behaviors in the peritoneal dialysis program. In order to to so, we first

describe the variables contained in the database, then we propose several models to

analyze in which ways the survival of the subjects is affected by the available covariates

and finally we compare all those models using time dependent AUCs. At the end of the

chapter, along with the results obtained we include a brief discussion on the available

software used in the analysis.

5.1. Peritoneal Dialysis Data

The data includes the information of 160 patients who started peritoneal dialysis

therapy between October 1999 and February 2013.

The different outcomes observed were death (9.37 %), transfer to hemodialysis (21.75 %)

and renal transplantation (25 %), though in order to do the competing risks analysis we

will distinguish between the subjects that died or were transfered to hemodialysis (the

main event we want to study) and the ones that received a renal transplantation (con-

sidered as competing risk). The rest of the subjects (41.88 %) were treated as censored.

The median of follow-up time was 26.8 months.

The baseline variables that were considered were:

Sex : represents the gender of the patients (51.87 % of women).

Age: age in years of the patient on the moment they started the therapy (mean

age 47.86 years, standard deviation s.d.=14.4 years).

As for the clinical parameters that were measured over time, for a total of 3169

observations, (usually recorded once per month), they were

Album: gather the albumin score in g/dL (mean 3.7 g/dL, s.d.=0.4 g/DL).

Calc: calcium score (mean 2.2, s.d.=0.24).

Phos : phosphorus level (mean 1.6, s.d.=0.42).

The number of measures of this parameter varied between patients, with a minimum

of 1 observations and a maximum of 60, being 15.3 de median of observations. That

means that we are dealing with unbalanced data.
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In Figure 5.2 we can see several graphics (barplots and boxplots) of the baseline

measures for all the patients, meaning the age, the sex and the first measurements for

albumin, calcium and phosphorus separated by the kind of failure they had at the end

of the study.

Figure 5.2: Baseline covariates classified by the status: 0 for censored, 1 for death or
transfer to hemodialysis and 2 for transplant.

At first sight, we observe differences when talking about the age and the albumin

score: the patients who tend to have more possibilities of getting a transplant are the

youngest, and the ones with higher albumin levels. As for the sex of the patients, it

seems that females tend to experience death, transfer or stay alive more frequently than

the males, whom are a majority only in the case of liver transplantation.

As we can observe in Figure 5.2, the subjects who experienced death or transfer

to hemodialysis have a lower albumin median, but to be sure of how this covariates

affect the different states we will need the statistic tools we have been developing in

this project.
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5.2. The Statistical Models

In this section several models are presented to analyze the data. In the first place,

several linear mixed-effects models are applied to the longitudinal covariates albumin,

calcium and phosphorus, leaving aside the survival point of view.

The next models will do the opposite: they are competing risks models where the dif-

ferent kind of failures are taken into account,only including the baseline measurements

of the longitudinal process which are taken at the begging of the study.

Finally, the last models use both techniques, applying a joint model with competing

risks. The only disadvantage of using this kind of approach is that we are not yet able

to include more than one longitudinal covariate in the analysis, so we will have to fit

one model for each one of these variables.

5.2.1. Linear Mixed-Effects Models

As mentioned before, in this section we will perform a mixed model analysis to

describe the evolution in time of the albumin, calcium and phosphorus score. In Figure

5.3 we can see the scores for those variables of the subjects over time, with the overall

trajectories adjusted with a p-spline method.

Figure 5.3: Longitudinal scores showing the individual progression of the longitudinal
variables

The linear mixed-effect models that we will be applying to these covariates is the
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same we expose in chapter 2: 

yi = Xiβ + Zibi + εi,

bi ∼ N(0, D),

εi ∼ N(0, σ2Ini
),

Of course, there will be a separate model for each longitudinal variable, but we will

consider the same fixed and random effects for all of them. As we expect an evolution

in time different for each patient and with different average effects per sex and age, the

models that we will consider are:

yA,i = βA,0 + βA,1Sexi + βA,2Agei + βA,3ti + bA,0i + bA,1iti + εA,i,

yC,i = βC,0 + βC,1Sexi + βC,2Agei + βC,3ti + bC,0i + bC,1iti + εC,i,

yF,i = βF,0 + βF,1Sexi + βF,2Agei + βF,3ti + bF,0i + bF,1iti + εF,i,

with the assumption that both the random effects and the error terms come from a

normal distribution. That is, we are considering the time, the sex and the age as fixed

effects, as well as a random-intercepts and random-slopes model, assuming that the

rate of change in those longitudinal variables is different from patient to patient.

In Table 5.1 we synthesize the estimated coefficients for the fixed effects of these

models.

These results suggest that the longitudinal scores remains constant along the time.

Additionally, age and sex were identified as statistically significant predictors of albumin

and phosphorus: in both cases the estimated coefficients indicate that male patients

present higher average level of albumin and phosphorus, and that older patients are

expected to have lower average levels of those variables. As for the calcium, sex and age

can also be considered as significant predictors for its score, but in this case they are

the males and the youngest who are expected to have lower calcium levels. In Figure

5.4 we represent again the different scores over time, but this time distinguishing the

males (pink) and the females (blue). Note that the overall trajectories are presented

with a p-spline method in Figure 5.3 seems to indicate that phosphorus scores tend to

decrease over time, whereas the coefficients we have just estimated indicate quite the

opposite notion: this is because with the p-spline method we do not take into account

the individual trajectories, so it may lead to misinterpretations.
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Coef s.d. p-value

βA,0 (Intercept) 3.8848 0.1069 0.0000

βA,1 0.2404 0.0619 0.0002

Albumin βA,2 -0.0053 0.0021 0.0142

βA,3 -0.0013 0.0011 0.2703

βC,0 (Intercept) 2.1674 0.0573 0.0000

βC,1 -0.0823 0.0324 0.0122

Calcium βC,2 0.0023 0.0011 0.408

βC,3 0.0002 0.0007 0.7464

βF,0 (Intercept) 2.1013 0.0887 0.0000

βF,1 0.1123 0.0513 0.0301

Phosphorus βF,2 -0.0104 0.0017 0.0000

βF,3 0.0027 0.0012 0.0248

Table 5.1: Fitted values for the linear mixed-effects models for the different longitudinal
variables, with their standard deviations (se) and the p-values.

Figure 5.4: Longitudinal scores showing the individual progression of the longitudinal
variables by sex (blue for female and pink for male).

These same models will be considered for the longitudinal submodels when applying

the joint modelling approach.
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5.2.2. Competing Risks

Following the procedures explained in section 3.1.3 we can estimate the cumulative

incidence curves for the two competing events, taking into account only the failure

times and the cause of failure of the data. Graphically represented in Figure 5.5, those

cumulative incidence functions give us an insight of how those events evolve over time.

Figure 5.5: Cumulative incidence curves of the two events of failure.

The first model that we present in the context of competing risks model is a com-

plete model which includes all the baseline measurements of the longitudinal markers

(albumin, phosphorus,, calcium) and competing risks (death/transfer to hemodialysis

and renal transplantation) with baseline covariates (age, gender).

Two cause-specific relative risks models are assumed:

hi1(t) = h01(t) exp{γ11Sexi + γ12Agei + γ13Albumi + γ14Calci + γ15Phosi},

hi2(t) = h02(t) exp{(γ11 + γ21)Sexi + (γ12 + γ22)Agei + (γ13 + γ23)Albumi

+(γ14 + γ24)Calci + (γ15 + γ25)Phosi}.
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The parameters γ11, γ12, γ13, γ14 and γ15 denote the effects on sex, age, albumin, calcium

and phosphorus, respectively, on the risk for death/transfer to hemodialysis, and the

parameters γ21, γ22, γ23, γ24 and γ25 denote the additional effects of sex, age, albumin,

calcium and phosphorus on the risk for renal transplantation. As this model is quite

complex, as it includes a lot of parameters, we apply a variables selection method. The

model that we obtain is the following:
hi1(t) = h01(t) exp{γ11Agei + γ12Albumi + γ3Phosi, }

hi2(t) = h02(t) exp{(γ11 + γ21)Agei + (γ12 + γ22)Albumi + γ3Phosi}.

Note that the sex and the calcium have been excluded completely from this second

model, and that phosphorus is not assumed to have any additional effect on the risk for

renal transplantation. The parameters estimates and their standard errors are presented

in Table 5.2.

Coef Exp(Coef) Std. Error p-value

Event of interest (D/HD)

γ11(Age) -0.0047 0.9952 0.0097 0.6263

γ12(Album) -0.6811 0.5060 0.2948 0.0208

γ3 (Phos) 0.51911 1.6805 0.2376 0.0289

Competing risk (T)

γ21 (Age : CR) -0.0306 0.9698 0.0152 0.0450

γ22 (Album : CR) 2.0260 7.5844 0.5276 0.0001

Table 5.2: Fitted values for the competing risk model.

Considering those results, significantly γ12 estimate indicates that individuals who

have a lower albumin level tend to have a worse survival, meaning that a unit de-

crease in albumin score corresponds to exp(−(−0.68)) = 1.98 increase in the risk for

death/transfer to hemodialysis. As for the phosphorus, it is just the opposite: a unit

increase in phosphorus score correspond to a 1.68 increase in the risk for death/transfer

to hemodilaysis. There was also found an association between albumin and age and the

risk of renal transplantation: the younger patients have a statistically significant higher
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risk of getting a renal transplant, as well as the patients with a more elevated albumin

score.

5.2.3. Joint Modelling & Competing Risks

With the purpose of evaluating the relationship between the longitudinal scores and

death/transfer to hemodialysis in the presence of the competing risk renal transplan-

tation, three different joint models were analyzed, each of one including a different

longitudinal covariate. In Figure 5.6 we can observe once again the longitudinal scores

of those covariates, but this time separated by the kind event that occurs. This ap-

proach is recommended when the focus of the research is on the survival outcome, and

it allows to evaluate the impact of a longitudinal covariate (one at a time).

We will now present the three models, each of one considering one of the longitudinal

variables. All of them include a longitudinal and a survival submodel. The first submodel

is similar at the one explained in the section 5.2.1 of this chapter: it is a linear mixed-

effect model were the fixed effects included are the sex, the age and the time, and we

consider the random intercept and random slope effects.

As for the survival submodel, it is a competing risk model where the essential dif-

ference with a extended Cox Model where we could handle time-dependent covariates

is that we are considering mi(t), the true and unobserved value of the longitudinal

outcome yi(t).

Next, we expose the three models that we will be considering. The basic difference

between each one of them is the true value of the longitudinal outcome, that is mA,i(t)

for albumin, mC,i(t) for calcium and mF,i(t) for phosphorus.

Albumin

Longitudinal Submodel:

yA,i(t) = βA,0 + βA,1Sexi + βA,2Agei + βA,3t+ bA,0i + bA,1it+ εA,i(t).

Survival Submodel:
hA,i1(t) = hA,01(t) exp{γA,11Sexi + γA,12Agei + αA,1mA,i(t)},
hA,i2(t) = hA,02(t) exp{(γA,11 + γA,21)Sexi

+(γA,12 + γA,22)Agei + (αA,1 + αA,2)mA,i(t)}.
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Figure 5.6: Longitudinal scores showing the progression of the albumin, calcium and
phosphorus variables separated by the different events that arrived to the patients (0
censored, 1 death or transfer and 2 transplant).

Calcium

Longitudinal Submodel:

yC,i(t) = βC,0 + βC,1Sexi + βC,2Agei + βC,3t+ bC,0i + bC,1it+ εC,i(t).
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Survival Submodel:
hC,i1(t) = hC,01(t) exp{γC,11Sexi + γC,12Agei + αC,1mC,i(t)},
hC,i2(t) = hC,02(t) exp{(γC,11 + γC,21)Sexi

+(γC,12 + γC,22)Agei + (αC,1 + αC,2)mC,i(t)}.

Phosphorus

Longitudinal Submodel:

yF,i(t) = βF,0 + βF,1Sexi + βF,2Agei + βF,3t+ bF,0i + bF,1it+ εF,i(t).

Survival Submodel:
hF,i1(t) = hF,01(t) exp{γF,11Sexi + γF,12Agei + αF,1mF,i(t)},
hF,i2(t) = hF,02(t) exp{(γF,11 + γF,21)Sexi

+(γF,12 + γF,22)Agei + (αF,1 + αF,2)mF,i(t)}.

The results of these joint models are gathered in Table 5.3. We must emphasize that

each model has been fitted separately.

The longitudinal parameter estimates obtained are very similar to the ones cal-

culated in section 5.2.1. for the three models: the albumin/calcium/phosphorus score

remains almost constant along time, and age and sex have an influence in each variable

sometimes it increases its average level, the other it decreases it).

When considering the survival submodel, not all the models have the same inter-

pretations.

In one hand, we found a strong association between albumin and the risk of death

or transfer to hemodialysis (α̂A,1 = -1.20, p-value=0.0045), meaning that a unit de-

crease in albumin score corresponds to a exp(−(−1.20)) = 3.32 increase in the risk for

death/transfer to hemodialysis. We observe also an association between albumin and

the risk of renal transplantation: it shows that a unit increase in albumin score corres-

pond to a exp(1.72)) = 5.58 increase in the risk for renal transplantation. Considering

the factor age, younger patients have a statistically significant higher risk of getting a

renal transplant rather than dying/being transfer to hemodialysis (hazard ratio for one

year decrease in age equals exp(−(−0.03)) = 1.03).

As for the second model, it appears that the calcium does not have a statistically

significant influence on the survival. The only factor that seems to have a significant

repercussion in it is the age, with a similar interpretation than in the previous case:

younger patients have a higher risk for getting a renal transplant.
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Event Process Longitudinal Process

Albumin

Value s.d. p-value Value s.d. p-value

γA,11 (sex) 0.41 0.30 0.1719 βA,0 3.88 0.10 < 0.0001

γA,12 (age) -0.01 0.01 0.3611 βA,1 (sex) 0.24 0.06 0.0001

γA,21 (sex:CR) 0.05 0.46 0.9181 βA,2 (age) -0.01 0.00 0.0118

γA,22 (age:CR) -0.03 0.02 0.0494 βA,3 (time) -0.00 0.00 0.1202

αA,1 (Assoc) -1.20 0.42 0.0045

αA,2 (Assoc:CR) 1.72 0.69 0.0119

Calcium

Value s.d. p-value Value s.d. p-value

γC,11 (sex) 0.05 0.28 0.8492 βC,0 2.17 0.06 < 0.0001

γC,12 (age) -0.00 0.01 0.8914 βC,1 (sex) -0.08 0.03 0.0107

γC,21 (sex:CR) 0.62 0.44 0.1597 βC,2 (age) 0.00 0.00 0.0366

γC,22 (age:CR) -0.05 0.02 0.0025 βC,3 (time) 0.00 0.00 0.7663

αC,1 (Assoc) -0.95 0.78 0.2240

αC,2 (Assoc:CR) 1.80 1.22 0.1389

Phosphorus

Value s.d. p-value Value s.d. p-value

γF,11 (sex) -0.04 0.29 0.8866 βF,0 2.10 0.08 < 0.0001

γF,12 (age) 0.00 0.01 0.7426 βF,1 (sex) 0.11 0.05 0.0241

γF,21 (sex:CR) 0.59 0.44 0.1759 βF,2 (age) -0.01 0.00 < 0.0001

γF,22 (age:CR) -0.04 0.02 0.0059 βF,3 (time) 0.00 0.00 < 0.0001

αF,1 (Assoc) 1.16 0.51 0.0236

αF,2 (Assoc:CR) -0.42 0.75 0.5718

Table 5.3: Parameter estimates, standard errors and p-values for the three joint models
considered above.

Finally, there is also an association between phosphorus and the risk of death/transfer,

though in this case we do not found an association with the risk of renal transplanta-

tion. A unit increase in phosphorus score corresponds to a exp(1.16) = 3.18 increase in
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the risk for death/transfer. As for the factor age, in this last model we found that in

also indicates that younger subjects have a higher risk of receiving a transplant.

5.3. Model comparison

Once we have fitted different models to the data, the next step would be to determine

which one of them is more appropriate to describe the survival.

In order to carry out the comparison between the different models that have been

displayed here, we use the linear predictors at time t to compute the ROC curves and

the Area Under Curve (AUC) for each time point (Heagerty et al. 2005). This curves

will give us an insight of the predictive performance of each model.

We have to take into account that these are AUCs curves for competing risks. Thus,

we will have two different curves for each model: one for the event death/transfer and

another one for the competing risk renal transplantation.

Firstly, we compare the joint models that we have discussed in the previous section

with some competing risks models where we only take into account the baseline va-

lue of the longitudinal covariate considered at each model. The time-dependent AUCs

computed for each pair of models (the joint model vs. the competing risk model) are

shown in Figure 5.7.

In both the albumin and the phosphorus cases, the AUCs curves show that the

joint model is preferable to the competing risk where only the baseline scores of al-

bumin/phosphorus were considered, at least in the case of death/transfer. This does

not occur for the calcium models: the curves do not differ significantly. This may be

due to the fact that both albumin and phosphorus scores were detected as significant

covariates in the joint models for the event of death/transfer, and calcium was not. In

any case, it seems appropriate to say that the joint models turn out to be a better way

to analyze this data than the basic competing risk approach.

On the other hand, we could ask ourselves the question of which one of those models

we would recommend to a doctor who wants to understand the survival aspects of these

kind of peritoneal dialysis data. To answer this question, we compare the AUCs curves

for the three joint models adjusted and also the curve for the competing risk model

explained in section 5.2.2, the one who included as covariates both the albumin and the

phosphorus scores. This curves are compared in Figure 5.8.

From what it showed in that Figure, the joint model that uses the phosphorus as lon-

gitudinal covariate is the best model to explain the survival due to death/hemodialysis.
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Figure 5.7: Time-dependet AUCs for each pair of models, each one of the pairs consi-
dering only one longitudinal covariate: albumin, calcium or phosphorus.

However, it seems that it is the competing risk simple model the one that behaves bet-

ter when analyzing the renal transplantation. Though this is a simpler model, with no

longitudinal measurements, it has the advantage that it can combine the phosphorus

and the albumin in the same model, something that is yet under study for the joint

modelling. As both longitudinal covariates appear to influence on the survival, it would

be very interesting to be able to adjust a model with both their scores along time.
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Figure 5.8: Time-dependent AUCs for the joint models with competing risks and the
competing risk model considered in 5.2.2.

Apart from this, there are also methods to validate the assumptions behind mixed

models and relative risk models when these are fitted separately, but this area is still

difficult to cover when considering the three blocs of longitudinal data, survival data

and competing risks all together. Rizopoulos (2012) propose the multiple imputation

residuals for fixed visit times for the joint model, but when we add the competing risks

it gets more complicated, so we do not include that validation here.

5.4. Results

Throughout this chapter we have seen different ways to approach the analysis for

the peritoneal dialysis data. Although in general it seems that a joint model considering

competing risk is the best option to do the analysis, depending on the event of inter-

est we could also analyze the data without taking into consideration the longitudinal

measurements.

We have found that what medicine tell us traditionally is true: a decreasing albumin

level is associated with a higher risk to die/receive a transfer to hemodialysis, both of

the events related with kidney failure, and the opposite happens with the phosphorus:

when it rises, the risk of dying or being transfer to hemodialysis is higher.

Apart from this, younger subjects are shown to have a higher risk of getting a renal

transplant. This is to be expected, as a renal transplant could improve significantly
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their survival and it is a more permanent solution to their disease than any dialysis.

When analyzing the adjustment of the longitudinal covariates , the factors sex and

age have proven to have a statistical significant influence in their behavior.

As we can observe in the context of predictive performances of the different possible

models to study the longitudinal markers with competing risks, the joint modelling

approach improves the regression model if the longitudinal marker has a significant effect

on the competing risks. The baseline measurements of the longitudinal biomarkers may

not be enough to explain their time-varying effect on the competing risks. Therefore

it would be appropriate to use joint modelling approaches to explain the relationship

between the longitudinal and competing risks process.

5.5. Software

In this section we present a brief discussion of the existing software that can be used

to perform the analysis explained in this project.

All the analysis were implemented in the R software environment. More specifically,

the packages that were used were lattice (for graphical purposes), nlme (for the linear

mixed-effects models), mstate and cmprsk (for the competing risk adjustment), JM (for

the joint modelling) and risksetROC (for the implementation of the AUCs curves).

Of all these packages, we would like to highlight the JM package: it was developed by

Rizopoulos (2010) and it constitutes a useful tool for the joint modelling of longitudinal

and time-to-event data. It contains all the joint modelling methodology explained above:

the functions jointModel() is the one that fittes the joint models. It uses as arguments

the outputs of the function lme() (that models the mixed-effects) and coxph() (that

comes from the package survival). It has also the argument CompRisk (FALSE by

default), which is the one that allows the model to consider the competing risk situation.

The result of using the function jointModel() is an object of class jointModel,

which can be used to obtain the general results through functions like summay() or

print(). Though the function predict() can be applied in this type of object, its

use is restricted to the case in which there are no competing risks. However, Saha and

Heagerty (2010) are developing a code to trate this time-dependent predictive accuracy

in the presence of competing risks.
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Conclusions

It is very common to found clinical studies with both longitudinal measurements

and event times, where this measures are recorded on subjects during follow-up. Joint

models arise as an appropriate technique when interest lies in the association between

a longitudinal covariate measured with error in a survival analysis. Several simulation

studies have shown that joint model could be substantially more efficient than the

separate analysis, given that these models use information from both outcomes.

The presence of informative censoring, on the other hand, is also quite common in

this kind of studies. Thanks to the joint models that take into account the possible

competing risks, it is possible to evaluate the association between the two processes,

contributing for a better knowledge of the data. Though these competing risks can

be approached from a simpler point of view (taking into account only the baseline

covariates) by doing this we could be loosing important information about how the

longitudinal covariate affects the different events.

Based in this procedures, in this project we have studied data from a peritoneal

dialysis program. We have seen how different longitudinal measurements affected the

survival. In particular, we have proven that albumin and phosphorus levels play an

important role in the risk for death/transfer to hemodialysis, while we did not find

any reasons to think that the calcium score is associated with it or with the renal

transplantation event.

Accordingly with the results obtained, it has been observed a better predictor perfor-

mance of the joint model through the time dependent AUCs curves, though a competing

risk model where we consider both the effect of the baseline albumin and phosphorus

levels can also explain the data satisfactorily.

Like in any medical study where statistical tools are needed, further progress in

61
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this area is needed to continue to develop new tools that allows us to make a better

analysis of the survival with longitudinal data and in presence of competing risk. One

line of research would be including more than one longitudinal covariate at a time in

the joint models. Others will be to make dynamics predictors to illustrate how all the

available information helps to produce predictions of the survival probabilities. Though

some of this concepts already exist in the joint modelling area, not a lot of them can

be extended to the case in which we have to deal with competing risks.



Bibliography

[1] Andersen, P. K., Gill, R. D. (1982). Cox’s regression model for counting processes:

A large sample study. Annals of Statistics 10:1100-1120.

[2] Beyersmann, J., Allignol, A., Schumacher, M. (2012). Competing Risks and Mul-

tistate Models with R. Springer.

[3] Breslow, N. (1972). Discussion of paper ‘regression models and life-tables’ by D.

Cox. Journal of the Royal Statistical Society, Series B 34: 216-217.

[4] Breslow, N., Crowley, J. (1974). A large sample study of the life table and product

limit estimates under random censorship. The Annals of Statistics 2(3): 437-453.

[5] Cox, D. (1972). Regression models and life-tables (with discussion). Journal of the

Royal Statistical Society, Series B 34: 187-220.

[6] de Boor, C. (1978). A Practical Guide of Splines. Springer, Berlin.

[7] Dempster, A., Laird, N., Rubin, D. (1977) Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39:

1- 38.

[8] Fine, J.P., Gray, R.J. (1999). A Proportional Hazards Model for the Subdistribu-

tion of a Competing Risk. Journal of the American Statistical Association 94(446):

496-509

[9] Harrel, F. (1982). Regression Modeling Strategies: With Applications to Linear

Models, Logistic Regression, and Survival Analysis. Springer-Verlag, New York.

[10] Harville, D. A. (1977). Maximum likelihood approaches to variance component es-

timation and to related problems. Journal of The American Statistical Association

72:320-340.

63



64 BIBLIOGRAPHY

[11] Heagerty, P. J., Saha, P. (2010). Time-dependent predictive accuracy in the pre-

sence of competing risks. Biometrics 66(4):999-1011.

[12] Heagerty, P. J., Zheng, Y. (2005). Survival model predictive accuracy and ROC

curves. Biometrics 61(1): 92-105.

[13] Henderson, R., Diggle, P., Dobson, A. (2000). Joint modelling of longitudinal mea-

surements and event time data. Biostatistics 1: 465-480.

[14] Hsieh, F., Tseng, Y. K., Wang, J. L. (2006). Joint modelling of survival and longi-

tudinal data: likelihood approach revisited. Biometrics 62: 1037-1043.

[15] Kalbfleisch, J. Prentice, R. (2002).The Statistical Analysis of Failure Time Data

Wiley., New York, 2nd edition.

[16] Kaplan, E., Meier, P. (1958). Nonparametric estimation for incomplete observa-

tions. Journal of the American Statistical Association 93: 457:481.

[17] Laird, N., Ware, J.(1982). Random-effects models for longitudinal data. Biometrics

38: 963-974.

[18] Lange, K. (2004). Optimization. Springer-Verlag, New York.

[19] Peterson, A. V. (1977). Expressing the Kaplan-Meier estimator as a function of em-

pirical subsurvival functions. Journal of Americal Statistical Association 72(360):

854-858.

[20] Rizopoulos, D. Verbeke, G., Lesaffre, E. (2009). Fully exponential Laplace appro-

ximations of the joint modelling of survival and longitudinal data. Journal of the

Royal Statistical Society, Series B 71: 637-654.

[21] Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal

and time-to-event data. http://www.jstatsoft.org/v35/i09/

[22] Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data with

Applications in R. CRC Press.

[23] Verbeke,G., Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data.

Springer-Verlag, New York.

[24] Wulfsohn, M., Tsiatis, A. (1997). A joint model for survival and longitudinal data

measured with error. Biometrics 53: 375-387.



List of figures

1.1. Albumin longitudinal profiles of 16 subjects. The different colors show

the kind of failure that each of them presented (green for transplant,

pink for death or transfer to hemodialysis and blue for the ones that did

not suffer any of the above). . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Diagram of the methodology that will be introduced in this project. . . 3

2.1. Longitudinal responses of two subjects in a simulated longitudinal study. 6

2.2. Different longitudinal models considering Zi configuration: the first one

has random intercepts and a null slope; the second one has random in-

tercepts too and a non-random positive slope; the third one has random

slope but common intercept, and the last one has random intercepts and

slopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. A competing risks situation with K causes of failure. . . . . . . . . . . 22

3.2. Estimates of probabilities of death or dialysis and transplant, based on

the naive Kaplan-Meier (grey) and on cumulative incidence (CI) fun-

ctions (black) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3. Stacked cumulative incidence curves of the two competing events of the

peritoneal dialysis data: the bottom curve shows Î1(t) and the top curve
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