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Abstract

A common objective in follow-up studies is to characterize the relationship between
longitudinal measurements and time-to-event outcomes. For this aim, various methods
were proposed in the statistical literature, such as an extended version of the Cox model
with longitudinal covariates or a two-stage approach. However, these techniques have
several limitations, including the possibility of biased estimations. To avoid these limi-
tations, joint modelling approaches are becoming increasingly popular. In this work, we
provide a brief overview of a joint model approach for longitudinal and time-to-event
data, focusing on the survival process. Also, the predictive capacity of this model is
studied and related computational aspects, including available software, are discussed.
The main motivation behind this work relies on the application of the joint modelling to
liver transplantation data, in order to investigate the abilities of postoperative glucose
profiles to predict patients’ survival.

vii





Chapter 1

Introduction

In biomedical studies, periodically measured disease markers are used to monitor pro-
gression to the onset of disease or occurrence of death. Longitudinal studies are becoming
increasingly popular, especially in biomedical research to gain a better understanding
of the risk of disease and even death.

Many of these studies are aimed to characterize the relationship between longitudinal
and time-to-event outcomes. In the literature, several methods are proposed to study
the association between longitudinal responses and particularly time-to-event survival
processes.

The extended Cox model (Andersen and Gill, 1982) and the two stage approach
(Self and Pawitan, 1992), were proposed to handle this association, but these method-
ologies present some limitations. The extended Cox model assumes that the covariates
are external and, for that reason, not related to the failure mechanism (Kalbfleisch
and Prentice, 2002; Prentice, 1982), and that time-dependent covariates are measured
without error. On the other hand, the two-stage approach is neither recommended. It
estimates the joint model by using a two-step approach, first studying the longitudinal
submodel with linear mixed effects, and then incorporates the random effects to the
survival model. Because of this structure, no survival information is used to obtain
longitudinal estimates, so informative dropout is not accounted for. These limitations
may lead to biased or inefficient results.

Current research shows an increasing popularity of the joint likelihood approaches,
due to their efficiency and their advantages comparing with the methodologies men-
tioned above. Joint models take into account the association between the longitudinal
and the survival process by simultaneously determining the parameter estimates for
both processes. For that reason, it alleviates the potential bias caused by both the
extended Cox-model and the two-stage approach. Focusing our attention on those joint
modelling proposals which used shared random effects to their parametrization, we find
two different approaches depending on the research interest. Rizopoulos (2010) has pro-
posed a joint model where the time-to-event process is of main interest and influenced
by a longitudinal time-dependent covariate measured with error. Also Philipson et al.
(2012) developed a shared random effects model where the focus is on both survival and
longitudinal processes.

1



2 CHAPTER 1. INTRODUCTION

The goal of this work is to illustrate an appropriate methodology for follow-up studies
which jointly analyse repeated measurements of biomarkers and event times of individ-
uals. The motivation behind this proposal was an Orthotopic Liver Transplantation
(OLT) database. OLT is the established treatment for end-stage liver disease and acute
fulminant hepatic failure, and more than 80,000 OLTs have been performed in Europe.
Advances in both medical management and surgical techniques have led to an increase
in the number of long-term survivors (Dutkowski et al., 2010). Because liver transplant
recipients live longer, it is necessary to understand and to anticipate causes of morbidity
and mortality. Several investigators have consistently reported a significant association
between increased glycemic variability and worse outcome in critically ill patients. In
their analysis (Dossett et al., 2008; Egi et al., 2006; Krinsley, 2008; Meyfroidt et al.,
2010), blood glucose variability is measured by using standard deviation, percentile val-
ues, successive changes in blood glucose, and by calculating the coefficient of variation.
However, it is recognized that compared with the use of only single-moment biomarker
values, serial biomarker evaluations may carry important additional information regard-
ing the prognosis of the disease under study (Wolbers et al., 2010).

In this work we aim to investigate the abilities of postoperative glucose profiles to
predict the death of patients who underwent an OLT, distinguishing between patients
with and without a previous diagnosis of diabetes mellitus. Because of our interest in
the patients survival, the relationships between glucose profiles and the risk of death
were modelled by using the Rizopoulos (2010) proposal. In addition, the predictive ca-
pacity is analysed by means of time dependent ROC curves (Heagerty and Zheng, 2005).

The outline of this work is as follows. In Chapter 2, a review of longitudinal data
analysis and survival analysis is made. This is necessary to introduce the respective
sub-models of the joint regression model. In Chapter 3, details of the Joint Modelling
approach proposed by Rizopoulos are described. Following-up with a brief description
of the available package in the software R (R Core Team, 2014) that allows to implement
this methodology, the JM package (Rizopoulos, 2010). Then, a detailed analysis of the
results obtained throughout the OLT database is presented in Chapter 4. Finally, in
Chapter 5 conclusions are presented and future lines are discussed.



Chapter 2

Background

In this chapter we will introduce a brief background to understand the joint modelling
approach. Because it involves two major blocks, namely longitudinal data analysis and
survival analysis, the following step is to summarize some key concepts which will lead
us to understand the proposed joint methodology.

2.1 Longitudinal data analysis

Longitudinal data is often collected in clinical trials, especially in follow-up studies, in
which individuals are measured repeatedly across time. For that reason, longitudinal
studies are indispensable to study the change in an outcome over time. Due to no inde-
pendence between these repeated measurements, it will be appropriate to apply mixed
models, which constitute an adequate tool to model this dependence by considering a
hierarchical structure on the database.

Hierarchies are used to perform the dependence relation between individuals and the
groups they belong to. For example, in our study glucose profiles are taken in a sample
of surgery patients, so we will identify a two-level structure: glucose measurements (level
1) grouped by individuals (level 2).

Level 2-patients Id1

ww �� �� ''

Id2

�� �� ��
Level 1-glucose measures 1 2 . . . 6 7 1 2 3

Observations are treated as clustered data, grouped into disjoint classes according
to some classification criteria. A particular case are repeated measurements, where ob-
servations are made sequentially in the same individual, the cluster. Due to this fact,
observations in the same cluster can not be usually considered independent.

Once the data structure is described, the key is to distinguish between the parameters
of the model, classified into fixed effects and random effects. In this way, the response
or dependent variable is assumed to be a function of fixed effects, non-observable cluster
specific random effects, and an error term.

3



4 CHAPTER 2. BACKGROUND

2.1.1 Fixed or random effects

Fixed effects are variables which only include the levels of interest, that is, the objec-
tive of the study lies in the cluster comparison, but not in generalizing results to the
population. The objective is to study the average effect of predictors on the response.
However, for random effects an infinite set of levels are assumed, so our study levels
are seen as a sample from that population. The interest is to make inference for the
complete population of levels. We are not interested in comparing means, but on how
the random effect explains the variability in the dependent variable.

2.1.2 Linear mixed-effects models

In follow-up studies the observations of subjects are measured repeatedly over time.
With this in mind, a simple linear regression can not be used due to the assumption of
independent observations.

Linear mixed-effects models were created with the idea that each individual has its
own subject-specific mean response profile over time. In the linear mixed-effects model
extension (Harville, 1977; Laird and Ware, 1982; Verbeke and Molenberghs, 2000), the
repeated measurements are fitted by using a linear regression model, where parameters
vary over individuals. The general form is,

yi = Xiβ + Zibi + εi,
bi ∼ N(0, D),
εi ∼ N(0, σ2Ini),

(2.1)

where Xi and Zi are the design matrices corresponding to the fixed and the random
effects respectively and Ini is the order ni identity matrix, where ni denotes the number
of observations in the ith subject (cluster), i = 1, . . . , n. In addition, β is the fixed vector
and bi denotes the random effects coefficient. These random effects are assumed to be
normally distributed, with mean zero and variance-covariance matrix D. Moreover, bi
are assumed to be independent of the error terms εi, i.e., cov(bi, εi) = 0. Equivalently,

y = Xβ + Zb+ ε,
b ∼ N(0, D),
ε ∼ N(0, R).

(2.2)

Note that X is a n × p matrix, with p the number of fixed effects, and the fixed
vector coefficients βj , j = 1, . . . p denote the change in the average yi when the cor-
responding covariate xj is increased by one unit, while all other predictors are held
constant. As Z is a n×k matrix, with k the number of random effects, and bi represents
how specific regression parameters of the ith subject deviates from those in the popula-
tion. Moreover, R = σ2In×ni , with In×ni denotes a (n×ni)-dimensional identity matrix.

Besides the above-mentioned advantage of using mixed models, in order to anal-
yse observations with certain hierarchy, this methodology has several desirable features
among which we highlight the following:

• Apart from describing how the mean response changes in the population of interest,
it is possible to predict how individuals response trajectories change over time.
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• There is no requirement of balanced data, that is, we do not require the same
number of measurements on each subject, neither do they need to be taken at the
same set of times.

Covariance matrix V

Marginally the covariance of y, var(y) = V , can be written as;

var(y) = var(Xβ + Zb+ ε)

Assuming that the random effects and the residuals are uncorrelated,

var(y) = var(Xβ) + var(Zb) + var(ε).

Due to fact that β describes the fixed effects parameters, var(Xβ) = 0 and Z is a matrix
of constants, therefore the covariance matrix is given by,

var(y) = V = Zvar(b)Z ′ + var(ε) = ZDZ ′ +R

where D is the variance-covariance matrix and var(ε) = R = σ2In×ni .

Random Intercepts and Random Intercepts and Slopes

By outlining, we can already distinguish two kinds of mixed models. The random inter-
cepts model allows intercepts variation across groups. For a better understanding, the
subject-specific fitted models are parallel to the average, that is the population fitted
model.

In particular, a basic example of a random intercepts model was included, in order
to illustrate the model fitting, which is formed by two clearly distinct parts,

yi = β0 + β1xij + b0i + εi

these are, a fixed part (which is the intercept and the coefficient of the explanatory
variable times the explanatory variable) and a random part. The random part is com-
posed of two random terms, just like the variance components model, on the one hand
a variance of the level 1 random term eij ∼ N(0, σ2) and, on the other hand a variance
of the level 2 random term bi ∼ N(0, σ2

b ). Accordingly in this case, in the mixed model
formulation (2.1) the design matrices are replaced by,

Xi =

 11 xi1
...

...
1ni xini

 , Zi =

 11
...

1ni

 , β = [β0, β1]T .

and the random effects model covariance structure,

bi ∼ N(0, Di), with Di = σ2
b .

Following up with an intuitive extension, that also allows a random shift in the
subject-specific slopes, known as random intercepts and random slopes model. In this
case, our example will take the form,

yi = β0 + β1xij + b0i + b1ixij + εi.
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In this model we additionally have b1i which represents the random slope effect of the
coefficient xij , so actually two extra parameters should be estimated, the variance in
intercepts between groups σ2

b0
and the variance in slopes between groups σ2

b1
. In this

case the model matrix Zi has the form,

Zi =

 11 xi1
...

...
1ni xini

 ,
and the random effects model covariance structure,(

b0i
b1i

)
∼ N(0, Di), with Di =

(
σ2
b0

σb0b1
σb0b1 σ2

b1

)
where σb0b1 denotes the covariance between the intercepts and slopes.

Estimation

Given that the ith subject outcomes have the same random effects they will be marginally
correlated, so we assume that

p(yi|bi; θ) =

ni∏
j=1

p(yij |bi; θ),

i.e., longitudinal responses of a subject are independent conditionally on its random
effect. It makes sense for using the marginal model

yi = Xiβ + ε∗i , where ε∗i = Zibi + εi,

and with cov(ε∗i ) = Vi = ZiDZ
T
i + σ2Ini , to estimate the parameters of linear mixed-

effects models. Using maximum likelihood (ML) principles, the observations of the ith
subjects are not independent so the likelihood function needs to be a multivariate normal
distribution for yi. As random effects have expected values of zero and therefore do not
affect the mean, this distribution has a mean vector Xiβ and a covariance matrix Vi,
then

p(yi; θ) = (2π)−ni/2|Vi|−1/2 exp

{
−1

2
(yi −Xiβ)TV −1

i (yi −Xiβ)

}
,

where θT = (β, V ).

Taking into account that we assume independence across subjects, the likelihood
function is simply the product of the density functions for each subject. The log-
likelihood of a linear mixed model is given by:

l(θ) =

n∑
i=1

log p(yi; θ),

Given Vi, the estimates of fixed-effects parameters are obtained by maximizing the log-
likelihood function (2.1.2), conditionally on the parameters in Vi, and have a closed-form
solution:

β̂ =

(
n∑
i=1

XT
i V
−1
i Xi

)−1 n∑
i=1

XT
i V
−1
i yi.
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Nevertheless, in the case of the random effects, we can not really speak about estima-
tion but instead we can talk about prediction, because of them being random variables.
One way to obtain the best linear unbiased predictor is by Henderson’s mixed model
equations, which, in turn, allow us to obtain the best linear unbiased estimator of Xβ,[

X ′R−1X X ′R−1Z
Z ′R−1X Z ′R−1Z +D−1

] [
β
u

]
=

[
X ′R−1y
Z ′R−1y

]
,

and the obtained solutions are

β̂ = (X ′V −1X)−1X ′V −1y,

û = DZ ′V −1(y −Xβ̂),

depending on the variance parameters of V = ZDZ ′ +R.

Therefore, the next step is to estimate the parameters of the covariance matrix V .
There are two common ways of estimation: the maximum likelihood (ML) and the re-
stricted maximum likelihood (REML).

Employing the maximum likelihood method to obtain the ML estimators of the V
parameters for a given value of β, will be biased for small samples. This bias arises
because the ML estimate has not taken into account that β is estimated from the data
as well. In contrast, the REML estimates the variance components based on the resid-
uals obtained after the fixed effects were estimated, this is, y − Xβ, reason for why it
is referred as marginal likelihood. Then, if the sample size is small, the REML would
yield better estimates than the ML. It is worth noting that neither the ML nor the
REML for the parameters in V can be written, in general, in closed form, so it is nec-
essary to approximate them numerically. Two algorithms were implemented for linear
mixed-effects models (Lindstrom and Bates, 1988) such as Expectation-Maximization
and Newton-Raphson algorithms.

2.2 Survival Analysis

Survival analysis is a powerful tool for studies aimed at analysing event times. In par-
ticular, clinical follow-up studies may be interested in analysing the time until an event
occurs, normally understood as death or contracting a disease. In these procedures, the
factors or covariates effects on survival or risk are also studied.

In this way, the variable of interest, that is, the dependent variable, is the time until
that event, namely failure time, event time, survival time. The presence of censoring in
survival data is what makes the difference, and consequently requiring specific method-
ologies, such as survival analysis. To clarify, censored data is defined to be those data
in which the event time of interest is not fully observed on all subjects under study
(lost to follow up or drop out of the study, or if the study ends before they die or have
an outcome of interest). To describe this censoring mechanism we refer to two possible
classifications. First, regarding to the position of the observation of the time to the
event, is either left- or right-censored (the survival time is less or greater than the ob-
servation time) and interval-censored data (in which the time to the event of interest is
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known to occur between two certain time points). And secondly, differentiating between
informative censoring, that occurs when subjects are lost to follow-up due to reasons
related to the study, and noninformative censoring, when individuals drop out of the
study for reasons unrelated to the study, but it can depend on covariates.

In our application data, the date of death is known for all patients finally included
in our study, in case of an event prior to the end of study. There have been no drop
outs and all censures are caused by the end of study. Given that, in order to conduct
the study, we will consider noninformative right censoring.

2.2.1 Functions of interest

Let T be the survival time and C the censoring time. Define the follow-up time
Y = min(T,C), and let δ = 1(T ≤ C) denote the censoring indicator. Considering
the probability density function of T , f(t) = P (T = t), which represents the uncondi-
tional probabilities of death, the survival function is defined as the complement of the
cumulative distribution function,

S(t) = P (T ≥ t) =

∫ ∞
t

f(x)dx

giving the probability that the event has occurred by duration t.

An alternative characterization of the distribution of T is the hazard function. It
describes the instantaneous risk for an event in the time interval [t, t+ dt] given that it
has not occurred before, and is given by the following expression

λ(t) = lim
dt→0

P (t ≤ T < t+ dt|T ≥ t)
dt

, t > 0.

Due to fact that the hazard function characterizes the probability density function,
f(t) = λ(t)Πt−1

k=1[1−λ(k)], the survival function can be expressed as a product of hazards,

S(t) =
f(t)

λ(t)
=

t−1∏
k=1

[1− λ(k)]. (2.3)

or as

S(t) = exp{−Λ(t)} = exp

{
−
∫ t

0
λ(s)ds

}
(2.4)

where Λ(·) is the cumulative risk function, which describes the accumulated risk up until
time t.

2.2.2 Survival estimation

Up to this point, results show that survival and hazard functions are equivalent alter-
natives to characterize the distribution of T . We now introduce the most well-known
estimators of both functions.
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• Kaplan-Meier estimator

Let Ti, i = 1, . . . n be the observations of T and, therefore, Ci the respective
censoring time for subject i. In order to estimate the survival function, the esti-
mator proposed by Kaplan and Meier (1958) takes into account for censoring by
adjusting the number of subjects at risk,

ŜKM (t) =
∏

i:t(i)≤t

[
1− di

ni

]
,

where t(i) denote the distinct ordered times of death and, di and ni denote the
number of events and the number of individuals still at risk at time ti respectively.
The Kaplan-Meier estimator is a step function with discontinuities or jumps at
the observed event times, coinciding with the empirical survival function if there
is no censoring.

A special mention needs to be made of the Kaplan-Meier statistical properties, its
consistency has been proved by Peterson (1977), and Breslow and Crowley (1974)
have shown that

√
n(Ŝ(t) − S(t)) converges in law to a Gaussian process with

expectation 0 and variance-covariance function that may be approximated using
Greenwood’s formula,

var(Ŝ(t(i))) = [Ŝ(t(i)]
2

i∑
j=1

1− π̂j
nj π̂j

,

where π̂j = 1− dj/nj .

• Nelson-Aalen Estimator

The Nelson-Aalen estimator could be thought as an alternative to estimate the
cumulative hazard, it is given by the following expression:

Λ̂(t(i)) =
i∑

j=1

dj
nj
,

in which the hazard must be intuitively interpreted as the ratio of the number of
deaths to the number exposed. The estimator variance can also be approximated
by using the Greenwood’s formula. In such situation, Breslow (1972) suggested
estimating the survival function as

Ŝ(t) = exp{−Λ̂(t)}.

Fleming and Harrington (1984) showed the close relationship between both estimators,
especially when the number of events is small relative to the number exposed.
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2.2.3 Parametric Maximum Likelihood

Apart from using non-parametric estimators like the Kaplan-Meier and the Nelson-
Aalen estimators, we can also assume a parametric form for the distribution of the
survival time, S(t), and then, the parameter estimation will be made by using maxi-
mum likelihood. Let the sub-index i refer to the subject indicator and, consequently,
{Yi, δi}, i = 1, . . . , n denote their survival information. Taking a random sample from
a certain distribution, parameterized by θ, the likelihood funtion is given by,

l(θ) =
n∏
i=1

f(Yi; θ)
δiSi(Yi; θ)

(1−δi).

Note that it takes to account for censoring information, by contributing with f(Ti; θ)
when an event is observed at time Ti and with S(Ti; θ) when subjects survived up to
that point, that is Ti > Yi = Ci. This can be rewritten in terms of hazard function using
the relations (2.3) and (2.4):

l(θ) =

n∏
i=1

λ(Yi; θ)
δi exp{−Λ(t)}(1−δi). (2.5)

To address this issue, iterative optimatization procedures could be necessary to locate
the maximum likelihood estimates θ̂, such as the Newton-Raphson algorithm (Lange,
2004).

2.2.4 Regression Methods

There are several ways to relate the outcome to predictors in survival analysis. We will
focus on two, namely, the proportional hazards model, that is also known as relative
risk model, and the accelerated failure time model.

• Relative Risk Model

The best known procedure in survival analysis for modelling the relationship of
covariates to a survival or other censored outcome is the Cox model (Cox, 1972),
formulated as,

λi(t|wi) = λ0(t) exp(γTwi), (2.6)

where λ0 is an unspecified function of time called the baseline hazard, wTi =
(wi1, . . . , wip) denotes the covariate vector for subject i and γ is a p × 1 column
vector of coefficients. In particular, exp(γj) denotes the ratio of hazards for one
unit change in the j-th covariate at any time t. The model assumes that covariates
have a multiplicative effect on the hazard for an event.

Because the hazard ratio for two subjects with fixed covariates vectors wi and wj
is constant over time, as can be proved,

λi(t|wi)
λj(t|wj)

=
λ0(t) exp(wiγ)

λ0(t) exp(wjγ)
= exp{γT (wi − wk)} (2.7)

the model is also known as the proportional hazards, relative risk or relative haz-
ard model.
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Different types of estimation of the Cox model are possible following approaches
based on parametric or semiparametric modelling. In the first case, we assume a
model under the baseline hazard function, so the parameters’ estimation is devel-
oped by maximizing the likelihood function (2.5). Nevertheless, the semiparamet-
ric modelling arises to avoid this baseline hazard’ specification introduced by Cox
(1972), showing that the estimation of γ can be based on the partial likelihood,

pl(γ) =
n∏
i=1

[
γTwi∑n

i=1 I(Yj ≥ Yi) exp(γTwj)

]δi
,

that is not to specify the distribution of Ti. For more detail of the efficiency of the
Cox Model estimator, we refer to Kalbfleisch and Prentice (2002, chap. 5).

Proportional Hazard assumption and Time-Dependent Covariates

As Kleinbaum and Klein (2005) say

...the proportional assumption requires that the hazard ratio is constant
over time, or equivalently, that the hazard for one individual is propor-
tional to the hazard for any other individual, where the proportionality
constant is independent of time.

It is enough to point out at the expression (2.7), where the baseline hazard has
cancelled out. However, in follow-up studies, where covariates depend on time,
the Cox model will be inappropriate, due to these situations yield a hazard ratio
that varies across time. In this way, if time-dependent covariates are considered,
the Cox model form may still be used, but not satisfying the assumption (2.7).
This adjustment is called the extended Cox model.

A time-dependent variable is defined as any variable whose value for a given sub-
ject may differ over time. We can distinguish two different categories of time-
dependent covariates, namely external and internal covariates. In particular, a
variable is called an external variable if its value changes because of “external”
characteristics and affects several individuals simultaneously. In contrast, an in-
ternal variable change is due to “internal” characteristics or behaviour specific
to the individual, typically arises as time-dependent measurements taken on the
subjects under study. The most important characteristic of this type of variables
is that they typically require the survival of the subject for their existence. In
other words, a failure of the subject at time s corresponds to non-existence of the
covariate at t ≥ s.

Extended Cox Model

In this context, supposed to be both time-independent and time-dependent covari-
ates, the extended Cox model is written as

λi(t|Yi(t), wi) = λ0(t) exp{γTwi + αyi(t)},
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where Yi(t) = {yi(s), 0 ≤ s < t}, in which yi(t) denotes a vector of time-dependent
covariates. These time-dependent covariates are encoded using the (start,stop] no-
tation, that hold the information of the specific time intervals in which longitudinal
measurements are recorded. As defined in (2.6), wi denotes a vector of baseline
covariates. The regression coefficients vector α is similar as for γ. Thus, assum-
ing there is only a single time-dependent covariate, exp(α) denotes the relative
increase in the risk for an event at time t that results from one unit increase in
yi(t) at this point.

The primary reason for distinguishing among defined, internal or external vari-
ables is that the extended Cox model has strong assumptions. On the one hand,
the time-dependent variables are external, so they are not related to the failure
mechanism (Kalbfleisch and Prentice, 2002). This is an unrealistic assumption for
the longitudinal process, especially, for follow-up studies. Moreover, the value of
each covariate would be known at every failure time for all subjects, a problem
in unbalanced data. On the other hand, an unacceptable condition in internal
variables is that the extended Cox model will not be able to take into account the
measurement error of the longitudinal covariates, and thus can introduce bias.

• Accelerated Failure Time Model

Another alternative modelling framework for event time data is the accelerated
failure time (AFT) models. These models specify that predictors act multiplica-
tively on the failure time (additively on the log of the failure time). The predictors
alter the rate at which a subject proceeds along the time axis, i.e., they accelerate
or decelerate the time of failure (Kalbfleisch and Prentice, 2002). The model is
defined as,

log(Ti) = γTwi + σtεti

where parameter γt is a scale parameter and εti is assumed to follow a specific
distribution. Then, the parameter γj denotes the change in the expected log
failure time for a unit change in the corresponding covariate wij . Equivalently, a
unit change in wij increases the failure time by a factor of exp(γj). Then, in terms
of the risk rate function, we can postulate the accelerated failure time as,

λi(t|Yi(t), wi) = λ0(Vi(t)) exp{γTwi + αyi(t)},

with Vi(t) =
∫ t

0 exp{γtwi + αyi(s)}ds. For more information we refer to Cox and
Oakes (1984).

In both Proportional Hazards and Accelerated Failure Time models an unspecified
baseline risk function λ0(·) is used, that can be assumed of a specific parametric form or
modelled flexibly. We want to point out that the Weibull distribution (and consequently
its special case, the exponential distribution) is the only distribution that can be used
to describe both PH and AFT models.



Chapter 3

Joint Modelling for Longitudinal
and Time-to-Event Data

Many clinical and epidemiologic studies, generate both longitudinal (repeated measure-
ments) and survival (time-to-event) data. Up to now, well-established methods have
been introduced to study the longitudinal process and the survival process separately.
However, these may be inappropriate when the longitudinal variable is correlated with
the survival process, either with the subject’s status as well as the possibility of study
dropout.

As mention at the end of the section 2.2, a possibility to study the association be-
tween longitudinal measurements and survival process is the extended Cox model. But
it is not appropriate, especially for internal time-dependent covariates because it can
result in biased estimations.

A possible alternative developed by Self and Pawitan (1992) is the use of the two-
stage approach. Despite reducing any bias by using a survival model that incorporates
a longitudinal covariate that has been measured with error, this is not an unbiased
approach. No survival information is used to determine longitudinal estimates, so infor-
mative drop-out is not accounted for, causing biased estimates.

The joint likelihood approach arises to alleviate the potential bias caused by the time-
dependent Cox model and two-stage approach. This is done by taking into account the
association between the survival and the longitudinal processes by simultaneously deter-
mining the parameter estimates for both processes. In the literature we can find several
types of joint approaches depending on the parametrization of the joint likelihood of the
longitudinal and survival processes. An overview of the development of joint models is
made by Tsiatis and Davidian (2004). The authors focus on models for the longitudinal
process and the hazard for the time-to-event that depend jointly on shared, underlying
random effects. As mentioned in this article, it has been demonstrated that these mod-
els lead to correction of potential biases for enhanced efficiency.

In the literature, two different proposals of joint approaches which used shared ran-
dom effects to their parametrization were found. The difference between them is the
research interest. Rizopoulos (2010) has proposed a joint model where the time-to-event
process is of main interest and influenced by a longitudinal time-dependent covariate

13
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measured with error. Philipson et al. (2012) developed a shared random effects model
where the focus is on both survival and longitudinal processes.

In this work, our main goal is to study the patients’ survival. This is the reason why,
in this chapter, we consider the joint approach proposed by Rizopoulos (2010), due to
the fact that this model is focused on the survival process.

First, the submodels are specified, particularly with regard to the Rizopoulos’s pro-
posal. Then, in the next section, the maximum likelihood estimation of the joint model’s
parameter is discussed. A brief summary of inference and the diagnosis for the joint
model approach is presented in the subsequent sections. Following up with a short expo-
sition of how to provide dynamic predictions, that is, predictions updated utilizing the
new information recorded for each subject. Finally, the main ideas of using the JM Pack-
age (Rizopoulos, 2010) are exposed in the next section, synthesising the computational
problems already presented by the author.

3.1 Submodels specification

The joint model consists of two linked submodels, known as the longitudinal submodel,
and the survival submodel. To introduce this methodology we will use the same notation
as in Chapter 2, although with minor changes, this is schematically presented below to
keep it in mind,

• Let Ti be the event time, Ci the censoring time and δi = 1(Ti ≤ Ci) the event
indicator for the ith subject.

• Let yi(t) be the observed value of the time-dependent covariate at time point
t, equivalently, yij = {yi(tij), j = 1, . . . , ni}. Thus, mi(t) denote the true and
unobserved value of the respective longitudinal outcome at time t, uncontaminated
with the measurement error value of the longitudinal outcome so it is different from
yi(t).

3.1.1 The Survival Submodel

Our aim is to associate the true and unobserved value of the longitudinal outcome at
time t, mi(t), with the risk for an event Ti, as stated in section 2.2,the relative risk
model can be written as,

λi(t|Mi(t), wi) = λ0(t) exp{γTwi + αmi(t)}, t > 0, (3.1)

where Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of the true (unobserved) lon-
gitudinal process up to time t. Let λ0(·) denote the baseline risk function and wi the
vector of baseline covariates. The interpretation of the regression coefficients is exactly
the same,

• exp(γj) denotes the ratio of hazards for one unit change in the j-th covariate at
any time t.

• exp(α) denotes the relative increase in the risk for an event at time t that results
from one unit increase in mi(t) at this point.
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In the expression (3.1) we can note that it depends only on a single value of the time-
dependent marker mi(t). To take into account the whole covariate history Mi(t) to
determine the survival function, the relation (2.4) can be used to obtain,

Si(t|Mi(t), wi) = P (Ti > t|Mi(t), wi)

= exp

(
−
∫ t

0
λ0(s) exp{γTwi + αmi(s)}ds

)
(3.2)

Reminding again that both are written as a function of a baseline hazard λ0(t). Regard-
less of the fact that the literature recommends to leave λ0(·) completely unspecified,
in order to avoid the impact of misspecifying the distribution of survival times, in the
joint modelling framework it can lead to an underestimation of the standard error of
the parameter estimates (Hsieh et al., 2006). There are several options to use a risk
function corresponding to a known parametric distribution, such as

• The Weibull model, let Y follow a Weibull distribution with parameters t and p,
Y ∼W (λ, p), the hazard is obtained as,

λ(t) = λp(λt)p−1

where, if p > 1 indicates that the failure rate increases with time; decreasing if
p < 1, and constant over time if p = 1, called also exponential model.

But it is more desirable to flexibly model the baseline risk function. Among the
proposals encountered, we would like to highlight those that follow,

• The piecewise-constant model, where the baseline risk function takes the form:

λ0(t) =

Q∑
q=1

ξqI(νq−1 < t ≤ νq),

where 0 = ν0 < ν1 < . . . < νQ denotes a partition of the time scale, with νQ being
lager than the largest observed time, and νq denotes the value of the hazard in the
interval (vq−1, vq].

• The regression splines model, where the log baseline risk function log λ0(t) is given
by,

log λ0(t) = κ0 +

m∑
d=1

κdBd(t, q),

where κT = (κ0, κ1, . . . , κm) are the spline coefficients, q denotes the degree of the
B-splines basis functions B(·), and m = m̈ + q − 1, with m̈ denoting the number
of interior knots.

In both models, the specification of the baseline hazard becomes more flexible as the
number of knots increases. In particular, in the limiting case of the piecewise-constant
model where each interval contains only a single true event time, this model is equivalent
to leaving λ0(·) unspecified and estimating it using nonparametric maximum likelihood.
In both approaches, we should keep a balance between bias and variance and avoid
overfitting. Although there is not an ideal strategy, Harrel (2001) gives a standard
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rule of thumb based on keeping the total number of parameters (included in the linear
predictor and in the model for h0(t)), between 1/10 and 1/20 of the number of events
in the sample. Therefore, the knots’ position will be based on percentiles of the event
times.

3.1.2 The Longitudinal Submodel

In the above definition of the survival model 3.1 we used the true unobserved value of
the longitudinal covariate mi(t). Taking into account that the longitudinal information
yi(t) is collected with possible measurement errors, the first step towards measuring the
effect of the longitudinal covariate to the risk for an event is to estimate mi(t), in order
to reconstruct the complete true history Mi(t) to each subject. Then, the linear mixed
model can be rewritten as,

yi(t) = mi(t) + ui(t) + εi(t),
mi = xTi (t)β + zTi (t)bi,
bi ∼ N(0, D),
εi ∼ N(0, σ2Ini).

This mixed model formulation allows to state that the longitudinal outcome yi(t) is equal
to the true level mi(t) plus an error term. The main difference from the model (2.1)
is that, in addition to the random error term εi(t), we could incorporate an additional
stochastic term ui(t). This last term is used to capture the remaining serial correlation
in the observed measurements, which random effects are unable to capture. Considering
that ui(t) is considered as a mean-zero stochastic process, independent of bi and εi(t).

3.2 Estimation

In the previous chapter the estimation of the parameters has been based on the max-
imum likelihood approach for both processes. Rizopoulos (2012b) has also used the
likelihood method for joint models, as perhaps the most commonly used approach in
the joint literature.

In this section, we first describe the joint likelihood process in order to estimate the
joint model’s parameters. It is followed by a brief presentation of how to estimate the
random effects in joint modelling.

3.2.1 Joint Likelihood Formulation

The likelihood method for joint models is based on the maximization of the log-likelihood
of the joint distribution of the time-to-event and longitudinal data {Yi, δi, yi}.

Let the vector of time-independent random effects, bi, account for the association be-
tween the longitudinal and the event process, and the correlation between the repeated
measurements in the longitudinal outcome. Strictly, we have that the longitudinal pro-
cess and the survival process are conditionally independent given bi,

p(Yi, δi, yi|bi; θ) = p(Yi, δi|bi; θ)p(yi|bi; θ)
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with
p(yi|bi; θ) =

∏
j

p{yi(tij)|bi; θ},

where θ = (θTt , θ
T
y , θ

T
b )T denotes the full parameter vector for the event time outcome,

the longitudinal outcomes and for the random-effects covariance matrix respectively.

Under the modelling assumptions presented in the previous section and these above
conditional independence assumptions, the joint log-likelihood contribution for the i-th
subject has the form,

log p(Yi, δi, yi; θ) = log

∫
p(Yi, δi, yi, bi; θ)dbi

= log

∫
p(Yi, δi|bi; θt, β)

∏
j

p{yi(tij)|bi; θy}

 p(bi; θb)dbi (3.3)

where the likelihood of the survival part takes the form

p(Yi, δi|bi; θt, β) = {λi(Yi|Mi(Yi); θ)}δiSi(Yi|Mi(Yi); θ)

with λi(·) and Si(·) obtained by (3.1) and (3.2). On the other hand, the joint density
for longitudinal responses together with the random effects is performed through the
following expression,

∏
j

p{yi(tij)|bi; θy}p(bi; θb) =(2πσ2)−ni/2 exp
{
−‖yi −Xiβ − Zibi‖2 /2σ2

}
× (2π)−qb/2 det(D)−1/2 exp(−bTi D−1bi/2),

where qb denotes the dimensionality of the random-effects vector, and ‖·‖ denotes the
Euclidean vector norm.

Then, the (overall) log-likelihood for all the observed data is formulated as,

l(θ) =
∑
i

log p(Yi, δi, yi; θ). (3.4)

The maximization of this function (3.4) with respect to θ requires a combination of nu-
merical integration and optimization algorithms, because both the integral with respect
to the random effects in (3.3) and in the survival function given by (3.2) do not have an
analytical solution. Despite some authors have employed standard numerical integration
techniques, such as Monte Carlo or Gaussian quadrature, the Expectation-Maximization
(EM) algorithm described by Wulfsohn and Tsiatis (1997) has been traditionally pre-
ferred. The intuitive idea behind the EM algorithm is to maximize the log-likelihood
in two steps: the Expectation step, where missing data are filled, so we replace the log-
likelihood of the observed data with a surrogate function, and the Maximization step,
where this surrogate function is then maximized.

Furthermore Rizopoulos et al. (2009) has introduced a direct maximization of the
observed data log-likelihood which is a quasi Newton algorithm. Therefore hybrid opti-
mization approaches start with EM and then continue with direct maximization.
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• Optimization Control

To control the optimization process, the EM algorithm starts with a fixed number
of iterations, and if convergence is not achieved, it switches to a quasi-Newton
algorithm until convergence is obtained. The following two criteria are used to
declare convergence,

max{|θ(it) − θ(it−1)|/(|θ(it−1)|+ ε1)} < ε2,

l(θ(it))− l(θ(it−1)) < ε3{|l(θ(it−1))|+ ε3},

where θ(it) denotes the parameters values at the ith iteration. In addition, the
values for ε1, ε2 that are frequently used are about 10−3 or 10−4, and for ε3 it is
about 10−8.

• Numerical Integration

As mentioned before, a numerical approach is necessary to approximate the in-
tegrals of the survival function (3.2), as well as the integral with respect to the
random effects (3.3), the latter becoming more computationally demanding as its
dimensionality increases.

In addition to the possibility of using the Gauss-Hermite (GH) quadrature to ap-
proximate these integrals’ solutions, Rizopoulos (2012a) proposed an alternative
approach, called the adaptive Gauss-Hermite (aGH) rule, that decreases the com-
putational burden to some degree. For more details regarding the specification of
the approximation rules we refer to Rizopoulos (2012b, Sec. 4.3.5).

3.2.2 Estimation of the Random Effects

The estimation of the random effects presented in Rizopoulos (2012b) is based on Bayes
theory. Assuming that p(bi; θ) is the prior distribution, and that p(bi|Yi, δi, yi; θ)p(yi|bi; θ)
is the conditional likelihood part, the corresponding posterior distribution is,

p(bi|Yi, δi, yi; θ) =
p(Yi, δi|bi, θ)p(yi|bi; θ)p(bi; θ)

p(Yi, δi, yi; θ)

∝ p(Yi, δi|bi, θ)p(yi|bi; θ)p(bi; θ)

it does not have a closed form solution so it has to be numerically computed. Two types
of estimators typically used are,{

bi =
∫
bip(bi|Yi, δi, yi; θ), and

b̂i = arg maxb{log p(bi|Yi, δi, yi; θ)},

that is, mean versus mode.

3.3 Model testing

It is shown in section 3.2.1 that the parameters in the joint models can be estimated
by maximum likelihood. Apart from the likelihood ratio procedure for model testing,
Rizopoulos explained that there are other alternatives to test the null hypothesis

H0 : θ = θ0 versus Ha : θ 6= θ0,
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presented below,

• Likelihood Ratio Test, defined as

LRT = −2{l(θ̂0 − l( ˆtheta))},

where θ̂0 and θ̂ denote the maximum likelihood estimates under the null and
alternative hypothesis, respectively.

• Score Test, defined as

U = ST (θ̂0){I(θ̂0)}−1S(θ̂0), with I(θ̂) = −
n∑
i=1

∂Si(θ)

∂θ

∣∣∣∣
θ=θ̂

,

where S(·) and I(·) denote the score function and the observed information matrix
of the model under the alternative hypothesis.

• Wald Test, defined as

W = (θ̂ − θ0)TI(θ̂)(θ̂ − θ0).

Under the null hypothesis, they are asymptotically χ2
p-distributed, with p denoting the

number of parameters being tested. In particular, the Wald test for a single parameter
θj is equivalent to (θ̂j− θ0j)/ ˆs.e.(θ̂j), which under the null hypothesis follows an asymp-
totic standard normal distribution.

Despite of being asymptotically equivalent, the behaviour of the tests is different in
finite samples. The election of any of these procedures depends on the limitations of
each one. Specifically, regarding the computational cost of fitting, the Wald test only
requires to fit the model under the null hypothesis, and the score test under the alterna-
tive. However, the likelihood ratio test requires to fit the model under both hypotheses,
being more computationally expensive. But other issues must be considered, such as the
Wald test that does not take into account the variability introduced by estimating the
variance components, apart from ignoring the fact that we need to estimate the survival
process. Also, the implementation of the score test needs extra steps to calculate the
required components.

A general drawback of these tests is that they are only appropriate for the comparison
of two nested models. In order to carry out the comparison of non-nested models,
information criteria could be used, such as the Akaike’s Information Criterion (AIC;
Akaike (1974)), and the Bayesian Information Criterion (BIC; Schwarz (1978)), defined
as,

AIC = −2(θ̂) + 2npar,

BIC = −2(θ̂) + npar log(n),

where npar denotes the number of parameters in the model.

Apart from these topic procedures to models’ comparison, we could be also inter-
ested in testing whether an extra random effect should be included in the joint model.
However, this specific field is forgotten in the joint modelling framework, so it could be
an interesting future line of research.
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3.4 Joint Model Diagnostics

The previous sections have provided a guide to learn how to formulate the joint model
to optimally study the relationship between longitudinal and time-to-event data. But,
as ever, after fitting a regression model it is important to determine whether all the
necessary model assumptions are valid before performing inference.

A standard tool to perform model diagnostics are residual graphical methods, as
residual plots, and formal statistical tests. Despite of it being intensively studied for
longitudinal and survival analysis, this topic has not received special attention in the
joint modelling literature. It is noteworthy that Rizopoulos et al. (2010) have developed
a multiple imputation residuals tool to asses these joint model’s assumptions.

The diagnostic plots to check the fit of mixed models and relative risk models can
be used to construct diagnostic plots to inspect the fit of joint models. As explained in
the mentioned paper, a problem is that in the joint modelling framework, it is assumed
that the occurrence of events is related with the underlying evolution of the subject-
specific longitudinal profiles, which corresponds to a non-random dropout mechanism
(i.e. missing not at random mechanism, MNAR). The implication of the non-random
nature of the dropout mechanism is that the observed data, upon which the residuals are
calculated, do not constitute a random sample of the target population, so the residu-
als are not expected to exhibit standard properties, such as zero mean and independence.

To overcome these problems Rizopoulos et al. (2010) proposed a new method for
calculating residuals and producing diagnostic plots in joint models, based on creating
random versions of the completed data set by multiple imputation of the missing longi-
tudinal responses under the fitted joint model. They proposed two different procedures
depending on which type of visit times we are considering in the study: fixed or random
visit times.

The graphical residual analysis allows, as is always the case, to check possible trends.
We refer to Rizopoulos et al. (2010) for technical details.

3.5 Dynamic Predictions

In joint modelling approaches the objective is to study the association between the
survival process and longitudinal outcomes. Such models can be used to provide predic-
tions for the survival and longitudinal outcomes. Rizopoulos (2011) proposed to provide
predictions of a joint model with a dynamic nature. This dynamic nature comes from
updating the prediction utilizing new information recorded for the patient as time pro-
gresses. That is, considering the effect of repeated measures taken in time t to the
survival up to time t. Thus, the conditional probability is of primary interest, described
as,

πi(u|t) = P (T ∗i ≥ u/T ∗i > t,Yi(t), ωi, Dn), t > 0,

where u is the followed-up time (u > t), Dn denotes the sample on which joint model
was fitted. The author uses a Bayesian formulation of the problem and Monte Carlo
estimates of πi(u/t), for more details we refer to the article Rizopoulos (2011), as well
as to Rizopoulos (2012b, chap.7).
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3.6 JM Package

Although software capable of fitting joint models has recently been developed, we find
different approaches to model specification across software packages. The available pro-
cedures in the statistical software packages R and Stata take a similar approach, this is,
a random effects joint model. Among them we mention the R packages JM (Rizopou-
los, 2010) and JMBayes (Rizopoulos, 2014) of Dimitris Rizopoulos, and the joineR of
Philipson et al. (2012), apart from the Stata Module STJM of Crowther (2012). This
work is not meant to be all-inclusive, but we want to illustrate the range of available
techniques to apply joint modelling.

Focusing attention in the methodology presented, we give an overview of the imple-
mentation of the theory in the R package JM. First, illustrating the package design and
its main functions. Following up with a summary of its limitations due to convergence
problems.

3.6.1 Design

The R package JM constitutes a useful tool for the joint modelling of longitudinal
and time-to-event data, in addition it contains all the methodology explained above. In
order to adjust the sub-models, two additional packages are necessary. The linear mixed-
effects modelling is based on the outpout of the function lme() from package nlme(ref),
and the survival fit is implemented by either function coxph() or function survreg()

of package survival(ref). Then, the joint model is fitted by jointModel(), which in-
cludes as main arguments the two separately fitted models to extract all the required
information. It also incorporates an argument method to specify the type of the survival
submodel, this is, the survival distribution and the regression model, and the algorithm
numerical integration method, among the avaliable options are: "piecewise-PH-GH",
"spline-PH-GH", "Cox-PH-GH", "weibull-PH-GH", and "weibull-AFT-GH".

Once we have the returned object of class jointModel, the common options are avail-
able, such as the general results (functions print() and summary()), the estimated coef-
ficients for the two sumodels (coef() and fixef(), the multiply-imputed residuals that
account for nonrandom dropout (residuals()), the function anova() that computes
the marginal Wald test and the likelihood ratio test based on fitted joint models. More-
over, the diagnostic plots (plot()), the predictions (predict()) and the log-likelihood
value of the fitted model and the Akaike’s and Bayesian information criteria (logLik()
and AIC()). For more details and to get information about other additional functions,
we refer to Rizopoulos (2012b, Appendix C).

3.6.2 Convergence Problems of the implemented JM Algorithm

The function jointModel() makes an automatic choice for default control arguments,
as the number of quadrature points, number of iterations, convergence tolerances, etc.
But it does not work always in practice, so in some occasions it is neccesary to take
the values control. To assist in a possible divergence of the algorithm, the function
incorporates a control argument verbose, which allow to print the optimization path
towards the maximum. Possible solutions could be, among others:

i) Change the statting values,
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ii) increase the number of EM iterations,

iii) choose other locations for the knots in the piecewise-constant or spline-based base-
line hazard functions.



Chapter 4

Application to real data

In Chapter 3, we have introduced the joint regression model and the available package
to furthermore apply to the data of liver transplantation. The main objective of this
work is to investigate the abilities of postoperative glucose profiles to predict the death
of patients who underwent Orthotopic Liver Transplantation (OLT), distinguishing be-
tween patients with and without a previous diagnosis of diabetes mellitus.

In order to analyse the data, we first describe the variables contained in the database,
including the percentages of their respective missing values. To conduct this problem,
we include a section of the procedure of missing imputation. Following up with the joint
model approach proposed, and subsequently the results obtained and computational
aspects are presented in the next sections.

4.1 Liver Transplantation Data

From the institutional clinical database, adult patients who underwent OLT in the Hos-
pital Cĺınico Universitario de Santiago, between July 1994 and July 2011, were identified.
Patients who were lost to follow-up and those who died in the first 72 hours were ex-
cluded. Registry data that did not conform within a range of expected results were
rejected and reevaluated. A total of 632 patients were available for study. The partic-
ipants were observed until either the primary endpoint (death) was reached or 31 July
2012 (median [range], 5.6 [0.1, 17.5] years). This study was approved by the Institu-
tional Review Board (Comité Ético de Investigación Cĺınica de Galicia, Santiago, Spain).

The primary outcome studied was death from any cause before July 2011. Patients
were followed up by the study team throughout their hospital stay. After discharge, vital
status information was acquired by reviewing the Galician Health Registry, by contact-
ing patients or their families individually and, if the patient had been rehospitalized, by
reviewing the hospital records of major clinical events.

In this trial, the variables measured were:

- Sex, males or females.

- Age, age in years of the subject at the moment of the OLT.

- bmi, body mass index in kg/m2.

23
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- diab, diabetes mellitus, indicates if subjects was previously diagnosed of diabetes
by physician.

- meld, model for end-stage liver disease, is a (continuous) score of severity of illness.

- TIF, cold ischemia time in minutes.

- TH, erythrocites transfusion (units).

- TP, platelets transfusion (units).

- TVP, thrombosis of vein porta.

- NPTt, parenteral nutrition (days).

To study the etiology of liver transplantation, the following binary variables were con-
sidered:

- oh, alcohol consumption.

- hcv, hepatitis C virus.

- carc, carcinoma.

- vnc, virus no C.

- col, cholangiocarcinoma.

- cole, cholestasis.

- ote, other causes.

Additionally, the glucose measurements were taken, once the previous day to the
transplant, and the during the seven days after the liver transplantation. All of them
recorded in the morning between 8 and 9 am. Particularly, emphasising that glucose
profiles have not the same length, meaning that we are dealing with unbalanced dataset.
Patients were classified as known diabetic patients if they had been informed of this diag-
nosis by a physician before admission or were on oral antihyperglycemic agents, insulin,
or diet therapy.

4.1.1 Imputation

Missing data were observed in the following covariates (% of missing values):meld (57.12%);
TH (4.27%); TP (3.80%); TIF (2.69%); NPTt (1.42%); hcv, ote and TVP (0.16% each
one), apart from missing values in glucose levels, multiple imputation was used to es-
timate the missing values. To deal with these missing data, Multivariate Imputation
by Chained Equations approach was made using the R package mice (van Buuren and
Groothuis-Oudshoorn, 2011), with the number of imputations by default (m = 5):

> library(mice)

> transplante<-read.spss("transplante.sav")

> imputation=mice(transplante)
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Then, the choice among these created data sets was made by selecting those in which
the observed and imputed values of the variable meld were closest. In particular, the
agreement was made regarding to the density plots shown in Figure 4.1, finally choosing
the last imputed data set:

> require(lattice)

> densityplot(imputation, ~meld)

> transplanteimp=complete(imputation,5)

Model for end−stage liver disease, meld

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0 10 20 30 40 50

Observed data
1st imputation
2nd imputation
3rd imputation
4th imputation
5th imputation

Figure 4.1: Plots of the densities for the observed and imputed data of the variable
meld.

We had to define as “Not Available, NA” the glucose measurements imputed in patients
who died before the 7-day period after surgery, staying only with the measurements
before their death.

4.1.2 Descriptive Analysis

Table 4.1 displays patients characteristics. We observed that during follow-up 218 pa-
tients died. In order to explore the survival process we assessed each factor through
univariate Cox regression, evaluating the magnitude of the association between covari-
ates and survival through hazard ratios (HR), together with their corresponding 95%
confidence intervals (CI). Besides this, we also show the p-values of likelihood ratio test
to check which variables could be consider as predictors of the liver transplantation sur-
vival.
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Table 4.1: Baseline Characteristics of patients who underwent OLT.
Characteristics Descriptive Statistics HR (95%CI) p-value

Women, n (%) 158 (25%) 1.14 (0.85− 1.55) 0.380
age, years 54 (45− 60) 1.02 (1.01− 1.03) 0.002
bmi, kg/m2 27 (25− 29) 0.97 (0.94− 1.00) 0.081
diab, n (%) 125 (19.8%) 0.97 (0.69− 1.36) 0.850
meld 13 (9− 17) 1.03 (1.02− 1.05) < 0.001
oh, n (%) 386 (61.1%) 0.84 (0.64− 1.10) 0.200
hcv, n (%) 130 (20.6%) 1.34 (0.98− 1.81) 0.064
carc, n (%) 174 (27.5%) 1.37 (1.03− 1.83) 0.033
vnc, n (%) 33 (5.2%) 1.06 (0.61− 1.86) 0.840
col, n (%) 6 (0.9%) 1.58 (0.51− 4.96) 0.430
cole, n (%) 31 (4.9%) 1.05 (0.57− 1.92) 0.880
ote, n (%) 42 (6.6%) 0.97 (0.55− 1.70) 0.910
TIF 7.18 (6− 9) 1.05 (0.99− 1.12) 0.098
TH 6 (3− 10) 1.02 (1.01− 1.04) < 0.001
TP, n (%) 242 (38.3%) 1.07 (0.82− 1.41) 0.609
TVP, n (%) 56 (8.9%) 1.02 (0.64− 1.62) 0.936
NPTt 4 (3− 6) 1.07 (1.05− 1.09) < 0.001

Data are expressed as median (IQR).

IQR= interquartile range; HR (95%CI) = hazard rate (95% confidence interval).

Univariate analysis showed that mortality risk was significantly higher in older pa-
tients (p = 0.002), patients with higher meld scores (p < 0.001), with carcinoma
(p < 0.033), in those who needed a higher amount of blood transfusion units (p < 0.001),
and with more time (days) needing parenteral nutrition (p < 0.001).

In Figures 4.2 and 4.3, the postoperative glucose profiles for individuals with and
without previous diabetes, and for those who died in the first year post-transplantation
can be seen , respectively.

4.2 Joint Modelling Approach

We applied the proposed joint model to the OLT data, with the aim of investigating the
effect of repeated glucose measurements on time to all-cause death. In order to carry
out this work, we introduced a joint model approach Rizopoulos (2012b) with different
modelisations of survival sub-models and different linear mixed effects models for the
longitudinal sub-model. All these different models were fitted by using the JM package,
the R project joint modelling implementation.

From now on, all model approaches were made for patients with and without a pre-
vious diagnosis of diabetes. To this aim, the data was split in two different databases:
“dm1” and “dm0”, for diabetic and non-diabetic patients respectively. This is given that
in non-diabetic subjects has been reported to exhibit high levels of glucose in response
to situations of severe stress such as undergo major surgery or hospitalize in the inten-
sive care unit, ICU (known as, reactive hyperglycemia). This behaviour is completely
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Figure 4.2: Subject specific trajectories of Glucose levels for patients with and without
diabetes and the overall trajectories of Glucose with a p-spline method.

different in patients with diabetes. These events can be displayed in Figures 4.2, 4.3
and 4.4, where it is clearly visible that non-diabetic subjects have a different profile of
glucose in the first week depending on having exitus or not.

We will show simultaneously both situations with their corresponding models. In
addition, the R code below each section was added to illustrate the process.

4.2.1 Survival Submodel

For instance, in the descriptive analysis section we investigate through a univariate
analysis which factors under investigation describe the survival process, but necessarily
ignoring the impact of any others. Our purpose now is to determine which covariates
potentially affect patient prognosis, distinguishing between diabetic and non-diabetic
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Figure 4.3: Overall trajectories of Glucose levels for patients with exitus versus nonexi-
tus.

patients. Based on clinical experts’ opinion, we introduced specific variables in the
multivariate Cox regression models. Then, significant covariates were selected by using
a backward stepwise procedure. The final models considered were the following:

λi,diab(t) = λ0(t) exp(γ1hcvi + γ2meldi + α log(Glucose)i(t)),

λi,nodiab(t) = λ0(t) exp(γ1agei + γ2carci + γ3meldi

+ γ4bmii + γ5THi + α log(Glucose)i(t)),

where λ0(t) is the baseline risk function, t is the time-to-event and log(Glucose) is the
true (unobserved) value of the longitudinal outcome. For the further introduction of the
main R code, we presented the corresponding to the survival sub-models:

> fitSurvdiab <-coxph(Surv(timeExitus , exitus)

+ ∼ hcv+meld ,data=dm1 ,x=TRUE)

> fitSurvnodiab <-coxph(Surv(timeExitus , exitus)

+ ∼ edad+carc+meld+imc+TH ,data=dm0 ,x=TRUE ,model=TRUE)

As mentioned in the JM package presentation in section 3.6, different types of sur-
vival sub-models can be fitted, such as Weibull model with a relative risk function and a
spline-approximated baseline risk function, as well as the type of numerical integration
method to approximate integrals. In Section 4.3, we present the results obtained from
these approaches, among which the final model is choosed by comparing their Akaike
Information Criterion (AIC; Akaike (1974)).

4.2.2 Longitudinal Submodel

First of all, it must be clear that we want to test survival of the patients who underwent
liver transplantation by measuring the glucose profiles, among other baseline covariates.
Then, it is obvious that these observations can be considered to be grouped by patients.
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Figure 4.4: Overall trajectories of Glucose levels for patients with and without diabetes,
differing by exitus versus nonexitus.

Once we have determined the cluster, thus, the hierarchical structure of the data, we
must decide which type of analysis is going to be developed, a fixed effects model or a
random effects model. Given that we wish to make inference about whole population of
patients who undergo a liver surgery, it is clear that the clustering by patients must be
incorporated as a random effect.

We implemented different longitudinal sub-models to study the longitudinal outcome
by including the subject-specific random effects. Prior to this, it is necessary to imple-
ment these longitudinal models to reshape the data in order to obtain a longitudinal
format in which we have the glucose measurements, the id number and the measuring
times:

> transplanteimp.long<-reshape(transplanteimp,

+ varying = list(names(transplanteimp)[c(24,25,26,27,28,29,30,31)]),
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+ direction = "long", v.names = c("Glu"), idvar = "id", times = c(0:7))

The proposed models are named as,

a) Random Intercept Model
In this model the intercepts are allowed to vary based on patients, and therefore,
the scores on the dependent variable for each individual observation are predicted
by the intercept that varies across individuals.

The sub-models can be written as:

log(Glucose)i,diab = β0 + β1timei + β2hcvi + β3meldi + b0i + ε(tij),

log(Glucose)i,nodiab = β0 + β1timei + β2agei + β3carci + β4meldi +

+β5bmii + β6THi + b0i + ε(tij),

where time is the time that repeated measurements are taken and b0i is the random
intercept effect for each patient.

> fitLME.int.diab <-lme(log(Glu)∼time+hcv+meld ,random=∼1|id ,
+ data=subset(transplanteimp.long ,transplanteimp.long$dm =="Yes"),

+ na.action=na.omit)

> fitLME.int.nodiab <-lme(log(Glu)∼time+edad+carc+meld+imc+TH ,
+ random=∼1|id ,data=subset(transplanteimp.long ,
+ transplanteimp.long$dm =="No"), na.action=na.omit)

However, one of the problems comes from assuming that slopes are fixed. For this
reason, the following sub-models were developed.

b) Random Intercept and Slope Model
Besides consider random intercepts, this model also allows random slopes to vary
across subjects. The corresponding sub-models are given by,

log(Glucose)i,diab = β0 + β1timei + β2hcvi + β3meldi + b0i +

+ b1itij + εi(tij),

log(Glucose)i,nodiab = β0 + β1timei + β2agei + β3carci + β4meldi +

+β5bmii + β6THi + b0i + b1itij + εi(tij),

which additionally incorporate b1itij that represents the random slope effect of the
different Glucose trajectories of each patient.

> ctrl <- lmeControl(opt=’optim ’)

> fitLME.slope.diab <-lme(log(Glu)∼time+hcv+meld ,random=∼time|id ,
+ data=subset(transplanteimp.long ,transplanteimp.long$dm =="Yes"),

+ na.action=na.omit ,control=ctrl)

> fitLME.slope.nodiab <-lme(log(Glu)∼time+edad+carc+meld+imc+TH ,
+ random=∼time|id,data=subset(transplanteimp.long ,
+ transplanteimp.long$dm =="No"),na.action=na.omit ,control=ctrl)

c) Spline Model
Becasue non-linear patterns of Glucose trajectories, as we can observe in Figure
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4.2, a splined-based approach is also considered in order to obtain more flexible
regression models. In particular, that proposed by Rizopoulos and Ghosh (2011),
which consider natural cubic splines:

log(Glucose)i,diab = (β0 + bi0) + (β1 + bi1)Bn(t, d1) + (β2 + b12)Bn(t, d2)

+ (β3 + bi3)Bn(t, d3) + β4hcvi + β5meldi + εi(t),

log(Glucose)i,nodiab = (β0 + bi0) + (β1 + bi1)Bn(t, d1) + (β2 + b12)Bn(t, d2)

+ (β3 + bi3)Bn(t, d3) + β4agei + β5carci +

+β6meldi + β7bmii + β8THi + εi(t),

where {Bn(t, dk); k = 1, 2, 3} denotes a B-spline basis matrix for a natural cubic
spline (de Boor, 1978).

> fitLME.spline.diab <-lme(log(Glu)∼ns(time ,3)+ hcv+meld ,
+ random=list(id=pdDiag(form=∼ns(time ,3))),
+ data = subset(transplanteimp.long , transplanteimp.long$dm

+ =="Yes"),na.action=na.omit)

> fitLME.spline.nodiab <-lme(log(Glu)∼ns(time ,3)+ edad+carc+
+ meld+imc+TH,random=list(id=pdDiag(form=∼ns(time ,3))),
+ data = subset(transplanteimp.long ,transplanteimp.long$dm

+ =="Yes"),na.action=na.omit)

4.3 Results

In this Section we applied the joint modelling approach described in Section 3, to assess
the effect of glucose profiles in survival after Liver transplantation.

As we have seen above, different longitudinal sub-models are analysed with an only
intercept, intercept and slope analysis and a non-linear subject specific evolutions for
the Glucose levels. Using Akaike Information Criterion (AIC), we chose the longitudinal
sub-model for each group with the less AIC value as shown in Table 4.2.

Table 4.2: AIC values of different Longitudinal submodels.
AIC

Model Diabetes No Diabetes

Intercept 1040.912 3307.567
Intercept + Slope 1044.749 3259.037
Spline 1022.747 2230.935

According to these results, it is an evidence of our choice of spline-based longitudinal
sub-models. Then, we fitted the joint model by comparing different sub-models for
the survival process of transplant data such as mentioned above: I) a time-dependent
relative risk model with Weibull baseline risk function and II) a time-dependent relative
risk model with the log baseline risk function that is approximated using B-splines. The
R code is illustrated in a general context, but it is enough to replace the respective
sub-models for diabetic and non-diabetic patients listed above:

>fit.JM.weibull <-jointModel(fitLME.spline ,fitSurv ,timeVar ="time")
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>fit.JM.spline <-jointModel(fitLME.spline ,fitSurv ,

+timeVar ="time",method ="spline -PH-aGH")

Following the same procedure, we obtained the final model which the less AIC value
as shown in Table 4.3.

Table 4.3: AIC values of different survival submodels.
AIC

Model Diabetes No Diabetes

fit.JM.weibull 1762.431 5356.511
fit.JM.spline - 8977.696

The results indicate that final models for diabetic and non-diabetic patients take a
relative risk model with Weibull baseline risk function and with a spline longitudinal
sub-model. In Table 4.4 and 4.5 we synthesized all the information of both joint models.

Table 4.4: Fitted values of the final model for the joint model approaches for diabetic
patients.

Joint Models (JM) - Diabetic patients

Coef Std. error

Intercept (β0) 5.1813 0.0582
β1 -0.4112 0.0487
β2 -0.1384 0.0760

Longitudinal β3 -0.2273 0.0376
Process β4 -0.0788 0.0491

β5 0.0099 0.0034

Glucose 0.0002 0.0020
Survival hcv 0.8528 0.3355
Process meld 0.0191 0.0256

LogLikelihood −865.2155

We observed that non-diabetic patients with higher Glucose levels have a worse
survival through the hazard ratios , HR= 1.002 (95% CI: 1.0004 − 1.0036). However,
for diabetic patients the association between the Glucose levels and survival process is
not statistically significant, HR=1.0002 (95% CI: 0.9963− 1.0041).

4.3.1 Joint Model Diagnostics

Once both joint models are fitted, the next step is to verify if all the necessary model
assumptions are valid. Standard types of residuals plots can be used to validate the
assumptions behind mixed models and relative risk models when these are separately
fitted.

In order to validate the proportional hazards assumption of the survival submodels,
a graph of the Schoenfeld residuals was displayed to check the overall goodness-of-fit
of our relative risk submodels. The results obtained are shown in Figures 4.5 and
4.6. Because zero slopes in the generalized linear regression of the scaled Schoenfeld
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Table 4.5: Fitted values of the final model for the joint model approaches for non-diabetic
patients.

Joint Models (JM) - Non-Diabetic patients

Coef Std. error

Intercept (β0) 4.4018 0.0525
β1 -0.1875 0.0184
β2 0.7047 0.0331
β3 -0.3460 0.0136

Longitudinal β4 0.0036 0.0006
Process β5 -0.0048 0.0170

β6 0.0054 0.0011
β7 0.0027 0.0018
β8 0.0040 0.0008

Glucose 0.0020 0.0008
age 0.0308 0.0080

Survival carc 0.6401 0.1892
Process meld 0.0643 0.0115

bmi -0.0523 0.0226
TH 0.0273 0.0068

LogLikelihood −2656.256

residuals, and considering imputation process, the covariates are under a proportional
hazard assumption.
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Figure 4.5: Schoenfeld residuals for the survival submodel for patients with diabetes.

On the other hand, the residuals for the longitudinal part can also be checked by
diagnostic plots for linear mixed-effects models. However, the dropout mechanism are
not accounted for residuals for the longitudinal process. To overcome this problem,
the multiple imputation residuals for fixed visit times proposed by Rizopoulos et al.
(2010) are used. For both diabetic and non-diabetic patients multiply-imputed stan-
dardized marginal residuals are plotted in Figure 4.7 (with their black dashed line loess
smooth), together with the observed standardized marginal residuals (and their black
loess smooth). A comparison between the two curves reveals that trends in the observed
residuals plots are attributed to nonrandom dropout and not to a model lack-of-fit.
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Figure 4.6: Schoenfeld residuals for the survival submodel for patients without diabetes.
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Figure 4.7: Observed standardized marginal residuals (black points), augmented with
all the multiply imputed residuals (grey points). The superimposed solid lines represent
a loess fit based only on the observed residuals (black line), and a weighted loess fit
based on all residuals (black dashed line).

4.3.2 Predictions

Distinguishing the predictions between patients with and without diabetes, we com-
pared the joint modelling approaches, described in Section 3, with the following survival
models, to notice the advantage and disadvantages of each:
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Survival model (1)

In these models we introduced the baseline covariates: hcv and meld for diabetic
patients and age, carc, meld, bmi and TH for non-diabetic patients.

λi,diab(t) = λ0(t) exp(γ1hcvi + γ2meldi),

λi,nodiab(t) = λ0(t) exp(γ1agei + γ2carci + γ3meldi

+ γ4bmii + γ5THi).

Survival model (2)

In the second model we added a baseline Glucose level (glu0) as another covariate.

λi,diab(t) = λ0(t) exp(γ1hcvi + γ2meldi + γ3glu0),

λi,nodiab(t) = λ0(t) exp(γ1agei + γ2carci + γ3meldi

+ γ4bmii + γ5THi + γ6glu0).

In order to carry out such comparison, we used the linear predictors at time t to
compute the ROC curves and the Area Under Curve for each time point (Heagerty and
Zheng, 2005). This calculation is implemented in R package risksetROC (Heagerty and
Saha-Chaudhuri, 2012). As we can observe in Figure 4.8, the behaviour is completely
different depending on a positive or negative diabetes diagnosis.

Dynamic predictions

In joint models the conditional probabilities of the survival process are dynamically up-
dated. Because of their dynamic structure, these predictions can assist the clinicians
to make decisions. Also they provide clear observations of the association between the
longitudinal and the survival process.

In Figure 4.9 two patients with different Glucose behaviours can be observed: a
diabetic patient (subject 51) and a non-diabetic patient (subject 40), with their longitu-
dinal observations to observe the effect of the longitudinal outcome to the risk of death
of these patients. We observe a lower survival probability for the patient who has higher
Glucose levels.

In this study, we observe the association in the dynamic predictions’ graphics, how-
ever we can not show the dynamic nature of these predictions because the Glucose
measurements are only taken in the 7 post-operative days.

4.4 Computational Aspects

Joint modelling approach for longitudinal and time-to-event data requires a combina-
tion of a double numerical integration and optimization. The function jointmodel()

implements a hybrid optimization procedure to locate the maximum likelihood esti-
mates, starting with EM algorithm and if not converge switches to a quasi-Newton
algorithm until it converges. These requirements of both double optimization and nu-
merical integration may lead us to experience convergence problems. Although the
function jointmodel() permits choices for default control arguments such as number of
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Figure 4.8: Time dependent AUCs for each model separately for patients with and
without diabetes.

quadratic points, number of iterations, convergence tolerances, it is not guaranteed to
work in all datasets. These aspects are described and discussed in (Rizopoulos, 2012b,
pp. 61-87) . The author also mentions that in the majority of the cases, the converge
problems can be avoided by changing the stating values, increasing EM iterations or
choosing other locations for the knots if the piecewise constant of spline-based baseline
hazard functions are used. In this study we experienced converge problems while fitting
a spline-based baseline hazard function for the survival sub-model.
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Figure 4.9: Dynamic predictions for the final model for a diabetic patient (subject 51)
and a non-diabetic patient (subject 40).

>fit.JM.spline1<-jointModel(fitLME.spline,fitSurv,timeVar="time",

+method="spline-PH-aGH",verbose=T)

Setting the “verbose” option to TRUE, the function gives us the optimization path:

iter: 1

log-likelihood: -2302.596

betas: 5.2325 -0.412 -0.1326 -0.2248 -0.0766 0.0059

sigma: 0.3613

gammas: 1.2437 8e-04

alpha: 0.6122

gammas.bs: -12.7378 -11.4164 -11.4444 -11.027 -10.9222 -10.7309 -10.6004

-10.4899 -10.4587

D: 0.0393 0 0 0.0318
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...

iter: 119

log-likelihood: 0

betas: 5.2326 -0.4117 -0.1327 -0.2248 -0.0763 0.0059

sigma: 0.4144

gammas: 1.2437 8e-04

alpha: 0.6122

gammas.bs: -12.7378 -11.4164 -11.4444 -11.027 -10.9222 -10.7309 -10.6004

-10.4899 -10.4587

D: NaN NaN NaN NaN

iter: 120

log-likelihood: 0

betas: 5.2326 -0.4117 -0.1327 -0.2248 -0.0763 0.0059

sigma: 0.4144

gammas: 1.2437 8e-04

alpha: 0.6122

gammas.bs: -12.7378 -11.4164 -11.4444 -11.027 -10.9222 -10.7309 -10.6004

-10.4899 -10.4587

D: NaN NaN NaN NaN

quasi-Newton iterations start.

Error en optim(thetas, LogLik.splineGH, Score.splineGH, method = "BFGS", :

valor no finito provisto por optim

We can observe in the output the first iteration has a reasonable log-likelihood value
but from the iteration 3 the log-likelihood values are 0 and then higher estimations for
the longitudinal sub-model coefficients have obtained. As mentions Rizopoulos (2012b),
this problem usually comes from a failure of the numerical integration rule or from pa-
rameter scale problem.

Besides its several advantages in estimations, the joint modelling doesn’t have a
fast computation in which some further studies required. For this particular study, the
timing of the joint model with different survival sub-models and a cubic spline model
for the longitudinal process are as follows, 2.43 minutes for B-spline survival model and
10.55 minutes for the Weibull model for non-diabetic patients, and 0.95 minutes for the
Weibull model for diabetic patients. The timings above-mentioned are based on Intel
(R) Core(TM) 2.40 GHz 8GB RAM, Windows 7.
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Conclusions

In this work the joint modelling approach proposed by Rizopoulos (2010) is presented.
This methodology constitutes a useful tool to study the relationship between longitu-
dinal and survival data. This was proved by fitting joint regression models to study
the survival of patients with and without a previous diagnosed of diabetes mellitus who
underwent Orthotopic Liver Transplantation (OLT).

From these models, for non-diabetic patients we have obtained a significant effect of
Glucose levels on survival. This effect improves the predictive performance of the model
according to AUC values. Accordingly with the results obtained, it has been observed
different behaviours of AUC values for patients with and without diabetes. It can be
seen in Figure 4.8, in which for non-diabetic patients the discrimination capacity is low
for a model with a single Glucose measure. However, predictions improve by adding
longitudinal observations of the Glucose levels. Indeed it does not occur for diabetic
patients, justified by non significant effect of Glucose levels on survival.

From the clinical point of view, results show that in individuals previously undiag-
nosed diabetes, the profiles of the glucose in the immediate post-operative (one week)
patients who underwent OLT may be useful in predicting mortality. These findings
reinforce the hypothesis of ”reactive hyperglycemia”, in which blood glucose in days
following transplantation presents a different behaviour in those with higher mortality.
Thus suggesting that these profiles can emerged in prognostic markers of mortality in
subjects undergoing stress for hospital admission to a major surgery or to the intensive
care unit (ICU).

Moreover, dynamic predictions are shown to illustrate that it is important to use
all available information to produce predictions of survival probabilities. Despite not
being the primary interest of this work, this could be useful to the physicians to gain
a better understanding of the disease dynamics. As an example, we can observe in
Figure 4.9, the dynamic predictions of the survival process of patient 40, who has no
diabetes, and presents a high post-transplant Glucose levels in the first week. Addition-
ally, computational aspects are mentioned, in particular, those difficulties encountered
in implementing the joint proposal.

To conclude, a further progress in this area is essential for both statistical and medical
aspects. As a step toward this objective, we would like to call for providing a test to

39
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determine whether an extra random effect should be included in the joint model. And,
to take full advantage of the results, a future research line will be to carry over into the
field of reclassification. In order to establish risk scores, and therefore to rank risk.
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