3.3.2 Hypercube

Des théorèmes 3.2.4 et 3.2.6 on déduit le

Théorème 3.3.3 Le produit direct de deux treillis de Boole est un treillis de Boole.

L'ensemble $\mathcal{B} = \{0, 1\}$, muni de l'ordre strict 0 < 1, est clairement un treillis de Boole. Les tables de multiplication, d'addition, et de complémentation sont :

•	0	1
0	0	0
1	0	1

+	0	1
0	0	1
1	1	1

Tableau 3.3.1

Le produit direct \mathcal{B}^n de n exemplaires de \mathcal{B} est donc une algèbre de Boole. Il est commode d'associer à \mathcal{B}^n sa représentation géométrique. Celle-ci s'obtient en construisant le diagramme de Hasse (cf. 2.5.4) de l'ensemble ordonné \mathcal{B}^n . A chaque élément $(x_1, x_2, ..., x_n)$ de \mathcal{B}^n , correspond un et un seul point de l'espace à n dimensions dont les coordonnées sont 0 et 1.

Définition On appelle hypercube de dimension n une représentation du diagramme de Hasse de \mathcal{B}^n dans l'espace à n dimensions.

Clairement, l'hypercube de dimension n possède 2^n sommets. Deux sommets $(x_1, x_2, ..., x_n)$ et $(y_1, y_2, ..., y_n)$ sont adjacents ssi il existe exactement un indice i tel que $x_i \neq y_i$.

Par la suite, nous employons aussi le vocable *n-cube* pour désigner l'hypercube de dimension n.

Exemple 3.3.1 Un hypercube est un segment pour n = 1, un carré pour n = 2, un cube pour n = 3. La représentation pose des difficultés quand n > 3.

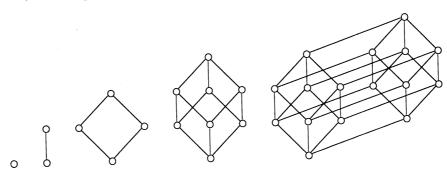


Figure 3.3.1

Pour le 4-cube, on peut considérer que la dernière composante est 0 pour le cube de gauche, 1 pour le cube de droite.

L'hypercube fournit un langage géométrique commode. Par exemple, nous

nommerons distance de deux sommets A et B, d(A, B), le nombre de composantes de A et B qui sont différentes. Deux sommets adjacents sont donc à distance 1. La plus petite longueur possible pour une chaîne joignant A et B est d(A, B) car pour aller de A à B il faut changer d(A, B) composantes exactement.

Définition On appelle face de dimension p de l'hypercube de dimension n, tout ensemble de sommets qui engendre un graphe isomorphe à l'hypercube de dimension p.

Les faces de dimension 0 et 1 sont donc respectivement les sommets et les arêtes de l'hypercube. A titre d'exemple, \mathcal{B}^3 possède 8 faces de dimension 0, 12 faces de dimension 1, 6 faces de dimension 2 et 1 face de dimension 3.

En tant que treillis, \mathcal{B}^n est isomorphe au treillis des parties d'un ensemble à n éléments $E = (a_1, a_2, ..., a_n)$. Nous résumons dans le tableau 3.3.2 les principales correspondances entre ces deux treillis.

₿n	9 (E)	
$X = (x_1, x_2,, x_n)$	A contient a_i ssi $x_i = 1$	
$X' = (x_1', x_2',, x_n')$	A ou E – A : complément de A	
0 = (0, 0,, 0)	Ø	
1 = (1, 1,, 1)	Е	
Multiplication	Intersection	
Addition	Union	
Disjonction	Différence symétrique	
Conjonction	Somme symétrique	

Tableau 3.3.2

Rappelons qu'étant donnés deux parties A et B de E :

- la différence symétrique de A et B est l'ensemble des éléments de E qui figurent un nombre impair de fois dans $A \cup B$; on note $A \triangle B = (A \cup B) (A \cap B)$
- la somme symétrique de A et B est l'ensemble des éléments de E qui figurent un nombre pair de fois dans $A \cup B$; on note $A \otimes B = (A \cap B) \cup (E (A \cup B))$

Théorème 3.3.4 Tout treillis de Boole fini est isomorphe au treillis des parties d'un certain ensemble fini.

Preuve. Soit (B, \le) un treillis de Boole fini. Pour éviter les trivialités, supposons que $|B| \ge 2$. Notons 0 le minimum et 1 le maximum de B. Considérons l'ensemble A des *atomes* de B défini par

 $A = \{a \in B \mid a \text{ est un successeur de } 0\}$

Puisque B est fini, $A \neq \emptyset$ (cf. corollaire 2.5.5). Posons $A = \{a_1, a_2, ..., a_n\}$. Associons à tout x dans B la partie de A définie par $A_x = \{a_i \in A \mid a_i \leq x\}$.

Je dis que $x = \sum_{a_i \in A_X} a_i$. Clairement, il suffit de montrer que $x \le \sum_{a_i \in A_X} a_i$. Ceci est vrai pour x = 0, car une somme vide est égale à l'élément neutre de l'addition. Si $x \neq 0$, alors montrons que $x(\sum_{a_i \in A_x} a_i)' = 0$ (cf. théorème 3.3.2). En effet, si $x(\sum_{a_i \in A_X} a_i)' \neq 0$, alors il existerait un atome a_j tel que $a_j \leq x(\sum_{a_i \in A_X} a_i)'$. Ce qui entraînerait d'une part, $a_j \le x$ donc $a_j \in A_x$, et d'autre part $a_j \le (\sum_{a_i \in A_x} a_i)$ ' donc $a_j a_i = 0$ pour tout $a_i \in A_x$. Ce qui est contradictoire.

Considérons la fonction $h: \mathcal{B} \to \mathfrak{P}(A)$ telle que $h(x) = A_x$. Pour montrer que h est un isomorphisme de treillis, il suffit, d'après le théorème 2.11.7, de montrer que h est un isomorphisme d'ordre. Nous laissons la vérification au lecteur.

Fonctions booléennes 3.3.3

Soit E un ensemble. Soit B un algèbre de Boole. Sur l'ensemble $[E \to B]$ des fonctions de E dans B, définissons:

- la fonction $0:0(x)=0_B$
- la fonction $1:1(x)=1_B$
- le complément d'une fonction f: f'(x) = [f(x)]'
- le produit de deux fonctions f et g : [fg](x) = f(x)g(x)
- la somme de deux fonctions f et g : [f+g](x) = f(x) + g(x)

Muni de toutes ces opérations, $[E \rightarrow B]$ est manifestement une algèbre de Boole. On peut vérifier qu'en tant que treillis, $[E \rightarrow B]$ est ordonné par la relation

peut verifier qu'en ann qu'en
$$f \le g \Leftrightarrow \forall x \in E[f(x) \le g(x)] \Leftrightarrow fg = f \Leftrightarrow f + g = g$$

L'ensemble des fonctions d'un ensemble arbitraire dans Théorème 3.3.5 une algèbre de Boole est une algèbre de Boole.

Dans toute la suite, nous nous intéressons surtout à $[\mathcal{B}^n \to \mathcal{B}]$.

On appelle fonction booléenne simple de n variables toute Définition fonction de l'algèbre Bn dans l'algèbre B.

Exemple 3.3.2 Il y a plusieurs modes de description d'une fonction booléenne simple de n variables. Nous en donnons deux :

· Représentation spatiale

Interprétons chaque n-uplet $(x_1, x_2, ..., x_n)$ où $x_i \in \{0, 1\}$ comme les coordonnées d'un sommet du n-cube.

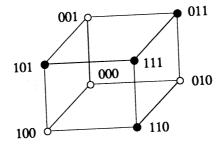


Figure 3.3.3

Se donner une fonction booléenne simple f de n variables, c'est se donner l'ensemble des sommets du n-cube où f prend la valeur 1. Un tel sommet est dit *couvert* par f.

Par exemple, la figure 3.3.3 représente une fonction de 3 variables qui couvre les sommets 011, 101, 110, 111.

· Représentation tabulaire

Interprétons chaque n-uplet $(x_1, x_2, ..., x_n)$ où $x_i \in \{0, 1\}$ comme la représentation binaire d'un entier compris entre 0 et $2^n - 1$. En énumérant ces n-uplets dans l'ordre naturel des entiers qu'ils représentent, une fonction booléenne simple de n variables est alors donnée par le tableau des valeurs de la fonction en chaque point. A titre d'exemple :

			l	
	X	у	z	f(x, y, z
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

x	y	g(x, y)
0	0	0
0	1	1
1	0	0
1	1	1

Tableau 3.3.3

La représentation tabulaire souffre du défaut d'énumérer les valeurs de la fonction aux points qui ne sont pas toujours voisins sur l'hypercube. Pour y remédier, on peut adopter les tableaux de Karnaugh qui, pour n assez petit, donnent une représentation de l'hypercube dans le plan.

Ci-dessous, le tableau de gauche est celui de Karnaugh de la fonction f plus haut; le tableau de droite représente une fonction de 4 variables x, y, z, t. Les colonnes sont indexées par xy et les lignes par z ou zt.

	00	01	11	10
0	1	0	1	1
1	0	1	1	0

	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	1	0	1
10	1	0	1	1

Tableau 3.3.4

Le nombre de fonctions booléennes simples de n variables est 2^{2^n} . Nous donnons ci-dessous les 16 fonctions de 2 variables. L'indice de chaque fonction permet de retrouver le tableau des valeurs.