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6.1 The SVD factorization

You’re saying this only to make me go. [Ilsa Lund Laszlo, Casablanca, 1942]

In this module we turn to the Principal Components Regression (PCR) method, in which
the PCA (Principal Components Analysis) method from the previous module is put to work
in regression. To this end we consider the principal components of X>X, where X is a
centered n × k data matrix.

There are several ways of finding the principal components of the X>X matrix. One
possibility is to apply the SVD method to X, writing the reduced form of SVD as follows:

X = UDP>,

where U (n × r) and P (k × r) are orthogonal matrices corresponding to r singular values,
in the notation of Module 5.

Let the scores matrix be defined by

T = UD,

a matrix with orthogonal, but not necessarily orthonormal columns. In fact

T>T = DU>UD

= D2

= Λr,
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where Λr = diag {λ1, . . . , λr} contains the non-zero eigenvalues of X>X in its diagonal. We
assume that the eigenvalues are in decreasing order, λ1 ≥ · · · ≥ λr > 0.

Since
X = TP> (6.1)

we find that

X>X = P T>TP>

= PΛrP
>,

which is the spectral decomposition for X>X , except that columns of P corresponding to
zero eigenvalues have been left out. By using that P is orthogonal, we may also write (6.1)
as follows:

T = XP , (6.2)

which follows by noting that XP = TP>P = T . Recall from Module 5 that the columns of
T are known as scores, and those of P as loadings.

6.2 The NIPALS algorithm for PCA

Now we consider the NIPALS (Nonlinear Iterative Partial Least Squares) algorithm for finding
the principal components of X>X . We want to find the first g principal components of X>X,
starting with the largest eigenvalue λ1 and down. g must be less than or equal to r.

6.2.1 Iterations

The NIPALS algorithm starts with the initialization j = 1 and X1 = X. The algorithm then
iterates through the following steps:

1. Choose tj as any column of Xj .

2. Let pj = X>

j tj /
∥∥X>

j tj

∥∥ .

3. Let tj = Xjpj.

4. If tj is unchanged continue; otherwise return to Step 2.

5. Let Xj+1 = Xj −tjp
>

j .

6. Stop if j = g; otherwise let j = j + 1 and return to Step 1.

Assume first that g = r, so we have found all the principal components. Now form the
matrices T and P with columns tj and pj , respectively; these matrices now satisfy (6.1).

It is possible to modify the NIPALS algorithm to take missing data into account, see Bro
(1996), pp. 43–44.
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6.2.2 Properties

Let us consider some properties of the NIPALS algorithm, which also help understand the
PCA method.

That the NIPALS algorithm gives PCA may be seen as follows. Let λj =
∥∥X>tj

∥∥ and
write Step 2 as follows:

X>tj = λjpj.

Now insert tj = Xpj from Step 3, giving

X>Xpj = λjpj. (6.3)

This equation is satisfied upon convergence of the loop 2–4. This shows that λj and pj are an

eigenvalue and eigenvector of X>X, respectively. Also note that using tj = Xpj and (6.3)
we obtain

t>j tj = p>

j X>Xpj

= p>

j

(
X>Xpj

)

= λjp
>

j pj

= λj, (6.4)

where in the last step we have used the fact that pj is a unit vector (see Step 2).
After the first run through the loop 1–5, Step 5 with j = 1 gives that

X = t1p
>

1 + X2. (6.5)

Let us show that t1 and X2 = X − t1p
>

1 are orthogonal. In fact

(
X − t1p

>

1

)>

t1 = X>t1 −p1 t>1 t1

= X>Xp1 −p1 λ1

= 0,

as seen from (6.3) with j = 1. Since t2 was initially picked as a column of X2, it is hence
orthogonal to t1 and remains so to the end of the loop.

After the second run through the loop 1–5, we obtain

X = t1p
>

1 + t2p
>

2 + X3.

After g runs through the loop, we similarly have

X = t1p
>

1 + t2p
>

2 + · · · + tgp
>

g + Xg+1, (6.6)

where Xg+1 = 0 in the case g = r (compare with (6.1)).
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6.3 How many components?

As the example suggests, the essence of the PCA method is to decompose the X matrix as
in (6.6),

X = t1p
>

1 + t2p
>

2 + · · · + tgp
>

g + Xg+1 (6.7)

= T gP
>

g + Xg+1,

say, where T g and P g contain the first g columns of T and P , respectively. We want to
choose g in such a way that Xg+1 is small and represents only noise, while the term T gP

>

g

represents the salient features of X . In order to accomplish this, g must be chosen in such a
way that the r − g terms that are ignored correspond to zero or negligible eigenvalues.

In order to help rationalize the choice of g, the relative size of the eigenvalues are expressed
as a percentage of the sum of all eigenvalues,

λ1

λ1 + · · · + λr

× 100

and this percentage is interpreted as the percent variation explained by the corresponding
principal component. Often, the cumulated percentages are used, so that the percent variation
explained by the first g components is

λ1 + · · · + λg

λ1 + · · · + λr

× 100

As a rule, g should be chosen so that at least about 80–90 percent of the variation is explained.
The justification for the above terminology is that the variance of the score vector tj is

s2 (tj) =
1

n − 1
‖tj‖

2

=
1

n − 1
t>j tj

=
1

n − 1
λj ,

so that λj is proportional to the variance of the corresponding score. In particular, all com-
ponents with λj = 0 should be left out. Also, since the covariance matrix of X is

V X =
1

n − 1
X>X

=
1

n − 1

k∑

j=1

λjpjp
>

j ,

we may interpret λj as the contribution of tj to the total (co-)variance for X. Note also that
the sum of the eigenvalues is equal to

tr{X>X} = (n − 1)
{
s2(x1) + · · · + s2(xk)

}
,

which is interpreted as the total variance in X.
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6.4 Principal components regression

The basic idea in Principal Components Regression (PCR) is that after choosing a suitable
value for g in (6.7), the important features of X have been retained by T g. We then perform
the MLR with T g in place of X for an n × m calibration data matrix Y ,

Y = T gC + F . (6.8)

The least squares method then gives

Ĉ =
(
T>

g T g

)−1

T>

g Y,

where T>

g T g, being diagonal, is easy to invert. The fact that we have left out the loadings
matrix P g in (6.8) is of no consequence for prediction, because the scores tj are linear com-
binations of the columns of X, and the PCR method amounts to singling out those linear
combinations that are best for predicting Y .

6.4.1 Prediction

For prediction with PCR, it is necessary to turn to X again, and using (6.2) we may write
the regression equation as follows:

Y = T gC + F .

= XP gC + F . (6.9)

Consider a new sample spectrum z and predicted value ŷ (both uncentered), and let x

and y be the calibration sample averages. Then the prediction takes the form

ŷ = y + (z − x)P gĈ.

The matrix P gĈ is called the regression matrix, and may be compared with the B̂ matrix
of MLR.

6.4.2 PCR and MLR

Just as in MLR, the same prediction would be obtained if the columns of Y were considered
separately. The fact that P g appears in the PCR Equation (6.9) may be seen as compensating
for the fact that we left out P g in (6.8). When comparing with MLR, the role of the B matrix
is now played by P gC.

In the case where X has rank k and g = k, the two methods will give identical results.
When g < k, and still X has rank k, the results of PCR may differ somewhat from those of
MLR, depending on the number and sizes of the components left out.

However, PCR has some major advantages over MLR, in that X may be singular, and
the case k ≥ n may be dealt with. Note, however, that in the latter case λn = · · · = λk = 0,
and so at most g = n − 1 components may be included.
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