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In this paper we propose a generalization of the Shapiro and Botha (1991) approach that allows one
to obtain flexible spatio-temporal stationary variogram models. It is shown that if the weighted least
squares criterion is chosen, the fitting of such models to pilot estimations of the variogram can be
easily carried out by solving a quadratic programming problem. The work also includes an application
to real data and a simulation study in order to illustrate the performance of the proposed space-time
dependency modeling.
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1. Introduction

The modeling of spatio-temporal processes is a crucial problem
in many disciplines (for example, in environmental science, cli-
matology, image handling, hydrology, geology, etc.) in which, in
recent years, the use of geostatistical spatio-temporal models has
been applied (see, for example, Kyriakidis and Journel 1999).
Nonetheless, many of these approaches are based on models
initially developed for cases that are either exclusively spatial
or temporal, and spatio-temporal dependencies are thus handled
separately or inadequately exploited.

In traditional geostatistical approaches (see, for example,
Cressie 1993) certain hypotheses are usually assumed, such as
isotropy or geometric anisotropy, which facilitate the modeling
of spatial dependency considerably. These hypotheses are usu-
ally inappropriate, however, for the spatio-temporal case (see,
for example, Journel 1986). To avoid this problem, other ap-
proaches also based on classical covariogram (or variogram)
models are considered, such as the assumption of separability
(e.g. Guttorp, Sampson and Newman 1992) or variations on this
(e.g. Haas 1995).

More recently some non-separable spatio-temporal stationary
variogram models have been proposed (Jones and Zhang 1997,

Cressie and Huang 1999), but apart from the reduced number
of spatio-temporal variogram models known at present, their fit
to the empirical variogram could be unsatisfactory in practice.
It would therefore be highly desirable to have available models
with sufficient flexibility to adapt to any situation.

Our paper describes a generalization of the Shapiro and Botha
(1991) approach for the case of anisotropy in two components,
with a view to obtaining flexible stationary variogram models
suitable for modeling spatio-temporal dependency. In Section 2
we describe the notation used together with a review of some
basic theoretical results. In Section 3 various families of valid
anisotropic two component stationary semivariogram models are
defined (also applicable to the spatio-temporal case). Section 4
describes an example of the application of some of those models
to real data. In section 5 different models are compared via
a simulation study. Finally, in Section 6 some comments and
conclusions of the approach described are included.

2. Notation and preliminary remarks

We can obtain valid spatio-temporal semivariogram models as
particular cases of anisotropic two component models, therefore
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we will focus on anisotropic two component stationary spatial
processes in following sections.

Let us suppose that Z (s) is a stationary spatial process in R
d ,

in other words:

E(Z (s)) = µ(s) = µ,

Cov(Z (s1), Z (s2)) = C(s1, s2) = C(h),

where h = s1 − s2, and assume that, even though the covari-
ogram is not necessarily isotropic, there is isotropy within two
components of the lag vector:

C(h) = C(‖h1‖, ‖h2‖) = C(r, u),

where h1 ∈ R
d1 is a vector formed by d1 components of the

lag h and h2 ∈ R
d2 is the vector formed by the d2 = d − d1

remaining components (e.g. the case of a spatio-temporal pro-
cess with space-isotropic/time-isotropic covariogram C(h, t) ≡
C(‖h‖, |t |)).

Let us also assume for the moment that the covariogram is con-
tinuous at the origin. From Bochner’s theorem (Bochner 1959),
since the function is nonnegative definite, a representation of the
covariogram in the following form is possible:

C(h1, h2) =
∫

Rd1

∫
Rd2

ei(ω·h1+τ ·h2) dF(ω, τ ), (1)

where dF is a finite positive measure. If the function F (called
the spectral distribution function) is differentiable, we can ex-
press the above equation in terms of the spectral density function
f (ω, τ ) ≥ 0.

Analogously to the case of spatial isotropy (see for example,
Stein 1999, pp. 42–43), we can obtain the following expression
for the previous equation (1) corresponding to an anisotropic
two component covariogram:

C(r, u) =
∫ ∞

0

∫ ∞

0
κd1 (λr )κd2 (υu) dG(λ, υ), (2)

where

κd (x) =
(

2

x

)(d−2)/2

�

(
d

2

)
J(d−2)/2(x),

Jp is the Bessel function of order p, and G is a bounded positive
function on [0, ∞) × [0, ∞) with properties similar to those of
a bidimensional distribution function. This function takes the
form:

G(λ, υ) =
∫

‖ω‖<λ

∫
‖τ‖<υ

dF(ω, τ ),

where dF is a symmetric positive measure. Moreover, from the
expressions of the Bessel function of order p (see Abramovitz
and Stegun 1965, 9.1.20 and 9.1.10), it can be seen thatκd (0) = 1,
and therefore:

C(0, 0) =
∫ ∞

0

∫ ∞

0
dG(λ, υ).

A special case of (2) frequently used in practice and which
simplifies the problem of space-time dependency modeling

considerably, is the assumption of separable covariograms
C(h, t) ≡ C1(‖h‖)C2(|t |) (which corresponds to f (ω, τ ) ≡
f1(‖ω‖) f2(|τ |)). The non-separable models proposed by Cressie
and Huang (1999) are also particular cases of (2).

In general the expressions of equation (2) will include trigono-
metric functions when di is odd and Bessel functions of inte-
ger order when di is even. For example, for d1 = 2, d2 = 1 and
d1 = 3, d2 = 1, we would obtain expressions as follows:

d1 = 2, d2 = 1 : C(r, u) =
∫ ∞

0

∫ ∞

0
J0(λr )cos(υu) dG(λ, υ),

d1 = 3, d2 = 1 : C(r, u) =
∫ ∞

0

∫ ∞

0

sin(λr )

λr
cos(υu) dG(λ, υ),

It is well-known that a spatial covariogram valid on R
d is also

valid on R
d0 , ∀ d0 ≤ d. Moreover, it can be deduced analogously

to the results obtained for isotropic spatial covariograms (see,
for example, Stein 1999, pp. 44–45), that a function is a (con-
tinuous) two component anisotropic covariogram valid in any
spatial dimension d1, if and only if it can be represented as:

C(r, u) =
∫ ∞

0

∫ ∞

0
e−λ2r2

κd2 (υu) dG(λ, υ),

where G is a bounded positive function on [0, ∞) × [0, ∞). We
can thus denote κ∞(x) ≡ e−x2

.
It is also important to note that:

C(r, u) =
∫ ∞

0

∫ ∞

0
κ∞(λr )κ∞(υu) dG(λ, υ)

=
∫ ∞

0

∫ ∞

0
e−λ2r2−υ2u2

dG(λ, υ),

is a valid covariogram for any d1 and d2.

3. Families of spatio-temporal
variogram models

In general, the covariogram of a spatial process Z (s) may not
be continuous at the origin, in which case it can be expressed
as C(h) = c0 · δ(h) + C0(h), where c0 ≥ 0 (nugget effect), δ(·)
is the indicator function of the origin (δ(0) = 1 and δ(h) = 0
if h �= 0) and C0(·) is a covariogram continuous at the origin.
Moreover, since its covariogram and semivariogram are related
by γ (h) = C(0)−C(h), the semivariogram of an anisotropic two
component stationary process takes the form:

γ (r, u)

{
ν0 − ν(r, u) if r > 0 or u > 0

0 if r = u = 0
, (3)

where ν0 is a positive constant and ν(r, u) is a nonnegative def-
inite function continuous at the origin and which can be repre-
sented in the form of (2).

Reciprocally, any function that verifies (3) as well as ν0 −
ν(r, u) ≥ 0 ∀ r, u is an anisotropic two component semivari-
ogram valid in R

d1 × R
d2 . Moreover, since a nonnegative defi-

nite function has its absolute value bounded by its value at the
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origin, the above restriction is equivalent to ν0 −ν(0, 0) ≥ 0. The
case of c0 = ν0 − ν(0, 0) > 0, will correspond to the presence
of a nugget effect.

The anisotropic semivariogram models considered will take
the form of (3), where ν0 is a positive constant and where ν(r, u)
is a nonnegative definite function, continuous at the origin. It
can be represented as in (2) and such that:

ν0 − ν(0, 0) = ν0 −
∫ ∞

0

∫ ∞

0
dG(λ, υ) ≥ 0. (4)

We can consider an analogous simplification to that of Shapiro
and Botha (1991) which facilitates the fit of models of this kind
to pilot semivariogram estimates, assuming that dG, in the equa-
tions above, is an atomic measure. In other words, we can assume
that G is a step function with a finite number of positive jumps
zkl at points (xk, yl), taking the form:

G(x, y) =
∑
xk≤x

∑
yl≤y

zkl .

For convenience sake, let us also assume that the points (xk, yl)
are regularly spaced (the results will be identical for positions
that are irregularly spaced), i.e. xk = φ1 · k, k = 1, . . . , m, yl =
φ2 · l, l = 1, . . . , n, where φ1 and φ2 are two positive numbers.

The (bounded) semivariogram models obtained, which we
will designate as extended Shapiro-Botha models, are of the
form (3), where ν(r, u) is reduced to:

ν(r, u) =
m∑

k=1

n∑
l=1

κd1 (xkr )κd2 (ylu)zkl , (5)

and the restriction (4) is converted into the linear restriction:

ν0 −
m∑

k=1

n∑
l=1

zkl ≥ 0.

In practice, if {γ̂i j = γ̂ (ri , u j ) : (i, j) ∈ I } are pilot semi-
variogram estimates (where I represents the set of indices
corresponding to the lags considered), then the problem of
the fit of a valid model is reduced to finding the vector
θ= (z11, . . . , zmn, ν0)′ of dimensions m × n + 1 that minimizes
the function:

Q(θ) =
∑

(i, j)∈I

wi j

(
γ̂i j − ν0 +

m∑
k=1

n∑
l=1

κd1 (xkri )κd2 (ylu j )zkl

)2

,

subject to the linear restrictions:

zkl ≥ 0, k = 1, . . . , m, l = 1, . . . , n; and

ν0 −
m∑

k=1

n∑
l=1

zkl ≥ 0.

Just as in the Shapiro and Botha (1991) isotropic case, we
are dealing with a quadratic programming problem that will be
resolved similarly. Naturally, for this minimization problem to
have a single solution it has to be verified that |I | ≥ m × n + 1,
where |I | is the number of lags used in the fit. If, moreover,
we apply the criterion for the choice of weights proposed by

Cressie (1985) of taking wi j = ni j/γ (ri , u j )2 , where ni j is the
number of pairs used in the estimation γ̂i j = γ̂ (ri , u j ) , then we
must proceed iteratively, taking wi j = 1 for the first step and
recalculating the weights for each iteration until convergence is
obtained. If θ̄ = (z̄11, . . . , z̄mn, ν̄0)′ is the optimum solution ob-
tained by resolving this problem, then the fitted semivariogram
model will be given by:

γ̄ (r, u) = ν̄0 −
m∑

k=1

n∑
l=1

κd1 (xkr )κd2 (ylu)z̄kl , (6)

for (r, u) �= (0, 0); and the corresponding value of weighted least
squares (WLS) will be:

WLS =
∑

(i, j)∈I

ni j

(
γ̂ (ri , u j )

γ̄ (ri , u j )
− 1

)2

. (7)

If we use the empirical estimator of the semivariogram, then
the γ̂i j estimates may be highly variable. Since the family of
semivariograms obtained in this way is very flexible, the fitted
semivariogram γ̄ (r, u) may have an irregular shape (above all if
|I | is large). In order to avoid an “overfit” of this kind, the inclu-
sion of additional smoothness, monotony and convexity (linear)
restrictions may be considered (see Shapiro and Botha 1991,
pp. 91–94, for the spatial case). A different approach could be
the use of nonparametric kernel estimators of the semivariogram
(commented briefly in next section). In addition to obtaining
more efficient estimates, these being smoother, it is not neces-
sary to add further restrictions to the fit.

This approach could equally be extended to the case of
anisotropy in more than two components, for example, to the
spatio-temporal case with anisotropy in the spatial coordinates.

4. Application to a real case

In this section an example of the application of these spatio-
temporal semivariogram models to a set of real data is given, the
same data as those used in the paper by Cressie and Huang
(1999). The observations are measurements taken every six
hours (time unit) of the east-west component of wind speed
on a grid of 17 × 17 spatial positions (regularly spaced, ap-
prox. 210 kms) located in the tropical western Pacific Ocean.
Rather than use all the time measurements as in the Cressie
and Huang paper (480 time intervals corresponding to the pe-
riod from November 1992 to February 1993), it was decided to
take into consideration only the first 20 time points in order to
ensure that the number of observations was manageable. The
calculations were thus based on a spatio-temporal sample of
5780 observations, corresponding to 289 spatial locations and
20 time points.

Following an exploratory analysis of the data, it could be seen
(Cressie and Huang 1999, p. 1336) that the assumption of spatio-
temporal stationarity is reasonable (which permits us to use the
ordinary kriging model and directly apply the classical estimator
of the semivariogram to the data).
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Fig. 1. Contour surfaces corresponding to the empirical estimator of the semivariogram (evaluated in the set of lags used for the fit); and the fitted
extended Shapiro-Botha models. The horizontal axis represents the spatial lag (in thousands of kilometers) and the vertical axis the temporal lag
(1 unit = 6 hours)

If we denote the observed values of the E-W component of
wind speed as Z (s1, t1), . . . , Z (sN , tN ), then using the classical
estimator, the pilot semivariogram estimates {γ̂lu = γ̂ (h(l), u) :
0 ≤ l ≤ L , 0 ≤ u ≤ U, (l, u) �= (0, 0)} will be given by:

γ̂ (h(l), u) = 1

2|N (h(l), u)|
∑

N (h(l),u)

(Z (si , ti ) − Z (s j , t j ))
2,

where N (h(l), u) = {(i, j) : ‖si −s j‖ ∈ Tol(h(l)), |ti −t j | = u},
and Tol(h(l)) is a tolerance region around h(l). Moreover, fol-
lowing the recommendations of Journel and Huijbregts (1978,
p. 194), the considered models were fitted using half of the pos-
sible lags and in such a way that the number of contributions to
the estimation in each lag was at least 30. Figure 1(a) shows the
estimates obtained with the classical estimator of the semivari-
ogram in the lags used for the fit: h(i) = 0.20046 · i (thousands
of kilometers), i = 0, . . . , 11, u = 0, . . . , 9 and (i, u) �= (0, 0)
(note that the value of the semivariogram at the origin is always

cero). The tolerance regions were taken so that r ∈ Tol(h(l)) if
−0.10023 ≤ r − h(l) < 0.10023.

In order to avoid the “overfit” problem with the use of the
empirical semivariogram estimator (commented in Section 3),
we could, for example, obtain a pilot estimate of γ (r, u) by mul-
tivariate local linear least squares regression, minimizing:

N−1∑
i=1

N∑
j=i+1


(Z (si , ti ) − Z (s j , t j ))

2 − (β0, β10, β01)

×




1

‖si − s j‖ − r

|ti − t j | − u







2

· (8)

K H

((
‖si − s j‖ − r

|ti − t j | − u

))
,
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Table 1. Values for φ1 and φ2, nugget effect estimates and WLS ob-
tained for the fit of the extended Shapiro-Botha models: [SVSBE(2,1)]
model (6) with d1 = 2 and d2 = 1, [SVSBE(∞,1)] model (6) with
d1 = ∞ and d2 = 1 and [SVSBE(∞,∞)] model (6) with d1 = ∞ and
d2 = ∞

φ1 φ2 c0 WLS

SVSBE(2,1) 0.85 0.1 0.5896 1337.98
SVSBE(∞,1) 0.25 0.1 0.5549 3387.291
SVSBE(∞,∞) 0.55 0.085 0.0000 7933.438

with K H (v) = 1
|H | K (H−1v), where K (·) is a bidimensional ker-

nel and H a bandwidth matrix. One of the main reasons for
choosing this estimator among the local kernel estimators is the
absence of boundary effects (this is especially important near
the origin; see e.g. Stein 1999, chapter 3). If (β̂0, β̂10, β̂01) is
the solution of the straightforward weighted linear least squares
problem (8), the pilot estimate of γ (r, u) will be γ̂ (r, u) =
β̂0. However, this approach will be considered in a future
study.

For the fit of the extended Shapiro-Botha models the rou-
tine QPROG from the IMSL library was used to resolve the
quadratic programming problem. The procedure was iterative,
with wi j = 1 (OLS) used for the first step and with the weights
recalculated for each iteration until convergence. The values of
m and n in (5) were set as equal to the number of lags used in the
fit minus one, i.e. m = 11 and n = 9. The values for φ1 and φ2

were taken so as to minimize the sum of weighted squares of the
fit (these were considered as two further parameters; in order to
estimate them, the objective function was evaluated on a bidi-
mensional grid and values that minimized WLS were selected).
Table 1 displays the values obtained for φ1 and φ2, the nugget
effect estimates and the WLS values (equation (7)) for the fit to
the empirical semivariogram. It can be observed that the model
with the best fit is that which is specific to the dimensions of
the data (using more general models would mean a loss of flex-
ibility). Figure 1(b)–(d) illustrate the adjusted semivariogram
models.

In order to verify if the fitted variogram models adequately
described the spatio-temporal dependence of the data, the cross-
validation technique was used (see, for example, Cressie 1993,
pp. 101–104). For each spatio-temporal location (si , ti ), using
the ordinary kriging method, a predictor Ẑ−i (si , ti ) of Z (si , ti )
and the corresponding mean-squared prediction error σ 2

−i (si , ti )
were calculated (based on the set of observations without
Z (si , ti )). Using these values the following measurements were
obtained:

• Cross-validation averaged squared error:

CVASE = 1

N

N∑
i=1

(Ẑ−i (si , ti ) − Z (si , ti ))
2,

Fig. 2. Neighborhood around the prediction location used in the cal-
culation of the cross-validation measurements

• Cross-validation dimensionless averaged squared error:

CVDASE =
√√√√ 1

N

N∑
i=1

((Ẑ−i (si , ti ) − Z (si , ti ))/σ−i (si , ti ))2,

This should be close to 1 if there is agreement between the
kriging variances and the observed variances.

• Coverage (CVCOV ) of the 95% prediction interval (assuming
normality).

In the calculation of the cross-validation measurements for
each location (si , ti ), instead of using all the remaining obser-
vations {Z (s j , t j ) : j �= i} (which in principle would require
inversion or factorization of a 5780 × 5780 matrix), only 122 of
the data closest to the prediction location were used (although
the nugget effect estimates would suggest that smaller neigh-
borhoods could also have been appropriate, but there being no
computational problems a larger neighborhood was selected).
The configuration of the relative spatio-temporal locations of
the neighborhood data for the area of the prediction position is
shown in Fig. 2. Once the neighborhood was fixed, the proce-
dure was analogous to that of Cressie (1993, pp. 158–161). The
kriging weights corresponding to each position in the neighbor-
hood were obtained (resolving a system of dimension 123). For
each prediction location in which there was the totality of the
neighborhood observations (1694 locations in total), the krig-
ing prediction and the kriging variance were calculated using
the weights obtained in the first stage. The total computational
time for this procedure, on a PIII at 750 Mhz, was less than
two minutes.

The results obtained for the fitted extended Shapiro-Botha
models can be seen in Table 2. It is observed from the aver-
aged squared error that the most flexible models with the best
fit to the empirical estimator (Table 1) produce poorer results.
Nevertheless, a comparison of the values of the dimensionless
averaged squared error indicates that the SVSBE(∞,∞) model



132 Fernández-Casal, González-Manteiga and Febrero-Bande

Table 2. Local cross-validation measurements corresponding to the
fitted extended Shapiro-Botha models

SVSBE(2,1) SVSBE(∞,1) SVSBE(∞,∞)

CVASE Mean .5569 .6128 .0138
Median .2316 .2452 .0046
Std. Dev. .8626 .9702 .0470

CVDASE Mean .8075 .8955 3.0857
Median .3358 .3584 1.0279
Std. Dev. 1.2508 1.4178 10.5326

CVCOV Mean .9705 .9569 .8146
Std. Dev. .1693 .2031 .3887

obtains prediction variance estimates (kriging variance) that are
excessively optimistic, and therefore coverage of the prediction
intervals is reduced.

5. Simulation study

In the simulation study the extended Shapiro-Botha models de-
scribed in Section 3 were compared with the following spatio-
temporal semivariogram models:

• Semivariogram model (SVCH2) corresponding to Example 2
in Cressie and Huang (1999, p. 1333):

γ (h, u | θ)

=




c0 + σ 2

(
1 − 1

(a|u| + 1)d/2
exp

{
− b2‖h‖2

a|u| + 1

})

if h �= 0 or u �= 0

0 if h = 0 and u = 0

where d is the spatial dimension and θ = (c0, a, b, σ 2)′,
c0 ≥ 0 (nugget effect), a ≥ 0 (time scale parameter), b ≥ 0
(space scale parameter) and σ 2 > 0 (partial sill).

• Anisotropic spherical semivariogram model (SVESFA):

γ (h, u | θ) = g(
√

‖h‖2 + bu2 | θ̃),

g(r | θ̃) =




0 if r = 0

c0 + σ 2

{
3

2

r

a
− 1

2

(
r

a

)3}
if 0 < r ≤ a

c0 + σ 2 if r > a

where d is the spatial dimension and θ = (c0, a, b, σ 2)′, c0 ≥
0 (nugget effect), a ≥ 0 (spherical semivariogram range), b ≥
0 (spatio-temporal interaction parameter) and σ 2 > 0 (partial
sill).

• Semivariogram model corresponding to a separable exponen-
tial covariogram (SVSEXP):

γ (h, u | θ)

=

c0 + σ 2

(
1 − exp

{
−u

a
− ‖h‖

b

})
if h �= 0 or u �= 0

0 if h = 0 and u = 0

Fig. 3. Spatial locations of the data and the predictions

where d is the spatial dimension and θ= (c0, a, b, σ 2)′, c0 ≥
0 (nugget effect), a ≥ 0 (time scale parameter), b ≥ 0 (space
scale parameter) and σ 2 > 0 (partial sill).

A square 10 × 10 lattice of (N = 100) points in the do-
main D = [0, 2] × [0, 2] ⊂ R × R (spatial dimension d = 1)
was chosen as the spatio-temporal configuration (fixed de-
sign). Using the ordinary kriging model, 1000 simulations
were generated for these spatio-temporal locations and in 4
prediction locations (Fig. 3). The semivariogram models de-
scribed above were used to generate the values, with parameters
as follows: θ0 = (c0 = 1, a = 1, b = 1, σ 2 = 1)′ in the Cressie
and Huang model; θ0 = (c0 = 1, a = 0.5, b = 0.25, σ 2 = 1)′ in
the anisotropic spherical model; and finally, θ0 = (c0 = 1,

a = 0.5, b = 1, σ 2 = 1)′ in the separable exponential model.
For the estimation of the variogram and the fit of the ex-

tended Shapiro-Botha models, an analogous procedure to that
described in the previous section was followed. Alternatively,
weighted least squares estimators were obtained for the models
given above following an iterative algorithm. For each iteration:

1. The weights were recalculated: wi j = ni j/γ̄ (ri , t j )2 (in the
first iteration the weights were set equal to 1).

2. The nugget effect and the partial sill were estimated using a
weighted least squares linear regression (if the other param-
eters are fixed then the models are a linear function of these);
A negative value became zero and the other parameter was
estimated again.

3. The rest of the parameters were estimated (fixing the nugget
effect and the partial sill) using a modified Levenberg-
Marquardt algorithm with restrictions in the parameters (rou-
tine BCLSF of the IMSL).

5.1. Fitting the models

In order to compare the different models, in addition to the WLS
values, relative squared errors were also calculated to measure
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Table 3. Fit measurements obtained using the different models

MODEL WLS RSE RSET

Theoretical Fitted Mean Median S. dev. Mean Median S. dev. Mean Median S. dev.

SVCH2 SVSBE(1,1) 19.48 18.28 7.75 .232 .216 .093 1.998 .951 3.43
SVSBE(∞,1) 24.14 23.00 8.61 .298 .284 .110 1.974 .933 3.44
SVSBE(∞,∞) 26.99 25.68 9.58 .334 .314 .124 1.899 .856 3.39
SVCH2 30.54 29.40 10.92 .371 .350 .136 1.831 .819 3.19
SVESFA 34.24 31.13 15.39 .424 .381 .195 1.755 .846 2.90
SVEXPS 51.97 39.61 44.46 .635 .482 .544 1.702 .845 2.61
TEOR 186.9 98.18 280.5 2.27 1.18 3.56 .000 .000 .00

SVESFA SVSBE(1,1) 22.73 19.91 12.30 .268 .237 .142 1.470 .804 2.16
SVSBE(∞,1) 27.53 25.14 12.92 .339 .310 .158 1.349 .698 2.13
SVSBE(∞,∞) 31.33 28.98 13.73 .390 .360 .170 1.310 .658 2.13
SVCH2 51.82 46.02 24.74 .618 .549 .289 1.551 .824 2.42
SVESFA 35.59 32.82 15.01 .442 .407 .184 1.368 .689 2.26
SVEXPS 39.31 35.40 17.83 .474 .431 .206 1.274 .613 2.07
TEOR 148.5 92.59 188.6 1.70 1.06 2.16 .000 .000 .00

SVEXPS SVSBE(1,1) 22.48 19.70 12.44 .264 .232 .142 1.882 .967 3.22
SVSBE(∞,1) 24.91 22.22 12.29 .303 .271 .149 1.775 .866 3.22
SVSBE(∞,∞) 28.01 25.50 13.38 .340 .308 .162 1.725 .812 3.21
SVCH2 48.75 41.15 28.39 .585 .499 .339 1.987 .929 3.68
SVESFA 34.83 31.30 15.92 .427 .380 .198 1.762 .811 3.37
SVEXPS 43.96 37.03 25.89 .522 .449 .300 1.590 .779 2.82
TEOR 180.4 105.1 272.0 2.12 1.23 3.28 .000 .000 .00

the fit to the theoretical and empirical variograms:

RSET =
∑

(i, j)∈I

(
γ̄ (ri , t j )

γ (ri , t j )
− 1

)2

,

RSE =
∑

(i, j)∈I

(
γ̂ (ri , t j )

γ̄ (ri , t j )
− 1

)2

,

where γ̄ (·, ·) is the fitted semivariogram, γ (·, ·) the theoretical
semivariogram and I the set of indices corresponding to the lags
used for the fit.

The values obtained are shown in Table 3. With a view to fa-
cilitating a comparison of the results obtained with the adjusted
models, the values corresponding to the theoretical variogram
(TEOR) used to generate the observations were also calculated.
If we compare the empirical semivariogram fits we can see that
the extended Shapiro-Botha models are much more flexible and
adapt better to the semivariogram estimates in all the cases (and
among these, the more specific models are those which produce
the best fits). If we compare the RSET values, as a general rule,
the opposite occurs and the more specific extended Shapiro-
Botha models are poorer fits. This might lead one to think that
the classical semivariogram estimator is not very efficient (see
the WLS and RSE values obtained using the theoretical semi-
variograms), and that other pilot estimates of the semivariogram
might be more suitable; see the comments given at the end of
Section 3.

Figure 4 compares the nugget effect estimates obtained using
the different models. The estimates obtained with the extended

Shapiro-Botha models are those nearest to the true value, and so
we could say that the behavior of these models near the origin
is quite satisfactory.

In order to diagnose the fit of the different models the cross-
validation statistics described in the previous section were also
calculated. In this case the calculations were not made locally
and all remaining observations {Z (s j , t j ) : j �= i} were taken
into account in order to obtain predictions and kriging vari-
ances for each location (si , ti ). Nonetheless, instead of calculat-
ing these values in the usual way (resolving N systems of order
N ), they were obtained on the basis of the kriging matrix con-
structed using all the data (bearing in mind the expressions of
the kriging equations leaving out one datum and the fact that the
kriging methods are exact interpolators, the expressions from
which we can obtain the weights for the cross-validation can
be easily deduced; see Dubrule 1983). Thus, by calculating the
predictions, the cross-validation values were also calculated at
no additional computational cost. Table 4 shows the values for
the cross-validation statistics obtained. It can be seen that for
the averaged squared error the extended Shapiro-Botha models
are those that obtain the better values and, as with the exam-
ple shown in the previous section, the most general model (and
that with the poorest fit to the empirical semivariogram) is that
with the lowest CVASE. If we compare the agreement values for
the kriging variances and the observed variances (CVDASE), as
well as the coverage of the prediction intervals, it can be also
observed that SVSBE(∞, ∞) produces the most satisfactory
behavior.
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Table 4. Cross-validation values

MODEL CVASE CVDASE CVCOV

Theoretical Fitted Mean Median S. dev. Mean Median S. dev. Mean S. dev.

SVCH2 SVSBE(1,1) 1.107 1.095 .172 1.044 1.037 .042 .940 .019
SVSBE(∞,1) 1.119 1.107 .175 1.028 1.021 .039 .944 .019
SVSBE(∞,∞) 1.119 1.107 .170 1.007 1.006 .020 .949 .015
SVCH2 1.142 1.130 .173 1.016 1.013 .030 .948 .017
SVESFA 1.150 1.133 .174 1.022 1.015 .036 .945 .018
SVEXPS 1.175 1.159 .182 1.049 1.029 .069 .938 .025
TEOR 1.137 1.128 .165 .993 .992 .073 .951 .022

SVESFA SVSBE(1,1) 1.596 1.584 .264 1.050 1.045 .038 .939 .018
SVSBE(∞,1) 1.516 1.506 .243 1.034 1.025 .057 .942 .022
SVSBE(∞,∞) 1.519 1.505 .239 1.002 1.000 .020 .950 .016
SVCH2 1.869 1.837 .327 1.017 1.012 .034 .948 .017
SVESFA 1.581 1.570 .256 1.001 1.002 .025 .950 .016
SVEXPS 1.583 1.575 .253 1.019 1.012 .039 .946 .018
TEOR 1.563 1.550 .235 .994 .992 .075 .951 .022

SVEXPS SVSBE(1,1) 1.393 1.383 .228 1.050 1.044 .042 .938 .019
SVSBE(∞,1) 1.334 1.329 .211 1.034 1.024 .050 .942 .020
SVSBE(∞,∞) 1.323 1.313 .207 1.002 1.001 .020 .951 .015
SVCH2 1.571 1.536 .291 1.022 1.018 .035 .946 .017
SVESFA 1.385 1.373 .211 1.007 1.007 .028 .949 .016
SVEXPS 1.373 1.363 .213 1.026 1.014 .057 .945 .021
TEOR 1.360 1.343 .203 .994 .990 .075 .952 .022

Fig. 4. Nugget effect estimates obtained with the different models (the dotted lines represent the theoretical values)

5.2. Predictions

In order to analyze the predictions obtained using the different
models, the following measurements were calculated for each
prediction location (s0, t0) (Fig. 3):

PASE = (Ẑ (s0, t0) − Z (s0, t0))2,

PDMSE2 = ((Ẑ (s0,t0) − Z (s0,t0))/σ (s0, t0))2,

PCOV = 95% coverage of the prediction interval

(assuming normality).

Table 5 shows a summary of the values obtained for these
statistics in the simulations. It can be seen that, with respect to the
averaged squared prediction error (PASE), the SVSBE(∞, ∞)
model always behaves satisfactorily and is occasionally even
the best performer, whereas the SVSBE(1,1) model is in gen-
eral the poorest performer (along with the SVSBE(∞,1) model,
obtaining intermediate values between the above two models).
With regard to the kriging variance estimates, and bearing in
mind that the values for the dimensionless averaged squared
error (PDMSE2) corresponding to these models are large, it
can be observed that the extended Shapiro-Botha models obtain



Flexible spatio-temporal stationary variogram models 135

Table 5. Efficiency measurements for the predictions (for all the prediction locations)

MODEL PASE PDMSE2 PCOV

Theoretical Fitted Mean Median S. dev. Mean Median S. dev. Mean S. dev.

SVCH2 SVSBE(1,1) 1.207 .569 1.65 1.230 .572 1.70 .925 .264
SVSBE(∞,1) 1.203 .570 1.65 1.193 .559 1.67 .927 .260
SVSBE(∞,∞) 1.170 .534 1.60 1.109 .501 1.53 .936 .245
SVCH2 1.163 .538 1.59 1.058 .488 1.46 .942 .233
SVESFA 1.169 .535 1.60 1.109 .510 1.53 .937 .243
SVEXPS 1.184 .544 1.62 1.067 .486 1.48 .941 .236
TEOR 1.128 .522 1.53 .987 .456 1.34 .955 .208

SVESFA SVSBE(1,1) 1.586 .732 2.19 1.143 .527 1.60 .931 .253
SVSBE(∞,1) 1.528 .713 2.11 1.164 .528 1.65 .929 .256
SVSBE(∞,∞) 1.512 .695 2.06 1.124 .510 1.57 .934 .249
SVCH2 1.776 .855 2.44 .991 .478 1.39 .953 .212
SVESFA 1.529 .699 2.08 1.045 .476 1.46 .942 .233
SVEXPS 1.549 .730 2.12 .945 .441 1.30 .956 .205
TEOR 1.450 .659 1.97 .988 .450 1.34 .955 .207

SVEXPS SVSBE(1,1) 1.487 .692 2.04 1.227 .560 1.71 .924 .265
SVSBE(∞,1) 1.476 .684 2.05 1.260 .562 1.82 .918 .274
SVSBE(∞,∞) 1.452 .656 2.00 1.188 .532 1.67 .924 .265
SVCH2 1.545 .705 2.12 1.036 .481 1.45 .944 .230
SVESFA 1.442 .663 1.97 1.104 .508 1.53 .939 .239
SVEXPS 1.495 .697 2.06 1.031 .484 1.43 .945 .227
TEOR 1.392 .638 1.89 .988 .455 1.34 .956 .206

excessively optimistic prediction variances estimates. Conse-
quently, and in contrast to the cross-validation values, the cov-
erage of the prediction intervals by these models was reduced
(possibly due to an underestimation of the semivariogram for
large lags).

Finally, the possible existence in the fitted models of different
behaviors dependent on prediction locations (interior, exterior,
near to or far from the data) was also studied, but there were
apparently no differences.

6. Conclusions

• A generalization of the Shapiro and Botha approach, as de-
scribed in this paper, makes a wide range of stationary semi-
variogram models valid for the spatio-temporal case avail-
able (and can be easily extended to the case of two or more
anisotropic components).

• The fit of the pilot semivariogram estimates, being linear
functions of the parameters, can be easily carried out using
quadratic programming (thus avoiding the problems of non-
linear multidimensional minimization that occur when using
parametric models).

• The models obtained using this approach are extremely flex-
ible and adaptable, thus the use of efficient pilot estimates
being very important.

• The comparisons made in the simulation study indicate that
the results obtained using the models proposed for kriging

in this paper are similar to, and sometimes better than, those
obtained using traditional parametric models.
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