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Local linear regression estimation of the variogram
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Abstract

In this work, we introduce the local linear semivariogram. Several properties of this estimator are established
and compared with those of the Nadaraya–Watson semivariogram. Finally, an adaptation of Shapiro and
Botha’s 8t is applied to produce a valid estimator.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let {Z(s)=s∈D ⊂ Rd} be a spatial random process, where D is a bounded region with
positive d-dimensional volume. A random process is de8ned as intrinsically stationary if the follow-
ing conditions are satis8ed:

(i) E[Z(si)− Z(sj)] = 0, for all si ; sj ∈D.
(ii) Var[Z(si)− Z(sj)] = 2	(si − sj), for all si ; sj ∈D.
The function 	 is called the semivariogram (and 2	 is the variogram).
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In order to guarantee the nonnegativity of the mean-squared prediction errors, the semivariogram
is required to satisfy the conditionally negative de8niteness property, namely

m∑
i=1

m∑
j=1

aiaj	(si − sj)6 0 (m6 n) (1)

for any {si ∈Rd=16 i6m} and for any {ai ∈R=16 i6m}, such that
∑m

i=1 ai=0. A semivariogram
satisfying condition (1) is said to be valid.
On the other hand, condition (ii) may be replaced by the more restrictive condition
(ii′)Var[Z(si)− Z(sj)] = 2	(‖si − sj‖), for all si ; sj ∈D.
Then, the intrinsic random process is said to be isotropic.
Estimation of the semivariogram is a fundamental problem in inference for intrinsic random

processes, with applications in a broad spectrum of areas such as geostatistics, hydrology, atmospheric
science, etc; see, for instance, Cressie (1991) and references therein. For the sake of simplicity, we
will focus our attention on the estimation of isotropic semivariograms.

Suppose that n data, Z(s1), Z(s2); : : : ; Z(sn), are collected, at known spatial locations s1; s2; : : : ; sn,
respectively. The idea of averaging the square diKerences, (Z(si) − Z(sj))2, may lead to construct
nonparametric estimators of the semivariogram as follows:

	̃(s) =

∑n
i=1

∑n
j=1 wi;j(s) (Z(si)− Z(sj))2

2
∑n

i=1

∑n
j=1 wi;j(s)

; s¿ 0; (2)

where wi;j(s)¿ 0, for all i; j and
∑n

i=1

∑n
j=1 wi;j(s)¿ 0.

For instance, take

wi;j(s) = I{‖si−sj‖=s}

to yield the empirical semivariogram, due to Matheron (1963). In Cressie and Hawkins (1980),
the square root of the absolute diKerences, |Z(si) − Z(sj)|, are appropriately averaged instead to
provide robust variogram estimators. When data are irregularly spaced, the latter estimators are
usually smoothed by considering a tolerance region around s.

An alternative estimator is suggested in Garc$%a-Soid$an et al. (2003), which results from adapting
the Nadaraya–Watson regression estimator to the context of spatial data, trying to mimic the non-
parametric kernel covariance estimators proposed in Hall et al. (1994) or in Hall and Patil (1994).
The estimator obtained, which will be denoted by 	̂h(s), may be written as given in (2) by selecting
wi;j(s) as

wi;j(s) = K
(‖si − sj‖ − s

h

)
; (3)

where K denotes a symmetric density function and h= hn is the bandwidth parameter.
The aim of this paper is to construct a semivariogram estimator by using the local polynomial

8tting, since it provides a kernel method with attractive properties; see Fan and Gijbels (1996) for
a description of this procedure in a regression setting. For the sake of simplicity, we will apply
the local linear estimation, so that we will suppose that locally the semivariogram function can be
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approximated by

	(s) ≈
1∑

k=0

	(k)(s0)(s− s0)k

for s in a neighborhood of s0, by using Taylor’s expansion. The latter polynomial may be 8tted
locally by a weighted least-squares problem, say, by obtaining �1 and �2 that minimizes

n∑
i=1

n∑
j=1

[
1
2
(Z(si)− Z(sj))2 −

1∑
k=0

�k(‖si − sj‖ − s)k
]
K
(‖si − sj‖ − s

h

)
: (4)

De8ne

w0; i; j(s) =K
(‖si − sj‖ − s

h

) n∑
k=1

n∑
l=1

K
(‖sk − sl‖ − s

h

)
(‖sk − sl‖ − s)

(‖sk − sl‖ − ‖si − sj‖);

w1; i; j(s) = K
(‖si − sj‖ − s

h

) n∑
k=1

n∑
l=1

K
(‖sk − sl‖ − s

h

)
(‖si − sj‖ − ‖sk − sl‖):

The minimizers of (4) will be given by

�̂k =

∑n
i=1

∑n
j=1 wk; i; j(s)(Z(si)− Z(sj))2

2
∑n

i=1

∑n
j=1 w0; i; j(s)

:

Then, �̂k may be considered as an estimator of 	(k)(s), for k = 1; 2.
The latter means that the local linear estimator will be constructed by taking wi;j(s) in (2) as

w0; i; j(s). The resulting kernel estimator will be denoted by 	̃h(s).
From the two kernel methods mentioned above, several features make it advisable the use of the

local linear estimation proposed in this work. On one hand, the bias at the boundary is of the same
order as that in the interior, unlike the Nadaraya–Watson estimator 	̂h(s); the latter is an important
merit, since the boundary can be quite substantial in the number of data points involved. Moreover,
boundary modi8cations may be a diPcult task, specially for higher dimensions; for instance, the
Nadaraya–Watson estimation requires the use of an speci8c combination of boundary kernels, given
in (6), to retain rates of convergence. In addition, the performance of the local linear semivariogram
	̃h(s) outside the boundary may be better than that of 	̂h(s), for an appropriate selection of the kernel
function, as remarked in Section 3.

The properties of the Nadaraya–Watson estimator have not been developed in this paper, since
they are detailed in Garc$%a-Soid$an et al. (2003). Thus, we will only introduce and compare them
with those of the local linear estimator. On the other hand, arguments to prove the properties related
to the local linear estimator are similar as those given in Hall et al. (1994); therefore, we will
basically focus on remarking the particularities of this setting and, more speci8cally, on deriving the
bias and the variance of 	̃h(s).
Finally, we will take into account in the present paper that all the semivariogram estimators

mentioned above do not necessarily satisfy condition (1). The latter means that, previously to be
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used for spatial prediction, the estimators should be appropriately treated in order to guarantee
that requirement. See, for instance, the alternatives proposed in Cressie (1985) or Shapiro and
Botha (1991), based on selecting the semivariogram which best 8t the data from a family of valid
semivariograms considered.

An additional advantage of the local linear 8tting is that it provides a practical rule for selec-
tion of an appropriate semivariogram model. At this respect, bear in mind that the local linear
8tting allows to obtain a direct estimator of 	′(s), given by �̂1. This estimated derivative may be
used as a tool to choose among several families of valid semivariograms, similarly as proposed in
Gorsich and Genton (1999), where an adaptation of Shapiro and Botha’s method is applied on the
empirical estimator for this purpose.

The structure of this paper is as follows. Section 2 is devoted to notation and technical aspects.
Asymptotic properties of the local linear estimator are discussed in Section 3 and compared with
those of the Nadaraya–Watson estimator; in addition, an adaptation of Shapiro and Botha’s is applied
to transform the local linear estimator into a valid semivariogram. In the appendix, we will sketch
the proofs to derive the bias and the variance of the local linear estimator.

2. Notation and technical details

Firstly, the main hypotheses will be presented.
(S1) K is a univariate, symmetric and bounded density function, with compact support [− C; C]

and such that K(0)¿ 0.
The random process {Z(s)=s∈D ⊂ Rd} will be required to satisfy the conditions below:
(S2) The random process is intrinsic as well as isotropic, where the semivariogram 	 admits three

continuous derivatives in a neighborhood of s, for all s¿ 0.
The observation region will be considered to be increasing, in the way proposed in Hall et al.

(1994), so that it will allow to achieve consistent estimation.
(S3) D = Dn = �D0, for some � = �n diverging to +∞ and for some 8xed and bounded region

D0 ⊂ Rd containing a sphere with positive d-dimensional volume.
As regards the fourth-order moments of the random process, we will require
(S4) There exists a bounded and continuously diKerentiable function g such that
Cov[(Z(si)− Z(sj))2; (Z(sk)− Z(sl))2] = g(‖si − sk‖; ‖sj − sl‖; ‖si − sl‖; ‖sj − sk‖).
(S5) Given any positive constant d1, then∫
‖s1−s2‖6d1
‖s3−s4‖6d1

|g(‖s1 − s3‖; ‖s2 − s4‖; ‖s1 − s4‖; ‖s2 − s3‖)| ds1 ds2 ds3 ds4¡∞.

Hypotheses (S4) and (S5) are not too restrictive in practice. For instance, an isotropic Gaussian
process satis8es that g(x1; x2; x3; x4) = 2(	(x1) + 	(x2) − 	(x3) − 	(x4))2. Then, both conditions hold
for a bounded semivariogram which admits one continuous derivative and is 8nite-ranged or, even,
if it has an asymptotic range with an exponentially decreasing rate of convergence.

The following convergence rates will be assumed:
(S6) {h+ (nh)−1 + �−1 + n−1�d}n→∞→ 0.
Moreover, for some constant c¿ 0, we will take

�d = cnh+ o(nh): (5)
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A random design will be assumed for the spatial locations, as suggested in Hall et al. (1994).
Then, let f0 represent a density function de8ned on D0, satisfying

(S7) f0(x)¿d2, for all x∈D0 and for some positive constant d2.
Denote by U1; U2; : : : ; Un a random sample of size n from f0 and by u1; u2; : : : ; un a realization of

it. To model this situation, we will take
(S8) si = � ui, for 16 i6 n.
Write fi, 16 i6 3, for the density of (U1 − U2; : : : ; U1 − Ui+1). We will assume
(S9) f1(0)¿ 0 and f1 is continuously diKerentiable in a neighborhood of 0.
(S10) f2 and f3 are continuously diKerentiable in a neighborhood of 0.
The uniform or the normal densities are examples of functions f0 satisfying conditions (S7), (S9)

and (S10).

3. Main results

In what follows, some properties of the local linear regression estimator 	̃h(s) will be derived; in
particular, that it is asymptotically unbiased as well as consistent for s¿ 0.

Theorem 3.1. Suppose that conditions (S1)–(S10) are satis;ed. Then, for s¿ 0

E[	̃h(s)] = 	(s) +
c22;K − c1;Kc3;K

2(c0;Kc2;K − c21;K)
	′′(s) h2 + o(h2);

Var[	̃h(s)] =
f3(0; 0; 0)Bd(s; s)

4(f1(0)Ad)2
�−d + o(�−d + h4);

where ci;K =
∫ q
−C ziK(z) dz, q=min{sh−1; C}∈ [0; C] and Ad and Bd(s; s) are de;ned in (A.3).

The proof of the theorem above will be sketched in Section A.1.

Remark 3.2. From Theorem 3.1, the bias of 	̃h(s) is of the order O(h2), for all s¿ 0; however,
we may only guarantee that the same rate remains valid for the Nadaraya–Watson estimator 	̂h(s)
outside the boundary; see Garc$%a-Soid$an et al. (2003). In fact

E[	̂h(s)] = 	(s)− c1;K	′(s)
c0;K

h+
c2;K	′′(s)
2c0;K

h2 + o(h2):

According to Remark 3.2, there is a need for an appropriate modi8cation of estimator 	̂h(s) close
to the endpoint 0, s¡Ch; otherwise, bias order would be h rather than h2. Then, consider two
symmetric kernel functions K and L, K �= L but with the same support [− C; C], and construct an
speci8c linear combination of their corresponding boundary kernels

Hq(z) =
c−1
0;KK(z)− rc−1

0; LL(z)

1− r
; where r = c1;Kc0; L(c0;Kc1; L)−1 �= 1; (6)
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if z ∈ [− C; q]. Now, write 	̂q;h(s) for semivariogram estimator obtained when using

wi;j(s) = Hq

(‖si − sj‖ − s
h

)

instead of (3) in (2). As proved in Garc$%a-Soid$an et al. (2003), it follows that

E[	̂q;h(s)] = 	(s) +
c2;Kc1; L − c1;Kc2; L

2(c0;Kc1; L − c1;Kc0; L)
	′′(s)h2 + o(h2);

Var[	̂q;h(s)] =
f3(0; 0; 0)Bd(s; s)

4(f1(0)Ad)2
�−d + o(�−d + h4):

Remark 3.3. Proceeding as above, the same bias order is preserved for all s¿ 0, when using 	̂q;h(s).
However, the latter gives account of one of the main advantages of estimator 	̃h(s), say, the absence
of boundary eKects.

Remark 3.4. The dominant term of the variance of 	̃h(s) equals that obtained for the
Nadaraya–Watson estimator 	̂q;h(s). It is also remarkable the fact that the latter variances can be of
the order �−d =O((nh)−1), under the convergence rate stated in (5).

Remark 3.5. The relations obtained allow to compare both kernel semivariograms. For this
purpose, we may consider the same kernel function K for both estimators; then,
h−4(	′′(s))−2[MSE(	̃h(s))−MSE(	̂q;h(s))] is asymptotically proportional to

HK;L(s) =


( c22;K − c1;Kc3;K

2(c0;Kc2;K − c21;K)

)2

−
(

c2;Kc−1
1;Kc1; L − c2; L

2(c0;Kc−1
1;Kc1; L − c0; L)

)2

 :

We may require that there exists limq→C c−1
1;Kc1; L = b∈ [0;+∞], where b �= 1 according to (6). In

case that b = ∞, both semivariograms will have a similar behavior outside the boundary, since
HK;L(s) = 0.

On the other hand, if b¡∞, one has for s¿Ch,

HK;L(s) =


(∫ C−C z2K(z) dz)2

4
−
(
b
∫ C
−C z

2K(z) dz − ∫ C−C z2L(z) dz

2(b− 1)

)2

 : (7)

The latter means that the performance of the local linear semivariogram outside the boundary, in
comparison with that of the Nadaraya–Watson estimator, will be dependent on the sign of HK;L(s);
in particular, an improvement of 	̃h(s) is expected when (7) is negative.

Next, we will deal with the selection of the bandwidth parameter. We will restrict to the points
s outside the boundary; otherwise, the asymptotically optimal bandwidth parameter obtained would
be dependent on h itself.
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From Theorem 3.1 and condition (5), one has for s¿Ch,

MSE(	̃h(s)) =
1
4

(
	′′(s)

∫ C

−C
z2K(z) dz

)2
h4 +

f3(0; 0; 0)Bd(s; s)
4c(f1(0)Ad)2

(nh)−1

+ o((nh)−1 + h4):

Then, the bandwidth parameter that asymptotically minimizes MSE(	̃h(s)) is

hAMSE =

(
f3(0; 0; 0)Bd(s; s)

4c(f1(0)Ad	′′(s)
∫ C
−C z

2K(z) dz)2

)1=5

n−1=5: (8)

Remark 3.6. Relation (8) involves unknown characteristics of the random process, so that the band-
width parameter will be in practice dependent on data; see Remark 3.10.

As pointed out in Section 1, a semivariogram estimator must satisfy the conditionally negative
de8niteness property. For that reason, an adaptation of Shapiro and Botha’s method will be applied
next to 	̃h(s), with the aim of obtaining a valid semivariogram estimator.

Then, give constants tj (16 j6m1) as well as distances ri and weights wi (16 i6m2), for
some m1 and m2; the problem will be reduced to 8nd yj such that they minimize

m2∑
i=1

wi


	̃h(ri)− m1∑

j=1

(1− gd(ritj))yj




2

;

where

gd(s) =
(
2
s

)(d−2)=2

)
(
d
2

)
J(d−2)=2(s)

and J+ represents the Bessel function of the 8rst kind of order +.
Thus, the valid semivariogram estimator has the following explicit representation:

R	h(s) = x(s)B ˜̃	h; s¿ 0

where ˜̃	h = (	̃h(r1); : : : ; 	̃h(rm2))
T, B = (X TWX )−1X TW, W = diag(wi) and X is the m2 × m1 matrix

whose ith row is x(ri) = (1− gd(rit1); : : : ; 1− gd(ritm1)).
The following assumption will allow to state the rates of convergence of R	h(s):
(S11) |x(s)B̃	|, |x(s)B	̃′′| and ‖x(s)BC‖s are bounded sequences, for all s¿ 0, where

	̃ = (	(r1); : : : ; 	(rm2))
T, 	̃′′ = (	′′(r1); : : : ; 	′′(rm2))

T, CCT is the symmetric matrix of terms Bd(ri; rj),
as given in (A.3), and ‖ · ‖s is the supremum norm.

Theorem 3.7. Suppose that conditions (S1)–(S11) are satis;ed. Then, for s¿ 0:

E[R	h(s)] = 	(s) + O(h2); Var[R	h(s)] = O(�−d):

The proof of Theorem 3.7 is the same as that of Theorem 3.10 in Garc$%a-Soid$an et al. (2003).
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Remark 3.8. From Theorem 3.7, we may conclude that the bias and variance of R	h(s) have similar
orders as those of 	̃h(s), for all s¿ 0.

Remark 3.9. Several possibilities are suggested for the selection of weights. For instance, all weights
may equal 1 or each weight could be approximately proportional to the inverse of the variance of the
estimator, which would correspond to the ordinary or the weighted least-squares criteria, respectively.
Moreover, in Garc$%a-Soid$an et al. (2003), it is suggested to iterate the procedure of selection, by
updating the weights in each stage.

Remark 3.10. Let hAMSE be the bandwidth parameter obtained in (8). The latter relation is dependent
on unknown functions 	′′ as well as g, which must be estimated; however, estimation of g turns out
to be rather complicated, unless we proceed as if the random process were Gaussian, so that function
g is given by g(x1; x2; x3; x4)= 2(	(x1)+ 	(x2)− 	(x3)− 	(x4))2. In that case, we may consider either
a parametric model or a valid kernel semivariogram to construct the required estimators (plug-in
method).

Appendix A.

To derive the proof of Theorem 3.1, we will use the following lemma.

Lemma 3.11. Let {Xn} be a sequence of uniformly bounded random variables such that Xn =o(1)
a.s. Then, E[X r

n ] = o(1), for all r.

A.1. Proof of Theorem 3.1

Write si; j = ‖si − sj‖ and de8ne

a(s) =
∑
i; j; k;l

K
(
si; j − s
h

)
K
(
sk; l − s
h

)
(sk; l − s)(sk; l − si; j);

b(s) =
∑
i; j; k;l

K
(
si; j − s
h

)
K
(
sk; l − s
h

)
(sk; l − s)(sk; l − si; j)	(si; j);

c(s) =
∑

i1 ; j1 ; k1 ;l1 ; i2 ; j2 ; k2 ;l2

K
(
si1 ; j1 − s

h

)
K
(
si2 ; j2 − s

h

)
K
(
sk1 ;l1 − s

h

)
K
(
sk2 ;l2 − s

h

)

(sk1 ;l1 − s)(sk1 ;l1 − si1 ;j1)(sk2 ;l2 − s)(sk2 ;l2 − si2 ;j2)g(si1 ;i2 ; sj1 ;j2 ; si1 ;j2 ; sj1 ;i2):

According to condition (S8), we take si = �ui; then

E[	̃h(s)=U1; : : : ; Un]− 	(s) =
b(s)− a(s)	(s)

a(s)
;

Var[	̃h(s)=U1; : : : ; Un] =
c(s)

(2a(s))2
: (A.1)
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At the end of this section, we will check that the following order holds for s¿ 0:

a(s) = (f1(0))2s2(d−1)A2
d(c0;Kc2;K − c21;K)n

4�−2dh4 + o(n4�−2dh4) a:s: (A.2)

and, similarly, we might obtain that

b(s)− a(s)	(s) = 1
2(f1(0))2s2(d−1)A2

d(c
2
2;K − c1;Kc3;K)	′′(s)n4�−2dh6

+o(n4�−2dh6) a:s:;

c(s) = (f1(0))2f3(0; 0; 0)s4(d−1)Bd(s; s)A2
d(c0;Kc2;K − c21;K)

2n8�−5dh8

+ o(n8�−5dh8) a:s:;

where

Ad =
∫ .

0
· · ·
∫ .

0

∫ 2.

0
Jd(/1; : : : ; /d−1) d/1 : : : d/d−2 d/d−1; (A.3)

Bd(s; s′) =
∫ +∞

0

∫ .

0
· · ·
∫ .

0

∫ 2.

0

∫ .

0
· · ·
∫ .

0

∫ 2.

0

∫ .

0
· · ·
∫ .

0

∫ 2.

0
Jd(/1;1; : : : ; /d−1;1)

Jd(/1;2; : : : ; /d−1;2)Jd(/1;3; : : : ; /d−1;3)

g


t;
∥∥∥∥∥∥t cos /1;3 + s′ cos /1;2 − s cos /1;1; : : : ; t

d−1∏
j=0

sin /j;3

+s′
d−1∏
j=0

sin /j;2 − s
d−1∏
j=0

sin /j;1

∥∥∥∥∥∥ ;∥∥∥∥∥∥t cos /1;3 + s′ cos /1;2; : : : ; t
d−1∏
j=0

sin /j;3 + s′
d−1∏
j=0

sin /j;2

∥∥∥∥∥∥ ;∥∥∥∥∥∥t cos /1;3 − s cos /1;1; : : : ; t
d−1∏
j=0

sin /j;3 − s
d−1∏
j=0

sin /j;1

∥∥∥∥∥∥



dt d/1;1 : : : d/d−2;1 d/d−1;1 d/1;2 : : : d/d−2;2 d/d−1;2 d/1;3 : : : d/d−2;3 d/d−1;3

and Jd(/1; : : : ; /d−1) = (sin /1)d−2(sin /2)d−3 : : : sin /d−2.
Then, by considering the latter relations and applying Lemma 3.11 to (A.1), one has that

E[	̃h(s)]− 	(s) = E[E[	̃h(s)=U1; : : : ; Un]]− 	(s) =
c22;K − c1;Kc3;K

2(c0;Kc2;K − c21;K)
	′′(s) h2 + o(h2)
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together with

Var[	̃h(s)] =Var[E[	̃h(s)=U1; : : : ; Un]] + E[Var[	̃h(s)=U1; : : : ; Un]]

= o(h4) +
f3(0; 0; 0)Bd(s; s)

4(f1(0)Ad)2
�−d + o(�−d);

which would complete the proof of Theorem 3.1.
Finally, we will give an sketch of the proof of relation (A.2). To do the latter, de8ne

am(s) =
∑
i; j

K
(
si; j − s
h

)
(si; j − s)m =

∑
i �=j

K
(
si; j − s
h

)
(si; j − s)m (m= 0; 1; 2)

for all large n, since the kernel function K is compactly supported.
For each m, write

Wi;j = K
(
�‖Ui − Uj‖ − s

h

)
(�‖Ui − Uj‖ − s)m;

11(y) = E[Wi;j=Ui = y]; 12(y) = E[Wi;j=Uj = y]; 1= E[Wi;j];

Di; j =Wi;j − 11(Ui)− 12(Uj) + 1; Zj =
j−1∑
i=1

Di;j:

Observe that 1= f1(0)sd−1Adcm;K�−dhm+1 + o(�−dhm+1).
With this notation, am(s)− n(n− 1)1 represents an observed value of

∑
i �=j

(Wi;j − 1) =
n∑
j=2

Zj + (n− 1)
2∑

k=1

n∑
i=1

(1k(Ui)− 1):

Next, take into account that

E[Zj=U1; : : : ; Uj−1] = 0 (A.4)

and that the random variables Z2; : : : ; Zn may be considered as diKerences of the martingales S2; : : : ; Sn,
where

S2 = Z2; S3 = Z2 + Z3; : : : ; Sn = Z2 + · · ·+ Zn: (A.5)

The random variables U1 and U2 are continuous and bounded, with common density f0 satisfying
(S7) and (S9). In consequence, there exists a positive constant Cm, such that

sup
y
E[D2

i; j=Uj = y]6Cm�−dhm+1 max{1; s2(d−1)}: (A.6)
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Now, by using (A.4)–(A.6), we may proceed as in the proof of Theorem 3.1 of Hall et al. (1994)
to conclude that

(n2�−dhm+1)−1
∑
i �=j

(Wi;j − 1) → 0 a:s:

Hence

am(s) =
∑
i �=j

(Wi;j − 1) + n(n− 1)1

=f1(0)sd−1Adcm;Kn2�−dhm+1

+ o(n2�−dhm+1) a:s:

Since a(s) = a0(s) a2(s)− (a1(s))2, it follows relation (A.2).
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