pmvt {mvtnorm} | R Documentation |
Computes the the distribution function of the multivariate t distribution for arbitrary limits, degrees of freedom and correlation matrices based on algorithms by Genz and Bretz.
pmvt(lower=-Inf, upper=Inf, delta=rep(0, length(lower)), df=1, corr=NULL, sigma=NULL, algorithm = GenzBretz(), ...)
lower |
the vector of lower limits of length n. |
upper |
the vector of upper limits of length n. |
delta |
the vector of noncentrality parameters of length n. |
df |
degree of freedom as integer. |
corr |
the correlation matrix of dimension n. |
sigma |
the covariance matrix of dimension n. Either corr or
sigma can be specified. If sigma is given, the
problem is standardized. If neither corr nor
sigma is given, the identity matrix is used
for sigma . |
algorithm |
an object of class GenzBretz defining the
hyper parameters of this algorithm. |
... |
additional parameters (currently given to GenzBretz for
backward compatibility issues). |
This program involves the computation of central and noncentral multivariate t-probabilities with arbitrary correlation matrices. It involves both the computation of singular and nonsingular probabilities. The methodology is described in Genz and Bretz (1999, 2002).
For a given correlation matrix corr
, for short A, say,
(which has to be positive semi-definite) and
degrees of freedom nu the following
values are numerically evaluated
I = 2^{1-nu/2} / Γ(nu/2) int_0^infty s^{nu-1} exp(-s^2/2) Phi(s cdot lower/sqrt{nu} - delta, s cdot upper/sqrt{nu} - delta) , ds
where
Phi(a,b) = (det(A)(2π)^m)^{-1/2} int_a^b exp(-x^prime Ax/2) , dx
is the multivariate normal distribution and $m$ is the number of rows of A.
Note that both -Inf
and +Inf
may be specified in
the lower and upper integral limits in order to compute one-sided
probabilities. Randomized quasi-Monte Carlo methods are used for the
computations.
Univariate problems are passed to pt
.
If df = 0
, normal probabilities are returned.
The evaluated distribution function is returned with attributes
error |
estimated absolute error and |
msg |
status messages. |
http://www.sci.wsu.edu/math/faculty/genz/homepage
Genz, A. and Bretz, F. (1999), Numerical computation of multivariate t-probabilities with application to power calculation of multiple contrasts. Journal of Statistical Computation and Simulation, 63, 361–378.
Genz, A. and Bretz, F. (2002), Methods for the computation of multivariate t-probabilities. Journal of Computational and Graphical Statistics, 11, 950–971.
Genz, A. and Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.
Edwards D. and Berry, Jack J. (1987), The efficiency of simulation-based multiple comparisons. Biometrics, 43, 913–928.
n <- 5 lower <- -1 upper <- 3 df <- 4 corr <- diag(5) corr[lower.tri(corr)] <- 0.5 delta <- rep(0, 5) prob <- pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=corr) print(prob) pmvt(lower=-Inf, upper=3, df = 3, sigma = 1) == pt(3, 3) # Example from R News paper (original by Edwards and Berry, 1987) n <- c(26, 24, 20, 33, 32) V <- diag(1/n) df <- 130 C <- c(1,1,1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,0,-1,-1,0,0,-1,0,0) C <- matrix(C, ncol=5) ### covariance matrix cv <- C %*% V %*% t(C) ### correlation matrix dv <- t(1/sqrt(diag(cv))) cr <- cv * (t(dv) %*% dv) delta <- rep(0,5) myfct <- function(q, alpha) { lower <- rep(-q, ncol(cv)) upper <- rep(q, ncol(cv)) pmvt(lower=lower, upper=upper, delta=delta, df=df, corr=cr, abseps=0.0001) - alpha } round(uniroot(myfct, lower=1, upper=5, alpha=0.95)$root, 3) # compare pmvt and pmvnorm for large df: a <- pmvnorm(lower=-Inf, upper=1, mean=rep(0, 5), corr=diag(5)) b <- pmvt(lower=-Inf, upper=1, delta=rep(0, 5), df=rep(300,5), corr=diag(5)) a b stopifnot(round(a, 2) == round(b, 2)) # correlation and covariance matrix a <- pmvt(lower=-Inf, upper=2, delta=rep(0,5), df=3, sigma = diag(5)*2) b <- pmvt(lower=-Inf, upper=2/sqrt(2), delta=rep(0,5), df=3, corr=diag(5)) attributes(a) <- NULL attributes(b) <- NULL a b stopifnot(all.equal(round(a,3) , round(b, 3))) a <- pmvt(0, 1,df=10) attributes(a) <- NULL b <- pt(1, df=10) - pt(0, df=10) stopifnot(all.equal(round(a,10) , round(b, 10)))