krige.bayes {geoR} | R Documentation |
The function krige.bayes
performs Bayesian analysis of
geostatistical data allowing specifications of
different levels of uncertainty in the model parameters.
It returns results on the posterior distributions for the model
parameters and on the predictive distributions for prediction
locations (if provided).
krige.bayes(geodata, coords = geodata$coords, data = geodata$data, locations = "no", borders, model, prior, output) model.control(trend.d = "cte", trend.l = "cte", cov.model = "matern", kappa = 0.5, aniso.pars = NULL, lambda = 1) prior.control(beta.prior = c("flat", "normal", "fixed"), beta = NULL, beta.var.std = NULL, sigmasq.prior = c("reciprocal", "uniform", "sc.inv.chisq", "fixed"), sigmasq = NULL, df.sigmasq = NULL, phi.prior = c("uniform", "exponential","fixed", "squared.reciprocal", "reciprocal"), phi = NULL, phi.discrete = NULL, tausq.rel.prior = c("fixed", "uniform", "reciprocal"), tausq.rel, tausq.rel.discrete = NULL) post2prior(obj)
geodata |
a list containing elements coords and
data as described next. Typically an object of the class
"geodata" - a geoR data-set. If not provided the arguments
coords and data must be provided instead. |
coords |
an n x 2 matrix where each row has the 2-D
coordinates of the n data locations.
By default it takes the
component coords of the argument geodata , if provided.
|
data |
a vector with n data values. By default it takes the
component data of the argument geodata , if provided. |
locations |
an N x 2 matrix or data-frame with the 2-D
coordinates of the N prediction locations, or a list for which
the first two components are used. Input is internally checked by the
function check.locations .
Defaults to "no" in which case
the function returns only results on the posterior distributions of
the model parameters. |
borders |
optional. If missing,
by default reads the element borders
from the geodata object, if present.
Setting to NULL preents this behavior.
If a two column matrix defining a polygon is
provided the prediction is performed only at locations inside this polygon. |
model |
a list defining the fixed components of the model.
It can take an output to a call to model.control or
a list with elements as for the arguments in model.control .
Default values are assumed for arguments not provided.
See section DETAILS below. |
prior |
a list with the specification of priors for the model
parameters.
It can take an output to a call to prior.control or
a list with elements as for the arguments in prior.control .
Default values are assumed for arguments not provided.
See section DETAILS below. |
output |
a list specifying output options.
It can take an output to a call to output.control or
a list with elements as for the arguments in output.control .
Default values are assumed for arguments not provided.
See documentation for
output.control for further details. |
trend.d |
specifies the trend (covariates) values at the data
locations. See documentation
of trend.spatial for further details.
Defaults to "cte" . |
trend.l |
specifies the trend (covariates) at the prediction
locations. Must be of the same type as defined for trend.d .
Only used if prediction locations are provided in the argument
locations . |
cov.model |
string indicating the name of the model for the correlation function. Further details in the
documentation for cov.spatial . |
kappa |
additional smoothness parameter. Only used if the
correlation function is one of: "matern" ,
"powered.exponential" , "cauchy" or
"gneiting.matern" . In the current implementation this
parameter is always regarded as fixed during the Bayesian analysis. |
aniso.pars |
fixed parameters for geometric anisotropy
correction. If aniso.pars = FALSE no correction is made, otherwise
a two elements vector with values for the anisotropy parameters
must be provided. Anisotropy correction consists of a
transformation of the data and prediction coordinates performed
by the function coords.aniso . |
lambda |
numerical value of the Box-Cox transformation parameter. The value lambda = 1 corresponds to no transformation. The Box-Cox parameter lambda is always regarded as fixed and data transformation is performed before the analysis. Prediction results are back-transformed and returned is the same scale as for the original data. For lambda = 0 the log-transformation is performed. If lambda < 0 the mean predictor doesn't make sense (the resulting distribution has no expectation). |
beta.prior |
prior distribution for the mean (vector) parameter beta. The options are "flat" (default), "normal" or "fixed" (known mean). |
beta |
mean hyperparameter for the distribution of the mean (vector) parameter beta. Only used if beta.prior = "normal" or
beta.prior = "fixed" . For the later beta defines the value of
the known mean. |
beta.var.std |
standardised (co)variance hyperparameter(s)
for the prior for the mean
(vector) parameter beta.
The (co)variance matrix forbeta is given by the
multiplication of this matrix by sigma^2.
Only used if beta.prior = "normal" . |
sigmasq.prior |
specifies the prior for the parameter
sigma^2. If "reciprocal" (the default), the prior
1/sigma^2 is used. Otherwise the
parameter is regarded as fixed. |
sigmasq |
fixed value of the sill parameter
sigma^2. Only used if
sigmasq.prior = FALSE . |
df.sigmasq |
numerical. Number of degrees of freedom for the
prior for the parameter sigma^2. Only used if
sigmasq.prior = "sc.inv.chisq" . |
phi.prior |
prior distribution for the range parameter
phi.
Options are: "uniform" , "exponential" ,
"reciprocal" , "squared.reciprocal" and
"fixed" .
Alternativelly, a user defined discrete distribution can be
specified. In this case the argument takes a vector of numerical
values of probabilities with corresponding support points
provided in the argument phi.discrete . If "fixed" the argument phi
must be provided and is regarded as fixed when performing predictions.For the exponential prior the argument phi must provide
the value for of hyperparameter nu which corresponds to the
expected value for this distribution.
|
phi |
fixed value of the range parameter phi. Only needed if
phi.prior = "fixed" or if phi.prior = "exponential" . |
phi.discrete |
support points of the discrete prior for the range parameter phi. The default is a sequence of 51 values between 0 and 2 times the maximum distance between the data locations. |
tausq.rel.prior |
specifies a prior distribution for the
relative nugget parameter
tau^2/sigma^2.
If tausq.rel.prior = "fixed" the relative nugget is
considered known (fixed) with value given by the argument
tausq.rel .
If tausq.rel.prior = "uniform" a discrete uniform prior is used
with support points given by the argument
tausq.rel.discrete .
Alternativelly, a user defined discrete distribution can be
specified. In this case the argument takes the a vector of
probabilities of a discrete distribution and the support points
should be provided in the argument tausq.rel.discrete .
|
tausq.rel |
fixed value for the relative nugget parameter.
Only used if
tausq.rel.prior = "fixed" . |
tausq.rel.discrete |
support points of the discrete prior for the relative nugget parameter tau^2/sigma^2. |
obj |
an object of the class krige.bayes or
posterior.krige.bayes with the output of a call to
krige.bayes . The function post2prior takes the
posterior distribution computed by one call to krige.bayes
and prepares it to be used a a prior in a subsequent call. Notice
that in this case the function post2prior is used instead
of prior.control . |
krige.bayes
is a generic function for Bayesian geostatistical
analysis of (transformed) Gaussian where predictions take into account the parameter
uncertainty.
It can be set to run conventional kriging methods which
use known parameters or plug-in estimates. However, the
functions krige.conv
and ksline
are preferable for
prediction with fixed parameters.
PRIOR SPECIFICATION
The basis of the Bayesian algorithm is the discretisation of the prior
distribution for the parameters phi and tau_rel = tau/sigma.
The Tech. Report (see References
below)
provides details on the results used in the current implementation.
The expressions of the implemented priors for the parameter phi
are:
The expressions of the implemented priors for the parameter tausq.rel are:
Apart from those a user defined prior can be specifyed by
entering a vector of probabilities for a discrete distribution
with suport points given by the argument phi.discrete
and/or
tausq.rel.discrete
.
CONTROL FUNCTIONS
The function call includes auxiliary control functions which allows
the user to specify and/or change the specification of model
components
(using model.control
), prior
distributions (using prior.control
) and
output options (using output.control
).
Default options are available in most of the cases.
An object with class
"krige.bayes"
and
"kriging"
.
The attribute prediction.locations
containing the name of the
object with the coordinates of the prediction locations (argument
locations
) is assigned to the object.
Returns a list with the following components:
posterior |
results on on the posterior distribution of the
model parameters. A list with the following possible components: |
beta |
summary information on the posterior distribution of the mean parameter beta. |
sigmasq |
summary information on the posterior distribution of the variance parameter sigma^2 (partial sill). |
phi |
summary information on the posterior distribution of the correlation parameter phi (range parameter) . |
tausq.rel |
summary information on the posterior distribution of the relative nugget variance parameter tau^2_rel. |
joint.phi.tausq.rel |
information on discrete the joint distribution of these parameters. |
sample |
a data.frame with a sample from the posterior distribution. Each column corresponds to one of the basic model parameters. |
predictive |
results on the predictive distribution at the prediction locations, if provided. A list with the following possible components: |
mean |
expected values. |
variance |
expected variance. |
distribution |
type of posterior distribution. |
mean.simulations |
mean of the simulations at each locations. |
variance.simulations |
variance of the simulations at each locations. |
quantiles.simulations |
quantiles computed from the the simulations. |
probabilities.simulations |
probabilities computed from the simulations. |
simulations |
simulations from the predictive distribution. |
prior |
a list with information on the prior distribution and hyper-parameters of the model parameters (beta, sigma^2, phi, tau^2_rel). |
model |
model specification as defined by model.control . |
.Random.seed |
system random seed before running the function.
Allows reproduction of results. If
the .Random.seed is set to this value and the function is run
again, it will produce exactly the same results. |
max.dist |
maximum distance found between two data locations. |
call |
the function call. |
Paulo J. Ribeiro Jr. paulojus@leg.ufpr.br,
Peter J. Diggle p.diggle@lancaster.ac.uk.
Diggle, P.J. & Ribeiro Jr, P.J. (2002) Bayesian inference in Gaussian model-based geostatistics. Geographical and Environmental Modelling, Vol. 6, No. 2, 129-146.
The technical details about the implementation of krige.bayes
can be
found at:
Ribeiro, P.J. Jr. and Diggle, P.J. (1999) Bayesian inference in
Gaussian model-based geostatistics. Tech. Report ST-99-08, Dept
Maths and Stats, Lancaster University.
Available at:
http://www.leg.ufpr.br/geoR/geoRdoc/bayeskrige.pdf
Further information about geoR can be found at:
http://www.leg.ufpr.br/geoR.
For a extended list of examples of the usage see http://www.leg.ufpr.br/geoR/tutorials/examples.krige.bayes.R and/or the geoR tutorials page at http://www.leg.ufpr.br/geoR/tutorials.
lines.variomodel.krige.bayes
,
plot.krige.bayes
for outputs related to the
parameters in the model,
image.krige.bayes
and
persp.krige.bayes
for graphical output of
prediction results.
krige.conv
and
ksline
for conventional kriging methods.
## Not run: # generating a simulated data-set ex.data <- grf(50, cov.pars=c(10, .25)) # # defining the grid of prediction locations: ex.grid <- as.matrix(expand.grid(seq(0,1,l=21), seq(0,1,l=21))) # # computing posterior and predictive distributions # (warning: the next command can be time demanding) ex.bayes <- krige.bayes(ex.data, loc=ex.grid, prior = prior.control(phi.discrete=seq(0, 2, l=21))) # # Prior and posterior for the parameter phi plot(ex.bayes, type="h", tausq.rel = FALSE, col=c("red", "blue")) # # Plot histograms with samples from the posterior par(mfrow=c(3,1)) hist(ex.bayes) par(mfrow=c(1,1)) # Plotting empirical variograms and some Bayesian estimates: # Empirical variogram plot(variog(ex.data, max.dist = 1), ylim=c(0, 15)) # Since ex.data is a simulated data we can plot the line with the "true" model lines(ex.data) # adding lines with summaries of the posterior of the binned variogram lines(ex.bayes, summ = mean, lwd=1, lty=2) lines(ex.bayes, summ = median, lwd=2, lty=2) # adding line with summary of the posterior of the parameters lines(ex.bayes, summary = "mode", post = "parameters") # Plotting again the empirical variogram plot(variog(ex.data, max.dist=1), ylim=c(0, 15)) # and adding lines with median and quantiles estimates my.summary <- function(x){quantile(x, prob = c(0.05, 0.5, 0.95))} lines(ex.bayes, summ = my.summary, ty="l", lty=c(2,1,2), col=1) # Plotting some prediction results op <- par(no.readonly = TRUE) par(mfrow=c(2,2)) par(mar=c(3,3,1,1)) par(mgp = c(2,1,0)) image(ex.bayes, main="predicted values") image(ex.bayes, val="variance", main="prediction variance") image(ex.bayes, val= "simulation", number.col=1, main="a simulation from the \npredictive distribution") image(ex.bayes, val= "simulation", number.col=2, main="another simulation from \nthe predictive distribution") # par(op) ## End(Not run) ## ## For a extended list of exemples of the usage of krige.bayes() ## see http://www.leg.ufpr.br/geoR/tutorials/examples.krige.bayes.R ##