specificityClass.BigBang {galgo} | R Documentation |
Computes the specificity of class prediction.
## S3 method for class 'BigBang': specificityClass(o, cm, ...)
cm |
The confusion matrix or the class prediction matrix. If missing, confusionMatrix method is called using the object and ... as other arguments |
.. |
Further parameters when cm is missing. |
Specificity is the probability that a sample of class different to X
will NOT be predicted as class X
. High specificity avoids false positives.
Specificity = TN / (TN + FP)
TN - True Negatives: For class A, TN = Pbb + Pbc + Pbx + Pcb + Pcc + Pcx
FP - False Positives: For class A, FP = Pba + Pca
Confusion Matrix:
[ Predicted Class ]
ClassA ClassB ClassC "misclass"
ClassA Paa Pab Pac Pax
ClassB Pba Pbb Pbc Pbx
ClassC Pca Pcb Pcc Pcx
A vector with the specificity of prediction for every class.
Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf
Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co. ISBN: 0201157675
For more information see BigBang
.
*classPredictionMatrix()
,
*confusionMatrix()
.
#bb is a BigBang object cpm <- classPredictionMatrix(bb) cpm cm <- confusionMatrix(bb) cm #equivalent and quicker because classPredictionMatrix is provided cm <- confusionMatrix(bb, cpm) cm specificityClass(bb, cm) specificityClass(bb, cpm) specificityClass(bb) # all are equivalent sensitivityClass(bb, cpm) sensitivityClass(bb, cm) sensitivityClass(bb) # all are equivalent