sensitivityClass.BigBang {galgo} | R Documentation |
Computes the sensitivity of class prediction.
## S3 method for class 'BigBang': sensitivityClass(o, cm, ...)
cm |
The confusion matrix or the class prediction matrix. If missing, confusionMatrix method is called using the object and ... as other arguments |
.. |
Further parameters when cm is missing. |
Sensitivity is the probability that a sample of class X
will be predicted as the same class X
. High sensitivity detect true positives.
Sensitivity = TP / (TP + FN)
TP - True Positives: Example for class A, TP = Paa
FN - False Negatives: Example for class A, FN = Pab + Pac + Pax
Confusion Matrix:
[ Predicted Class ]
ClassA ClassB ClassC "misclass"
ClassA Paa Pab Pac Pax
ClassB Pba Pbb Pbc Pbx
ClassC Pca Pcb Pcc Pcx
A vector with the sensitivities of prediction for every class.
Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf
Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co. ISBN: 0201157675
For more information see BigBang
.
*classPredictionMatrix()
,
*confusionMatrix()
.
#bb is a BigBang object cpm <- classPredictionMatrix(bb) cpm cm <- confusionMatrix(bb) cm #equivalent and quicker because classPredictionMatrix is provided cm <- confusionMatrix(bb, cpm) cm specificityClass(bb, cm) specificityClass(bb, cpm) specificityClass(bb) # all are equivalent sensitivityClass(bb, cpm) sensitivityClass(bb, cm) sensitivityClass(bb) # all are equivalent