saveObject.BigBang {galgo} | R Documentation |
Saves the BigBang object into a file in a suitable format.
## S3 method for class 'BigBang': saveObject(.bbO, file=.bbO$saveFile, mode=.bbO$saveMode, ...)
file |
The file name where the data will be saved. The default is taking the $saveFile variable form the BigBang object. |
saveMode |
Character vector specifying the saving mode. The default is taking the $saveMode variable from the BigBang object. Any combinations of the two options compress and unObject . It can be character vector length 1 or larger. For example, saveMode=="compress+unObject" would call unObject and save the file using compress=TRUE . The vector c("object","compress") (or shorter c("compress") ) would save the BigBang object and compressed. It is not recommended to save the crude object because the functions varibles are stuck to environments and R will try to save those environments together, the result can be a waste of disk space and saving time. We strongly recommend saveMode="unObject+compress" . |
Returns nothing.
Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf
Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co. ISBN: 0201157675
For more information see BigBang
.
cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=1000),5)) ni <- Niche(chromosomes=newRandomCollection(cr, 10)) wo <- World(niches=newRandomCollection(ni,2)) ga <- Galgo(populations=newRandomCollection(wo,1), goalFitness = 0.75, callBackFunc=plot, fitnessFunc=function(chr, parent) 5/sd(as.numeric(chr))) #evolve(ga) ## not needed here bb <- BigBang(galgo=ga, maxSolutions=10, maxBigBangs=10) blast(bb) saveObject(bb, file="bb.Rdata", mode="unObject+compress")