blast.BigBang {galgo} | R Documentation |
The basic process is as follows.\n
\tab1. Clone Galgo
and generate random chromosomes\n
\tab2. Call evolve
method\n
\tab3. Save results in BigBang
object\n
\tab4. Verify stop rules\n
\tab5. Goto 1\n
## S3 method for class 'BigBang': blast(.bb, add=0, ...)
add |
Force to add a number to maxBigBangs and maxSolutions in order to search for more solutions. |
Returns nothing. The results are saved in the the BigBang
object.
Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf
Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co. ISBN: 0201157675
For more information see BigBang
.
evolve.Galgo
().
cr <- Chromosome(genes=newCollection(Gene(shape1=1, shape2=1000),5)) ni <- Niche(chromosomes=newRandomCollection(cr, 10)) wo <- World(niches=newRandomCollection(ni,2)) ga <- Galgo(populations=newRandomCollection(wo,1), goalFitness = 0.75, callBackFunc=plot, fitnessFunc=function(chr, parent) 5/sd(as.numeric(chr))) #evolve(ga) ## not needed here bb <- BigBang(galgo=ga, maxSolutions=10, maxBigBangs=10) blast(bb) plot(bb) blast(bb, 3) plot(bb)