| gh {fBasics} | R Documentation |
Density, distribution function, quantile function and random generation for the generalized hyperbolic distribution.
dgh(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1, log = FALSE) pgh(q, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1) qgh(p, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1) rgh(n, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = 1)
alpha, beta, delta, mu, lambda |
shape parameter alpha;
skewness parameter beta, abs(beta) is in the
range (0, alpha);
scale parameter delta, delta must be zero or
positive;
location parameter mu, by default 0;
and lambda parameter lambda, by default 1.
These is the meaning of the parameters in the first
parameterization pm=1 which is the default
parameterization selection.
In the second parameterization, pm=2 alpha
and beta take the meaning of the shape parameters
(usually named) zeta and rho.
In the third parameterization, pm=3 alpha
and beta take the meaning of the shape parameters
(usually named) xi and chi.
In the fourth parameterization, pm=4 alpha
and beta take the meaning of the shape parameters
(usually named) a.bar and b.bar.
|
log |
a logical flag by default FALSE.
Should labels and a main title drawn to the plot?
|
n |
number of observations. |
p |
a numeric vector of probabilities. |
x, q |
a numeric vector of quantiles. |
... |
arguments to be passed to the function integrate.
|
The generator rgh is based on the GH algorithm given
by Scott (2004).
All values for the *gh functions are numeric vectors:
d* returns the density,
p* returns the distribution function,
q* returns the quantile function, and
r* generates random deviates.
All values have attributes named "param" listing
the values of the distributional parameters.
David Scott for code implemented from R's
contributed package HyperbolicDist.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
## rgh -
set.seed(1953)
r = rgh(5000, alpha = 1, beta = 0.3, delta = 1)
plot(r, type = "l", col = "steelblue",
main = "gh: alpha=1 beta=0.3 delta=1")
## dgh -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dgh(x, alpha = 1, beta = 0.3, delta = 1))
## pgh -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, pgh(x, alpha = 1, beta = 0.3, delta = 1))
## qgh -
# Compute Quantiles:
qgh(pgh(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1),
alpha = 1, beta = 0.3, delta = 1)