parampositions {RandomFields} | R Documentation |
The function returns the internal positions of the model parameters
parampositions(model, param, print=TRUE)
model |
see CovarianceFct |
param |
see CovarianceFct |
print |
if FALSE only an invisible list is returned |
The model is printed and returned where the values of the parameters
are the positions in the internal representation.
An error appears if the model can be substantially simplified.
Martin Schlather, martin.schlather@math.uni-goettingen.de http://www.stochastik.math.uni-goettingen.de/institute
## compare the output of the following commands parampositions(model="exp", param=c(0,1,0,NA)) parampositions(model="exp", param=c(0,1,NA,NA)) parampositions(model="exp", param=c(0,0,1,NA)) ## that is, the nugget in the standard model is removed if naught! ## the values of the other parameters do not matter. (First value ## of the returned vector refers to the mean position.) parampositions(model="whi", param=cbind(c(1, 1, 1), c(2, 2, 2))) parampositions(model="whi", param=cbind(c(1, 1, 1), c(2, 0, 2))) ## second lines, second column defines a nugget effect since scale is 0! try(parampositions(model="whi", param=cbind(c(1, 1, 1), c(0, 0, 0)))) ## leads to an error try(parampositions(model="whi", param=cbind(c(1, 1, 1), c(2, 0, 0), c(1, 0, 0)))) ## leads to an error try(parampositions(model="whi", param=cbind(c(1, 1, 1), c(NA, 0, 0), c(1, 0, 0)))) ## leads to an error parampositions(model=list(list(model="exp", var=3, scale=6), "+", list(model="whittle", var=2, scale=7, kappa=NA))) ## again the values do not matter