readMat {R.matlab} | R Documentation |
Reads a MAT file structure from an input stream, either until End of File
is detected or until maxLength
bytes has been read.
Using maxLength
it is possible to read MAT file structure over
socket connections and other non-terminating input streams. In such cases
the maxLength
has to be communicated before sending the actual
MAT file structure.
Both the MAT version 4 and MAT version 5 file formats are supported. The implementation is based on [1].
From Matlab v7, compressed MAT version 5 files are used by
default [3], which can be read (not written) if the Rcompression
package is installed. See R.matlab
for more details on that
package.
If Rcompression is not available, use save -V6
in Matlab
to write a MAT file compatible with Matlab v6, that is, to write a
non-compressed MAT version 5 file.
Note: Do not mix up version numbers for the Matlab software and the Matlab file formats.
Recent versions of Matlab store some strings using Unicode
encodings. If the R installation supports iconv
,
these strings will be read correctly. Otherwise non-ASCII codes
are converted to NA. Saving to an earlier file format version
may avoid this problem as well.
## Default S3 method: readMat(con, maxLength=NULL, fixNames=TRUE, verbose=FALSE, sparseMatrixClass=c("Matrix", "SparseM", "matrix"), ...)
con |
Binary connection to which the MAT file structure should be
written to. A string is interpreted as filename, which then will be
opened (and closed afterwards). |
maxLength |
The maximum number of bytes to be read from the input
stream, which should be equal to the length of the MAT file structure.
If NULL , data will be read until End Of File has been reached. |
fixNames |
If TRUE , names of Matlab variables and fields are
renamed such that they are valid variables names in R. |
verbose |
Either a logical , a numeric , or a Verbose
object specifying how much verbose/debug information is written to
standard output. If a Verbose object, how detailed the information is
is specified by the threshold level of the object. If a numeric, the
value is used to set the threshold of a new Verbose object. If TRUE ,
the threshold is set to -1 (minimal). If FALSE , no output is written
(and neither is the R.utils package required).
|
sparseMatrixClass |
If "matrix" , a sparse matrix is expanded to
a regular matrix . If either "Matrix" (default) or "SparseM" ,
the sparse matrix representation by the package of the same name will be used.
These packages are only loaded if the a sparse matrix is read. |
... |
Not used. |
For the MAT v5 format, cell structures are read into
R as a list
structure.
Returns a named list
structure containing all variables in the
MAT file structure.
Henrik Bengtsson, Mathematical Statistics, Lund University. The internal MAT v4 reader was written by Andy Jacobson at Program in Atmospheric and Oceanic Sciences, Princeton University. Support for read compressed files, sparse matrices and UTF-encoded strings was added by Jason Riedy, UC Berkeley.
[1] The MathWorks Inc., Matlab - MAT-File Format, version 5, June 1999.
[2] The MathWorks Inc., Matlab - Application Program Interface Guide, version 5, 1998.
[3] The MathWorks Inc., Matlab - MAT-File Format, version 7, October 2004, http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf
writeMat
().
path <- system.file("mat-files", package="R.matlab") # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Reading all example files # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for (version in 4:5) { cat("Loading all MAT v", version, " example files in ", path, "...\n", sep="") pattern <- sprintf("-v%d[.]mat$", version) filenames <- list.files(pattern=pattern, path=path, full.names=TRUE) for (filename in filenames) { cat("Reading MAT file: ", basename(filename), "\n", sep="") mat <- readMat(filename) if (interactive()) { cat("Press ENTER to view data:") readline() } print(mat) } } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Assert that signed and unsigned integers are read correctly # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bs <- readMat(file.path(path, "unsignedByte.mat")) if (!identical(as.vector(bs$A), as.double(126:255))) stop("Error reading unsigned bytes saved by Matlab.") is <- readMat(file.path(path, "unsignedInt.mat")) if (!identical(as.vector(is$B), as.double(127:256))) stop("Error reading unsigned ints saved by Matlab.") # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Assert that sparse matrices are read identically in MAT v4 and v5 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - mat4 <- readMat(file.path(path, "SparseMatrix3-v4.mat")) mat5 <- readMat(file.path(path, "SparseMatrix3-v5.mat")) diff <- sum(abs(mat4$sparseM - mat5$sparseM)) if (diff > .Machine$double.eps) stop("Failed to read identical MAT v4 and MAT v5 sparse matrices.") # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Assert that sparse matrices can be read as 'Matrix' and 'SparseM' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - pathname <- file.path(path, "SparseMatrix3-v4.mat") mat4a <- readMat(pathname, sparseMatrixClass="matrix") if (require("Matrix")) { mat4b <- readMat(pathname, sparseMatrixClass="Matrix") diff <- sum(abs(as.matrix(mat4b$sparseM) - mat4a$sparseM)) if (diff > .Machine$double.eps) stop("Failed to read MAT v4 sparse matrix by class 'Matrix'.") } if (require("SparseM")) { mat4c <- readMat(pathname, sparseMatrixClass="SparseM"); diff <- sum(abs(as.matrix(mat4c$sparseM) - mat4a$sparseM)) if (diff > .Machine$double.eps) stop("Failed to read MAT v4 sparse matrix by class 'SparseM'.") } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Assert that compressed files can be read # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if (require("Rcompression")) { pathname <- file.path(path, "StructWithSparseMatrix-v4,compressed.mat") mat4 <- readMat(pathname, sparseMatrixClass="matrix") } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example of a Matlab struct # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # File was created by # s = struct('type',{'big','little'}, 'color','red', 'x',{3,4}) # 1x2 struct array with fields: # type # color # x # save structLooped.mat s -v6 mat <- readMat(file.path(path, "structLooped.mat")) # Extract the structure s <- mat$s # Field names are always in the first dimension fields <- dimnames(s)[[1]] cat("Field names: ", paste(fields, collapse=", "), "\n", sep=""); print(s) # Get field 'type' print(s["type",,]) # Get substructure s(:,2) print(s[,,2])