N2G.Spatial.Mixture {AnalyzeFMRI}R Documentation

fMRI Spatial Mixture Modelling

Description

Fits the spatial mixture model of Hartvig and Jensen (2000)

Usage

N2G.Spatial.Mixture(data, par.start = c(4, 2, 4, 2, 0.9, 0.05), ksize, ktype = c("2D", "3D"), mask = NULL)

Arguments

data The dataset (usually a vector)
par.start Starting values for N2G model
ksize Kernel size (see paper)
ktype Format of kernel "2D" or "3D"
mask Mask for dataset.

Value

p.map = a1, par = fit$par, lims = fit$lims Returns a list with following components

p.map Posterior Probability Map of activation
par Fitted parameters of the underlying N2G model
lims Normal component interval for fitted model

Author(s)

J. L. Marchini

References

Hartvig and Jensen (2000) Spatial Mixture Modelling of fMRI Data

See Also

N2G.Class.Probability, N2G.Likelihood.Ratio, N2G.Density , N2G.Likelihood , N2G.Transform, N2G.Fit , N2G , N2G.Inverse , N2G.Region

Examples


## simulate image
d <- c(100, 100, 1)
y <- array(0, dim = d)
m <- y
m[, , ] <- 1

z.init <- 2 * m
z.init[20:40, 20:40, 1] <- 1
z.init[50:70, 50:70, 1] <- 3

y[z.init == 1] <- -rgamma(sum(z.init == 1), 4, 1)
y[z.init == 2] <- rnorm(sum(z.init == 2))
y[z.init == 3] <- rgamma(sum(z.init == 3), 4, 1)

mask <- 1 * (y < 1000)

## fit spatial mixture model
ans <- N2G.Spatial.Mixture(y, par.start = c(4, 2, 4, 2, 0.9, 0.05), ksize = 3, ktype = "2D", mask = m) 

## plot original image, standard mixture model estimate and spatial mixture
## model estimate

par(mfrow = c(1, 3))
image(y[, , 1])
image(y[, , 1] > ans$lims[1]) ## this line plots the results of a Non-Spatial Mixture Model
image(ans$p.map[, , 1] > 0.5) ## this line plots the results of the Spatial Mixture Model


[Package AnalyzeFMRI version 1.1-11 Index]