N2G.Spatial.Mixture {AnalyzeFMRI} | R Documentation |
Fits the spatial mixture model of Hartvig and Jensen (2000)
N2G.Spatial.Mixture(data, par.start = c(4, 2, 4, 2, 0.9, 0.05), ksize, ktype = c("2D", "3D"), mask = NULL)
data |
The dataset (usually a vector) |
par.start |
Starting values for N2G model |
ksize |
Kernel size (see paper) |
ktype |
Format of kernel "2D" or "3D" |
mask |
Mask for dataset. |
p.map = a1, par = fit$par, lims = fit$lims Returns a list with following components
p.map |
Posterior Probability Map of activation |
par |
Fitted parameters of the underlying N2G model |
lims |
Normal component interval for fitted model |
J. L. Marchini
Hartvig and Jensen (2000) Spatial Mixture Modelling of fMRI Data
N2G.Class.Probability
, N2G.Likelihood.Ratio
,
N2G.Density
, N2G.Likelihood
, N2G.Transform
,
N2G.Fit
, N2G
,
N2G.Inverse
, N2G.Region
## simulate image d <- c(100, 100, 1) y <- array(0, dim = d) m <- y m[, , ] <- 1 z.init <- 2 * m z.init[20:40, 20:40, 1] <- 1 z.init[50:70, 50:70, 1] <- 3 y[z.init == 1] <- -rgamma(sum(z.init == 1), 4, 1) y[z.init == 2] <- rnorm(sum(z.init == 2)) y[z.init == 3] <- rgamma(sum(z.init == 3), 4, 1) mask <- 1 * (y < 1000) ## fit spatial mixture model ans <- N2G.Spatial.Mixture(y, par.start = c(4, 2, 4, 2, 0.9, 0.05), ksize = 3, ktype = "2D", mask = m) ## plot original image, standard mixture model estimate and spatial mixture ## model estimate par(mfrow = c(1, 3)) image(y[, , 1]) image(y[, , 1] > ans$lims[1]) ## this line plots the results of a Non-Spatial Mixture Model image(ans$p.map[, , 1] > 0.5) ## this line plots the results of the Spatial Mixture Model