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Summary of thesis

This thesis is an account of some aspects of time series analysis for directional

data (or, more strictly, circular data), which is an almost totally unexplored area of

statistics. The thesis is in four chapters.

The first concerns a family of models for directional time series which is naturally

derived from the ARMA family of time series models. The identification problem for

the family is discussed and an analogue of the auto-correlation function is defined. The

remainder of the chapter is devoted to estimation of that analogue with major attention

being given to showing that the estimators used are both consistent and asymptotically

normal.

The second chapter examines the estimation problem in detail for the simplest

model from the family introduced in the first chapter. A form of moment estimation is

described and its asymptotic properties derived. The majority of the chapter is devoted

to maximum likelihood estimation. Maximum likelihood estimation is shown to to be

consistent and asymptotically normal. The asymptotic properties are quantified and

shown to be superior to those for moment estimation, and the chapter closes with a

discussion of the computational problems involved in performing maximum likelihood

estimation for the model.

The third chapter deals with a number of aspects of Markov models for directional

time series. Most of the chapter is given to a discussion of the various bivariate circular

distributions to be found in the literature, while stationarity, higher order models, and

estimation properties are also considered.

The final chapter is a trial data analysis for a sequence of wind directions. Two

useful diagnostic techniques are introduced. The analysis proceeds from the models of

the first chapter to the Markov models of the third chapter and the chapter conclude

with an attempt to model some of the seasonal behaviour apparent in the data.
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Chapter 0

Introduction

The title of this thesis is “Time Series Analysis for Angular Data”. It might more ac-

curately be described as an initial investigation of this area. While time series analysis

has become part of mainstream statistics, relatively little work has been done on non-

linear models or models for unusual kinds of data. This parallels the development of

non-dependent statistics where only relatively recently has attention turned to statis-

tics for directional or other unusual data. However, directional statistics has been the

focus of considerable attention in the last decade, and it seems likely that this is only

the beginning in terms of the exploration of new areas of statistical modelling.

Background

The origins of this interest in directional statistics lie in the rich diversity of situations in

the physical, biological and earth sciences where such data arise naturally — magnetism

in physics, molecular orientation and growth in chemistry, the directions of rock fracture

and hence of veins of mineralisation in geology, migrational and homing behaviour of

animals in biology (see [1] for many biological examples). Other areas also give rise

less frequently to directional phenomena; the time of day at which something occurs

may be thought of as a circular variable. It has also been suggested to me that the

error involved in truncating a number to a computer representation might usefully be

considered to be a circular variable.

Many situations where directions arise naturally do not require the application of

special directional statistical methods. For example the direction of magnetic North at

a point on the earth’s surface is constrained to lie within a few degrees of true North

as defined by the Pole star. In this case there is no reason why the small part of the
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circle which contains observations should not be identified with part of the real line and

conventional statistical tools applied. On the other hand, if the whole circle is rich with

data then this identification would not be reasonable. To perform the identification it

would be necessary to cut the circle at some point in order to lay it flat on the line.

The problem is then that points which are close to each other on different sides of the

cut would be identified with points a long way apart on the real line. My reason for

discussing these two cases is that the work which has been done for directional data

can be divided into two categories, depending on which case it deals with. From the

point of view of new techniques interesting problems are those where the data to be

modelled is truly circular, in the sense that it fills the whole circle, as there is no real

need for time series models for circular data which is localised on the circle since the

data can be transformed to the real line and normal techniques applied.

Examples of time series of this kind are far less obvious than examples of general

directional data. However, this must to some extent be due to the lack of techniques

for their analysis, leading researchers to transform data into some other space prior to

analysis. For example, most people are sufficiently familiar with the sine and cosine

functions that they can transform their data to the real line before attempting analysis.

The flaw with that approach is the consequent loss of information. In fact when dealing

with time series that approach may fail simply because of the paucity of time series

models for data confined to a finite interval. There are some fairly obvious examples

where time series of angles arise — the variation of the earth’s magnetic field at a

fixed location on its surface and the time of day at which peak traffic congestion occurs

in a city. The example with which I have chosen to work is the variation of wind

direction. This has certain advantages, over other possibilities, in that there is a large

quantity of such data readily available and that the data are of high quality, not being

flawed by requiring subjective interpretation in the process of measurement. It can be

argued that wind directions are a somewhat artificial example, since the wind speed is

usually observed together with the direction, thus making possible the construction of

velocity vectors which could be analysed as a two-dimensional time series. The latter

approach has severe problems of its own. Firstly analysis of multivariate time series
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is by no means easy, requiring techniques which are more difficult to use than those

for univariate time series analysis — the cross spectrum, for example, is much more

difficult to interpret than the ordinary spectrum. Secondly, it has been the experience

of others that this velocity data does not fit very well with the assumptions of the

available two-dimensional linear models.

Time series analysis for directional is an almost totally unexplored area. A certain

amount of work has been done in the area of stochastic processes of this type (see

[22, 31, 33]). The most notable result is the fact that any random walk on the circle has

the uniform distribution as its marginal distribution. This has important implications

for time series analysis, rendering the simplest family of models useful only in very

limited circumstances.

Dependence measures

Having established the background and need for circular time series analysis, I shall

turn to the difficulties involved. The essence of modelling time series is to establish the

nature of the dependence between observations at different times. For non-directional

data the most commonly used measure of dependence is correlation which measures the

degree of linear dependence between variables. In the late 1970’s and early 1980’s there

was a brief flurry of papers ([10, 17, 18, 23, 28, 29]) proposing “correlation” measures

for circular data. Most of these were based on the idea of developing circular analogues

of the ordinary correlation. It would be unfair to dismiss these proposals, but it is well

to point out that there are a number of flaws in the general approach adopted.

All of these authors approach the problem as being one of finding an all-purpose

“correlation” measure. No doubt this is due to the almost exclusive use of correlation

for measuring dependence between real variables. Strictly speaking, correlation is only

a good measure when the nature of the dependence is linear and the random behaviour

is Gaussian, i.e. the variables have a bivariate normal distribution. Fortunately, many

phenomena fall broadly into that category of dependence. The classical reason given

for this is that most phenomena are the result of multiple influences and the central

limit theorem indicates that this gives rise to Gaussian behaviour. Where two vari-

ables do not have a bivariate normal distribution, other measures of dependence are
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appropriate. In fact the measure of dependence should be derived for the family of

joint distributions under consideration. The latter problem has been discussed in [19].

Where does this leave those who would advocate a standard measure of dependence

for circular random variables ? Only a few families of bivariate circular distributions

have been proposed. There has not yet been sufficient shared experience to suggest

which, if any, of the families might be a standard. The circle does not have a central

limit theorem so there is no help available from that quarter. One possible argument is

that most directional phenomena arise as projections onto the circle of two-dimensional

variables. If those variables are themselves subject to multiple influences, they might

have bivariate normal distributions, and this would give rise to a generalisation of the

offset normal distribution as a plausible standard family of bivariate circular distribu-

tions. The essential point is, however, that there is not yet sufficient evidence to allow

a decision in favour of any one family of distributions.

The more specific criticisms which I would make of the proposed “correlation”

measures lie in two areas. Firstly they are mostly based on the concept of linearity.

Linearity is a very restrictive relationship between circular variables. It is only possible

to take linear combinations of circular variables if the coefficients are integers. Secondly,

nearly all involve the use of trigonometric functions. As noted earlier, the sine or cosine

of an angle contains considerably less information than the angle itself. The conclusion

I draw from these facts and the preceding paragraph is that it is more important to

start with models from which can be derived the required measures of dependence for

identification and other purposes. I have, in fact made extensive use of the measure

proposed in [29] as an identification tool for the models discussed in chapter 1. I make

no claim that it is any way optimal, but it has the virtue of being mathematically

tractable for that family of models.

Outline of thesis

The material discussed divides naturally into two sections each of which subdivides

naturally into two chapters. The first two chapters are a discussion of a family of

models derived from the ARMA models for conventional time series. The first chapter

is a general examination of the family with particular emphasis on the problem of
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identification within the family. The second chapter is a detailed examination of the

estimation problem for the simplest model from the family. The last two chapters

deal with Markov models for circular time series. The third chapter contains a general

analysis of stationarity, the available families of bivariate distributions, a method for

developing higher order Markov models and the asymptotic behaviour of maximum

likelihood estimation for Markov models. The final chapter is a description of a trial

analysis of a sequence of wind directions. It also contains a description of a general

technique for diagnostic analysis of fitted models. Finally there is a short appendix of

referenced material drawn from various areas of probability theory.

Chapter 1 exploits the idea of wrapping (well known in circular statistics) to intro-

duce a family of models derived from the ARMA family. The measure of dependence

proposed in [29] is used to define a circular version of the auto-correlation function.

The asymptotic behaviour of this function is derived in detail, and it is shown that it

can be used to identify wrapped moving-average models. The possibility of defining

an analogue to the partial auto-correlation function is discussed briefly, but it is clear

that a different kind of approach will be required for that problem.

Chapter 2 is a detailed analysis of the simplest model from the family introduced

in chapter 1 — the wrapped first order auto-regressive model. Moment estimation

is discussed briefly, mainly for the purpose of comparison with maximum likelihood

estimation. A detailed understanding of the behaviour of the non-wrapped process

conditional upon the wrapped process is developed as a basis for the proofs of strong

convergence and asymptotic normality which follow for the maximum likelihood es-

timates. Numerical values for the covariance structure of the maximum likelihood

estimates are computed and compare favourably with those obtained for moment es-

timation. Finally there is a short account of the computational problems actually

encountered when computing and maximising the likelihood.

Chapter 3 is a discussion of Markov models. I commence by considering the exis-

tence problem for stationary processes having a given transition probability function

and show that under certain mild conditions there is a unique stationary process. I

then consider the suitability, for use in Markov models, of a number of families of

5



bivariate distributions which have been proposed in the literature. In many contexts

data exhibits more than first order dependence and I discuss some properties of a fam-

ily of higher order Markov models called linear conditional probability models. These

models have the attractive feature that they can be defined in terms of first order

models. Finally I show that under certain useful conditions on the transition function

maximum likelihood estimation for Markov models is consistent and asymptotically

normal.

Chapter 4 is a discussion of a trial analysis of a sequence of wind directions. Two

useful methods for diagnostic analysis of models are also introduced. Daily periodic

behaviour is observed in the sequence and related to physical processes. For the re-

mainder of the analysis, I work with daily averages. A sequence of Markov models

is fitted, followed by a sequence of higher order Markov models using the technique

described in chapter 3. There is clear seasonal variation in the sequence and a seasonal

model is fitted with limited success in accounting for the seasonality.

Conclusions

Clearly the subject of time series analysis for directional data is only at a beginning.

I have only considered the simplest case of circular data which is, in certain ways,

a special case. There are new problems of several kinds for the general case. Most

importantly, the technique of wrapping is only available for circular data. This means

that there is no easy way to generate non-Markovian models for spherical time-series.

In fact even Markov models are difficult. The loss of wrapping robs us of large families

of bivariate distributions which are available for the circle. Even more fundamental

difficulties exist than the lack of models. The problem of how best to display a spherical

time series is not an easy one. Totally new techniques will be needed for general

directional data.

There is no evidence yet indicating that the wrapped models of chapters 1 and 2

will be of any practical use. It does certainly seem reasonable that some natural

circular phenomena might arise via “wrapping”. Chapter 1 indicates that, if such

phenomena exists, the theory of some aspects of the appropriate wrapped model is

not excessively difficult. Chapter 2 is in many ways more interesting, despite the fact
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that at first it would appear to be much more limited. I believe it to be reasonably

obvious that the estimation properties proved in chapter 2 for the wrapped AR(1)

could easily be extended to the wrapped AR(n). However, this is not the real interest.

The theory developed for the conditional behaviour of the unwrapped process given

the wrapped process has potentially wide-ranging implications. It seems likely that it

could be extended to apply to a large class of processes which are functions of Markov

processes. Obviously not all functions are appropriate, but it should be a large class

of functions. Equally, not all Markov processes would be appropriate. A minimum

requirement would be stationarity. Almost certainly any Markov process having a

strong contractive property like that of the AR(1) could replace it as the process being

wrapped. It seems likely also that regularity conditions could be established so as

to extend the asymptotic normality proof to a large class of these general “wrapped”

processes. The form of the derivatives of the log-likelihood function would retain many

of the features of those for the AR(1), in particular the fact that they involve conditional

moments of stationary sums of functions.

Some parts of chapter 3 extend naturally to a large group of spaces in which time

series might take values. The stationarity properties of Markov processes depend only

on the fact that the circle is compact. The proof of consistency and asymptotic normal-

ity for maximum likelihood estimation is also based largely on the fact that the circle

is compact. The definition of linear conditional probability models is totally general.

Chapter 4 raises far more problems than it solves. Seasonality is very difficult to

deal with satisfactorily. Linear conditional probability models almost certainly do not

have a sufficiently wide range to cope with the forms of dependence are be observed.

However, the real failure of the analysis is probably that it does not model the first order

dependence adequately. There is a real need for new families of bivariate distributions.

There are some encouraging aspects to the chapter. Spectral analysis is available

as a tool for circular time series, as it is for the ordinary case. This enables the

detection of periodic effects as was found to be the case for the wind data. The

diagnostic approach of the conditional cumulative distribution sequence is available

for time series analysis in any space. Admittedly its distributional properties are not
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known and appear intractable, but it can still be used as a qualitative tool. Further

its properties for any given model can be obtained by simulation as was done for the

final model fitted in chapter 4.

The real key to time series analysis for circular data must be to find physical

processes which generate natural families of models for time-series. If this can be done

there will surely be close similarities between the circular and more general situations.

Difficult problems are seasonality and long-term variation. These are difficult in all

areas of time series analysis, but especially for directional data where the concept of

linearity is extremely limited. Solutions to these which are found in other contexts

will, however, help to indicate solutions for the directional case. Ultimately, all comes

down to the need for more data analysis in order to develop the insight required to

make progress.
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Notation

P [A] denotes the probability of the event A

E[X] denotes the expectation of the random variable X

D[X] denotes the variance of the random variable X

C[X, Y ] denotes the covariance of the random variables X and Y

ρ[X, Y ] denotes the correlation between the random variables X and Y

III[X, Y ] denotes E
[
(X − E[X])(Y − E[Y ])(Z − E[Z])

]
f with a subscript denotes the (possibly joint) probability density

function of the random variables in the subscript.

F with a subscript denotes the (possibly joint) cumulative distri-
bution function of the random variables in the subscript.

Fnm(X) where X is a stochastic process denotes the sigma-algebra gen-
erated by the random variables Xm, Xm+1, . . . , Xn

x a bold-face letter denotes a vector (possibly infinite dimensional)

xnm a bold-face letter with subscript and superscript generally de-
notes the vector of values xm, xm+1, . . . , xn

R denotes the space of real numbers (with an integer superscript
denotes the product space of that many copies of the real line)

Z denotes the space of integers

N denotes the space of positive integers

O(x) as x→ a denotes any quantity g(x) for which there exists C such that
limx→a g(x)/x ≤ C

∂x denotes the partial (or absolute) derivative with respect to x
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Chapter 1

Wrapped Linear Processes

In this chapter I introduce a family of models for circle-valued time-series, derived from

the familiar ARMA models for real valued time-series. The problem of identification for

these models is considered using an approach similar to the use of the auto-correlation

function for ARMA models, and statistics are defined for performing the identification.

Formulae are derived for the asymptotic distribution of these statistics and its implica-

tions are illustrated for models derived from white noise and moving average models.

Finally consideration is given to the problems of finding an analogue for the partial

auto-correlation function.

1.1 Wrapped Models

One of the earliest methods used to obtain distributions for circle-valued random vari-

ables was by “wrapping” a real-valued random variable. The name originates in the

idea of wrapping the real line around the circle (anti-clockwise) — like thread on a

spool. Thus a given value of the circle-valued random variable arises from an infi-

nite number of values of the real-valued random variable. Let us assume throughout

what follows that the circle is chosen to have unit circumference and that values of

a circle-valued variable are given as distances along the circumference anti-clockwise

from some origin 0. Then, if X is the circle-valued random variable and Y is the

real-valued random variable,

fX(x) =
∑
j∈Z

fY (x+ j)

if the wrapping is done so that 0 on the circle coincides with 0 in R. An alternative

way of understanding this is that X is a partial observation of Y where we see only

10



the fractional part of Y and lose the integer part. i.e.

X = Y − [Y ]

This suggests an obvious way to obtain time series models for the circle. If Yt is

a real-valued stochastic process, we can obtain a circle-valued stochastic process by

wrapping each co-ordinate so that

Xt = Yt − [Yt]

and hence

f(Xt1 ,...,Xtn )(xt1 , . . . , xtn) =
∑

jn1∈Zn
f(Yt1 ,...,Ytn )(xt1 + j1, . . . , xtn + jn)

thus defining a model for a circular-valued time series.

1.2 Wrapped Gaussian Linear Models

In this section we will consider the sub-class of wrapped models obtained from Gaussian

linear models. Denote by Yt a zero mean Gaussian linear process. i.e.

Yt =
∞∑
j=0

αjεt−j where αj ∈ R, and the αj are summable

and the εt form a sequence of independent Gaussian random variables with mean 0 and

variance σ2. Further, suppose that Yt is a stationary sequence, i.e.

∑
j

|αj|2 <∞

and that Yt is invertible, in other words we can write

εt =
∞∑
j=0

βjXt−j

for some real summable sequence βj. Now let Xt be the corresponding “wrapped”

process, i.e.

Xt = Yt − [Yt]

One of the problems that occurs with ARMA models is to identify which model

from the family is appropriate. The usual tools are the auto-correlation function and

the partial auto-correlation function.

11



1.2.1 Circular auto-correlation function

In the attempt to find a circular analogue of the auto-correlation function we encounter

the problem of defining correlation between circle-valued random variables. While

many alternatives have been proposed, as discussed in the introduction, no concensus

has yet emerged as to which, if any, is the best. For the purposes of this section I have

chosen the one which has the simplest form and which, more importantly, is easy to

calculate for wrapped linear models. This is the measure proposed in [29] and is given

by

ρ̃(X1, X2) =
E[sin 2π(X1 − µ̃(X1)) sin 2π(X2 − µ̃(X2))]{

E[sin2 2π(X1 − µ̃(X1))]E[sin2 2π(X2 − µ̃(X2))]
} 1

2

(1.1)

where µ̃(X) is the circular mean given by µ̃(X) = the direction of E[e2πiX ]. When X1

and X2 have zero circular mean this becomes

ρ̃(X1, X2) = ρ(sin 2πX1, sin 2πX2)

This suggests the definition of the circular covariance of zero-mean circle-valued random

variables by

C̃[X1, X2] = E[sin(2πX1) sin(2πX2)]

The question is now whether the measure in (1.1) provides a useful means for iden-

tification of zero-mean wrapped ARMA processes. Define the circular auto-correlation

function ρC,j by

ρC,j = ρ̃(Xt, Xt−j) =
γC,j
γC,0

where γ̃j is the circular auto-covariance function given by

γC,j = C̃[Xt, Xt−j] = E[sin(2πXt) sin(2πXt−j)]

= E
[
sin(2πYt) sin(2πYt−j)

]
(1.2)

= −1
4
E
[
(e2πiYt − e−2πiYt)(e2πiYt−j − e−2πiYt−j)

]
But since the εt are i.i.d. N(0, 1)

E
[
e2πiYte2πiYt−j

]
= E

[
e2πi(Yt+Yt−j)

]
= E

[
exp

(
2πi[

∑∞
k=0 αkεt−k +

∑∞
k=0(αk + αk+j)εt−j−k]

)]
12



=
j−1∏
k=0

E[e2πiαkεt−k ]
∞∏
k=0

E[e2πi(αk+αk+j)εt−j−k ]

=
j−1∏
k=0

e−
1
2
σ2α2

k(2π)2
∞∏
k=0

e−
1
2
σ2(αk+αj+k)2(2π)2

= exp
(
−2π2σ2{2∑∞k=0 α

2
k + 2

∑∞
k=0 αkαj+k}

)
Similarly

E
[
e2πiYte−2πiYt−j

]
= exp

(
−2π2σ2{2∑∞k=0 α

2
k − 2

∑∞
k=0 αkαk+j}

)
Thus

γC,j = −1
2

exp (−4π2σ2∑∞
k=0 α

2
k)

×{exp (−4π2σ2∑∞
k=0 αkαk+j)− exp (4π2σ2∑∞

k=0 αkαk+j)}

But

γj = E[YtYt−j] = E
[ ∞∑
k=0

αkεt−k
∞∑
l=0

αlεt−j−l
]

=
∞∑
k=0

∞∑
l=0

αkαlE[εt−kεt−j−l] =
∞∑
k=0

∞∑
l=0

αkαlσ
2δt−k,t−j−l

=
∞∑
l=0

αlαj+lσ
2

Therefore

γC,j = e−4π2γ0 sinh 4π2γj

and

ρC,j =
sinh 4π2γj
sinh 4π2γ0

This compares to ρj = γj
γ0

. Thus there is a clear similarity between ρj and ρC,j and

as one would expect this is especially pronounced when the auto-covariances are small

since then the level of information loss through “wrapping” is low. In particular, when

Yt is an MA(k) process (i.e. αj = 0 for j > k), then γj = 0 for j > k. This means

that ρj = ρC,j = 0 when j > k. This would appear to provide the same basis for

identification in either case given the existence of satisfactory estimators for the ρC,j.
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1.2.2 Estimation of the circular auto-covariance function

I have chosen to estimate the circular auto-covariance function of the sample x1, . . . , xn

by gC,j where

gC,j =
1

n− j

n−j∑
k=0

sin(2πxk) sin(2πxk+j)

which from (1.2) is obviously an unbiased estimate of γC,j. In order to derive various

asymptotic properties of the {gC,j} we shall need some knowledge of their covariance

structure. Now

C[gC,j, gC,k]

= 1
(n−j)(n−k)

n∑
t=j+1

n∑
u=k+1

E [sin 2πXt sin 2πXt−j sin 2πXu sin 2πXu−k]− γC,jγC,k

But

E [ sin 2πXt sin 2πXt−j sin 2πXu sin 2πXu−k]

=
∑

η4
1∈{−1,1}4

η1η2η3η4

(2i)4
E
[
exp(2πi{η1Xt + η2Xt−j + η3Xu + η4Xu−k})

]
(1.3)

Suppose that u < t− j, then

E
[
exp(2πi{η1Xt + η2Xt−j + η3Xu + η4Xu−k})

]

= E

exp
(

2πi
{ j−1∑
m=0

η2
1αmεt−m +

t−j−u−1∑
m=0

(η1αm+j + η2αm)2εt−j−m

+
k−1∑
m=0

(η1αm+t−u + η2αm+t−j−u + η3αm)2εu−m

+
∞∑
m=0

(η1αm+t+k−u + η2αm+t+k−j−u + η3αm+k + η4αm)2εu−k−m
})]

= exp

(
−2π2σ2

{
η2

1

∞∑
m=0

α2
m + η2

2

∞∑
m=0

α2
m + η2

3

∞∑
m=0

α2
m + η2

4

∞∑
m=0

α2
m

+2
∞∑
m=0

η1η2αmαm+j + 2
∞∑
m=0

η1η3αmαm+t−u

+2
∞∑
m=0

η2η3αmαm+t−j−u + 2
∞∑
m=0

η3η4αmαm+k

+ 2
∞∑
m=0

η2η4αmαm+t−j−u+k + 2
∞∑
m=0

η1η4αmαm+t−u+k

})
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= exp
(
−4π2{2γ0 + η1η2γj + η1η3γt−u + η2η3γt−j−u

+η3η4γk + η2η4γt−j−u+k + η1η4γt−u+k}
)

If t > u > t− j we obtain

E
[
exp(2πi{η1Xt + η2Xt−j + η3Xu + η4Xu−k})

]

= exp
(
−4π2{2γ0 + η1η3γt−u + η1η2γj + η3η2γu−t+j

+ η2η4γt−j−u+k + η3η4γk + η1η4γt−u+k}
)

which is the same since γj = γ−j.

Consider those terms in (1.3) for which η1η2 = η3η4 = 1. We have

e−4π2(γj+γk)
{

exp(−4π2{γt−u + γt−u+k + γt−j−u + γt−j−u+k})

+ exp(−4π2{γt−u + γt−u+k + γt−j−u + γt−j−u+k})

+ exp(−4π2{−γt−u − γt−u+k − γt−j−u − γt−j−u+k})

+ exp(−4π2{−γt−u − γt−u+k − γt−j−u − γt−j−u+k})
}

= 4e−4π2(γj+γk) cosh
(
4π2(γt−u + γt−u+k + γt−j−u + γt−j−u+k)

)
By applying the same method to the other terms in (1.3), the right-hand side

becomes

1
4
e−8π2γ0

{
e−4π2(γj+γk) cosh(4π2(γt−u + γt−u+k + γt−j−u + γt−j−u+k))

− e−4π2(γj−γk) cosh(4π2(−γt−u + γt−u+k − γt−j−u + γt−j−u+k))

− e−4π2(−γj+γk) cosh(4π2(−γt−u − γt−u+k + γt−j−u + γt−j−u+k))

+ e−4π2(−γj−γk) cosh(4π2(γt−u − γt−u+k − γt−j−u + γt−j−u+k))
}

Also

γC,jγC,k = e−4π2γ0e−4π2γ0 sinh 4π2γj sinh 4π2γk

= 1
4
e−8π2γ0

{
e−4π2(γj+γk) − e−4π2(γj−γk) − e−4π2(−γj+γk) + e−4π2(−γj−γk)

}
and coshx− 1 = 1

2
{ex + e−x − 2} = 1

2
(ex − e−x)2 = 2 sinh2 1

2
x. Therefore
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E
[

sin 2πXt sin 2πXt−j sin 2πXu sin 2πXu−k
]

−E
[
sin 2πXt sin 2πXt−j

]
E
[
sin 2πXu sin 2πXu−k

]

= 1
2
e−8π2γ0

{
e−4π2(γj+γk) sinh2(2π2(γt−u + γt−u+k + γt−j−u + γt−j−u+k))

− e4π2(γk−γj) sinh2(2π2(−γt−u + γt−u+k − γt−j−u + γt−j−u+k))

− e4π2(γj−γk) sinh2(2π2(−γt−u − γt−u+k + γt−j−u + γt−j−u+k))

+ e4π2(γj+γk) sinh2(2π2(γt−u − γt−u+k − γt−j−u + γt−j−u+k))
}

Suppose that j ≤ k. Let h(t, u) be some function of two variables which in fact

only depends on t− u so that we can actually write h(t− u). Then

n∑
u=k+1

n∑
t=j+1

h(t, u) =
n∑

u=k+1

n∑
t=j+1

h(t− u)

=
n∑

u=k+1

n−u∑
t−u=j+1−u

h(t− u)

=
n∑

u=k+1

n−u∑
d=j+1−u

h(d) (1.4)

From figure 1.1 we can see that when d = 0,−1, . . . ,−j − k, that value of d occurs

n− k times; when d = 1, 2, . . . , n− k− 1, that value occurs n− k− d times; and when

d = j− k− 1, j− k− 2, . . . , j−n+ 1, that value occurs n− k− (j− k− d) = n− j+ d

times, i.e. any given value of d occurs min(n− k, n− k − d, n− j + d) times. So (1.4)

becomes

n−k−1∑
d=j−n+1

min(n− k, n− k − d, n− j + d)h(d)

So we have now shown that

E[gC,jgC,k]− E[gC,j]E[gC,k]

= 1
(n−j)(n−k)

n∑
t=j+1

n∑
u=k+1

E[sin 2πXt sin 2πXt−j sin 2πXu sin 2πXu−k]− γC,jγC,k
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n− k − 1 1 0 . . . 0 0

n− k − 2 1 1 . . . 0 0

...
...

...
...

...

2 1 1 . . . 0 0

1 1 1 . . . 1 0

0 1 1 . . . 1 1

d
...

...
...

...
...

j − k 1 1 . . . 1 1

j − k − 1 0 1 . . . 1 1

j − k − 2 0 0 . . . 1 1

...
...

...
...

...

j + 2− n 0 0 . . . 1 1

j + 1− n 0 0 . . . 0 1

k + 1 k + 2 . . . n− 1 n

u

Figure 1.1: Diagram indicating which values of d occur for which values of u
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=
1

(n− j)(n− k)

n−k−1∑
d=j−n+1

min(n− k, n− k − d, n− j − d)1
2
e−8π2γ0

×
{
e−4π2(γj+γk) sinh2(2π2(γd + γd+k + γd−j + γd−j+k))

−e4π2(γk−γj) sinh2(2π2(−γd + γd+k − γd−j + γd−j+k))

−e4π2(γj−γk) sinh2(2π2(−γd − γd+k + γd−j + γd−j+k))

+e4π2(γj+γk) sinh2(2π2(γd − γd+k − γd−j + γd−j+k))
}

which is the first part of the following theorem.

Theorem 1.1 a)

C[gC,j, gC,k] =
e−8π2γ0

2(n− j)(n− k)

n−k−1∑
d=j−n+1

min(n− k, n− k − d, n− j + d)

{
e−4π2(γj+γk) sinh2(2π2(γd + γd+k + γd−j + γd−j+k))

−e4π2(γk−γj) sinh2(2π2(−γd + γd+k − γd−j + γd−j+k))

−e4π2(γj−γk) sinh2(2π2(−γd − γd+k + γd−j + γd−j+k))

+e4π2(γj+γk) sinh2(2π2(γd − γd+k − γd−j + γd−j+k))
}

b) Suppose that αj ≤ O(j−3/2) as j →∞. Then C[gC,j, gC,k] ≤ O(n−1) as n→∞.

Proof: We have already shown part a). Thus, we have

C[gC,j, gC,k] =
e−8π2γ0

2(n− j)(n− k)

n−k−1∑
d=j−n+1

min(n− k, n− k − d, n− j − d)Td

≤ e−8π2γ0

2(n− j)

n−k−1∑
d=j−n+1

Td

where the definition of Td is obvious from the statement of part a) of the theorem.

Since αj ≤ O(j−3/2), there exists α∗ such that αj ≤ α∗/j3/2. Therefore we have

kγk = k
∑
j

σ2αjαj+k ≤
∑
j

kσ2α∗2

j3/2(j + k)3/2
≤
∑
j

σ2α∗2

j3/2j1/2
≤
∑
j

σ2α∗2

j2
= C <∞
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and so γk = O(k−1) as k →∞ which implies that γd ± γd+k ± γd−j ± γd−j+k ≤ O(d−1)

as d→∞. Also sinh(x) = O(x) as x→ 0. Combining these gives

Td ≤ O(d−2) as d→∞

which implies
∣∣∣∑∞d=−∞ Td

∣∣∣ <∞ and therefore that

C[gC,j, gC,k] ≤ O(n−1)

as required.

Q.E .D.

We now know the covariance structure of the estimators of the circular auto-

covariance function. The remainder of this section is devoted to showing that the

gC,j are, asymptotically, normally distributed, which then completes our knowledge of

their asymptotic distribution. The key to this is the use of a central limit theorem for

certain strongly mixing stationary processes. The next three proofs show that, under

mild conditions on the αj, the Yt process is strongly mixing with coefficients which die

out sufficiently rapidly. I believe that this has probably been shown before but, in the

absence of a suitable reference, I have chosen to derive this explicitly.

Definition 1.1 A stationary stochastic process {Zt} is said to be strongly mixing if

ψZ(τ) = sup
A∈F0

−∞(Z),B∈F∞τ (Z)

∣∣∣P [A ∩B]− P [A]P [B]
∣∣∣→ 0 as τ →∞

The ψZ(τ) are called the (strong) mixing coefficients for {Zt}.

The following lemma will be used, together with theorem A.1, to find upper bounds

for the mixing coefficients of {Yt}.

Lemma 1.2 If the stationary linear process {Yt} is invertible, then the spectral density

f(λ) is everywhere non-zero and there exists C such that

f(λ) ≥ C > 0 for all λ

Proof: Define αj = 0 for all j < 0. Then

f(λ) =
∞∑

j=−∞
γje

ijλ
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=
∞∑

j=−∞

∞∑
k=−∞

αkαk+je
ijλ

=
∞∑

j=−∞

∞∑
k=−∞

αkαk+je
−ikλei(j+k)λ

=
∞∑

j=−∞

∞∑
k=−∞

αkαje
−ikλeijλ

= |
∞∑

j=−∞
αje

ijλ|2

Suppose that
∑∞
j=−∞ αje

ijx = 0; i.e.
∑∞
j=0 αje

ijx = 0 and
∑∞
j=0 αje

−ijx = 0. Consider

the εt sequence given by εt = a cos(tx− b). Then

Yt =
∞∑
j=0

αjεt−j = 1
2
a(
∞∑
j=0

αje
−ibei(t−j)x +

∞∑
j=0

αje
ibe−i(t−j)x)

= 1
2
a(ei(tx−b)

∞∑
j=0

αje
−ijx + ei(b−tx)

∞∑
j=0

αje
ijx) = 0

Thus any pair of realisations of the ε-process which differ only by a cos(tx − b) give

rise to the same realisation of the Y -process; i.e. the Y -process cannot be invertible,

contrary to the hypothesis.

Therefore we have f(λ) > 0 for any λ. But f(λ) is continuous since the γj are

summable. Therefore f(λ) is a continous function on the closed interval [−π, π] and

must attain its infimum somewhere on that interval and so infλ f(λ) > 0 as required.

Q.E .D.

Lemma 1.3 Let αj ≤ O(j−3) as j →∞. Then ψY (τ) ≤ O(τ−2) as τ →∞.

Proof: From the hypothesis, for some α∗

|k3γk| = k3|
∞∑
j=0

σ2αjαj+k| ≤ k3σ2α∗
∞∑
j=0

1

j3(j + k)3
≤ α∗σ2

∞∑
j=0

1

j3
=def γ∗ <∞

The γk form, therefore, an absolutely summable sequence. It is however well known

(see [5]) that any complex power series is analytic in any disc where it is absolutely

convergent. So setting

φτ (z) =
∞∑
j=0

γτ−jz
j

defines a function analytic in the unit disc.
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Furthermore, since {Yt} is invertible by the original definition, lemma 1.2 shows

that there exists C > 0 such that |fY (λ)| ≥ C for all λ. Thus, from theorem A.1

ψY (τ) ≤ inf
φ

sup
λ
|fY (λ)− eiλτφ(e−iλ)|/fY (λ)

≤ sup
λ
C−1|fY (λ)− eiλτφτ (e−iλ)|

= sup
λ
C−1|

∞∑
j=−∞

γje
iλj −

τ∑
j=−∞

γje
iλj|

= sup
λ
C−1|

∞∑
j=τ+1

γje
ijλ|

≤ sup
λ

γ∗

C

∞∑
j=τ+1

j−3

≤ γ∗

2Cτ 2

as required

Q.E .D.

We have now sufficient resources to prove the following theorem on the asymptotic

normality of the {gC,j}. We shall make use of a central limit theorem for stationary

processes which are functions in a local sense of strongly mixing sequences.

Theorem 1.4 Let αj = O(j−3) as j →∞. Then the {gC,j} are asymptotically jointly

normally distributed in the sense that, if (t1, . . . , tm) ∈ Rm and j1, . . . , jm are any

natural numbers, then

√
n

m∑
k=1

tk {gC,jk − γC,jk} →d N(0, σ̃2)

where σ̃2 =
∑∞
l=−∞E[G0Gl] exists and is non-negative and

Gl =
m∑
k=1

tk{sin 2πXl sin 2πXl+jk − γC,jk}

Proof: First we let {Yt} and G0 take the roles of {Zt} and W respectively in theo-

rem A.4, and we show that conditions (1), (2) and (3) of the theorem are satisfied. G0

is clearly a measurable function of {Yt}. E[G0] = 0 by definition, and Gl is obviously

obtained by time-shifting G0.

(1) |Gl| ≤ (max1≤k≤m |γC,jm|+ 1)
∑m
k=1 |tk| and is clearly uniformly bounded.

(2) G0 is a function only of Y0, Y1, . . . , YJ where J = max1≤k≤m jm. Therefore, when-

ever T > J , E[G0|FT−T (Y )] = G0 and the summation must converge.
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(3)
∑∞
k=1 ψY (k) ≤ ∑∞k=1 γ

∗/(Ck2) <∞ by lemma 1.3.

Therefore σ̃2 is finite and non-negative. We must now consider two cases separately.

a) σ̃2 = 0

1
n
E[(

n∑
l=1

Gl)
2] = 1

n

{
nE[G2

0] +
n−2∑
l=1

2(n− l)E[G0Gl]

}

by stationarity of {Gl}. But we already know that
∑∞
l=1E[G0Gl] is convergent

and so limn→n
1
n

∑∞
l=1 lE[G0Gl] = 0 which implies that

lim
n→∞

1
n
E[(

n∑
l=1

Gl)
2] =

∞∑
l=−∞

E[G0Gl] = 0

i.e. 1√
n

∑n
l=1Gl → 0 in L2-norm, which in turn implies that

1√
n

n∑
l=1

Gl →d N(0, 0) = N(0, σ̃2)

b) σ̃2 > 0 By theorem A.4, we already know that

1√
n

n∑
l=1

Gl →d N(0, σ̃2)

The final part of the proof is to show that 1√
n

∑n
l=1Gl is asymptotically equivalent

to
√
n
∑k
m=1 tm{gC,jm − γC,jm}. However∣∣∣∣∣√n(gC,jm − γC,jm)− 1√

n

n∑
l=1

(sin 2πXl sin 2πXl+jm − γC,jm)

∣∣∣∣∣
=

∣∣∣∣∣∣
√
n

n− jm

n∑
l=jm+1

sin 2πXl sin 2πXl−jm −
1√
n

n∑
l=1

sin 2πXl sin 2πXl+jm

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
( √

n

n− jm
− 1√

n

) n−jm∑
l=1

sin 2πXl sin 2πXl−jm

∣∣∣∣∣∣
+

1√
n

∣∣∣∣∣∣
n∑

l=n−jm+1

sin 2πXl sin 2πXl+jm

∣∣∣∣∣∣
≤ (n− jm)

∣∣∣∣∣
√
n

n− jm
− 1√

n

∣∣∣∣∣+ jm√
n

=
2jm√
n
→ 0

and the result follows.

Q.E .D.
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1.2.3 Estimation of the circular auto-correlation function

In this section we shall explore the asymptotic behaviour of the rC,j. Three main results

will be obtained. First it will be shown that the convergence of rC,j to ρC,j is better than

almost sure; rC,j converges rapidly in mean to ρC,j. Secondly the covariance structure

of the rC,j is explored in terms of the covariance structure of the gC,j. Finally the rC,j

are shown to be, asymptotically, normally distributed. The principal tool for the first

two of these is the theorem below, taken from [11], on the behaviour of functions of

random variables in terms of Taylor series expansions.

I have chosen to estimate the circular auto-correlation function ρC,j by

rC,j =
gC,j
gC,0

This is clearly consistent since the {gC,k} are consistent for the {γC,j} and γC,0 > 0.

Throughout this section we shall asume that γj ≤ O(j−2) and hence that there exists

a constant γ∗ such that for all j

|γj| ≤
γ∗

1 + j2

The approach used for deriving properties of the rC,j is based on Taylor expansion.

The following lemma will be used to validate the assumptions of a theorem from [11]

quoted in the appendix.

Lemma 1.5 As n→∞

E[(gC,j − γC,j)4] = O(n−2)

Proof: For the duration of the proof, let s(x) denote the function sin(2πx). Then by

an argument similar to that used in theorem 1.1, we have

E[s(Xt)s(Xt−j)s(Xu)s(Xu−j)s(Xv)s(Xv−j)s(Xw)s(Xw−j)]

=
1

256

∑
η8
1∈{−1,1}8

8∏
l=1

ηl (1.5)

× exp
(
−4π2{4γ0 + (η1η2 + η3η4 + η5η6 + η7η8)γj

+A+B + C +D + E + F}
)
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where

A = (η1η3 + η2η4)γd1 + η1η4γd1+j + η2η3γd1−j

B = (η1η5 + η2η6)γd1+d2 + η1η6γd1+d2+j + η2η5γd1+d2−j

C = (η1η7 + η2η8)γd1+d2+d3 + η1η8γd1+d2+d3+j + η2η7γd1+d2+d3−j

D = (η3η5 + η4η6)γd2 + η3η6γd2+j + η4η5γd2−j

E = (η3η7 + η4η8)γd2+d3 + η3η8γd2+d3+j + η4η7γd2+d3−j

F = (η5η7 + η6η8)γd3 + η5η8γd3+j + η6η7γd3−j

where d1 = u− t, d2 = v − u and d3 = w − v.

Now by the same approach we find

E[s(Xt)s(Xt−j)s(Xu)s(Xu−j)s(Xv)s(Xv−j)]

= − 1

64

∑
η6
1∈{−1,1}6

6∏
l=1

ηl exp(−4π2{3γ0 + (η1η2 + η3η4 + η5η6)γj + A+B +D})

We also have

γC,j = e−4π2γ0 sinh 4π2γj

= 1
2
e−4π2γ0(e4π2γj − e−4π2γj)

= −1

4

∑
η7,η8∈{−1,1}2

η7η8 exp(−4π2(γ0 + η7η8γj))

and so

E
[
s(Xt)s(Xt−j)s(Xu)s(Xu−j)s(Xv)s(Xv−u)

]
× γC,j (1.6)

=
1

256

∑
η8
1∈{−1,1}8

8∏
l=1

ηl

× exp
(
−4π2{4γ0 + (η1η2 + η3η4 + η5η6 + η7η8)γj + A+B +D}

)

If in the last equation we use u, v and w instead of t, u and v we get the same result

with D, E and F instead of A, B and D. If we use t, u and w we get A, E and C. If

we use t, v and w we B, F and C.

By the same approach we also obtain

E
[
s(Xt)s(Xt−j)s(Xu)s(Xu−j)

]
× γ2

C,j (1.7)
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=
1

256

∑
η8
1∈{−1,1}8

8∏
l=1

ηl exp(−4π2{4γ0 + (η1η2 + η3η4 + η5η6 + η7η8)γj + A})

If we use different indices than t and u we get a different term instead of A. Using t

and v gives rise to B. Using t and w gives rise to C. Using u and v gives rise to D.

Using u and w gives rise to E. Using v and w gives rise to F .

Finally, we have

γ4
C,j =

1

256

∑
η8
1∈{−1,1}8

8∏
l=1

ηl exp(−4π2{4γ0 + (η1η2 + η3η4 + η5η6 + η7η8)γj}) (1.8)

Combining (1.5), (1.6), (1.7) and (1.8), we have (n− j)4E[(gC,j − γC,j)4] =

n∑
t=j+1

n∑
u=j+1

n∑
v=j+1

n∑
w=j+1

E
[
(s(Xt)s(Xt − j)− γC,j)(s(Xu)s(Xu − j)− γC,j)

×(s(Xv)s(Xv − j)− γC,j)(s(Xw)s(Xw − j)− γC,j)
]

=
e−16π2γ0

256(n− j)4

n∑
t=j+1

n∑
u=j+1

n∑
v=j+1

n∑
w=j+1

∑
η8
1∈{−1,1}8

8∏
l=1

ηl

× exp
(
−4π2(η1η2 + η3η4 + η5η6 + η7η8)γj

)
(1.9)

×
{
e−4π2(A+B+C+D+E+F ) − e−4π2(A+B+D) − e−4π2(D+E+F ) − e−4π2(A+C+E)

−e−4π2(B+C+F ) + e−4π2A + e−4π2B + e−4π2C + e−4π2D + e−4π2E + e−4π2F − 3
}

Denote by g(d1, d2, d3, η
8
1) the expression in braces in equation 1.9. Then

E[(gC,j − γC,j)4]

≤ e−16π2γ0

256(n− j)4

n∑
t=j+1

n∑
u=j+1

n∑
v=j+1

n∑
w=j+1

∑
η8
1∈{−1,1}8

|g(d1, d2, d3, η
8
1)|

≤ e−16π2γ0

256(n− j)4

∑
η8
1∈{−1,1}8

n∑
t=j+1

n∑
d1=−n

n∑
d2=−n

n∑
d3=−n

|g(d1, d2, d3, η
8
1)| (1.10)

Now, by Taylor’s theorem, we have

ez1 = 1 + eζ1
def
= 1 + ξ1z1
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for some ζ1 ∈ [0, z1]; i.e. some ξ1 ∈ [0, ez1 ]. Therefore putting z1 = −4π2A, z2 =

−4π2B, . . . etc.

g(d1, d2, d3, η
8
1) = (1 + ξ1z1)(1 + ξ2z2)(1 + ξ3z3)(1 + ξ4z4)(1 + ξ5z5)(1 + ξ6z6)

− (1 + ξ1z1)(1 + ξ2z2)(1 + ξ4z4)

− (1 + ξ4z4)(1 + ξ5z5)(1 + ξ6z6)

− (1 + ξ1z1)(1 + ξ3z3)(1 + ξ5z5) (1.11)

− (1 + ξ2z2)(1 + ξ3z3)(1 + ξ6z6)

+ (1 + ξ1z1) + (1 + ξ2z2) + (1 + ξ3z3)

+ (1 + ξ4z4) + (1 + ξ5z5) + (1 + ξ6z6)

− 3

Expanding this into a polynomial in ξ1z1, . . . , ξ6z6 yields a complicated expression of

41 terms which has the important feature that every term involves at least two distinct

ξjzj.

But, by definition of A,

|4π2A| ≤ 4π2 (2|γd1|+ |γd1+j|+ |γd1−j|)

≤ 4π2

(
2γ∗

1 + d2
1

+
γ∗

1 + (d1 + j)2
+

γ∗

1 + (d1 − j)2

)
(1.12)

≤ 16π2γ∗
def
= M > 1

The same holds for B,C, . . . , F . Thus |zj| ≤ M and |ξj| ≤ eM . Hence the modulus of

each term in the polynomial expansion of g is less than

M4e4M eM |zj1|eM |zj2| (1.13)

for some j1, j2 ∈ {1, 2, . . . , 6} with j1 6= j2. Consider the case when j1 = 5 and j2 = 6.

Then by (1.12)

n∑
d1=−n

n∑
d2=−n

n∑
d3=−n

|z5||z6| ≤ 16π4γ∗2
n∑

d1=−n

n∑
d2=−n

n∑
d3=−n

h(d2 + d3)h(d3) (1.14)

where

h(l) =
2

1 + l2
+

1

1 + (l + j)2
+

1

1 + (l − j)2
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But

n∑
d2=−n

n∑
d3=−n

h(d2 + d3)h(d3) ≤
∞∑

d2=−∞

∞∑
d3=−∞

h(d2 + d3)h(d3)

=
∞∑

d2=−∞
h(d2)

∞∑
d3=−∞

h(d3)

and

∞∑
l=−∞

h(l) = 4
∞∑

l=−∞

1

1 + l2
def
= C2 <∞

Thus, from (1.14),

n∑
d1=−n

n∑
d2=−n

n∑
d3=−n

|z5||z6| ≤ (2n+ 1)16π4γ∗2C2
2

and similarly for other values of j1 and j2 giving

n∑
d1=−n

n∑
d2=−n

n∑
d3=−n

|zj1||zj2| ≤ (2n+ 1)16π4γ∗2C2
2 (1.15)

Combining the count of the number of terms in (1.11) with (1.10), (1.13) and (1.15)

we find

E[(gC,j − γC,j)4]

≤ e−16π2(γ0−γj)

256(n− j)3

∑
η8
1∈{−1,1}8

41.M4e6M .256(2n+ 1)π4γ∗2C2
2

=
10516(2n+ 1)π4γ∗2C2

2M
4e6Me−16π2(γ0−γj)

(n− j)3

= O(n−2)

as required.

Q.E .D.

This is now used to prove the following theorem which is really a lemma for the

corollary which follows. The corollary is the first real result of the section, on the

nature of the convergence of rC,j to ρC,j.

Theorem 1.6 As n→∞

rC,j =
gC,j
γC,0
− ρC,j (gC,0 − γC,0)

γC,0
+OL1(n−1)
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Proof: We shall show that (rC,j − gC,j/γC,0 + (gC,0 − γC,0)γC,j/γ
2
C,0)2 satisfies the

conditions of theorem A.7 with Z = (gC,0, gC,j), α = 1, s = 4, N0 = 1, µ = (γC,0, γC,j)

and an = O(n−
1
2 ).

1. E
[
((gC,0−γC,0)2+(gC,j−γC,j)2)2

]
≤ 2E[(gC,0−γC,0)4]+2E[(gC,j−γC,j)4] = O(n−2)

= O(
√
n
−4

), by lemma 1.5.

2. |rC,j −
gC,j
γC,0

+
γC,j
γ2
C,0

(gC,0 − γC,0)|

≤ (j + 1) + γ−1
C,0 + γ−2

C,0|γC,j|(1 + γC,0)

which is a uniform bound as required. This is true since |gC,j| ≤ 1 and

|rC,j| =
n

n− j

∑
sksk+j∑
s2
k

≤ j + 1

1

3. Let S = {(x, y) : |x−γC,0|2 + |y−γC,j|2 ≤ 1
4
γ2
C,0}. Then, since x is bounded away

from zero in S

fn(x, y) = (
y

x
− y

γC,0
+
γC,j
γ2
C,0

(x− γC,0))2

has continuous derivatives of any order in S.

4. (γC,0, γC,j) is in the interior of S by definition.

5. This holds since fn is independent of n, the derivatives are continuous in S and

S is compact.

Now we apply theorem A.7.

f(x, y) = (g(x, y))2

But

g(x, y)|µ = 0

g,x(x, y)|µ =
−y
x2
− γC,j
γ2
C,0

∣∣∣∣∣
µ

= 0

and

g,y(x, y)|µ =
1

x
− 1

γC,0

∣∣∣∣∣
µ

= 0
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Therefore all derivatives of fn up to third order are zero at µ. So, by theorem A.7,

E

(rC,j − gC,j
γC,0

+ (gC,0 − γC,0)
gC,j
γ2
C,0

)2
 = O(a4

n) = O(n−2)

But for any random variable Z, E[|Z|] ≤
√
E[Z2] and so the result follows.

Q.E .D.

Corollary 1.7
∣∣∣E[rC,j]− ρC,j

∣∣∣ ≤ O(n−1).

Proof: From theorem 1.6

rC,j =
gC,j
γC,0
− ρC,j (gC,0 − γC,0)

γC,0
+OL1(n−1)

Thus

E[rC,j] = ρC,j −
ρC,j
γC,0

.0 +O(n−1)

= ρC,j +O(n−1)

which is the desired result.

Q.E .D.

The next theorem concerns the covariance structure of the rC,j. It can be used

together with theorem 1.1 to explicitly calculate the covariance structure of the rC,j.

Theorem 1.8

E[(rC,j − ρC,j)(rC,k − ρC,k)] =
1

γ2
C,0

C[gC,j, gC,k] +
γC,jγC,k
γ4
C,0

D[gC,0]

−γC,j
γ3
C,0

C[gC,k, gC,0]− γC,k
γ3
C,0

C[gC,j, gC,0] +O(n−3/2)

Proof: We shall see that (rC,j − ρC,j)(rC,k − ρC,k) satisfies the hypotheses of theorem

A.7 with Z = (gC,0, gC,j, gC,k), α = 4/3, s = 3, N0 = 1, µ = (γC,0, γC,j, γC,k) and

an = O(n−
1
2 ).

1. E
[
((gC,0 − γC,0)2 + (gC,j − γC,j)2 + (gC,k − γC,k)2)2

]

≤ 2E[(gC,0 − γC,0)4] + 2E[(gC,j − γC,j)4] + 2E[(gC,k − γC,k)4]

= O(n−2) = O(
√
n
−4

) by lemma 1.5
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2. |rC,j − ρC,j||rC,k − ρC,k| ≤ ((j + 1) + |ρC,j|)((k + 1) + |ρC,k|)

and so E
[
|(rC,j − ρC,j)(rC,k − ρC,k)|4

]
is uniformly bounded and hence O(1).

3. Let S = {(x, y, z) : |x − γC,0|2 + |y − γC,j|2 + |z − γC,k|2 ≤ 1
4
γ2
C,0}. Then since x

is bounded away from zero in S, all derivatives of

fn(x, y, z) =

(
y

x
− γC,j
γC,0

)(
z

x
− γC,k
γC,0

)

are continuous is S.

4. (γC,0, γC,j, γC,k) is in the interior of S by definition.

5. Since fn is independent of n, this follows from (3) and (4).

We now apply theorem A.7. The following identities are easily verified.

f(µ) = f(γC,0, γC,j, γC,k) = 0

f,y(x, y, z) = (1/x)(z/x− γC,k/γC,0) = 0 at µ

f,z(x, y, z) = (1/x)(y/x− γC,j/γC,0) = 0 at µ

f,x(x, y, z) = − y

x2

(
z

x
− γC,k
γC,0

)
− z

x2

(
y

x
− γC,j
γC,0

)
= 0 at µ

f,yy(x, y, z) ≡ 0

f,zz(x, y, z) ≡ 0

f,yz(x, y, z) = x−2 = γ−2
C,0 at µ

f,xy(x, y, z) = −2z

x3
+

γC,k
x2γC,0

= −γC,k
γ3
C,0

at µ

f,xz(x, y, z) = −2y

x3
+

γC,j
x2γC,0

= −γC,j
γ3
C,0

at µ

f,xx(x, y, z) =
3yz

x4
− 2yγC,k
x3γC,0

+
3yz

x4
− 2zγC,j
x3γC,0

=
2γC,jγC,k
γ4
C,0

at µ

Therefore

E[(rC,j − ρC,j)(rC,k − ρC,k)]
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= 1
2

{
2

γ2
C,0

E[(gC,j − γC,j)(gC,k − γC,k)]−
2γC,j
γ3
C,0

E[(gC,k − γC,k)(gC,0 − γC,0)]

−2γC,k
γ3
C,0

E[(gC,j − γC,j)(gC,0 − γC,0)] +
2γC,jγC,k
γ4
C,0

E[(gC,0 − γC,0)2]

}

+O(a3
n)

as required since O(a3
n) = O(n−3/2).

Q.E .D.

The final theorem of the section shows asymptotic normality of the rC,j. The proof

is based on the fact that the asymptotic behaviour of the rC,j is closely related to that

of the gC,j and is a simple application of theorem 1.4.

Theorem 1.9 Let αj = O(j−2) as j → ∞. Then the rC,j are jointly asymptotically

normally distributed in the sense that if t1, . . . , tm are real numbers and j1, . . . , jm are

any natural numbers, then

√
n

m∑
k=1

tk{rC,jk − ρC,jk} →d N(0, σ̂2) (1.16)

where

σ̂2 =
1

γ2
C,0

∞∑
l=−∞

E[G0Gl]

and

Gl =
m∑
k=1

tk{sin 2πXl sin 2πXl+jk − γC,jk + ρC,jk(sin
2 2πXl − γC,0)}

Proof:

rC,j − ρC,j =
gC,j
gC,0
− γC,j
γC,0

=
gC,j − γC,j

gC,0
+ γC,j

γC,0 − gC,0
gC,0γC,0

Thus the left-hand side of equation 1.16 is

√
n

gC,0

{
m∑
k=1

tk(gC,jk − γC,jk) + (γC,0 − gC,0)
m∑
k=1

γC,jktk
γC,0

}

But

√
n

{
m∑
k=1

tk(gC,jk − γC,jk) + (γC,0 − gC,0)
m∑
k=1

γC,jktk
γC,0

}
→d N(0, σ̃2)
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for some σ̃2 by theorem 1.4. Also gC,0 → γC,0 almost surely and so the left-hand side of

equation 1.16 converges in distribution to N(0, σ̃2/γ2
C,0). The theorem is then proved

if σ̃2 is the appropriate value. But, by theorem 1.4, σ̃2 =
∑∞
l=−∞E[G0Gl] where

Gl =
m∑
k=1

tk(sin 2πXl sin 2πXl+jk − γC,jk) + (sin2 2πXl − γC,0)
m∑
k=1

tk
γC,jk
γC,0

as required.

Q.E .D.

1.2.4 Uses of the circular auto-correlation function

The reason for constructing and estimating the circular auto-correlation was to facili-

tate the identification of wrapped moving-average models. I now illustrate that this is

in fact possible, although it works well only for the case of an independent sequence.

Sequence of Independent Variables

The estimated circular auto-correlations have certain desirable features for a sequence

of independent Gaussian random variables. In this case αj = 0 when j > 0 and so

γj = 0 when j 6= 0. Then by theorem 1.1

C[gC,j, gC,k] =
e−8π2γ0

2(n− j)(n− k)

n−k−1∑
d=j−n+1

min(n− k, n− k − d, n− j − d)

×
{
e−4π2(γj+γk) sinh2(2π2(γd + γd+k + γd−j + γd−j+k))

−e4π2(γk−γj) sinh2(2π2(−γd + γd+k − γd−j + γd−j+k))

−e4π2(γj−γk) sinh2(2π2(−γd − γd+k + γd−j + γd−j+k))

+e4π2(γj+γk) sinh2(2π2(γd − γd+k − γd−j + γd−j+k))
}

But each term in the above sum is trivially zero, unless d = 0 or d = j or d = −k

or d = j − k. We shall now consider a number of different cases comprising all the

possible different values of j and k. We shall suppose (without loss of generality) that

j ≤ k. Since the only part of the sum which depends on d is that between curly braces,

we shall ignore the rest.

1. j 6= k, j > 0 and k > 0. In this case γj = γk = 0 and so each of the interesting

values of d gives rise to a term of the form

sinh2 2π2γ0 + sinh2 2π2γ0 − sinh2 2π2γ0 − sinh2 2π2γ0
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which implies C[gC,j, gC,k] = 0.

2. j = k > 0. This time there are only three terms since d = 0 coincides with

d = j − k. When d = j or d = −k we get

sinh2 2π2γ0 + sinh2 2π2γ0 − sinh2 2π2γ0 − sinh2 2π2γ0

which is 0. When d = 0 we get

sinh2 2π22γ0 + sinh2 2π22γ0 − 0− 0

and so when j > 0

D[gC,j] =
1

n− j
e−8π2γ0 sinh2 4π2γ0 =

1

n− k
γ2
C,0

3. j = 0 and k > 0. This time there are only two terms since d = 0 coincides with

d = j and d = −k coincides with d = j − k. When d = 0 we get

e−4π2γ0 sinh2 2π22γ0 + e4π2γ0 sinh2 2π2(0)

−e−4π2γ0 sinh2 2π2(−2γ0)− e4π2γ0 sinh2 2π2(0)

which is 0. When d = −k we get

e−4π2γ0 sinh2 2π22γ0 + e4π2γ0 sinh2 2π2(0)

−e−4π2γ0 sinh2 2π22γ0 − e4π2γ0 sinh2 2π2(0)

which is also 0. Thus C[gC,0, gC,j] = 0 when j > 0.

4. j = k = 0. This time there is only one term which is

e−8π2γ0 sinh2 2π2(4γ0) + e8π2γ0 sinh2 2π2(0)− sinh2 2π2(0)− sinh2 2π2(0)

and so

D[gC,0] =
1

2n
e−16π2γ0 sinh2 8π2γ0
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From the above, and from corollary 1.7 and theorem 1.8 we see that, when j and k

are both positive and j 6= k

D[rC,j] =
1

γ2
C,0

D[gC,j] +O(n−
3
2 ) =

1

n− k
+O(n−

3
2 )

and that

C[rC,j, rC,k] = O(n−
3
2 )

which together imply that

ρ(rC,j, rC,k) = O(n−
1
2 )

So, for large samples, we have a simple test for dependence based on the circular

auto-correlation function estimates, since we know they are asymptotically normal by

theorem 1.9.

Wrapped MA(l) Process

In this section we shall suppose that the {Yt} process is an MA(l) process, i.e. that αj

and therefore γj are zero when |j| > l. Then by theorem 1.1, when j > l

D[gC,j] =
e−8π2γC,0

2(n− j)2

n−j−1∑
d=j−n+1

(n− j − |d|) { sinh2 2π2(2γd + γd+j + γd−j)

− sinh2 2π2(γd+j − γd−j) (1.17)

− sinh2 2π2(−γd+j + γd−j)

+ sinh2 2π2(2γd − γd+j − γd−j)}

Suppose now that j > 2l. Then at most one of γd, γd+j and γd−j can be non-zero for

any d. If γd+j is non-zero the terms in braces in equation 1.17 are

sinh2 2π2γd+j − sinh2 2π2γd+j − sinh2 2π2γd+j + sinh2 2π2γd+j = 0

and similarly if γd−j is non-zero. Thus equation 1.17 becomes

e−8π2γC,0

2(n− j)2

l∑
d=−l

(n− j − |d|){sinh2 2π22γd − 0− 0 + sinh2 2π22γd}

→ e−8π2γC,0

(n− j)

l∑
d=−l

sinh2 4π2γd
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and so by theorem 1.8

D[gC,j] =
1

n− j

∑l
d=−l sinh2 4π2γd

sinh2 4π2γ0

+O(n−3/2)

Further, when j, k > 2l and k − j > 2l, for any value of d, only one of γd, γd+k,

γd−j and γd−j+k can be non-zero and so applying theorem 1.1 C[gC,j, gC,k] = 0. Hence

by applying theorem 1.8

C[rC,j, rC,k] = O(n−3/2)

This provides a test for greater than l-dependence. If the process is a wrapped

MA(l), the variance of rC,2l+1 can be approximated by the estimated variance deter-

mined from rC,2l+1, . . . , rC,2l+N for some N . Since, by theorem 1.9, rC,2l+1 is asymp-

totically normally distributed, we can test to see if rC,2l+1 lies far in the tails of its

estimated distribution.

This is clearly less powerful than the corresponding result for the autocorrelation

function of an MA(l). However it does provide some help with the identification prob-

lem.

1.2.5 Identification of wrapped auto-regressive models

Identifying wrapped MA models is only half of the requirement. For ordinary ARMA

models, the partial auto-correlation function is the usual tool for the identification of

auto-regressive processes. The obvious approach in the wrapped case is to try to find

some analogue for it. The ordinary partial auto-correlation function is the sequence

p1, p2, . . . where pj is the leading coefficient of the AR(j) model fitted to the data, i.e.

pj = pjj where

Yt = pj1Yt−1 + pj2Yt−2 + · · ·+ pjjYt−j + εt

is the maximum likelihood AR(j) model for the observed sequence. Clearly, if the data

is actually observed from an AR(k) process, we expect pj to be nearly zero when j > k.

The pacf can be estimated in two ways. One is simply to perform maximum likelihood

estimation for each value of j. The other, which is equivalent, is to calculate the pacf

from the acf since there is a known bijective relationship between them.
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In the case of the wrapped model, the first approach still works provided maxi-

mum likelihood estimation works for wrapped auto-regressive models. This is shown

to be the case in chapter 2. However, this process is computationally extremely expen-

sive. Alternatively, one might attempt to estimate the auto-correlation function from

the circular auto-correlation function and thence estimate the partial auto-correlation

function. Two difficulties are encountered.

To estimate the auto-correlation function from the circular auto-correlation func-

tion, it seems obvious to exploit the bijective relationship

γC,j = e−4π2γ0 sinh 4π2γj

between γ0, γ1, . . . and γC,1, γC,2, . . . Inverting we obtain

γj =
1

4π2
sinh−1

(
γC,j

[1− 2γC,0]
1
2

)

which suggests estimating the acf by

gj =
1

4π2
sinh−1

(
gC,j

[1− 2gC,0]
1
2

)
(1.18)

Unfortunately, it is not always the case that gC,0 <
1
2
. It is clear from its definition

that gC,0 can be as large as 1. Of course this can be overcome by using some different

function to calculate g0 from gC,0 perhaps derived by some pseudo-Bayesian approach.

However even supposing that this can be done, there is another problem. The

estimated auto-correlation function in the non-wrapped case is always a positive definite

sequence. This is neccesary to calculate the estimated partial auto-correlation function.

On the other hand there is no reason why, in general, a sequence obtained through

(1.18) should be positive definite. This would seem to rule out this whole approach,

leaving only the method of successive maximum likelihood estimates.
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Chapter 2

Estimation for the Wrapped AR(1)

In this chapter I examine the estimation problem for the simplest member of the

wrapped linear family of models — the wrapped AR(1). The chapter opens with a

brief discussion of a crude form of moment estimation. The remainder is devoted to

maximum likelihood estimation. Two sections are devoted to consistency and asymp-

totic normality, both of which draw heavily on the examination of the behaviour of

the the unwrapped AR(1) conditional upon the wrapped process. The chapter closes

with a description of some of the computational properties of the maximum likelihood

estimates.

2.1 Estimation by Moments

For the purpose of comparison with maximum likelihood estimation — in particular

to demonstrate that the latter is justifiable despite its computational complexity – I

commence this chapter by briefly considering a form of moment estimation based on

the ideas in chapter 1.

Moment estimation for the AR(1) is easily formulated from the relationships

φ =
γ1

γ0

and σ2 = γ0(1− φ2)

using the notation of chapter 1. Hence provided suitable estimators g0 and g1 (of γ0 and

γ1 respectively) exist, moment estimation can be performed for the wrapped AR(1).

As described in section 1.2.5 it is obvious to exploit the relationships

γ0 = − 1

8π2
ln[1− 2γC,0]

γ1 =
1

4π2
sinh−1 γC,1√

1− 2γC,0
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to define g0 and g1 in terms of gC,0 and gC,1. The problem, as previously noted, is that

gC,0 is not necessarily less than 1
2
. However, for sufficiently large values of n, this will

occur with very small probability and in what follows I shall ignore this possibility.

Since the estimates are undefined when gC,0 ≥ 1
2
, allowing for this case can only worsen

the properties of the estimators, and since the intention is ultimately to show that

moment estimation is a poor procedure, ignoring this case is of no consequence.

Before proceeding any further, note that gC,j − γC,j is asymptotically of order n−
1
2

by theorem 1.4 and hence all products of two or more of the gC,j−γC,j are of order n−1

or less. Thus, using Taylor series, from g0 = −(8π2)−1 ln[1− 2gC,0] we have

g0 = γ0 +
1

4π2
(1− 2γC,0)−1(gC,0 − γC,0) +O(n−1)

and from g1 = (4π2)−1 sinh−1 gC,1/
√

1− 2gC,0 we have

g1 = γ1 +
1

4π2
(γ2
C,1 + 1− 2γC,0)−

1
2 (gC,1 − γC,1)

+
γC,1
4π2

(1− 2γC,0)−1(γ2
C,1 + 1− 2γC,0)−

1
2 (gC,0 − γC,0) +O(n−1)

These last two equations can be rewritten, by putting A = 1
4π2 (γ2

C,1 + 1 − 2γC,0)−
1
2 ,

B =
γC,1
4π2 (1− 2γC,0)−1(γ2

C,1 + 1− 2γC,0)−
1
2 and C = 1

4π2 (1− 2γC,0)−1 as

g0 = γ0 + C(gC,0 − γC,0) +O(n−1)

and

g1 = γ1 + A(gC,1 − γC,1) +B(gC,0 − γC,0) +O(n−1)

Hence, by the binomial theorem

φ̂ =
g1

g0

= φ+
A

γ0

(gC,1 − γC,1) +
1

γ0

(B − φC)(gC,0 − γC,0) +O(n−1)

and

σ̂ =
√
g0(1− φ̂2)

= σ − σ−1φA(gC,1 − γC,1) + 1
2
σ−1{(1 + φ2)C − 2φB}(gC,0 − γC,0) +O(n−1)

Therefore, by theorem 1.4, φ̂ and σ̂ are consistent and have, asymptotically, a bivariate

normal distribution. Further, by ignoring the O(n−1) terms, the covariance matrix of
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φ̂ and σ̂ can be computed in terms of the (gC,1 − γC,1) and (gC,0 − γC,0). However the

latter covariance matrix is order n−1 by theorem 1.4 and so the covariance matrix of

√
nφ and

√
nσ̂ converges to some positive definite matrix. From theorem 1.1, it is easy

to see that

nC[gC,j, gC,k]→ 1
2
e−8π2γ0

∑
d∈Z

{
e−4π2(γj+γk) sinh2(2π2(γd + γd+k + γd−j + γd−j+k))

−e4π2(γk−γj) sinh2(2π2(−γd + γd+k − γd−j + γd−j+k))

−e4π2(γj−γk) sinh2(2π2(−γd − γd+k + γd−j + γd−j+k))

+e4π2(γj+γk) sinh2(2π2(γd − γd+k − γd−j + γd−j+k))
}

and the limit form of the covariance matrix of
√
nφ and

√
nσ̂ is thence quite easy

to compute numerically. Figure 2.1 shows grey-scale plots of the asymptotic log of

standard deviations of
√
nφ and

√
nσ̂ and the asymptotic correlation between

√
nφ

and
√
nσ̂, for a range of values of the true parameters σ and φ.

2.2 Maximum Likelihood Estimation

The remainder of the chapter is devoted to maximum likelihood estimation. I begin

with a discussion of the likelihood function and its derivatives. There is then a long

and very mathematical section which explores the behaviour of the AR(1) conditional

upon a realisation of the wrapped process and leads to strong results concerning the

decay of dependence with time. These results are used in the two following sections

to show consistency and asymptotic normality of the maximum likelihood estimates.

The latter requires more analysis of the conditional behaviour of the AR(1) dependent

on the wrapped process and is quite involved. The chapter closes with a discussion of

some computational aspects of maximum likelihood estimation.

The mathematical presentation which follows is extremely intricate. There are

a very large number of lemmata and theorems, the main purposes of which I have

attempted to explain in short paragraphs at the beginning of each subsection. To

further aid the reader in comprehending this material, I have included 3 figures (2.2,

2.3, 2.4), which display the dependencies between the various lemmata and theorems

in each of the major sections of mathematical material.
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Figure 2.1: Asymptotic log of standard deviation and correlation between the param-
eter estimates from moment estimation
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Throughout this section let Yt denote an AR(1) process, i.e.

Yt = φYt−1 + εt

where εt is a sequence of independent normal random variables with mean 0 and

variance σ2 and εt is independent of Yt−1, Yt−2, . . .. Let Xt denote the correspond-

ing wrapped process and Kt denote the integer difference between Yt and Xt, i.e.

Yt = Xt + Kt where Kt = [Yt] is the nearest integer to Yt. Note that this implies that

Xt ∈ [−1
2
, 1

2
).

Some other notation needs to be defined. θ denotes the parameter pair (σ, φ) and

the space of allowable values of θ will be denoted by P , i.e. P = {θ : σ > 0 and |φ| ≤ 1}.

The symbol ω will be encountered frequently. ω denotes a realisation of the wrapped

AR(1) process, and will usually be encountered in the form “for all ω”, meaning “for all

realisations of the wrapped AR(1)”. Finally the pseudo-norm ‖x‖Z is used to denote

the distance from x to the nearest integer.

Two very important properties of the wrapped AR(1) which derive from the AR(1)

will be used frequently, often without reference. The first, which has been exten-

sively used in chapter 1, is stationarity. The second is time-reversibility, i.e. if

. . . , Yt, Yt+1, . . . is an AR(1) with parameters φ and σ2, then so is the time-reversed

sequence . . . , Yt, Yt−1, . . .

2.2.1 The Likelihood Function

The likelihood function for an AR(1) model is given by

fYn
1
(yn1 ) =

√
1− φ2

σn(2π)n/2
exp

(
−1

2
σ−2yn1

TMny
n
1

)
(2.1)

where Mn is the n× n matrix

Mn =



1 −φ
−φ 1 + φ2 −φ

−φ 1 + φ2 −φ
. . . . . . . . .

−φ 1 + φ2 −φ
−φ 1


and all the unspecified entries farther off the diagonal are 0. The following lemma puts

an important bound on Mn.
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Lemma 2.1 For any value of n and all x ∈ Rn

(1− |φ|)2‖x‖2 ≤ xTMnx ≤ (1 + |φ|)2‖x‖2

where ‖x‖ denotes the Euclidean norm on Rn.

Proof: Since Mn is positive definite real symmetric, all of its eigenvalues are positive

reals and, for x ∈ Rn,

xTMnx ≥ λmin‖x‖2

where λmin is the smallest eigenvalue of Mn. By theorem A.8, all of the eigenvalues

of Mn lie in the union of the n complex disks defined by

|Mnii − re
iθ| ≤

∑
j 6=i
|Mnij| i = 1, . . . , n

Therefore |1− λmin| ≤ |φ| or |1 + φ2 − λmin| ≤ 2|φ|, i.e.

λmin ≥ min(1− |φ|, (1− |φ|)2) = (1− |φ|2)

The upper bound follows similarly.

Q.E .D.

From (2.1), the likelihood function for a wrapped AR(1) is given by

fXn
1
(xn1 ) =

∑
kn1∈Zn

fYn
1
(xn1 + kn1 )

=

√
1− φ2

σn(2π)n/2
∑

kn1∈Zn
exp

(
−1

2
σ−2(xn1 + kn1 )TMn(xn1 + kn1 )

)
(2.2)

One obvious difficulty is that the X-likelihood function cannot be calculated since

it requires the summation of infinitely many terms. Further even if some finite approx-

imation were adequate, say by summing each kj from −N to N for some N , this would

still appear to require the calculation of Nn terms which would be impractical for all

except the smallest values of n.

Fortunately, there exists a factorisation of the likelihood function which makes it

possible to calculate for large sample sizes and which is crucial to the proofs given later

of properties of the maximum likelihood estimator. It arises as follows:

fXt|Xt−1
1

(xt|xt−1
1 )
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= fXt
1
(xt1)/fXt−1

1
(xt−1

1 )

=
∑

kt1∈Zt

fYt
1
(xt1 + kt1)/fXt−1

1
(xt−1

1 )

=
∑

kt1∈Zt

fYt|Yt−1(xt + kt|xt−1 + kt−1)fYt−1
1

(xt−1
1 + kt−1

1 )/fXt−1
1

(xt−1
1 )

=
∑

kt,kt−1∈Z

fYt|Yt−1(xt + kt|xt−1 + kt−1)fYt−1,X
t−2
1

(xt−1 + kt−1,x
t−2
1 )/fXt−1

1
(xt−1

1 )

=
∑
j,k∈Z

fYt|Yt−1(xt + j|xt−1 + k)P [Yt−1 = xt−1 + k|Xt−1
1 = xt−1

1 ] (2.3)

Also

P [Yt = xt + j|Xt
1 = xt1]

= fYt,Xt−1
1

(xt + j,xt−1
1 )/fXt

1
(xt1)

=
∑
k∈Z

fYt|Yt−1(xt + j|xt−1 + k)fYt−1,X
t−2
1

(xt−1 + k,xt−2
1 )

fXt|Xt−1
1

(xt|xt−1
1 )fXt−1

1
(xt−1

1 )

=
∑
k∈Z

fYt|Yt−1(xt + j|xt−1 + k)P [Yt−1 = xt−1 + k|Xt−1
1 = xt−1

1 ]/fXt|Xt−1
1

(xt|xt−1
1 )

From this it is clear that, provided we keep track of P [Yt = xt+j|Xt
1 = xt1] at every

stage, it is possible to calculate each fXt|Xt−1
1

(xt|xt−1
1 ) with a fixed amount of effort

independent of t. In other words the likelihood function takes order n calculations.

These conditional probabilities are of the utmost importance in the rest of the chapter

and we shall denote them by at, where the vector at has components

at,k = P [Yt = Xt + k|Xt
1]

i.e., for t ≥ 1,

at,j =
∑
k∈Z

fYt|Yt−1(Xt + j|Xt−1 + k)at−1,k/fXt|Xt−1
1

(Xt|Xt−1
1 ) (2.4)

Note that the at,k depend, in general, on the sequence X1, . . . , Xt. This dependence

will not usually be made explicit. The appropriate sequence should be obvious from the

context. The following lemma puts an important uniform bound on fXt|Xt−1
1

(xt|xt−1
1 ).
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Lemma 2.2 There exists a positive continuous function K(.) such that K(σ)→ 1 as

σ →∞ and such that for all real y

K−1(σ) ≤
∑
k∈Z

(σ
√

2π)−1 exp
(
−1

2
σ−2(y + k)2

)
≤ K(σ) (2.5)

Further, for all t and ω and for all θ ∈ P,

K−1(σ) ≤ fXt|Xt−1
1

(Xt|Xt−1
1 ) ≤ K(σ)

Proof: Denote by h(y, σ) the function occurring in the centre of (2.5). Clearly h exists

and is positive for all y and all σ > 0. Also, for each σ, h is a periodic function of y,

with period 1. So we need only consider whether the inequalities are satisfied for all

y in [−1
2
, 1

2
]. But h is the absolutely convergent sum of functions, uniformly continuous

at each σ and y, and is therefore continuous. Any continuous function on a closed

interval attains its infimum and supremum on that interval. Therefore, for each σ,

inf
y∈[− 1

2
, 1
2

]
h(y, σ) and sup

y∈[− 1
2
, 1
2

]

h(y, σ)

both exist and are positive continuous functions of σ. Thus the function K is easily

chosen to satisfy the inequalities in (2.5). As σ tends to infinity, the sum in (2.5) tends

uniformly in y to the integral of the normal probability density function having that

variance. For, if k 6= 1,

(σ
√

2π)−1

∣∣∣∣∫ 1
2

− 1
2

[
exp(−1

2
σ−2(y + k)2)− exp(−1

2
σ−2(x+ k)2)

]
dx

∣∣∣∣
≤ (σ

√
2π)−1

[
exp(−1

2
σ−2(|k| − 1

2
)2)− exp(−1

2
σ−2(|k|+ 1

2
)2)
]

and so the difference between the integral and the sum is less than

(σ
√

2π)−1

∣∣∣∣∫ 1
2

− 1
2

exp(−1
2
σ−2x2) dx− exp(−1

2
σ−2y2)

∣∣∣∣+ 2(σ
√

2π)−1 exp(−1
8
σ2)

which clearly tends to 0, uniformly in y, as σ →∞. But the integral is always 1, which

is the desired limit.

The final part of the proposition follows from the fact that the conditional density

is a mixture of the functions in (2.5) evaluated at different values of y. Since the bound

is uniform in y, it must hold for the mixture.

Q.E .D.
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2.2.2 Derivatives of the log-likelihood function

For the purposes of maximum likelihood estimation the derivatives of the likelihood

function are critically important. The complicated likelihood function gives rise to

complicated derivatives. The purpose of this section is largely to introduce notation

simplifying their algebraic form. From (2.2)

∂σfXn
1
(xn1 ) =

−n
σ
fXn

1
(xn1 ) +

1

σ3

∑
kn1∈Zn

(xn1 + kn1 )TMn(xn1 + kn1 )f(xn1 + kn1 )

and so

∂σ ln fXn
1
(xn1 ) =

−n
σ

+
1

σ3

∑
kn1∈Zn(xn1 + kn1 )TMn(xn1 + kn1 )f(xn1 + kn1 )∑

kn1∈Zn f(xn1 + kn1 )

But

f(xn1 + kn1 )∑
kn1∈Zn f(xn1 + kn1 )

= P [Yn
1 = xn1 + kn1 |Xn

1 = xn1 ]

and so

∂σ ln fXn
1
(Xn

1 ) =
−n
σ

+
1

σ3
E[(Yn

1 )TMnY
n
1 |Xn

1 ] (2.6)

By a similar argument

∂φ ln fXn
1
(Xn

1 ) =
−φ

1− φ2
− 1

2σ2
E[(Yn

1 )T∂φMnY
n
1 |Xn

1 ] (2.7)

Now, writing

Sn(Yn
1 ) = (Yn

1 )TMnY
n
1 = (1− φ2)Y 2

1 +
n∑
j=2

(Yj − φYj−1)2

Tn(Yn
1 ) = (Yn

1 )T∂φMnY
n
1 = −2φY 2

1 +−2
n∑
j=2

Yj−1(Yj − φYj−1)

Un(Yn
1 ) = (Yn

1 )T∂2
φMnY

n
1 = 2

n−1∑
j=2

Y 2
j

it is obvious that

∂φSn = Tn ∂φTn = Un ∂φUn = 0

and

∂σSn = ∂σTn = ∂σUn = 0
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Further, if H(Yn
1 ) is any function of Yn

1 , σ, and φ,

∂σE[H(Yn
1 )|Xn

1 ] =
∂

∂σ

∑
kn1∈Zn H(xn1 + kn1 )f(xn1 + kn1 )∑

kn1∈Zn f(xn1 + kn1 )

=

∑
kn1∈Zn

∂
∂σ
H(xn1 + kn1 )f(xn1 + kn1 )∑

kn1∈Zn f(xn1 + kn1 )

+

∑
kn1∈Zn H(xn1 + kn1 )

(
−n
σ

+ 1
σ2Sn(xn1 + kn1 )

)
f(xn1 + kn1 )∑

kn1∈Zn f(xn1 + kn1 )

−
∑

kn1∈Zn H(xn1 + kn1 )f(xn1 + kn1 )∑
kn1∈Zn f(xn1 + kn1 )

.

∑
kn1∈Zn(−n

σ
+ 1

σ2Sn(xn1 + kn1 ))f(xn1 + kn1 )∑
kn1∈Zn f(xn1 + kn1 )

= E[
∂

∂σ
H(Yn

1 )|Xn
1 ]− n

σ
E[H(Yn

1 )|Xn
1 ] +

1

σ3
E[H(Yn

1 )Sn(Yn
1 )|Xn

1 ]

−E[H(Yn
1 )|Xn

1 ]
(
−n
σ

+
1

σ3
E[Sn(Yn

1 )|Xn
1 ]
)

= E[
∂

∂σ
H(Yn

1 )|Xn
1 ] +

1

σ3
C[H(Yn

1 ), Sn(Yn
1 )|Xn

1 ] (2.8)

and, by a similar argument,

∂

∂φ
E[H(Yn

1 )|Xn
1 ] = E[

∂

∂φ
H(Yn

1 )|Xn
1 ]− 1

2σ2
C[H(Yn

1 ), Tn(Yn
1 )] (2.9)

Thus, by repeated application of (2.8) and (2.9) to (2.6) and (2.7)

∂σ ln fXn
1
(xn1 ) =

−n
σ

+
1

σ3
E[Sn(Yn

1 )|Xn
1 ] (2.10)

∂φ ln fXn
1
(xn1 ) =

−φ
1− φ2

− 1

2σ2
E[Tn(Yn

1 )|Xn
1 ] (2.11)

∂2
σ ln fXn

1
(xn1 ) =

n

σ2
− 3

σ4
E[Sn(Yn

1 )|Xn
1 ] +

1

σ6
D[Sn(Yn

1 )|Xn
1 ] (2.12)

∂φ∂σ ln fXn
1
(xn1 ) =

1

σ3
E[Tn(Yn

1 )|Xn
1 ]− 1

2σ5
C[Tn(Yn

1 ), Sn(Yn
1 )|Xn

1 ] (2.13)

∂2
φ ln fXn

1
(xn1 ) = − 1 + φ2

(1− φ2)2
− 1

2σ2
E[Un(Yn

1 )|Xn
1 ] +

1

4σ4
D[Tn(Yn

1 )|Xn
1 ] (2.14)
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∂3
σ ln fXn

1
(xn1 ) =

−2n

σ3
+

12

σ5
E[Sn(Yn

1 )|Xn
1 ]− 9

σ7
D[Sn(Yn

1 )|Xn
1 ]

+
1

σ9
III[Sn(Yn

1 ), Sn(Yn
1 ), Sn(Yn

1 )|Xn
1 ] (2.15)

∂φ∂
2
σ ln fXn

1
(xn1 ) =

−3

σ4
E[Tn(Yn

1 )|Xn
1 ] +

7

2σ6
C[Tn(Yn

1 ), Sn(Yn
1 )|Xn

1 ]

− 1

2σ8
III[Sn(Yn

1 ), Sn(Yn
1 ), Tn(Yn

1 )|Xn
1 ] (2.16)

∂2
φ∂σ ln fXn

1
(xn1 ) =

1

σ3
E[Un(Yn

1 )|Xn
1 ]− 1

σ5
D[Tn(Yn

1 )|Xn
1 ]

− 1

2σ5
C[Un(Yn

1 ), Sn(Yn
1 )|Xn

1 ]

+
1

4σ7
III[Tn(Yn

1 ), Tn(Yn
1 ), Sn(Yn

1 )|Xn
1 ] (2.17)

∂3
φ ln fXn

1
(xn1 ) = −2φ(φ2 + 3)

(1− φ2)3
+ +

3

4σ4
C[Tn(Yn

1 ), Un(Yn
1 )|Xn

1 ]

− 1

8σ6
III[Tn(Yn

1 ), Tn(Yn
1 ), Tn(Yn

1 )|Xn
1 ] (2.18)

2.2.3 The AR(1) conditional upon the wrapped AR(1)

The behaviour of Yn
1 conditional upon Xn

1 is the key to analysis of the wrapped AR(1).

We shall see that the Markovian behaviour remains, although it is non-homogeneous,

and that a number of uniform inequalities can be found for the decay of information

over time. The key idea is to show the existence of an appropriate metric on infinite

dimensional vectors which is strictly reduced by the Markov transition operators. The

inequalities obtained will be used to derive bounds for strong mixing coefficients and

hence some bounds on expectations and covariances of polynomials.

Theorem 2.3 Conditional upon Xn
1 , K1, . . . , Kn form a Markov chain. Further the

transition matrix from Kj to Kj+1 conditional upon Xn
1 is a function only of Xn

j and

not of Xj−1
1 .

Proof: Let Pn[.] denote probabilities conditional upon Xn
1 . Then

Pn[Kj+1 = kj+1|Kj
1 = kj1]

= Pn[Kj+1
1 = kj+1

1 ]/Pn[Kj
1 = kj1]
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Figure 2.2: Tree illustrating the dependencies between the various lemmata and theo-
rems in section 2.2.3
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=
fXn

j+2,Y
j+1
1

(xnj+2,x
j+1
1 + kj+1

1 )/fXn
1
(xn1 )

fXn
j+1,Y

j
1
(xnj+1,x

j
1 + kj1)/fXn

1
(xn1 )

=
fXn

j+2|Yj+1
(xnj+2|xj+1 + kj+1)fYj+1|Yj(xj+1 + kj+1|xj + kj)fYj

1
(xj1 + kj1)

fXn
j+1|Yj(x

n
j+1|xj + kj)fYj

1
(xj1 + kj1)

=
fXn

j+2|Yj+1
(xnj+2|xj+1 + kj+1)fYj+1|Yj(xj+1 + kj+1|xj + kj)

fXn
j+1|Yj(x

n
j+1|xj + kj)

which does not involve kj−1
1 or xj−1

1 . Thus the results follow.

Q.E .D.

Notation

Before proceeding further, some notation must be introduced. The reasons for these

notations should become clear as they are used. Frequent use will be made of the

transition matrices of theorem 2.3. Therefore, for j ≤ n, define nT
(j) to be the matrix,

depending on ω and θ, given by

(
nT

(j)
)
k1k2

= PXn
m

[Kj = k1|Kj−1 = k2] (2.19)

where m ≤ j − 1. Note that there is no reference to m attached to T because of the

second result of theorem 2.3. In many contexts there is no risk of confusion as to the

value of n, and so it will be dropped from T for typographical convenience. For any

B ⊂ P , define T (B) = {nT (j) : n ≥ j; θ ∈ B and some ω}.

The vector P [Kj = .|Xn
m] also will occur frequently and will be denoted by p

(m,n)
j where

(
p

(m,n)
j

)
k

= P [Kj = k|Xn
m] (2.20)

A special case of this is the vector aj which has already been introduced in section 2.2.1.

aj = p
(1,j)
j = P [Kj = .|Xj

1]

Denote by f (t) the matrix generated from the conditional density of Yt by

f
(t)
jk = fYt|Yt−1(Xt + j|Xt−1 + k) (2.21)

Related to this define the matrix F (ε), for all θ ∈ P and all ε by

Fjk(ε) = exp
[
−1+ε

2σ2 (j − φk)2
]

(2.22)
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Finally, denote by ‖.‖γ the norm defined by

‖a‖γ =
∑
j∈Z

eγj
2|aj| (2.23)

and, by Dγ, the metric defined by

Dγ(a,b) = ‖a− b‖γ

Uniform domination for the p
(m,n)
j

In this section I present some lemmas leading to uniform upper and lower bounds for

the elements of the p
(m,n)
j . The sequence is to show the existence of appropriate bounds

for the elements of the f (t), then for the at vectors and hence for the p
(m,n)
j .

Lemma 2.4 Let B ⊂ P be compact, and ε > 0 be sufficiently small. There exists C

such that

C−1Fjk(ε) ≤ f
(t)
jk ≤ CFjk(−ε) (2.24)

for all j, k, t, ω and θ ∈ B.

Proof: From (2.21)

f
(t)
jk = (σ

√
2π)−1 exp

[
−1

2
σ−2(j + x− φ(k + y))2

]
where x, y ∈ [−1

2
, 1

2
]. However, for any ε > 0,

C1 = sup (j + x− φ(y + k))2 − (1 + ε)(j − φk)2

= sup−ε(j − φk)2 + 2(j − φk)(x− φy) + (x− φy)2

exists, where the supremum is taken over j, k ∈ Z, x, y ∈ [−1
2
, 1

2
] and θ ∈ B. Hence

f
(t)
jk ≥ (σ

√
2π)−1 exp

[
−1

2
σ−2C1

]
exp

[
1+ε
2σ2 (j − φk)2

]
But since B is compact, infθ∈B(σ

√
2π)−1 exp

[
−1

2
σ−2C1

]
is positive. This proves the

left inequality in (2.24). The proof of the right inequality is similar.

Q.E .D.

Lemma 2.5 Let B ⊂ P be compact. Then, if Γ > 0 is such that Γ < 1 − φ2 for all

θ ∈ B, for all sufficiently small ε > 0 there exists C such that for all k, θ ∈ B and

0 < γ < (1− φ2 − Γ)/2σ2

‖F.k(−ε)‖γ ≤ Ce(1−ε)γk2
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Proof: From (2.22)

‖F.k(−ε)‖γ =
∑
j∈Z

eγj
2

exp
[
−1−ε

2σ2 (j − φk)2
]

= exp
[

γ(1−ε)
1−ε−2γσ2φ

2k2
]∑
j∈Z

exp
[
− (1−ε−2γσ2)

2σ2 (j − 1−ε
1−ε−2γσ2φk)2

]

≤ σ
√

2πK(σ/
√

1− ε− 2γσ2)√
1− ε− 2γσ2

exp
[

γ(1−ε)
1−ε−2γσ2φ

2k2
]

where K is the continuous function of lemma 2.2. Provided that ε < Γ, 1 ≥ 1 − ε −

2γσ2 ≥ φ2 if 0 < γ < (1− φ2 − Γ)/2σ2. Therefore, since B is compact

σ
√

2πK(σ/
√

1− ε− 2γσ2)√
1− ε− 2γσ2

is bounded, by C say. Thus

‖F.k(−ε)‖γ ≤ Ceγ(1−ε)k2

as required.

Q.E .D.

Lemma 2.6 Let B ⊂ P be compact. Then, if Γ > 0 and ε > 0 there exists C such

that for all k, θ ∈ B and γ ∈ (0,Γ)

‖F.k(ε)‖−γ ≥ Ce−γφ
2k2

Proof: From (2.22)

‖F.k(ε)‖−γ

=
∑
j∈Z

e−γj
2

exp
[
−1+ε

2σ2 (j − φk)2
]

= exp
[
− γ(1+ε)

1+ε+2γσ2φ
2k2

]∑
j∈Z

exp
[
− (1+ε+2γσ2)

2σ2 (j − 1+ε
1+ε+2γσ2φk)2

]

≥ σ
√

2πK−1(σ/
√

1 + ε+ 2γσ2)√
1 + ε+ 2γσ2

exp
[
− γ(1+ε)

1+ε+2γσ2φ
2k2

]
where K is the continuous function in lemma 2.2. But γ is bounded and B is compact,

so σ
√

2πK−1(σ/
√

1 + ε+ 2γσ2)/
√

1 + ε+ 2γσ2 has a lower bound, C say. Thus

‖F.k(ε)‖−γ ≥ Ce−γφ
2k2

as required.

Q.E .D.
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Lemma 2.7 Let B ⊂ P be compact. If d > 0 is such that 1 − φ2 > d > 0 for all

θ ∈ B, there exists C > 0 such that for all θ ∈ B and for all t and ω

∑
j∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
at,j ≤ C

Proof: By lemma 2.2 and (2.4) there exists a continuous function K(σ) such that

∑
j∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
at+1,j ≤ K(σ)

∑
j,k∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
f

(t+1)
jk at,k

= K(σ)
∑
k∈Z

‖f (t+1)
.k ‖(1−φ2−d)/2σ2at,k

and, by lemmas 2.5 and 2.4, there exists C1 and ε > 0 so that this last is dominated

by

C1K(σ)
∑
k∈Z

exp
[

(1−ε)(1−φ2−d)
2σ2 k2

]
at,k

for all t, ω and θ ∈ B. Since K is continuous and B compact, there exists C2 so

that K(σ) ≤ C2 for all θ ∈ B. However, from the definition of d, the infimum of

(1− φ2 − d)/2σ2 over θ ∈ B exists and is positive. Hence there exists J so that for all

|k| ≥ J and θ ∈ B

exp
[

(1−ε)(1−φ2−d)
2σ2 k2

]
≤ 1

2
C−1

1 C−1
2 exp

[
(1−φ2−d)

2σ2 k2
]

Therefore

∑
j∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
at+1,j

≤ 1
2

∑
|j|≥J

exp
[

(1−φ2−d)
2σ2 j2

]
at,j + C1C2

∑
|j|<J

exp
[

(1−φ2−d)
2σ2 j2

]
at,j

≤ 1
2

∑
j∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
at,j + C1C2 exp

[
(1−φ2−d)

2σ2 J2
]

The result then follows from the contractive nature of this inequality, provided there

is an upper bound in the case of a1. But, again by lemma 2.2, there exists continuous

K such that

∑
j∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
a1,j

=

∑
j∈Z exp

[
(1−φ2−d)

2σ2 j2
] √

1−φ2

σ
√

2π
exp

[
− (1−φ2)

2σ2 (j +X1)2
]

∑
j∈Z

√
1−φ2

σ
√

2π
exp

[
− (1−φ2)

2σ2 (j +X1)2
]
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≤
√

1− φ2

σ
√

2π
K(σ/

√
1− φ2) exp

[
(1−φ2)(1−φ2−d)

d
X2

1

]∑
j∈Z

exp
[
− d
σ2 (j + 1−φ2

d
X1)2

]

≤ d−
1
2

√
1− φ2K(σ/

√
1− φ2)K(σ/

√
d) exp

[
(1−φ2)(1−φ2−d)

4d

]
which is a continuous function of θ and hence has an upper bound for θ ∈ B since B

is compact.

Q.E .D.

Lemma 2.8 Let B ⊂ P be compact. If d > 0 is such that 1 − φ2 > d > 0 for all

θ ∈ B, there exists C > 0 such that

at,j ≤ C exp
[
− (1−φ2−d)

2σ2 j2
]

for all j ∈ Z, t, ω and θ ∈ B.

Proof: By lemma 2.7, there exists C such that

∑
j∈Z

at,j exp
[

(1−φ2−d)
2σ2 j2

]
≤ C

and so

at,j exp
[

(1−φ2−d)
2σ2 j2

]
≤ C

for any j, which is the desired result.

Q.E .D.

Lemma 2.9 Let B ⊂ P be compact. Then there exists a sequence cj > 0, j ∈ Z such

that at,j ≥ cj for all j, t, ω and all θ ∈ B.

Proof: By lemma 2.7 there exists some d > 0 and some C such that

∑
j∈Z

exp
[

(1−φ2−d)
2σ2 j2

]
at,j ≤ C (2.25)

for all t, w and θ ∈ B. For j ∈ N set

bj = inf
θ∈B

exp
[

(1−φ2−d)
2σ2 j2

]
The sequence bj, j ∈ N increases monotonically to infinity. Let J be such that bJ > C.

Then

∑
|j|<J

at,j ≥
bJ − C
bJ
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for all t, w and θ ∈ B, because otherwise (2.25) is contradicted. But, by lemma 2.2,

at+1,j ≥ K−1(σ)
∑
k∈Z

f
(t+1)
jk at,k

≥ K−1(σ)
∑
|k|<J

f
(t+1)
jk at,k

≥ K−1(σ)

σ
√

2π
exp

[
− 1

2σ2 (|j|+ |φ|J + 1)2
] ∑
|k|<J

at,k

≥ K−1(σ)

σ
√

2π
exp

[
− 1

2σ2 (|j|+ |φ|J + 1)2
]

(bJ − C)/bJ

But C, J and bJ are independent of j, t, ω and θ. Hence this positive lower bound is

continuous in θ ∈ B and has a positive infimum for θ ∈ B as required.

Q.E .D.

Lemma 2.10 Let B ⊂ P be compact. If d > 0, there exists C > 0 such that

at,j ≥ C exp
[
−1−φ2+d

2σ2 j2
]

for all j ∈ Z, t, ω and θ ∈ B.

Proof: Let α(at) be the largest number such that, for all j,

at,j ≥ α exp
[
− (1−φ2+d)

2σ2 j2
]

Then, by lemma 2.2 and (2.4)

at+1,j ≥ K−1(σ)
∑
k∈Z

f
(t+1)
jk at,k

≥ α(at)K
−1(σ)

∑
k∈Z

f
(t+1)
jk exp

[
− (1−φ2+d)

2σ2 k2
]

and, by lemma 2.4, for any sufficiently small ε1 > 0 there exists C1 such that this last

is bounded below by

α(at)K
−1(σ)C1

∑
k∈Z

exp
[
− (1+ε1)

2σ2 (j − φk)2
]

exp
[
−1−φ2+d

2σ2 k2
]

= α(at)K
−1(σ)C1 exp

[
− (1+ε1)(1−φ2+d)

2σ2(1+d+ε1φ2)
j2
] ∑
k∈Z

exp
[
− (1+d+εφ2)

2σ2 (k − φ(1+ε1
1+d+ε1φ2 j)

2
]

≥ α(at)K
−1(σ)C1K

−1(σ/
√

1 + ε1φ2 + d) exp
[
− (1+ε)(1−φ2+d)

2σ2(1+d+εφ2)
j2
]
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for all j, t, ω and θ ∈ B. Take ε1 < d. Then, from the definition of d and compactness

of B, the infimum, C2, over θ ∈ B of (1− φ2 + d)/2σ2 is positive. Since C2 > 0, there

exists J so that for all |j| ≥ J and θ ∈ B

exp
[
− (1+ε)(1−φ2+d)

2σ2(1+d+εφ2)
j2
]
≥ K(σ)C−1

1 K(σ/
√

1 + d+ ε1φ2) exp
[
− (1−φ2+d)

2σ2 j2
]

Also, by lemma 2.9, there exists C3 such that, for all |j| < J , t, ω and θ ∈ B,

at+1,j ≥ C3 exp
[
−1−φ2+d

2σ2 j2
]

These two equations together imply that, for all t, ω and θ ∈ B,

α(at+1) ≥ min(α(at), C3))

The result then follows if α(a1) has a lower bound. But, by lemma 2.2, for some

continuous function K

α(a1) = inf
k∈Z

exp
[

1+d−φ2

2σ2 k2
] √

1−φ2

σ
√

2π
exp

[
−1−φ2

2σ2 (X1 + k)2
]

√
1−φ2

σ
√

2π

∑
j∈Z exp

[
−1−φ2

2σ2 (X1 + k)2
]

≥ inf
x1,k

√
1− φ2

σ
√

2πK(σ/
√

1− φ2)
exp

[
1

2σ2 (dk2 − 2(1− φ2)kX1 − (1− φ2)X2
1 )
]

≥
√

1− φ2

σ
√

2πK(σ/
√

1− φ2)
exp

[
− (1−φ2)

8σ2 (1 + (1− φ2)d−1)
]

and hence, since B is compact, there exists a lower bound which is independent of ω

and θ ∈ B as required.

Q.E .D.

The bounds derived so far are only for the at. However p
(m,n)
j can be written in

terms of time-shifted and time-reversed at. For

(
p

(m,n)
j

)
k

= P [Kj = k|Xn
m]

=
fXj−1

m ,Yj ,Xn
j+1

(Xj−1
m , Xj + k,Xn

j+1)

fXn
m

(Xn
m)

and

fXj−1
m ,Yj ,Xn

j+1
(Xn

j+1, Xj + k,Xn
j+1)

= fXn
j+1|Yj(X

n
j+1|Xj + k)fYj ,Xj−1

m
(Xj + k|Xj−1

m )
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=
fYj ,Xn

j+1
(Xj + k,Xn

j+1)fYj ,Xj−1
m

(Xj + k,Xj−1
m )

fYj(Xj + k)

=
P [Kj = k|Xn

j ]P [Kj = k|Xj
m]

P [Kj = k|Xj]
.
fXn

j
(Xn

j )fXj
m

(Xj
m)

fXj(Xj)

and so

(p
(m,n)
j )k ∝

P [Kj = k|Xn
j ]P [Kj = k|Xj

m]

P [Kj = k|Xj]
(2.26)

The following theorem exploits this identity to provide upper and lower bounds on

the p
(m,n)
j .

Theorem 2.11 Let B ⊂ P be compact. Then if d > 0 such that (1−φ2) > 3d > 0 for

all θ ∈ B, there exist C1 > 0 and C2 such that

C1 exp
[
− (1−φ2+3d)

2σ2 k2
]
≤ (p

(m,n)
j )k ≤ C2 exp

[
− (1−φ2−3d)

2σ2 k2
]

for all m, n, j, k, ω and θ ∈ B.

Proof: By stationarity and time-reversibility of Yt, the vectors P [Kj = .|Xn
j ], P [Kj = .|Xj

m]

and P [Kj = .|Xj] have the same distribution (and hence the same bounds) as an−j+1,

aj−m+1 and a1 respectively. Therefore by lemmas 2.8 and 2.10 there exist C1 > 0 and

C2 such that

C2
1

C2

exp
[
− (1−φ2+3d)

2σ2 k2
]
≤

P [Kj = k|Xn
j ]P [Kj = k|Xj

m]

P [Kj = k|Xj]

≤ C2
2

C1

exp
[
− (1−φ2−3d)

2σ2 k2
]

for all j, m, n, k, ω and θ ∈ B. But there exists C3 > 0 such that

C3 ≤
C2

1σ
√

2π

C2K(σ/
√

1− φ2 + 3d)
√

1− φ2 + 3d

≤ C2
1

C2

∑
k∈Z

exp
[
− (1−φ2+3d)

2σ2 k2
]

for all θ ∈ B, and there exists C4 <∞ such that

C4 ≥
C2

2

C1

∑
k∈Z

exp
[
− (1−φ2−3d)

2σ2 k2
]

for all θ ∈ B. Hence

C2
1

C2C4

exp
[
− (1−φ2+3d)

2σ2 k2
]
≤ (p

(m,n)
j )k ≤

C2
2

C1C3

exp
[
− (1−φ2−3d)

2σ2 k2
]

for all j, m, n, k, ω and θ ∈ B, as required.

Q.E .D.
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Time-decay of dependence

In this section I show that the influence of Xj on the conditional distribution of Kk

given some collection of Xt’s including Xj diminishes geometrically as j → −∞ (or∞).

The key is to show that for an appropriate choice of metric, the transition operators

nT
(t) strictly reduce the distance between probability distributions on Z.

Lemma 2.12 Let B ⊂ P be compact. Then, for all sufficiently small γ, there exists

C > 0 such that for all m, n, j, ω and all θ ∈ B

‖p(m,n)
j ‖γ ≤ C

Proof: By theorem 2.11, for any sufficiently small d there exists C1 such that

(p
(m,n)
j )k ≤ C1 exp

[
− (1−φ2−d)

2σ2 k2
]

for all k, j, m, n, ω and θ ∈ B. Therefore

‖p(m,n)
j ‖γ

≤ C1

∑
k∈Z

eγk
2

exp
[
− (1−φ2−d)

2σ2 k2
]

= C1

∑
k∈Z

exp
[
− (1−φ2−d−2γσ2)

2σ2 k2
]

≤ C1
σ
√

2πK(σ/
√

1− φ2 − d− 2γσ2)√
1− φ2 − d− 2γσ2

where K is the continuous function of lemma 2.2. Provided, d + 2σ2γ < (1 − φ2) for

all θ ∈ B, this has a uniform upper bound for θ ∈ B since B is compact.

Q.E .D.

Lemma 2.13 Let B ⊂ P be compact. Then, for all sufficiently small d and ε, there

exists C such that, for all j, k and T ∈ T (B),

C−1e−(1−ε)dk2

e−dj
2

Fjk(ε) ≤ Tjk ≤ Ceφ
2dk2

edj
2

Fjk(−ε)

Proof: From the definition of T (B), T is nT
(t) for some n, t, ω and θ ∈ B. Thus,

from the proof of theorem 2.3, we have

nT
(t)
jk =

fXn
t+1|Yt(x

n
t+1|xt + j)fYt|Yt−1(xt + j|xt−1 + k)

fXn
t |Yt−1(x

n
t |xt−1 + k)
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i.e.

nT
(t)
jk =

gjf
(t)
jk∑

j∈Z gjf
(t)
jk

(2.27)

where

gj = fXn
t+1|Yt(x

n
t+1|xt + j)

∝ P [Kt = j|Xn
t ]

P [Kt = j|Xt]

Then, by theorem 2.11, since (2.27) is not affected by multiplying g by an arbitrary

scalar, given any sufficiently small δ, there exist C1 > 0 and C2 <∞ such that

C1 exp
[
− δ

2σ2 j
2
]
≤ gj ≤ C2 exp

[
δ

2σ2 j
2
]

for all j, and T ∈ T (B). Take d = supθ∈B δ/2σ
2. By lemma 2.4, for all sufficiently

small ε > 0, there exists C3 > 0 and C4 such that, for all j, k and T ∈ T (B)

C3Fjk(ε) ≤ f
(t)
jk ≤ C4Fjk(−ε)

Lemma 2.5 implies the existence of C5 such that

‖F.k(−ε)‖d ≤ C5e
(1−ε)dk2

and lemma 2.6 implies the existence of C6 such that

‖F.k(ε)‖−d ≥ C6e
−φ2dk2

Hence

C1C3e
−dj2Fjk(ε)

C2C4C5e(1−ε)dk2 ≤ Tjk ≤
C2C4e

dj2Fjk(−ε)
C1C3C6e−φ

2dk2

from which the result follows.

Q.E .D.

Lemma 2.14 Let B ⊂ P be compact. Then there exist L ∈ N, Γ > 0 and δ < 1 such

that for all γ ∈ (0,Γ), |k| ≥ L, and T ∈ T (B),

‖T.k‖γ ≤ eδγk
2
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Proof: For every T ∈ T (B) and integer k, Tjk as a function of j defines a probability

distribution on Z and hence on R. Denote this distribution function by Fk. Thus

‖T.k‖γ is simply the expectation of eγx
2

with respect to Fk, i.e.

‖T.k‖γ =
∫ ∞
−∞

eγx
2

dFk(x) =
∫ ∞

0
eγx

2

dF̃k(x)

where F̃k(x) = Fk(x) − Fk(−x). Now note that, if h is a positive increasing function

on R+ and F and G are distribution functions on R+ such that F (x) ≥ G(x) for all

x ∈ R+,

∫ ∞
0

h(x)dF (x) =
∫ 1

0
h(F−1(z))dz

≤
∫ 1

0
h(G−1(z))dz

=
∫ ∞

0
h(x)dG(x)

The proof of this lemma is then largely one of finding an appropriate sequence of

distribution functions Gk such that F̃k(x) ≥ Gk(x) for all x ≥ 0 and all possible F̃k(.).

Let Wk be a random variable having distribution function Fk(.). Then, applying

lemma 2.13, for sufficiently small d and ε1, there exists C1 such that, for all T ∈ T (B)

P [|Wk| ≥ J ] =
∑
|j|≥J

Tjk

≤
∑
|j|≥J

C1e
φ2dk2

edj
2

Fjk(−ε1)

= C1e
φ2dk2

exp
[

d(1−ε1)
(1−ε1−2dσ2)

φ2k2
] ∑
|j|≥J

exp
[
−1−ε1−2dσ2

2σ2 (j − 1−ε1
1−ε1−2dσ2φk)2

]

≤ 2C1e
φ2dk2

exp
[

d(1−ε1)
1−ε1−2dσ2φ

2k2
]∑
j≥J

exp
[
−1−ε1−2dσ2

2σ2 (j − 1−ε1
1−ε1−2dσ2 |φ||k|)2

]

Now let d and ε1 be so small that, for all θ ∈ B

√
|φ| > 1− ε1

1− ε1 − 2dσ2
|φ|

and

φ2d+
d(1− ε1)

1− ε1 − 2dσ2
<
(√
|φ| − 1− ε1

1− ε1 − 2dσ2
|φ|
)2 1− ε1 − 2dσ2

2dσ2
(2.28)
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Since B is compact and the functions on each side of (2.28) are continuous, there exists a

minimum difference, C2 say, between the two sides. Then, putting ε2 = supθ∈B ε1+2dσ2

and σ̃ = supθ∈B σ

P [|Wk| ≥ J ] ≤ 2C1e
−C2k2 ∑

j≥J
exp

[
−1−ε2

2σ̃2 (j −
√
|φ||k|)2

]

for all k, J ≥
√
|φ||k| and T ∈ T (B). And so for any real w ≥

√
|φ||k|+ 1

P [|Wk| ≥ w] ≤ 2C1e
−C2k2

∫ ∞
w−1

exp
[
−1−ε2

2σ̃2 (w −
√
|φ|k)2

]
dw

Let L1 be such that C1e
−C2k2 ≤

√
1− ε2/(σ̃

√
2π) for k ≥ L1 and all T ∈ T (B). Put

ψk = |k|
√
|φ|+ 1 and define

Gk(z) =


0 : 0 < z < ψk

2
√

1−ε2
σ̃
√

2π

∫ z−ψk
0 exp

[
− (1−ε2)

2σ̃2 x2
]
dx : ψk ≤ z ≤ ∞

Then, for z > ψk

Gk(z) = 1− 2

√
1− ε2
σ̃
√

2π

∫ ∞
z−ψk

exp
[
− (1−ε2)

2σ̃2 x2
]
dx

= 1−
√

1− ε2
σ̃
√

2π

∫ ∞
z−1

exp
[
− (1−ε2)

2σ̃2 (x−
√
φk)2

]
dx

≤ P [|Wk| ≤ z]

for all k ≥ L1 and T ∈ T (B). But

∫ ∞
0

exp
[
γ(1−ε2)

2σ̃2 x2
]
dGk(x)

= 2

√
1− ε2
σ̃
√

2π

∫ ∞
ψk

exp
[
γ(1−ε2)

2σ̃2 x2
]

exp
[
−1−ε2

2σ̃2 (x− ψk)2
]
dx

= 2

√
1− ε2
σ̃
√

2π
exp

[
γ(1−ε2)

2(1−γ)σ̃2ψ
2
k

] ∫ ∞
ψk

exp
[
− (1−γ)(1−ε2)

2σ̃2 (x− ψk
1−γ )2

]
dx

≤ exp
[
γ(1−ε2)

2(1−γ)σ̃2ψ
2
k

] { 1√
1− γ

+ 2

√
1− ε2
σ̃
√

2π
ψk(

1

1− γ
− 1)

}

Choose Γ ≤ 1
2

and L2 ≥ L1 so that, for all γ ∈ (0,Γ) and |k| ≥ L2,
√
|φ|k2 ≥ (

√
|φ|k +

1)2/(1−γ). Then there exists C3 > 0 such that, for all γ ∈ (0,Γ), (1−γ)−
1
2 ≤ 1+C3γ,

and so

∫ ∞
0

exp
[
γ(1−ε2)

2σ̃2 x2
]
dGk(x)
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≤ exp
[
γ(1−ε2)

2σ̃2

√
|φ|k2

]
{1 + C3γ + C4(

√
|φ|k + 1)γ} (2.29)

where C4 = 4
√

1− ε2/(σ̃
√

2π). Now choose L3 ≥ L2 so that , for all |k| ≥ L3,

C3 + C4(
√
|φ|k + 1) ≤ (1− ε2)

2σ̃2
k2 1

2
(1−

√
|φ|)

Then the right-side of (2.29) is bounded above by

exp
[
γ(1−ε2)

2σ̃2
1
2
(1 +

√
|φ|)k2

]
for γ ∈ (0,Γ) and k ≥ L3 and so

‖T.k‖γ(1−ε2)/2σ2 ≤
∫ ∞

0
exp

[
γ(1−ε3)

2σ̃2 x2
]
dGk(x)

≤ exp
[

1
2
(1 +

√
|φ|)γ(1−ε2)

2σ̃2 k2
]

for all γ ∈ (0,Γ), |k| ≥ L3 and T ∈ T (B), as required.

Q.E .D.

Lemma 2.15 Let B ⊂ P be compact. Then, for all sufficiently small γ, there exists

C such that for all n, all T1, . . . , Tn ∈ T (B) and all positive a

‖T1 · · ·Tna‖γ ≤ C‖a‖γ

Proof: By lemma 2.14, there exists L and δ < 1 such that, for all |k| > L and all

T ∈ T (B), ‖T.k‖γ ≤ eδγk
2
. But, by lemma 2.13, for any sufficiently small d and ε, there

exists C1 such that, for all T ∈ T (B)

Tjk ≤ C1e
φ2dk2

edj
2

Fjk(−ε)

and so, by lemma 2.5, there exists C2 and C3 such that

‖T.k‖γ ≤ C1e
φ2dk2‖F.k(−ε)‖γ+d ≤ C1C2e

φ2dk2

e(1−ε)(γ+d)k2 ≤ C3

for all T ∈ T (B) and |k| ≤ L. Thus, for all positive a and all T ∈ T (B)

‖Ta‖γ ≤ C3

∑
|j|≤L

eγj
2|aj|+ e−(1−δ)γL2 ∑

|j|>L
eγj

2 |aj|

From this it is easily shown that ‖Ta‖γ ≤ ‖a‖γ if∑
|j|≤L e

γj2|aj|
‖a‖γ

≤ 1− e−(1−δ)γL2

C3 − e−(1−δ)γL2 (2.30)
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Restrict for the moment to those a for which ‖a‖0 = 1. Clearly
∑
|j|≤L e

γj2|aj| ≤

eγL
2
. Therefore, by (2.30), there exists C4 so that, for all a satisfying ‖a‖γ ≥ C4 and

all T ∈ T (B), ‖Ta‖γ ≤ ‖a‖γ. But T being stochastic implies ‖Ta‖0 = ‖a‖0 and so if

‖a‖γ ≥ C4

‖T1 · · ·Tna‖γ ≤ ‖a‖γ

for all T1, . . . , Tn ∈ T (B). However ‖a‖0 = 1 implies ‖a‖γ ≥ 1 and so, for all a,

‖T1 · · ·Tna‖γ ≤ C4‖a‖γ (2.31)

Now remove the restriction that ‖a‖0 = 1. (2.31) implies that

‖T1 · · ·Tnb‖γ ≤ ‖b‖γ

where b = a/‖a‖0. The result follows from the linearity of ‖.‖γ and the operators

T1, . . . , Tn if we multiply through by ‖a‖0.

Q.E .D.

Theorem 2.16 Let B ⊂ P be compact. For all sufficiently small γ > 0 there exists

ε > 0 such that for all T ∈ T (B) and all probability vectors a, b.

Dγ(Ta, Tb) ≤ (1− ε)Dγ(a,b)

Proof: Clearly the theorem is equivalent to showing that, for all sufficiently small

γ > 0, there exists ε > 0 such that

sup
c

‖Tc‖γ
‖c‖γ

≤ 1− ε

where the supremum is taken over those c for which
∑
cj = 0. The proof proceeds in

two stages. First we shall see that

sup
c

‖Tc‖γ
‖c‖γ

≤ sup
j,k∈Z

‖T.j − T.k‖γ
eγj2 + eγk2 (2.32)

To show this we note that, if c can be written as c = c1 + c2 where ‖c1 + c2‖γ =

‖c1‖γ + ‖c2‖γ, then

‖Tc‖γ
‖c‖γ

≤ ‖Tc1‖γ + ‖Tc2‖γ
‖c1‖γ + ‖c2‖γ

≤ max(
‖Tc1‖γ
‖c1‖γ

,
‖Tc2‖γ
‖c2‖γ

)
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Set c+ = maxj cj and c− = minj cj and α = min(c+, |c−|). Let k1 be such that ck1 ≥ α

and k2 be such that ck2 ≤ −α. Then, putting c1 to be the vector

(c)j =



α : j = k1

−α : j = k2

0 : otherwise

and c2 = c− c1, is a decomposition of c of the above kind. However

‖Tc1‖γ
‖c1‖γ

=
‖T.k1 − T.k2‖γ
eγk

2
1 + eγk

2
2

Repeating this decomposition on c2 inductively, proves (2.32). In fact the inequality

in (2.32) is easily seen to be an equality.

Lemma 2.14 shows that there exists δ < 1, Γ1 > 0 and L ∈ N such that if |k| > L

and γ <= Γ1

‖T.k‖γ
eγk2 ≤ e−(1−δ)γk2

Therefore, if |j|, |k| > L,

‖T.j − T.k‖γ
eγj2 + eγk2 ≤ e−(1−δ)γL2

Lemma 2.15 shows that there exists C1 and γ2 such that

‖T.k‖Γ2 ≤ C1e
Γ2k2 ≤ C1e

Γ2L2 def
= C2

when |k| ≤ L. From the definition of the norm

d

dγ
‖T.k‖γ =

∑
j2eγj

2

Tjk

Clearly we can choose C3 so that j2 ≤ C3e
1
2

Γj2 for all j. Then, provided |k| ≤ L and

γ ≤ 1
2
Γ2,

‖T.k‖γ ≤ 1 + C3C2γ (2.33)

Therefore, if |k| ≤ L, |j| > L and γ ≤ Γ3
def
= min(Γ1,

1
2
Γ2)

‖T.j − T.k‖γ
eγj2 + eγk2‖

≤ eδγj
2

+ (1 + C4γ)

eγj2 + 1

≤ min

(
eδγj

2

δeγj2 + (1− δ)
,

1 + C4γ

(1− δ)eγj2 + δ

)
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where C4 = C2C3.

But, by Taylor expansion, it is easily seen that eδx < δex+(1−δ) for all x > 0. Further

g1(x)
def
= eδx/

(
δex + (1− δ)

)
→ 0 as x→∞. Hence, since g1 is continuous, given x > 0

there exists ε1(x) > 0 such that g1(y) ≤ 1− ε1(x) when y ≥ x. Hence, given M , there

exists ε2(γ) such that g1(γj2) ≤ 1− ε2 whenever |j| ≥M . On the other hand

1 + C4γ

(1− δ)eγj2 + δ
≤ 1 + C4γ

1 + (1− δ)γj2

Hence, if (1− δ)M2 > C4, there exists ε3(γ) so that, whenever |j| > M ,

1 + C4γ

(1− δ)eγj2 + δ
≤ 1− ε3

Finally, we must consider the case when |k| ≤ L and |j| ≤ M . By lemma 2.13,

there exist C5, d and ε4 > 0 such that, for all T ∈ T (B)

T0k ≥ C5F0k(ε4)e−(1−ε4)dk2

= C5 exp
[
−1+ε4

2σ2 φ
2k2

]
e−(1−ε4)dk2

Hence, since B is compact, for each k, there exists bk > 0 such that T0k ≥ bk for all

T ∈ T (B). Denote by b′ the minimum of the bk for |k| ≤ M . By the same argument

as led to (2.33), there exist C6 and Γ4 so that whenever |k| ≤M and γ ≤ Γ4

‖T.k‖γ ≤ 1 + C6γ

for all T ∈ T (B).

Therefore, if |j| ≤ L, |k| ≤M and γ ≤ Γ4

‖T.j − T.k‖γ =
∑
l

eγl
2|Tlj − Tlk|

≤
∑
l

eγl
2

(Tlj + Tlk)− bj − bk

≤ 2 + 2γC6 − 2b′

Hence, provided γ ≤ min(b′/2C6,Γ4)
def
= Γ5 and |j| ≤ L, |k| ≤M

‖T.j − T.k‖γ
eγj2 + eγk2 ≤ 1− b′

The desired result follows for any γ ≤ min(Γ1,Γ3,Γ5) by taking

ε = min(1− e−(1−δ)γL2

, ε2(γ), ε3(γ), b′)

Q.E .D.
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Mixing for the Kt

Theorem 2.16 is the crucial component for the proof of the theorem below, which shows

that independent of the realisation of the X-process the decay of dependence on the

past is extremely rapid.

Lemma 2.17 Let Zt, t = 1, . . . , n be an integer-valued Markov chain having initial

distribution p1 for Z1 and transition matrices T (t), t = 2, . . . , n from Zt−1 to Zt such

that

Dγ(T
(t)a, T (t)b) ≤ (1− ε)Dγ(a,b)

for all a, b and t, and such that the time-reversed process Zt, t = n, . . . , 1 is also a

Markov chain. Let pj denote the vector P [Zj = .] obtained by applying the transition

matrices to p1. Then there exists C depending only on sup1≤j≤n‖pj‖γ such that for all

1 ≤ j1, j2 ≤ n, A ∈ F tj2(Z) and B ∈ F j11 (Z)

|PZ [A ∩ B]− PZ [A]PZ [B]| ≤ C(1− ε)j2−j1

Proof: Corresponding to A and B are sets A ⊂ Zn−j2+1 and B ⊂ Zj1 where A =

{Zn
j2
∈ A} and B = {Zj1

1 ∈ B}. A and B can be decomposed as

A =
⋃

kj2∈Z

Akj2 × {kj2}

and

B =
⋃

kj1∈Z

{kj1} ×Bkj1

Then

P [Zn
j2
∈ A] =

∑
kj2∈Z

P [Zn
j2+1 ∈ Akj2 ∩ Zj2 = kj2 ]

=
∑
kj2∈Z

P [Zn
j2+1 ∈ Akj2 |Zj2 = kj2 ]P [Zj2 = kj2 ]

and, by time-reversibility,

P [Zj1
1 ∈ B] =

∑
kj1∈Z

P [Zj1−1
1 ∈ Bkj1

|Zj1 = kj1 ]P [Zj1 = kj1 ]

and

P [Zn
j2
∈ A ∩ Zj1

1 ∈ B]
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=
∑

kj1 ,kj2∈Z

P [Zt
j2+1 ∈ Akj2 |Zj2 = kj2 ]P [Zj1−1

1 ∈ Bkj1
|Zj1 = kj1 ]

×P [Zk2 = kj2 ∩ Zj1 = kj1 ]

Therefore since all probabilities are less than 1∣∣∣P [Zn
j2
∈ A ∩ Zj1

1 ∈ B]− P [Zn
j2
∈ A]P [Zj1

1 ∈ B]
∣∣∣

≤
∑

kj2 ,kj1∈Z

∣∣∣P [Zj2 = kj2 ∩ Zj1 = kj1 ]− P [Zj2 = kj2 ]P [Zj1 = kj1 ]
∣∣∣

=
∑

kj2 ,kj1∈Z

∣∣∣P [Zj2 = kj2|Zj1 = kj1 ]−
∑
k∈Z

P [Zj2 = kj2|Zj1 = k]P [Zj1 = k]
∣∣∣

×P [Zj1 = kj1 ]

But

P [Zj2 = kj2|Zj1 = kj1 ] = (T (j2)T (j2−1) · · ·T (j1+1))kj2kj1

Define the operator Q by Q = T (j2)T (j2−1) · · ·T (j1+1). Let dj be the vector (dj)k = δjk.

Then

∑
kj2∈Z

|P [Zj2 = kj2|Zj1 = kj1 ]−
∑
k∈Z

P [Zj2 = kj2|Zj1 = k]P [Zj1 = k]|

=
∑
kj2∈Z

|(Qdkj1 )kj2 − (Qpj1)kj2 |

≤
∑
kj2∈Z

eγk
2
j2 |(Qdkj1 )kj2 − (Qpj1)kj2 |

= Dγ(Qdkj1 , Qpj1)

≤ (1− ε)Dγ(T
(j2−1) · · ·T (j1+1)dkj1 , T

(j2−1) · · ·T (j1+1)pj1)

≤ (1− ε)j2−j1Dγ(dkj1 ,pj1)

≤ (1− ε)j2−j1{‖dkj1‖γ + ‖pj1‖γ}

= (1− ε)j2−j1{eγk
2
j1 + ‖pj1‖γ}

and so

|P [Zn
j2
∈ A ∩ Zj1

1 ∈ B]− P [Zn
j2
∈ A]P [Zj1

1 ∈ B]|

≤ (1− ε)j2−j1
∑
kj1∈Z

{eγk
2
j1 + ‖pj1‖γ}(pj1)kj1

= 2(1− ε)j2−j1‖pj1‖γ

which is the desired result.

Q.E .D.
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Theorem 2.18 Let B ⊂ P be compact. There exist C and ρ < 1 such that for any

1 ≤ j1 ≤ j2 ≤ n, A ∈ F tj2(Z), B ∈ F j11 (Z), ω and θ ∈ B

|P [A ∩ B|Xn
1 ]− P [A|Xn

1 ]P [B|Xn
1 ]| ≤ Cρj2−j1

i.e. conditional upon Xn
1 , Kt is a strong mixing process with mixing coefficients tending

geometrically to zero, uniformly in ω, n and θ ∈ B.

Proof: This is an immediate consequence of lemma 2.17 together with lemma 2.12,

theorems 2.16 and 2.3 and the time-reversibility of the AR(1).

Q.E .D.

Polynomials

In much of the remainder of the chapter we shall be concerned with the behaviour of

polynomials in the Y ’s conditional upon the X-process. The following lemmas will be

used extensively.

Lemma 2.19 Let B ⊂ P be compact. Let g(yn1 ) and h(yn1 ) be polynomials in y1, . . . , yn.

Then for all sufficiently small γ > 0 there exists C such that for all j, N ≥ n + j, k,

ω and θ ∈ B

E[|g(Yj+n
j+1 )h(Yn

1 )||XN
2 , Y1 = X1 + k] ≤ Ceγk

2

Proof: Clearly it suffices to prove the lemma for any g of the form ymnn · · · y
m1
1 and

any h of the form ylnn · · · y
l1
1 . But

E[|Yj+n|mn · · · |Yj+1|m1|Yn|ln · · · |Y l1
1 ||XN

2 , Y1 = X1 + k1]

=
∑

kj+n2 ∈Zn+j−1

|xj+n + kj+n|mn · · · |xj+1 + kj+1|m1|xn + kn|ln · · · |x1 + k1|l1

×P [Kj+n
1 = kj+n1 |XN

1 , K1 = k1]

≤
∑
kj+n2

(1 + |kj+n|)mn · · · (1 + |kj+1|)m1(1 + |kn|)ln · · · (1 + |k1|)l1T (j+n)
kj+nkj+n−1

· · ·T (2)
k2k1

≤
∑
kj+n2

(1 + |kj+n|)M · · · (1 + |kj+1|)M(1 + |kn|)M · · · (1 + |k1|)MT (j+n)
kj+nkj+n−1

· · ·T (2)
k2k1

where M = max(m1, . . . ,mn, l1, . . . , ln). Now define Q to be the diagonal matrix with
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elements Qjj = (1 + |j|)M and let dj denote the vector (dj)k = δjk. Then

E[|Yj+n|mn · · · |Yj+1|m1|Yn|ln · · · |Y l1
1 ||XN

2 , Y1 = X1 + k]

≤ ‖QSQdk‖0

where S is an operator consisting of the product of T (2), . . . , T (j+n) and 2n− 2 copies

of the Q operator. Now let Γ be as in lemma 2.14. Then, by lemma 2.15, for any

γ ∈ (0,Γ), there exists cγ such that ‖T1 · · ·TKa‖γ ≤ cγ‖a‖γ for any positive a, any

K, and any T1, . . . , TK ∈ T (B). Let γ be so given. Clearly there exists C such that

(1 + |k|)M ≤ C exp [γk2/2n] for all k, and hence ‖Qa‖α ≤ C‖a‖α+γ/2n for any α ≥ 0

and positive a. Therefore,

‖QSQdk‖0

≤ C‖SQdk‖γ/2n

≤ Ccγ/2nCc2γ/2nC · · ·Ccγ−γ/2n‖Qdk‖γ

= C2n−1
(2n−1∏
j=1

cjγ/2n

)
‖Qdk‖γ−γ/2n

≤ C2neγk
2

2n−1∏
j=1

cjγ/2n

as required.

Q.E .D.

Lemma 2.20 Let B ⊂ P be compact. Let g(yn1 ) be a polynomial in y1, . . . , yn. Then

there exists C such that for all m ≤ 1, M ≥ n, ω and θ ∈ B

E[|g(Yn
1 )||XM

m ] ≤ C

Proof: By lemma 2.19, for all sufficiently small γ, there exists C1 such that

E[|g(Yn
1 )||XM

m ] =
∑
k1∈Z

E[|g(Yn
1 )||XM

2 , Y1 = X1 + k1]P [K1 = k1|XM
m ]

≤ C1e
γk2

1P [K1 = k1|XM
m ]

= C1‖p(m,M)
1 ‖γ

for all m ≤ 1, M ≥ n, ω and θ ∈ B. The result follows by applying lemma 2.12.

Q.E .D.
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Lemma 2.21 Let B ⊂ P be compact. Let g(yn1 ) and h(yn1 ) be polynomials in y1, . . . , yn.

Then there exists C and ρ < 1 such that for all m1,m2 < 1, j ≥ 1, M ≥ n+ j, ω and

θ ∈ B

|E[g(Yj+n
j+1 )h(Yn

1 )|XM
m1

]− E[g(Yj+n
j+1 )h(Yn

1 )|XM
m2

]| ≤ Cρmin(|m1|,|m2|)

Proof: As before

E[g(Yj+n
j+1 )h(Yn

1 )|XM
m1

]

=
∑
k1∈Z

E[g(Yj+n
j+1 )h(Yn

1 )|XM
2 , Y1 = X1 + k1]P [K1 = k1|XM

m1
]

and so, by lemma 2.19, there exists C1 such that for all m1,m2 < 1, j ≥ 1, M ≥ n+ j,

ω and θ ∈ B

|E[g(Yj+n
j+1 )h(Yn

1 )|XM
m1

]− E[g(Yj+n
j+1 )h(Yn

1 )|XM
m2

]|

≤
∑
k1∈Z

E[|g(Yj+n
j+1 )h(Yn

1 )||XM
2 , Y1 = X1 + k1]

∣∣∣P [K1 = k1|XM
m1

]− P [K1 = k1|XM
m2

]
∣∣∣

≤ C1Dγ(p
m1,M
1 ,pm2,M

1 )

Suppose without loss of generality that |m1| ≤ |m2|. Then

Dγ(p
m1,M
1 ,pm2,M

1 ) = Dγ(T
(1)T (0) · · ·T (m1+1)pm1,M

m1
, T (1) · · ·T (m1+1)pm2,M

m1
)

≤ (1− ε)|m1+1|Dγ(p
m1,M
m1

,pm2,M
m1

)

≤ (1− ε)|m1+1|{‖pm1,M
m1
‖γ + ‖pm2,M

m1
‖γ}

by lemma 2.16. The result follows by applying lemma 2.12.

Q.E .D.

Lemma 2.22 Let B ⊂ P be compact and let g(ym1 ) and h(ym1 ) be polynomials in

y1, . . . , ym. There exists C and ρ < 1 such that

∣∣∣C[g(Yj+m
j+1 ), h(Yk+m

k+1 )|Xn
1 ]− C[g(Yj+m

j+1 ), h(Yk+m
k+1 )|X∞1 ]

∣∣∣ ≤ Cρn−max(j,k)

for all ω and 0 ≤ j, k ≤ n−m.
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Proof: By lemma 2.21 and time reversibility, there exist C1 and ρ1 < 1 such that, for

all ω and n

∣∣∣E[g(Yj+m
j+1 )h(Yk+m

k+1 )|Xn
1 ]− E[g(Yj+m

j+1 )h(Yk+m
k+1 )|X∞1 ]

∣∣∣ ≤ C1ρ
n−m−max(j,k)
1

∣∣∣E[g(Yj+m
j+1 )|Xn

1 ]− E[g(Yj+m
j+1 )|X∞1 ]

∣∣∣ ≤ C1ρ
n−m−j
1

and

∣∣∣E[h(Yk+m
k+1 )|Xn

1 ]− E[h(Yk+m
k+1 )|X∞1 ]

∣∣∣ ≤ C1ρ
n−m−k
1

Also, by lemma 2.20, there exists C2 such that, for all N ≥ j +m, M ≤ j + 1 and ω

∣∣∣E[g(Yj+m
j+1 )|XN

M ]
∣∣∣ ≤ C2

and

∣∣∣E[h(Yk+m
k+1 )|XN

M ]
∣∣∣ ≤ C2

Hence

∣∣∣C[g(Yj+m
j+1 ), h(Yk+m

k+1 )|Xn
1 ]− C[g(Yj+m

j+1 ), h(Yk+m
k+1 )|X∞1 ]

∣∣∣
≤ C1ρ

n−m−max(j,k)
1 + C3C1ρ

n−m−j
1 + C3C1ρ

n−m−k
1

≤ (1 + 2C3)C1ρ
n−m−max(j,k)
1

from which C and ρ can be obtained.

Q.E .D.

Lemma 2.23 Let g(ym1 ) and h(ym1 ) be polynomials in y1, . . . , ym. Then there exists C

and ρ < 1 such that for all n, 0 ≤ j1, j2 ≤ n−m and ω

|C[g(Yj1+m
j1+1 ), h(Yj2+m

j2+1 )|Xn
1 ]| ≤ Cρ|j2−j1|

Proof: Without loss of generality, suppose j2 ≥ j1. By theorem 2.18 and lemma A.2,

there exists ρ1 such that, for j2 ≥ j1 +m,

|C[g(Yj1+m
j1+1 ), h(Yj2+m

j2+1 )|Xn
1 ]| ≤ ρj2+1−j1−m

1 E[|g(Yj1+m
j1+1 )|2|Xn

1 ]E[|h(Yj2+m
j2+1 )|2|Xn

1 ]
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But the square of a polynomial is a polynomial and hence, by lemma 2.20, there exists

C1 so that, for j2 ≥ j1 +m,

|C[g(Yj1+m
j1+1 ), h(Yj2+m

j2+1 )|Xn
1 ]| ≤ C1ρ

j2+1−j1−m
1

But lemma 2.20 also implies the existence of cj such that for any j1 and j2

|C[g(Yj1+m
j1+1 ), h(Yj2+m

j2+1 )|Xn
1 ]| ≤ cj2−j1

Hence by defining C and ρ appropriately in terms of C1 and c1, . . . , cm−1, the result

follows.

Q.E .D.

2.2.4 Consistency

The maximum likelihood estimator will now be shown to be consistent — in fact the

stronger result of strong convergence will be shown. The proof is in the style of [32]

rather than that of [6]. The work in [32] was only for the case of independent and

identically distributed sequence of random variables, so considerable extra effort is

required. However, the body of the proof of the main statement of the theorem uses

the same ideas as those in [32].

Extension of the Likelihood Function

Many of the complications which arise are at the boundary of the parameter space P .

The boundaries at σ = 0 and σ =∞ are dealt with directly. The boundary at |φ| = 1

is more difficult and is dealt with by extending the likelihood function to |φ| = 1. The

extension is necessary because, for |φ| ≥ 1, the AR(1) is not stationary, and so only

conditional, as opposed to marginal, distributions exist for the process; hence there

is no likelihood function. However, it is both convenient and possible to define the

likelihood function for the wrapped AR(1) when |φ| = 1, not just when |φ| < 1. This

is because, for |φ| = 1, the wrapped AR(1) is a Markov process which has a stationary

distribution. Consider the case when φ = 1. Then

fXt|Yt−1(xt|yt−1) =
∑
j∈Z

fYt|Yt−1(xt + j|yt−1)

=
∑
j∈Z

fεt(xt + j − yt−1)
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Figure 2.3: Tree illustrating the dependencies between the various lemmata and theo-
rems in section 2.2.4
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=
∑
j∈Z

fεt(xt + j − yt−1 − k)

= fXt|Yt−1(xt|yt−1 + k)

for any integer k. Hence defining fXt|Xt−1(xt|xt−1) = fXt|Yt−1(xt|xt−1) is valid, since the

dependence of Xt on Yt−1 involves only the information contained in Xt−1. Further,

since Yt is a Markov process, fXt|Yt−1
1

(xt|xt−1
1 + kt−1

1 ) = fXt|Yt−1(xt|xt−1 + kt−1) =

fXt|Xt−1(xt|xt−1) and so

fXt|Xt−1
1

(xt|xt−1
1 ) = fXt|Xt−1(xt|xt−1) (2.34)

Consequently Xt is a Markov process when φ = 1. In addition the Xt process has a

stationary marginal distribution (the uniform distribution), for∫ 1
2

− 1
2

fXt|Xt−1(x|y).1 dy =
∫ 1

2

− 1
2

∑
j∈Z

fεt(x+ j − y) dy

=
∫ ∞
−∞

fεt(y) dy

= 1

and so the likelihood function is well-defined for φ = 1. The preceding argument

requires only trivial modificiation to show that, for φ = −1, Xt is again a Markov

process having the uniform distribution as equilibrium distribution.

Now, when φ = 1,

fXt|Xt−1
1

(xt|xt−1
1 ) = fXt|Xt−1(xt|xt−1)

=
∑
j∈Z

(σ
√

2π)−1 exp
(
−1

2
σ−2(xt + j − (xt−1 + k))2

)
for any integer k, and so fXt

1
(xt1) can be written for any value of k1 ∈ Z as

(σ
√

2π)1−n ∑
kn2∈Zn−1

exp
(
−1

2
σ−2

n∑
j=2

(xj + kj − (xj−1 + kj−1))2
)

= (σ
√

2π)1−n ∑
kn2∈Zn−1

exp
(
−1

2
σ−2(xn1 + kn1 )TB+

n (xn1 + kn1 )
)

(2.35)

where B+
n is the n× n matrix

B+
n =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


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and all farther off diagonal entries are 0. When φ = −1 the same equation holds with

B+
n replaced by B−n where

B−n =



1 1
1 2 1

1 2 1
. . . . . . . . .

1 2 1
1 1


Note that B+

n = limφ→1 Mn and B−n = limφ→−1 Mn. In fact (2.35) is a continuous

extension of the likelihood function since lemma 2.2 shows that
√

1− φ2

σ
√

2π
exp

[
−1−φ2

2σ2 (x+ k)2
]
→ 1

uniformly in x as |φ| → 1. That this extension is, in fact, uniformly continuous in n

and ω will be shown as part of the proof of a later lemma. The following lemma will

be used as part of that proof.

Lemma 2.24 Let θ ∈ P. Then if φ > 0

xTMnx ≥ φxTB+
nx + (1− φ)x2

1

Otherwise

xTMnx ≥ −φxTB−nx + (1 + φ)x2
1

Proof: Consider the case where φ > 0. Then by definition of Mn and B+
n

(xn1 )TMn(xn1 ) = φ(xn1 )TB+
n (xn1 ) + (1− φ)(x2

1 + x2
n) + (1 + φ2 − 2φ)

n−1∑
j=2

x2
j

≥ φ(xn1 )TB+
n (xn1 ) + (1− φ)x2

1

as required. The case when φ < 0 is similar.

Q.E .D.

A Stationary Approximation

In the case of a sequence of independent random variables, the log-likelihood is the

sum of a sequence of independent and identically distributed random variables. For a

stationary Markov process this becomes the sum of a stationary m-dependent sequence.

In the general case such as the wrapped AR(1) things are more complicated. How-

ever, for the wrapped AR(1), there exists a useful approximation to the log-likelihood
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function by a stationary sequence which satisfies the strong law of large numbers. The

following lemmas concern this approximation.

Lemma 2.25 Let θ ∈ P ′. There exists C and ρ < 1 such that, for all t, j ≥ 0 and ω

∣∣∣fXt|Xt−1
t−j

(Xt|Xt−1
t−j)− fXt|Xt−1

t−j−1
(Xt|Xt−1

t−j−1)
∣∣∣ < Cρj

Proof: If θ is such that |φ| = 1 the result is a trivial consequence of the fact that Xt

is then a Markov process. Therefore, assume θ ∈ P . From (2.3), (2.19), (2.20) and

theorem 2.3

∣∣∣fXt|Xt−1
t−j

(Xt|Xt−1
t−j)− fXt|Xt−1

t−j−1
(Xt|Xt−1

t−j−1)
∣∣∣

=
∣∣∣∣ ∑
j,k∈Z

f
(t)
jk

{
(p

(t−j,t−1)
t−1 )k − (p

(t−j−1,t−1)
t−1 )k

}∣∣∣∣
≤ K(σ)‖p(t−j,t−1)

t−1 − p
(t−j−1,t−1)
t−1 ‖0

≤ K(σ)‖p(t−j,t−1)
t−1 − p

(t−j−1,t−1)
t−1 ‖γ

= K(σ)Dγ(T
(t−1)T (t−2) · · ·T (t−j+1)p

(t−j,t−1)
t−j , T (t−1)T (t−2) · · ·T (t−j+1)p

(t−j−1,t−1)
t−j )

≤ K(σ)(1− ε)j−1‖p(t−j,t−1)
t−j − p

(t−j−1,t−1)
t−j ‖γ

≤ 2C1K(σ)(1− ε)j−1

by invoking lemmas 2.2, 2.16 and 2.12. But C1 and ε are independent of t, j and ω as

required.

Q.E .D.

Theorem 2.26 The definition

fXt|Xt−1
−∞

(xt|xt−1
−∞) = lim

n→∞
fXt|Xt−1

t−n
(xt|xt−1

t−n)

is well defined for all θ ∈ P ′. Further, there exists C such that∣∣∣∣∣∣ln fXn
1
(Xn

1 )−
n∑
j=1

ln fXj |Xj−1
−∞

(Xj|Xj−1
−∞)

∣∣∣∣∣∣ ≤ C

for all n and ω.
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Proof: This is a obvious consequence of lemmas 2.2 and 2.25.

Q.E .D.

Lemma 2.27 Let θ ∈ P ′. There exists ε > 0 such that

1

n
ln fXn

1
(Xn

1 )
a.s.→ ε

Proof: By theorem 2.26

1

n
| ln fXn

1
(Xn

1 )−
n∑
j=1

ln fXj |Xj−1
−∞

(Xj|Xj−1
−∞)| a.s.→ 0

But the sequence ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞) is a stationary sequence which, by lemma 1.3

and lemmas 2.2 and 2.25 satisfies the hypotheses of theorem A.3. Hence

1

n

n∑
j=1

ln fXj |Xj−1
−∞

(Xj|Xj−1
−∞)

a.s.→ E[ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞)]

But

E[ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞)] = E[E[ln fXt|Xt−1

−∞
(Xt|Xt−1

−∞)|Xt−1
−∞]] (2.36)

and, by Jensen’s inequality,

E[− ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞)|Xt−1

−∞] ≤ ln
∫ 1

2

− 1
2

1

fXt|Xt−1
−∞

(xt|Xt−1
−∞)

dFXt|Xt−1
−∞

(xt|Xt−1
−∞)

= 0

with equality only if fXt|Xt−1
−∞

(xt|Xt−1
−∞) = 1 for almost all xt ∈ [−1

2
, 1

2
]. Hence (2.36) is

negative unless fXt|Xt−1
−∞

(Xt|Xt−1
−∞) = 1 almost surely, which would contradict Xt having

a wrapped normal distribution.

Q.E .D.

The boundary of the parameter space

Most of the machinery required for the proof has been established in the preceding

sections. The following three lemmas deal with problems relating to the behaviour of

the likelihood function at the edges of the parameter space P .

Lemma 2.28 Pθ0
[
limn→∞ σ̂n =∞

]
= 0 for all θ0 ∈ P.
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Proof: By lemma 2.27 there exists ε > 0 such that

Pθ0

[
lim
n→∞

1

n

n∑
j=1

ln fXj |Xj−1
1

(Xj|Xj−1
1 ; θ0) = ε

]
= 1 (2.37)

and by lemma 16, there exists a function K(σ) such that for all θ ∈ P ′, t and ω

K−1(σ) < f
Xt|Xt−1

1
(xt|xt−1

1 ) < K(σ)

and such that limσ→∞K(σ) = 1. Thus we can choose σ1 so that for all θ ∈ P ′ with

σ > σ1 and for all t and ω

|ln fXt|Xt−1
1

(Xt|Xt−1
1 )| < ε/2 (2.38)

Therefore, combining (2.37) and (2.38)

Pθ0

[
lim
n→∞

sup
θ∈H

1

n

n∑
j=1

ln f
Xj |Xj−1

1
(xj|xj−1

1 )− ln fXj |Xj−1
1

(Xj|Xj−1
1 ; θ0) < −ε/2

]
= 1

where H = {θ ∈ P ′ : σ > σ1}, and so

Pθ0
[

lim
n→∞

sup
θ∈H

fXn
1
(xn1 ) / fXn

1
(Xn

1 ; θ0) = 0
]

= 1

from which the result follows.

Q.E .D.

Lemma 2.29 Pθ0 [limn→∞ σ̂n = 0] = 0 for all θ0 ∈ P.

Proof: θ̂n maximises fXn
1
(Xn

1 ). Thus ∂σfXn
1
(Xn

1 )
∣∣∣
θ̂n

= 0. But, for θ ∈ P

∂

∂σ
fXn

1
(xn1 ) =

√
1− φ2

σn(2π)n/2
∑

kn1∈Zn

{−n
σ

+
1

σ3
(xn1 + kn1 )TMn(xn1 + kn1 )

}
× exp

(
−1

2
σ−2(xn1 + kn1 )TMn(xn1 + kn1 )

)
and, by lemma 2.1, xTMnx ≥ (1− |φ|)2‖x‖2. Therefore, if σ2 < (1− |φ|)2‖x‖2/n,

−n
σ

+
1

σ3
(xn1 + kn1 )TMn(xn1 + kn1 ) ≥ −n

σ
+

(1− |φ|)2

σ3
‖xn1 + kn1‖2

≥ −n
σ

+
(1− |φ|)2

σ3
‖xn1‖2

> 0

and hence
∂

∂σ
fXn

1
(xn1 ) > 0. Thus

σ̂2
n ≥ (1− |φ̂n|)2‖Xn

1‖2

n
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since this holds trivially when |φ̂n| = 1. But, since the AR(1) process is ergodic,

n−1‖Xn
1‖2 a.s.→ C1 in θ0-measure where C1 = Eθ0 [X

2
t ] > 0. Thus, with probability 1,

limn→∞ σ̂
2
n = 0 implies limn→∞ |φ̂n| = 1. Let ω be some realisation of the process for

which limn→∞ σ̂
2
n = 0 and limn→∞ φ̂n = 1. Then there exist n1, n2 . . . ∈ N such that

limj→∞ σ̂nj = 0 and limj→∞ φ̂nj = 1. By lemma 9, for any positive φ

(xn1 + kn1 )TMn(xn1 + kn1 ) ≥ φ(xn1 + kn1 )TB+
n (xn1 + kn1 ) + (1− φ)(x1 + k1)2

Therefore, for sufficiently large j,

f
X
nj
1

(Xn−j
1 ; θ̂nj) ≤

√
1− φ̂2

nj

σ̂nj
√

2π

∑
k1∈Z

exp(−1
2
σ̂−2
nj

(1− φ̂nj)(X1 + k1)2) (2.39)

×
nj∏
l=2

{
(σ̂nj
√

2π)−1
∑
kl∈Z

exp(−1
2
σ̂−2
nj
φ̂nj(Xl + kl −Xl−1)2)

}

where φ̂nj < 1, and the first term is replaced by 1 if φ̂nj = 1. Now, since φ̂nj/σ̂
2
nj
→∞ as

j →∞, there exist J ∈ N and positive C2 such that for any j > J and xl−1, xl ∈ [−1
2
, 1

2
]

(σ̂nj
√

2π)−1
∑
kl∈Z

exp(−1
2
σ̂−2
nj
φ̂nj(xl + kl − xl−1)2)

≤ C2

σ̂nj
√

2π
exp(−1

2
σ̂2
nj
φ̂nj‖xl − xl−1‖2

Z)

and hence, for any j > J , the product term in (2.39) is less than

C
nj−1
2

σ̂
nj−1
nj (2π)

1
2

(nj−1)
exp

(
−1

2
σ̂−2
nj
φ̂nj

nj∑
l=2

‖Xl −Xl−1‖2
Z

)

which limits to 0, as j →∞, if

lim
n→∞

n−1
n∑
l=2

‖Xl+1 −Xl‖2
Z > 0

which, since the AR(1) is ergodic, is an event of probability 1. But lemma 2.27 shows

that, for almost all ω, for sufficiently large n, fXn
1
(Xn

1 ; θ̂n) ≥ 1. So, if we can show that

the first term in (2.39) almost surely cannot tend to infinity, the result follows. But,

writing ψ = σ̂2
nj

(1− φ̂nj), that term is√
1− φ̂2

nj√
1− φ̂nj

(ψ
√

2π)−1
∑
k∈Z

exp(−1
2
ψ−2(X1 + k)2)

The first part is
√

1 + φ̂nj which is bounded above by 2. Provided X1 6= 0, the rest is

a continuous function of ψ, which tends to 0 as ψ → 0 and tends to 1 as ψ → ∞, by
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lemma 2.2. Therefore, with probability 1, the expression is bounded above and cannot

tend to infinity as j →∞.

A similar argument applies for limn→∞ φ̂n = −1 and so this completes the proof.

Q.E .D.

Lemma 2.30 Let θ0 ∈ P and let θ ∈ P ′ be such that |φ| = 1. Then, given ε > 0, there

exists an open neighbourhood B(θ) of θ in P ′ such that

Pθ0

[
lim
n→∞

sup
θ1∈B(θ)

fXn
1
(Xn

1 ; θ1)

fXn
1
(Xn

1 ; θ0)
= 0

]
= 1

Proof: By the same appeal to Jensen’s inequality as in the proof of lemma 2.27

ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞)− ln fXt|Xt−1

−∞
(Xt|Xt−1

−∞; θ0) (2.40)

has negative θ0-expectation, −ε say, unless it is almost surely 1. But Xt has different

marginal distributions for θ and θ0 (uniform and wrapped normal), so (2.40) is not

almost surely 1. Further (2.40) is stationary, and so, by lemma 1.3 and lemmas 2.2

and 2.25, satisfies the hypotheses of theorem A.3. Thus, applying lemma 2.26,

Pθ0

[
lim
n→∞

1

n

n∑
j=1

ln f
Xj |Xj−1

1
(xj|xj−1

1 )− ln fXj |Xj−1
1

(Xj|Xj−1
1 ; θ0) = −ε

]
= 1 (2.41)

We must now extend this to a neighbourhood of θ in P . Let θ1 be such that φ1 = 1.

Then

fXn
1
(xn1 ; θ1) =

n∏
j=2

(σ1

√
2π)−1

∑
kj∈Z

exp(−1
2
σ−2

1 (xj + kj − xj−1)2) (2.42)

Since the wrapped normal density is a continuous function of σ and x, there exists δ > 0

so that for all n and ω, ln fXn
1
(Xn

1 ; θ1) ≤ ln fXn
1
(xn1 ) + 1

3
nε, whenever |σ2

1 − σ2| < δ.

Now let θ2 ∈ P be such that 0 < φ2 < 1. By lemma 9

(xn1 + kn1 )TMn(xn1 + kn1 ) ≥ φ2 (xn1 + kn1 )TB+
n (xn1 + kn1 ) + (1− φ2)(x1 + k1)2

and therefore

fXn
1
(xn1 ; θ2) ≤

√
1− φ2

2

σ2

√
2π

∑
k1∈Z

exp(−1
2
(1− φ2)σ−2

2 (x1 + k1)2)

×
n∏
j=2

(σ2

√
2π)−1

∑
kj∈Z

exp
(
−1

2
φ2σ

−2
2 (xj + kj − xj−1)2

)
(2.43)
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Here the first term is simply
√

1 + φ2 times a wrapped normal density function and

hence, by lemma 2.2, there exists C such that if σ2
2/(1 − φ2) ≥ C the log of the term

is bounded above by ln 2 + ε/3. The product in (2.43) is of the form (2.42) multiplied

by φ1−n
2 . Hence, provided − lnφ2 < ε/3, |φ−1

2 σ2
2 − σ2| < δ and (1− φ2) ≤ C−1σ2

2

ln fXn
1
(xn1 ; θ2) ≤ ln fXn

1
(xn1 ) + ln 2 + 1

3
ε+ 2

3
(n− 1)ε (2.44)

It is clear, from (2.43), (2.44) and (2.41), that taking B to be the set of θ2 ∈ P satisfying

these last three conditions produces a set of the required type.

A similar argument suffices for the case φ = −1.

Q.E .D.

Proof of consistency

The following two lemmas are the core of the proof of consistency. The first shows that

for each parameter value other than the true value the likelihood function tends almost

surely to a smaller value than at the true parameter. The second lemma shows that

the rate of change of the likelihood function as the parameter changes can in a certain

sense be bounded uniformly, and uses this to show that for each parameter value other

than the true one a neighbourhood can be found where the maximum of the likelihood

function tends almost surely to a smaller value than at the true parameter.

Lemma 2.31 Let θ0, θ ∈ P, θ 6= θ0. There exists ε > 0 such that

Pθ0 [ lim
n→∞

n−1
{

ln fXn
1
(xn1 )− ln fXn

1
(xn1 ; θ0)

}
< −ε] = 1

Proof: By lemma 2.26

lim
n→∞

n−1|
n∑
j=1

ln fXj |Xj−1
1

(Xj|Xj−1
1 )−

n∑
j=1

ln fXj |Xj−1
−∞

(Xj|Xj−1
−∞)| = 0

for all ω and θ ∈ P . But, by the same appeal to Jensen’s inequality as in the proof of

lemma 2.27

Eθ0 [ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞)− ln fXt|Xt−1

−∞
(Xt|Xt−1

−∞; θ0)] ≤ 0 (2.45)

with equality only if

ln fXt|Xt−1
−∞

(Xt|Xt−1
−∞; θ)− ln fXt|Xt−1

−∞
(Xt|Xt−1

−∞; θ0) (2.46)
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is zero θ0-almost surely. However, that would imply that the Xt process is indistin-

guishable for θ and θ0, which is contradicted by the existence of consistent estimators

for σ and φ as was shown in chapter 1. Hence (2.45) is a strict inequality. But (2.46)

is stationary and by lemma 1.3 and lemmas 2.2 and 2.25 satisfies the hypotheses of

theorem A.3. Thus

n−1

∣∣∣∣ n∑
j=1

ln fXj |Xj−1
−∞

(Xt|Xj−1
−∞; θ)− ln fXj |Xj−1

−∞
(Xt|Xj−1

−∞; θ0)
∣∣∣∣

converges θ0-almost surely to its negative θ0-expectation, which implies the result.

Q.E .D.

Lemma 2.32 Let θ0 ∈ P. Let ε > 0 be given. There exists a neighbourhood O of θ0

in P such that, for all ω, n and θ1 ∈ O

n−1| ln fXn
1
(Xn

1 ; θ1)− ln fXn
1
(Xn

1 ; θ0)| ≤ ε

Proof: Let O1 be a bounded open set in P containing θ0 such that Ō1 ⊂ P . Such a

choice is possible since P is itself open. From the choice of O1, Ō1 is compact. Hence

by lemma 2.20 there exists C1 such that

E[ε2j |Xn
1 ] ≤ C1 and E[(1− φ2)Y 2

1 |Xn
1 ] ≤ C1

for all n, 1 ≤ j ≤ n, ω and θ ∈ Ō1. Hence, from (2.10)

∣∣∣∂σ ln fXn
1
(xn1 )

∣∣∣ ≤ n

σ
+
nC1

σ3

for all θ ∈ Ō1, ω, and n. Since Ō1 is compact, there exists C2 such that σ ≥ C2 for all

θ ∈ Ō1 and hence there exists C3 such that

∣∣∣∂σ ln fXn
1
(xn1 )

∣∣∣ ≤ nC3

for all θ ∈ Ō1, n and ω. Similarly there exists C4 such that

∣∣∣∂φ ln fXn
1
(xn1 )

∣∣∣ ≤ nC4

for all θ ∈ Ō1, n and ω.

Thus

n−1| ln fXn
1
(Xn

1 ; θ1)− ln fXn
1
(Xn

1 ; θ0)| ≤ C3|σ1 − σ0|+ C4|φ1 − φ0|
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for all θ1 ∈ Ō1, n and ω. Let O2 = {θ : |σ − σ0| < ε/2C3 and |φ − φ0| < ε/2C4}. Put

O = O1 ∩O2. Clearly O is the desired neighbourhood.

Q.E .D.

All the machinery is now in place. The proof of consistency follows.

Theorem 2.33 The maximum likelihood estimator for the wrapped AR(1) converges,

θ0-almost surely, to θ0, for all θ0 ∈ P.

Proof: For all ω, either limn→∞ σ̂
2
n(ω) = ∞ or the sequence θ̂(ω) has a limit point

in P ′. So, by lemma 1, the sequence θ̂n(ω) has, θ0 almost surely, a limit point in P ′.

Lemma 2 shows that, with probability 1, this limit point is not at σ = 0. Hence, with

probability 1, {θ̂n(ω)} has a limit point in P ′. To complete the proof we must show

that this limit point is unique for almost all ω, and that it is the true parameter value

θ0.

By lemma 2.32, any θ in P has a neighbourhood B(θ) in P (and therefore in P ′)

such that

Pθ0

[
lim
n→∞

sup
θ1∈B(θ)

fXn
1
(Xn

1 ; θ1)

fXn
1
(Xn

1 ; θ0)
= 0

]
= 1 (2.47)

Furthermore, by lemma 4, any θ with |φ| = 1 has a neighbourhood B(θ) in P ′ with

the same property. For each m ∈ N, define the set Pm and PIm as follows:

Pm = {(σ, φ) | σ ∈ [ 1
m
,m];φ ∈ [−1, 1]; |φ− φ0|+ |σ − σ0| ≥ 1

m
}

and

PIm = {(σ, φ) | σ ∈ ( 1
m
,m);φ ∈ [−1, 1]; |φ− φ0|+ |σ − σ0| > 1

m
}

Then Pm is closed and bounded, and is therefore compact. Also we note that

P ′ \ {θ0} =
∞⋃
m=1

PIm

The collection of all the B(θ) for θ in Pm forms an open cover of Pm. Since Pm is

compact there exists a finite subcover B(θ1), . . . , B(θM). Then, from (2.47)

Pθ0

[
lim
n→∞

sup
θ1∈Pm

fXn
1
(Xn

1 ; θ1)

fXn
1
(Xn

1 ; θ0)
= 0

]
= 1
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Therefore Pθ0 [θ̂n has a limit point in PIm] = 0, and so

Pθ0 [θ̂n has a limit point in P ′ \ {θ0}] ≤
∑
m∈N

Pθ0 [θ̂n has a limit point in PIm] = 0

Thus, θ0-a.s., θ0 is the only limit point of θ̂n, and we have the desired result:

Pθ0

[
lim
n→∞

θ̂n = θ0

]
= 1

Q.E .D.

2.2.5 Asymptotic Normality

The maximum likelihood estimator for the wrapped AR(1) will now be shown to have,

asymptotically, a normal distribution. The proof is based on the ideas in [7]. Unfor-

tunately, there is an error in the section of that paper which deals with the particular

case of mixing processes (for further details see the discussion in the appendix). The

proof which follows is therefore considerably more complicated than might be expected

by readers familiar with [7].

The log-likelihood function is denoted by Ln(θ), i.e.

Ln(θ) = fXn
1
(Xn

1 ; θ)

L′n(θ) denotes the vector of first derivatives, i.e.

L′n(θ) =

 ∂σLn(θ)

∂φLn(θ)


and L′′n(θ) denotes the matrix of second derivatives, i.e.

L′′n(θ) =

 ∂2
σLn(θ) ∂σ∂φLn(θ)

∂φ∂σLn(θ) ∂2
φLn(θ)


As is usual L′n(θ) is expanded as a Taylor series around θ0 (the true parameter).

L′n(θ) = L′n(θ0) + L′′n(θ0, θ)(θ − θ0)

where L′′n(θ0, θ) denotes the matrix of second derivatives with elements being evaluated,

at possibly different points, on the line segment joining θ0 and θ. If θ̂n is the maximum

likelihood estimate, L′n(θ̂n) = 0 and so

(θ̂n − θ0) = −L′′n(θ0, θ̂n)L′n(θ0)
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Figure 2.4: Tree illustrating the dependencies between the various lemmata and theo-
rems in section 2.2.4
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The proof shows
√
n(θ̂n−θ0)

d→ N(0,L−1) for some positive definite covariance matrix

L−1 in three stages:

1. n−1L′′n(θ0, θ0)
a.s.→ −L.

2. n−1{L′′(θ0, θ̂n)− L′′n(θ0, θ0)} a.s.→ 0.

3. n−
1
2L′n(θ0)

d→ N(0,L).

In most of what follows, we will actually work with a family of approximations,

L̃′(θ) and L̃′′(θ), to the derivatives of the likelihood function which are defined by

(L̃′n(θ))σ =
−n
σ

+
1

σ3
E[S̃n(Yn

1 )|Xn
1 ]

(L̃′n(θ))φ = − 1

2σ2
E[T̃n(Yn

1 )|Xn
1 ]

(L̃′′n(θ))σσ =
n

σ2
− 3

σ4
E[S̃n(Yn

1 )|Xn
1 ] +

1

σ6
D[S̃n(Yn

1 )|Xn
1 ]

(L̃′′n(θ))σφ =
1

σ3
E[T̃n(Yn

1 )|Xn
1 ]− 1

2σ5
C[T̃n(Yn

1 ), S̃n(Yn
1 )|Xn

1 ]

(L̃′′n(θ))φφ = − 1

2σ2
E[Un(Yn

1 )|Xn
1 ] +

1

4σ4
D[T̃n(Yn

1 )|Xn
1 ]

where

S̃n =
n∑
j=2

ε2j = Sn − (1− φ2)Y 2
1

and

T̃n = −2
n∑
j=2

εjYj−1 = Tn + 2φY 2
1

The following lemma will be used to validate this approximation.

Lemma 2.34 Let B ⊂ P be compact. There exists C such that for all ω n and θ ∈ B

|L′n(θ)− L̃′n(θ)| ≤ C (2.48)

|L′′n(θ)− L̃′′n(θ)| ≤ C (2.49)
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Proof: The σ-element of L′(θ)− L̃′(θ) is

σ−3E[Sn|Xn
1 ]− σ−3E[S̃n|Xn

1 ] = σ−3(1− φ2)E[Y 2
1 |Xn

1 ]

which, by lemma 2.20 has a uniform bound for all n, ω and θ ∈ B. The φ-element is

similar. This proves (2.48).

Consider the σ-φ element of L′′n(θ)− L̃′′n(θ) which is

σ−3E[Tn|Xn
1 ]− 1

2
σ−5C[Tn, Sn|Xn

1 ]− σ−3E[T̃n|Xn
1 ] + 1

2
σ−5C[T̃n, S̃n|Xn

1 ]

From the argument in the previous paragraph we need only consider the covariance

terms. But

C[Tn, Sn|Xn
1 ]− C[T̃n, S̃n|Xn

1 ] = C[T̃n, (1− φ2)Y 2
1 |Xn

1 ]

+C[S̃n,−2φY 2
1 |Xn

1 ] (2.50)

+C[(1− φ2)Y 2
1 ,−2φY 2

1 |Xn
1 ]

The last term is uniformly bounded by lemma 2.20. But, if h is a polynomial in two

variables

∣∣∣C[Y 2
1 ,

n−1∑
j=1

h(Yj+1
j )|Xn

1 ]
∣∣∣ ≤ n−1∑

j=1

∣∣∣C[Y 2
1 , h(Yj+1

j )]|Xn
1 ]
∣∣∣

≤ C
n−1∑
j=1

ρj ≤ C
ρ

1− ρ

for all n, ω, θ ∈ B and some ρ < 1 by lemma 2.23. Thus the first two terms on the

right-side of (2.50) are uniformly bounded and therefore the σ-φ term 0f L′′n(θ)− L̃′′n(θ)

is uniformly bounded. The σ-σ and φ-φ components are similar. Hence the result

follows.

Q.E .D.

Conditional behaviour of polynomial sums

The expressions for the derivatives of the log-likelihood function involve cross-moments

of sums of polynomials in the Y -process conditional upon the X-process. This section

contains a number of lemmas concerning the asymptotic behavious of such quantities.

These lemmas are really the basic units of the proof of asymptotic normality.
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Lemma 2.35 Let B ⊂ P be compact. Let g(., .) and h(., .) be polynomials in 2 vari-

ables. Then there exists C such that

∣∣∣∣C[n−2∑
j=0

g(Yj+2
j+1),

n−2∑
j=0

h(Yj+2
j+1)|Xn

1

]∣∣∣∣ ≤ Cn

for all n, ω and θ ∈ B.

Proof: By lemma 2.23, there exists C1 and ρ1 such that for all n, ω, 0 ≤ j1, j2 ≤ n−2

and θ ∈ B
∣∣∣∣C[g(Yj1+2

j1+1), h(Yj2+2
j2+1)|Xn

1

]∣∣∣∣ ≤ Cρ|j2−j1|

Thus

∣∣∣∣C[n−2∑
j=0

g(Yj+2
j+1),

n−2∑
j=0

h(Yj+2
j+1)|Xn

1

]∣∣∣∣ ≤ n−2∑
j1=0

n−2∑
j2=0

Cρ|j2−j1|

≤ nC
∑
j∈Z

ρ|j|

as required.

Q.E .D.

Lemma 2.36 Let g(., .) and h(., .) be polynomials in two variables. There exists a

stationary sequence W1, . . . and C such that

∣∣∣C[
n−2∑
j=0

g(Yj+2
j+1),

n−2∑
k=0

h(Yk+2
k+1)|Xn

1 ]−
n∑
j=1

Wj

∣∣∣ < C

for all ω and n.

Proof: Put

Wj =
∞∑

k=−∞
C[g(Yj+2

j+1), h(Yk+2
k+1)|X∞−∞]

Then, using time-reversibility and applying lemma 2.22 twice and lemma 2.23,

n−1∑
j=1

n−1∑
k=1

∣∣∣C[g(Yj+1
j ), h(Yk+1

k )|Xn
1 ]− C[g(Yj+1

j ), h(Yk+1
k )|X∞−∞]

∣∣∣

≤
n−2∑
j=0

n−2∑
k=0

min(C1ρ
min(j,k)
1 + C1ρ

n−2−max(j,k)
1 , C2ρ

|j−k|
2 )

≤
n−2∑
j=0

n−2∑
k=j

(C1(ρj1 + ρn−2−k
1 )C2ρ

k−j
2 )

1
2 +

n−2∑
j=0

j−1∑
k=0

(C1(ρk1 + ρn−2−j
1 )C2ρ

j−k
2 )

1
2
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≤ C3

n−2∑
j=0

n−2∑
k=j

(ρk3 + ρn−2−j
3 ) + C3

n−2∑
j=0

j−1∑
k=0

(ρj3 + ρn−2−k
3 )

≤ C3

{ ∞∑
j=0

ρj3
1− ρ3

+
∞∑
j=0

(j + 1)ρj3 +
∞∑
j=0

jρj3 +
∞∑
j=0

ρj3
1− ρ3

}

def
= C4 (2.51)

Also, by lemma 2.23,

n−1∑
j=1

{ 0∑
k=−∞

+
∞∑
k=n

}
|C[g(Yj+1

j ), h(Yk+1
k )|X∞−∞]|

≤
n−1∑
j=1

{ 0∑
k=−∞

C2ρ
j−k
2 +

∞∑
k=n

C2ρ
k−j
}

≤ C2ρ2

(1− ρ2)2
+

C2ρ2

(1− ρ2)2
(2.52)

and the result follows from (2.51) and (2.52).

Q.E .D.

Lemma 2.37 Let g(., .) and h(., .) be polynomials in two variables. Then for any

θ ∈ P

D
[
n−1C[

n−1∑
j=1

g(Yj+1
j ),

n−1∑
k=1

h(Yk+1
k )|Xn

1 ]
]
→ 0 (2.53)

Proof: Let gj denote g(Yj+1
j ), hk denote h(Yk+1

k ). Then the expression on the left

side of (2.53) is n−2∑n−1
j1,j2,j3,j4=1Rj1j2j3j4 where

Rj1j2j3j4 = C
[
C[gj1 , hj2|Xn

1 ], C[gj3 , hj4|Xn
1 ]
]

By lemma 2.23, there exists C1 and ρ1 < 1 such that, for all ω, n and 1 ≤ j1, j2 ≤ n−1

|C[gj1 , hj2|Xn
1 ]| ≤ C1ρ

|j2−j1|
1 (2.54)

Suppose for the moment that j1 ≤ j3. Let J1 denote max(j1, j2) and J2 de-

note min(j3, j4). By lemma 2.22 there exists C2 and ρ2 < 1 so that, for all n,

1 ≤ j1, j2, j3, j4 ≤ n, J1 + ∆ ≤ n and J2 −∆ ≥ 1

|C[gj1 , hj2|Xn
1 ]− C[gj1 , hj2|XJ1+∆

1 ]| ≤ C2ρ
∆
2 (2.55)
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and, by time-reversibility,

|C[gj3 , hj4 |Xn
1 ]− C[gj3 , hj4|Xn

J2−∆]| ≤ C2ρ
∆
2 (2.56)

Further, by lemma 1.3, lemma A.2 and (2.54), there exists C3 and ρ3 such that

|C[C[gj1 , hj2|XJ1+∆
1 ], C[gj3 , hj4|Xn

J2−∆]]| ≤ C3ρ
J2−J1−2∆
3 (2.57)

provided J2 − J1 − 2∆ ≥ 0.

But, for any random variables A1, A2, B1 and B2

∣∣∣C[A1, B1]− C[A2, B2]
∣∣∣

≤
∣∣∣E[(A1 − A2)B1]

∣∣∣+ ∣∣∣E[A2(B1 −B2)]
∣∣∣

+
∣∣∣E[A1 − A2]E[B1]

∣∣∣+ ∣∣∣E[A2]E[B1 −B2]
∣∣∣

≤ 4 sup
ω

max(|A1|, |A2|, |B1|, |B2|) max(|A1 − A2|, |B1 −B2|)

Hence from (2.54), (2.55), (2.56) and (2.57)

|C[C[gj1 , hj2|Xn
1 ], C[gj3 , hj4|Xn

1 ]]|

≤ |C[C[gj1 , hj2|XJ1+∆
1 ], C[gj3 , hj4|Xn

J2−∆]]|+ 4C1C2ρ
∆
2

≤ 4C1C2ρ
∆
2 + C3ρ

J2−J1−2∆
3

provided J2 − J1 − 2∆ ≥ 0. Thus, if J2 ≥ J1, taking ∆ = b(J2 − J1)/3c implies the

existence of C4 and ρ4 < 1 such that

|Rj1j2j3j4| ≤ C4ρ
J2−J1
4

when J2 ≥ J1. However (2.54) implies that

C[C[gj1 , hj2 |Xn
1 ], C[gj3 , hj4|Xn

1 ]] ≤ C2
1ρ
|j2−j1|+|j4−j3|
1 ≤ C2

1 (2.58)

and so there exist C5 and ρ5 < 1 so that, even when J2 < J1,

C[C[gj1 , hj2 |Xn
1 ], C[gj3 , hj4|Xn

1 ]] ≤ C5ρ
J2−J1
5 (2.59)

Let J = max(j1, j2, j3, j4) − min(j1, j2, j3, j4), i.e. J = |j3 − j4| + J2 − J1 + |j2 − j1|.

Hence max(|j3 − j4|, J2 − J1, |j2 − j1|) ≥ J/3 and so by (2.54) and (2.59), there exists
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C6 and ρ6 < 1 such that |Rj1j2j3j4| ≤ C6ρ
J
6 . So far, this holds only when j1 ≤ j3.

If j3 ≥ j1, it is clear that the same argument holds with the roles of j1, j2 and j3, j4

reversed. However J ≥ (|j1 − j2|+ |j1 − j3|+ |j1 − j4|)/3 and so

n−2
n−1∑

j1,j2,j3,j4=1

|Rj1j2j3j4 | ≤ n−2C6

n−2∑
j1=0

∑
j2∈Z

∑
j3∈Z

∑
j4∈Z

ρ
|j1−j2|/3
6 ρ

|j1−j3|/3
6 ρ

|j1−j4|/3
6

≤ n−1C8

( ∞∑
j=−∞

ρ
|j|/3
6

)3

→ 0

as required.

Q.E .D.

Lemma 2.38 Let B ⊂ P be compact. Let g(., .), h(., .) and e(., .) be polynomials in 2

variables. There exists C so that

∣∣∣III[
n−2∑
j=0

g(Yj+2
j+1),

n−2∑
j=0

h(Yj+2
j+1),

n−2∑
j=0

e(Yj+2
j+1)|Xn

1 ]
∣∣∣ ≤ Cn (2.60)

for all n, ω and θ ∈ B.

Proof: For 0 ≤ j1, j2, j3 ≤ n− 2 define

Aj1j2j3 = III[g(Yj1+2
j1+1), h(Yj2+2

j2+1), e(Yj3+2
j3+1)|Xn

1 ]

Without loss of generality, by re-arranging g, h and e, assume j1 ≤ j2 ≤ j3 and

j2 − j1 ≥ j3 − j2. From the definition of the III operator

Aj1j2j3 = C[g(Yj1+2
j1+1), h(Yj2+2

j2+1)e(Yj3+2
j3+1)|Xn

1 ]

−C[g(Yj1+2
j1+1), h(Yj2+2

j2+1)|Xn
1 ]E[e(Yj3+2

j3+1)|Xn
1 ]

−C[g(Yj1+2
j1+1), e(Yj3+2

j3+1)|Xn
1 ]E[h(Yj2+2

j2+1)|Xn
1 ] (2.61)

By lemma 2.23, there exists C1 and ρ1 < 1 depending only on g, h and e such that

|C[g(Yj1+2
j1+1), h(Yj2+2

j2+1), e(Yj3+2
j3+1)|Xn

1 ]| ≤ C1ρ
j2−j1
1 (2.62)

and by lemmas 2.23 and 2.20, there exist C2 and ρ2 < 1 depending only on g, h and e

such that

|C[g(Yj1+2
j1+1), h(Yj2+2

j2+1)|Xn
1 ]E[e(Yj3+2

j3+1)|Xn
1 ]| ≤ C2ρ

j2−j1
2 (2.63)
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and

|C[g(Yj1+2
j1+1), e(Yj3+2

j3+1)|Xn
1 ]E[h(Yj2+2

j2+1)|Xn
1 ]| ≤ C2ρ

j3−j1
2 (2.64)

Hence j3 − j1 ≥ j2 − j1 implies the existence of C3 and ρ3 < 1 such that |Aj1j2j3| ≤

C3ρ
j2−j1
3 . But, by assumption, j2− j1 ≥ 1

2
(j3− j1) = 1

2
{max(j1, j2, j3)−min(j1, j2, j3)},

i.e.

|Aj1j2j3| ≤ C3ρ
1
2
{max(j1,j2,j3)−min(j1,j2,j3)}

3

which holds for any 0 ≤ j1, j2, j3 ≤ n − 2, redefining C3 and ρ3 to allow for any

permutation of the polynomials g, h and e in (2.61), (2.62), (2.63), and (2.64). Hence

∣∣∣III[
n−2∑
j=0

g(Yj+2
j+1),

n−2∑
j=0

h(Yj+2
j+1),

n−2∑
j=0

e(Yj+2
j+1), |Xn

1 ]
∣∣∣

≤ C53
n−2∑
j1=0

n−2∑
j2=0

n−2∑
j3=0

ρ
1
2
{max(j1,j2,j3)−min(j1,j2,j3)}

3 (2.65)

But max(j1, j2, j3)−min(j1, j2, j3) ≥ 1
2
|j1− j2|+ 1

2
|j1− j3| implies (2.65) is bounded by

C3

n−2∑
j1=0

n−2∑
j2=0

n−2∑
j3=0

ρ
1
4
|j1−j2|

3 ρ
1
4
|j1−j3|

3 ≤ nC3

(∑
j∈Z

ρ
1
4
|j|

3

)2

as required.

Q.E .D.

Convergence of the second derivative

Note that E[S̃n] = (n − 1)σ2, E[Tn] = 0 and E[Un] = 2(n − 2)σ2/(1 − φ2). Further

D[S̃n] = 2(n−1)σ4 and D[T̃n = (n−1)σ4/(1−φ2). In the remaining lemmas of this sec-

tion, two quantities Zn and Hn play a crucial part. Zn is defined by Zn =
∑n
j=2 e

2πiYj =∑n
j=2 e

2πiXj . Hn is defined by Hn =
∑n
j=2 e

2πi(Yj+Yj−1) =
∑n
j=2 e

2πi(Xj+Xj−1).

Lemma 2.39 The following limits hold for any θ ∈ P.

1. n−1C[S̃n, Zn]→ −4π2σ4(1− φ2)−1 exp
[
− 2π2σ2

(1−φ2)

]
2. n−1C[T̃n, Zn]→ 8π2φσ4(1− φ2)−1 exp

[
− 2π2σ2

(1−φ2)

]
3. n−1C[S̃n, Hn]→ −8π2σ4(1− φ)−1 exp

[
−4π2(1+φ)σ2

(1−φ2)

]
4. n−1C[T̃n, Hn]→ 8π2σ4(1− φ)−2 exp

[
−4π2(1+φ)σ2

(1−φ2)

]
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Proof: Commence by noting that, if W ∼ N(0, σ2),

E[eitWW ] = −i∂tE[eitW ]

= −i∂te−
1
2
t2σ2

= itσ2e−
1
2
t2σ2

= itσ2E[eitw]

and

E[eitWW 2] = −∂2
tE[eitW ]

= −∂2
t e
− 1

2
t2σ2

= (σ2 − t2σ4)e−
1
2
t2σ2

= (σ2 − t2σ4)E[eitW ]

Note also that

E[e2πiYj ] = e−2π2σ2/(1−φ2)

and

E[e2πi(Yj+Yj−1)] = e−4π2(1+φ)σ2/(1−φ2)

Define ejkl = E[e2πi(Yj+bYj−1)εj−kεj−k−l]. The computation of ejkl can be broken into a

number of cases of interest. Note that since Yt =
∑∞
l=0 φ

lεt−l

ejkl = E
[
exp [2πi(εj +

∑∞
m=0(b+ φ)φmεj−m−1)] εj−kεj−k−l

]

1. k < 0 and l = 0

ejkl = σ2E[e2πi(Yj+bYj−1)]

2. k < 0 and l > 0

ejkl = 0

3. k = 0 and l = 0

ejkl = (σ2 − 4π2σ4)E[e2πi(Yj+bYj−1)]
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4. k = 0 and l > 0

ejkl = (2πiσ2)(2πi(b+ φ)φl−1σ2)E[e2πi(Yj+bYj−1)]

= −4π2σ4(b+ φ)φl−1E[e2πi(Yj+bYj−1)]

5. k > 0 and l = 0

ejkl = (σ2 − 4π2(b+ φ)2φ2k−2σ4)E[e2πi(Yj+bYj−1)]

6. k > 0 and l > 0

ejkl = (2πi(b+ φ)φk−1σ2)(2πi(b+ φ)φk+l−1σ2)E[e2πi(Yj+bYj−1)]

= −4π2σ4(b+ φ)2φl+2k−2E[e2πi(Yj+bYj−1)]

Hence, we have

1. E[e2πiYj S̃n] = (n− j)σ2e2πiY +
j−2∑
k=0

(σ2 − 4π2φ2kσ4)e2πiY

and

C[e2πiYj , S̃n] = −
j−2∑
k=0

4π2φ2kσ4e2πiY

Therefore

n−1C[Zn, S̃n] = −n−1
n∑
j=2

j−2∑
k=0

4π2φ2kσ4e2πiY

→ −
∞∑
k=0

4π2φ2kσ4e2πiY

=
−4π2σ4

(1− φ2)
e2πiY

2. E[e2πiYj T̃n] = (n− j).0 +
j−2∑
k=0

∞∑
l=1

8π2φl−1φ2k+lσ4e2πiY

Therefore

n−1C[Zn, S̃n] = n−1
n∑
j=1

j−2∑
k=0

8π2 φ2k+1

(1− φ2)
σ4e2πiY

→
∞∑
k=0

8π2 φ2k+1

(1− φ2)
σ4e2πiY

=
8π2φσ4

(1− φ2)2
e2πiY
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3. For 2 ≤ j ≤ n

E[e2πi(Yj+Yj−1)S̃n] = (n− j)σ2e2πi(Y1+Y0)

+(σ2 − 4π2σ4)e2πi(Y1+Y0)

+
j−2∑
k=1

(σ2 − 4π2(1 + φ)2φ2k−2σ4)e2πi(Y1+Y0)

Therefore

(n− 1)−1C[Hn, S̃n] = −4π2σ4e2πi(Y1+Y0)

− 4π2

n− 1
σ4

n∑
j=2

j−1∑
k=1

(1 + φ)2φ2k−2e2πi(Y1+Y0)

→ −4π2σ4
{

1 +
∞∑
k=1

(1 + φ)2φ2k−2
}
e2πi(Y1+Y0)

=
−8π2σ4

1− φ
e2πi(Y1+Y0)

4. For 2 ≤ j ≤ n

E[e2πi(Yj+Yj−1)T̃n] = (n− j).0

+
∞∑
l=1

φl−18π2σ4(1 + φ)φl−1e2πi(Y1+Y0)

+
j−2∑
k=1

∞∑
l=1

φl−1.8π2σ4(1 + φ)2φl+2k−2e2πi(Y1+Y0)

=
8π2σ4

1− φ
e2πi(Y1+Y0)

+
8π2σ4

1− φ

j−2∑
k=1

φ2k−1(1 + φ)e2πi(Y1+Y0)

Therefore

(n− 1)−1C[Hn, T̃n] =
8π2σ4

1− φ
e2πi(Y1+Y0)

+
8π2σ4

(n− 1)(1− φ)

n∑
j=2

j−1∑
k=1

φ2k−1(1 + φ)e2πi(Y1+Y0)

→ 8π2σ4
{

1

1− φ
+

1 + φ

1− φ

∞∑
k=1

φ2k−1
}
e2πi(Y1+Y0)

=
8π2σ4

(1− φ)2
e2πi(Y1+Y0)

as required.

Q.E .D.
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Lemma 2.40 For each θ ∈ P, there exists a negative definite matrix L such that

n−1L̃′′n(θ)
L2→ L

Proof: By lemmas 2.21 and 2.36, n−1L̃′′n(θ) converges to the average of a stationary

sequence. There are then two stages to the proof of this lemma. One is to show that

the expectation of the sequence is negative definite, and the second is to show that

D[n−1L̃′′n(θ)]→ 0 as n→∞.

To prove the second part, note that n−2D[E[S̃n|Xn
1 ]] ≤ n−2D[S̃n] = 2σ4/n → 0.

By lemma 2.37

D[n−1D[S̃n|Xn
1 ]]→ 0

Hence the variance of the σ − σ component of n−1L̃′′n(θ) → 0. The other components

of the matrix are similar.

Now

E[L̃′′n] =

 −σ
−6D[E[S̃n|Xn

1 ]] 1
2
σ−5C[E[S̃n|Xn

1 ], E[T̃n|Xn
1 ]]

1
2
σ−5C[E[S̃n|Xn

1 ], E[T̃n|Xn
1 ]] −1

4
σ−4D[E[T̃n|Xn

1 ]]


But D[E[S̃n|Xn

1 ]] ≤ 2nσ4 and similarly for other terms. Hence n−1E[L̃′′n] is bounded

and therefore from the stationary approximation adduced earlier it converges to some

matrix L. It remains to show that L is negative definite.

To complete the proof, we first show that L is non-zero. To do this, note that

D[E[S̃n|Xn
1 ]] ≥ |C[E[S̃n|Xn

1 ], Zn]|2.D[Zn]. However C[E[S̃n|Xn
1 ], Zn] = C[S̃n, Zn] since

Zn is Xn
1 -measurable. Further D[Zn] = E[ZnZ̄n]− |E[Zn]|2 and

E[ZnZ̄n] =
n∑
j=1

n∑
k=1

E[e2πi(Yj−Yk)]

=
n∑
j=1

n∑
k=1

exp
[
−2π2{1 + 1− 2φ|j−k|}σ2/(1− φ2)

]

= e−4π2σ2/(1−φ2)
n∑
j=1

n∑
k=1

exp
[
4π2φ|j−k|σ2/(1− φ2)

]
Hence

1

n
D[Zn] → e−4π2σ2/(1−φ2)

∑
k∈Z

{
exp

[
4π2φ|k|

]
− 1

}
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= e−4π2σ2/(1−φ2)
∑
k∈Z

∞∑
j=1

(
4π2σ2

1− φ2

)j
φj|k|

j!

= e−4π2σ2/(1−φ2)
∞∑
j=1

(
4π2σ2

1− φ2

)j
1

j!

1 + φj

1− φj

> 0

and, by applying lemma 2.39

lim
n→∞

1

n
D[E[S̃n|Xn

1 ]] > 0

Similarly limn→∞
1
n
D[E[T̃n|Xn

1 ]] > 0.

The final part of the proof is to show that the matrix L is negative definite. This

follows if the determinant is positive. In order to show this, we must first show that

the limit of 1
n
D[Hn] is positive. However

E[HnH̄n] =
∑
j=1n

n∑
k=1

E[exp [2πi(Yj + Yj−1 − Yk − Yk−1)]]

= n+ 2(n− 1)e−2π2(1+1−2φ2)σ2/(1−φ2)

+
n−1∑
j=2

2(n− j) exp [−2π2(4 + 4φ− 2φj−1 − 4φj − 2φj+1)σ2/(1− φ2)]

Hence

1

n
D[Hn] → e−8π2σ2/(1−φ)

∑
j∈Z

{
exp

[
4π2(φ|j−1| + 2φ|j| + φ|j+1|)

]
− 1

}

= e−8π2σ2/(1−φ)

e8π2(1+φ) − 1 + 2
∞∑
j=0

{exp [4π2(1 + φ)2φj]− 1}


= e−8π2σ2/(1−φ)

{
e8π2(1+φ) − 1 + 2

∞∑
k=1

(4π2(1 + φ)2)k

k!(1− φk)

}
> 0

as required.

Put Ŝn = E[S̃n|Xn
1 ]− E[S̃n] and T̂n = E[T̃n|Xn

1 ]− E[T̃n]. But, for any α,

E[(Ŝn − αT̂n)2] ≥ |C[Ŝn, Zn]|2/D[Zn]

and

E[(Ŝn − αT̂n)2] ≥ |C[Ŝn, Hn]|2/D[Hn]
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Therefore, since Hn and Zn are Xn
1 -meaurable

1

n
E[(Ŝn − αT̂n)2] ≥ n−2 min(|C[S̃n − αTn, Zn]|2, |C[S̃n − αTn, Hn]|2)

n−1 max(D[Zn], D[Hn])

→ C1 > 0

by lemma 2.39. Hence there exists C2 < 1 such that

lim
n→∞

ρ(E[S̃n|Xn
1 ], E[T̃n|Xn

1 ]) = C2

Hence the determinant of L is simply

lim
n→∞

n−2(1− C2
2)D[E[S̃n|Xn

1 ]]D[E[T̃n|Xn
1 ]]

which is the required result.

Q.E .D.

Lemma 2.41 For all θ0 ∈ P

1

n
|L′′n(θ0, θ̂n)− L′′n(θ0, θ0)| a.s.→ 0

in θ0-measure.

Proof: From lemmas 2.38, 2.35 and 2.20, it is easy to see that if B is a compact set

containing θ0, there exists C such that all the third derivatives of L(θ) are bounded by

nC for all n, ω and θ ∈ B. Hence

|L′′n(θ0, θ̂n)− L′′n(θ0, θ0)| ≤ Cn|θ̂n − θ0|

for θ̂n ∈ B. But theorem 2.33 shows that θ̂n
a.s.→ θ0, i.e. |θ̂n − θ0|

a.s.→ 0 and the result

follows.

Q.E .D.

Theorem 2.42 For all θ0 ∈ P, there exists a positive definite matrix L such that

√
n(θ̂n − θ0)

d→ N(0,L−1)

in θ0-measure.
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Proof: By Taylor expansion

θ̂n − θ0 = −(L′′n(θ0, θ̂n))−1L′n(θ0)

and so

√
n(θ̂n − θ0) = (−n−1L′′n(θ0, θ̂n))−1 1√

n
L′n(θ0)

By lemmas 2.34 and 2.40, there exists a positive definite matrix L such that

1

n
L′′n(θ0, θ0)

a.s.→ −L

and by lemma 2.41

1

n
|L′′n(θ0, θ̂n)− L′′n(θ0, θ0)| a.s.→ 0

So

(
1

n
L′′n(θ0, θ̂n))−1 a.s.→ −L

It remains to show that

1√
n
L′n(θ0)

d→ N(0,L)

But

E[∂σLn(θ)] = E[
∂σfXn

1
(Xn

1 )

fXn
1
(Xn

1 )
]

= ∂σ

∫
fXn

1
(xn1 )dxn1

= 0

and similarly for φ. Hence

1

n
C[∂σLn, ∂φLn] =

1

n
E[(∂σLn)(∂φLn)]

=
1

n
E[
∂2
σfXn

1
(Xn

1 )

fXn
1
(Xn

1 )
]− 1

n
E[∂2

σLn]

= − 1

n
E[∂2

σLn]

which converges to the σ − σ component of L. The result follows provided L′n(θ) is

asymptotically normal.

But n−
1
2∂σLn(θ) is asymptotically equivalent to σ−3n−

1
2E[S̃n−nσ2|X∞−∞] by lemma

2.21. Similarly n−
1
2∂φLn(θ) is asymptotically equivalent to σ−3n−

1
2E[T̃n − nσ2|X∞−∞].
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Therefore any linear combination of n−
1
2∂σLn(θ) and n−

1
2∂φLn(θ) is asymptotically

equivalent to

1√
n

n∑
j=1

E[t1(ε2j − σ2) + t2εjYj−1|X∞−∞] (2.66)

But, by lemmas 2.20, 2.21 and theorem 2.18 together with lemma 1.3 the terms in

(2.66) form a stationary sequence which satisfies the assumptions of theorem A.4 and

hence (2.66) converges in distribution to a normal random variable.

Q.E .D.

2.2.6 Quantification of Estimation Properties

The maximum likelihood estimates having been shown to be asymptotically normal, it

is important to establish the asymptotic covariance structure of the estimates. From

the point of view of using the estimates, empirical standard errors can, of course, be

obtained by the usual method of regarding the second derivative matrix of the log-

likelihood function at the maximum as a satisfactory approximation to the inverse

of the true covariance matrix. However, for the purpose of evaluating the quality of

maximum likelihood estimation in comparison to, for example, the crude moment based

estimation procedure discussed in section 2.1, it is desirable to compute the covariance

matrix of the estimates for a range of values of σ and φ.

It is, I believe, clear that this matrix cannot be constructed easily in closed form.

Indeed, if it were possible, much of the earlier effort expended would be unnecessary.

There are many ways to estimate the covariance structure by simulation, all of which

appear to require a large quantity of computer time. The procedure I have chosen is

to use the fact that the second derivative matrix divided by the series length converges

almost surely to the inverse of the covariance matrix. The series length has to be chosen

arbitrarily. I have chosen a series length of 200. The simulation was performed 20 times

at each point on a grid of (σ, φ) values. σ ranged from 0.015 to 0.405 in steps of 0.015.

φ ranged from 0 to 0.85 in steps of 0.05. Clearly this will give rise to estimates of the

asymptotic second derivative which have error which will in turn give rise to estimates

of the correlation matrix with error. The results of the simulation are presented in

figure 2.5 in the form of asymptotic log standard deviations for
√
nφ̂ and

√
nσ̂ and also
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Figure 2.5: Asymptotic log of standard deviation and correlation between the param-
eter estimates for maximum likelihood estimation
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the asymptotic correlation between these two variables. The perspective plots shown

are noisy because of the estimation procedure. The results compare favourably with

those shown for moment estimation in figure 2.1. Figure 2.6 is a comparative table

giving asymptotic log standard deviations of the parameter estimates and their corre-

lation for the two estimation procedures at a number of values of the parameters. Note

that the asymptotic behaviour of the maximum likelihood estimate is always better

and that for extreme values of the parameters it is enormously better. Admittedly

some allowance needs to be made for error in these figures because of the way in which

they were computed for maximum likelihood estimation.

2.2.7 Computational Difficulties

The difficulties which arise with maximum likelihood estimation for this model fall into

two classes — calculating the likelihood function and maximising it.

Calculating the likelihood

As seen before, the likelihood cannot be exactly calculated since it involves infinite

summations in the formulae

fXt|Xt−1
1

(xt|xt−1
1 ) =

∑
j,k∈Z

(σ
√

2π)−1 exp
(
−1

2
σ−2(xt + j − φ(xt−1 + k))2

)
at−1,k

at,j =

∑
k∈Z(σ

√
2π)−1) exp

(
−1

2
σ−2(xt + j − φ(xt−1 + k))2

)
at−1,k

fXt|Xt−1
1

(xt|xt−1
1 )

fX1(x1) =

√
1− φ2

σ
√

2π

∑
j∈Z

exp

(
−(1− φ2)

2σ2
(x1 + j)2

)

a1,j =

√
1− φ2

σ
√

2π
exp

(
−(1− φ2)

2σ2
(x1 + j)2

)
/fX1(x1)

which hold for t > 1.

However, the likelihood can obviously be approximated by performing each sum

from −N to N for some N . This does not allow for the propagation of errors in the

at,j which will result. This last is rendered less serious by three facts:

1. Lemma 2.8 guarantees that for the true at,j (as opposed to the approximations)

we can make the finite sum arbitrarily close to 1 by an appropriate choice of N ,

and this N can be chosen independent of the sample sequence or its length.
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Figure 2.6: Table of values of log standard deviations of the parameter estimates and
their correlation for maximum likelihood and moment estimation

102



2. Since the rate of convergence in the above to 1 is extremely fast, a small increase

in N will permit a large increase in the sample length and still yield the same

accuracy of approximation.

3. The rate of convergence is so rapid that, for any sensible sample size (say less than

10000) on a reasonably large computer such as a VAX 11/780, the approximate

likelihood can be calculated for a value of N sufficiently large so as to render all

dropped terms smaller than can be represented on the computer.

Maximising the likelihood

Simulation shows that for some parameter values (those with large σ2 or |φ| close to 1)

the likelihood surface is so flat away from the maximum that without an extremely

good choice of initial point, conventional gradient based function maximisers simply

stop and do not find the true maximum of the likelihood. This is perhaps due to errors

in numerical approximations to the gradient of the likelihood function.

An alternative to the straightforward maximisation of the likelihood function is

the EM-algorithm of [8] which uses the statistical structure of the model to find the

maximum of the surface. It is suitable for those models where the likelihood function

results from an underlying likelihood function by the loss of information and where the

underlying likelihood is easy to maximise.

This is exactly the situation for the wrapped AR(1). The likelihood function arises

from that of a true AR(1) by the loss of the information contained in the integer part

of each observation. Further, the likelihood function for an AR(1) is easy to maximise,

requiring only the computation of the sufficient statistics g1 and g0 from the sequence,

and then setting φ̂ = r1 = g1/g0 and σ̂2 = g0 − φ̂g1.

The EM-algorithm consists of iteration of two simple steps. Beginning with some

initial guess for the parameters

1. Calculate the expectations of the sufficient statistics conditional upon the data

using the current parameter guess

2. Use these expected sufficient statistics to obtain new parameter estimates and

repeat the previous step.
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These two steps are then repeated until convergence of the parameter estimates occurs.

In the case of the wrapped AR(1) this becomes

• A. Obtain initial parameter estimates φ̂1 and σ̂2
1, perhaps by moment estimation.

• B. On the jth time through, calculate

ψ1,j = Eθ̂j [
1

n

n∑
k=1

Y 2
k |Xn

1 = xn1 ]

and

ψ2,j = Eθ̂j [
1

n

n∑
k=2

YkYk−1|Xn
1 = xn1 ]

• C. Set φ̂j+1 = ψ1,j/ψ2,j and σ̂2
j+1 = ψ2,j − φ̂j+1ψ1,j.

• D. Test if the sequence θ̂1, . . . , θ̂j+1 has converged. If not go to B.

The obvious issue is whether the sequence necessarily converges to the parameter

value maximising the likelihood function. In [8] a proof is given showing that it does

for certain simple models. For the wrapped AR(1) that proof does not suffice. However

simulations suggest that in fact the convergence is to the maximum.

A flaw of the EM-algorithm which has been noted is that it converges extremely

slowly in many cases (see [21]). This is the case for the wrapped AR(1). Depending

on the initial guess, perhaps as many as 106 iterations might be required. This would

appear to render the method useless for this problem. Fortunately the convergence,

althhough slow, is extremely regular. This enables the use of a convergence acceleration

algorithm, to speed the process. Numerical analysts have long been familiar with the

ε-algorithm for speeding up the convergence of real-valued sequences. A number of

algorithms derived from this for accelerating the convergence of vector-valued sequences

may be found in [4]. One of these, called the vector ε-algorithm, has proven to be

extremely successful in simulations.

The vector ε-algorithm is defined as follows. Given a sequence x1,x2, . . . we wish

to accelerate the convergence of the sequence to its limit. the principle behind the

algorithm is that the original sequence should be converging approximately accord-

ing to some power law. The algorithm produces a collection of improved estimates
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ε
(j)
0 , ε

(j)
2 , ε

(j)
4 , . . . at each point of the original sequence. ε

(j)
0 is simply the original se-

quence. ε
(j)
2 is computed from xj,xj+1,xj+2. ε

(j)
4 is computed from xj,xj+1,xj+2,xj+3,xj+4.

The definition is as follows

ε
(j)
−1 = 0

ε
(j)
0 = xj

ε
(j)
n+1 = ε

(j+1)
n−1 +

(
ε(j+1)
n − ε(j)n

)−1

for n >= 1. Since the quantities involved are vectors a definition needs to be supplied

for the inverse of a vector. The suggested form is

x−1 =
x

x.x

where . denotes the scalar product.

My use of this procedure has been somewhat ad hoc. I found that in practise the

best results were obtained with ε2 or ε4. The procedure I followed was

1. Start with some initial guess for the parameter values

2. Iterate with the EM-algorithm computing ε
(j)
2 for the sequence until the ε2 values

stabilised sufficiently.

3. Use the stable point of ε2 as a new starting point for the EM-algorithm.

4. Repeat the last two steps until the sequence of stable ε2 values converged.

The benefit of this procedure was obvious in the case when the initial parameter guess

was bad. The EM-algorithm would take at least some thousands of iterations. For a

large series or large values of σ and φ this would take more computer time than was

actually available. The accelerated procedure would converge after only one or two

hundred evaluations of the likelihood function — a very considerable improvement. If

the initial guess was good, — that is, on the upward slope to the maximum — there

was no appreciable difference between the ordinary EM-algorithm and the accelerated

procedure. The accelerated procedure failed altogether in certain circumstances. It

is possible for the accelerated estimate to so overshoot the true point that the new
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starting point for the EM-algorithm is actually further away from the true maximum

than the original guess. This occurred rarely and it should be possible to detect this

sort of wild swing and avoid it. Using ε6 or higher order methods was not successful. I

believe the reason for this to lie in the assumption of power series convergence for the

unaccelerated sequence, which does not neccesarily hold for the EM-iterations. The

higher order ε-accelerations are more sensitive to irregularities in the convergence of

the original series. My overall conclusion is that the ε-algorithm is worth the extra

programming required but that it should be used with a certain amount of care, as

intervention by the user may be required.
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Chapter 3

Markov Models

This chapter examines some aspects of Markov processes on the circle. The existence

of stationary processes for given transition functions is analysed, and it is seen that,

as in the case of finite Markov chains, a unique stationary measure exists under mild

conditions on the transition function. A number of bivariate circular distributions have

been proposed in the literature. These naturally give rise to transition functions for

Markov processes. Some details of these distributions are considered and a comparison

is made of the types of conditional behaviour which would arise from them. First

order Markov behaviour is often too restrictive for modelling dependence in series and

a method for deriving higher order models is proposed which does not require the use

of families of multivariate distributions for three or more circular random variables.

Finally, brief consideration is given to the question of estimation for Markov models, in

which it is shown that maximum likelihood estimation is consistent and asymptotically

normal under certain useful conditions.

3.1 Requirements for Stationary Models

In this section I examine the constraints imposed upon Markov models by stationarity,

in particular the constraints imposed upon the transition function.

Let Xt be a homogeneous Markov process on the circle defined by

fXt|Xt−1
1

(xt|xt−1
1 ) = g(xt|xt−1) (3.1)

where g is some conditional density and where fX1(x1) is some initial distribution.

This will only define a stationary Markov process for certain (if any) choices of

the initial distribution. Fortunately, Markov processes on any compact space, such
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as the circle, have a great deal in common with Markov chains on finite sets. The

following material, which is drawn from [9], shows that, for most choices of the transi-

tion function, there exists a unique initial distribution which gives rise to a stationary

process.

Definition 3.1 A transition function P on a space X is said to satisfy the Doeblin

hypothesis if there exists a finite measure φ on X with φ(X) > 0, an integer n ≥ 1 and

an ε > 0 such that

P (n)(x,A) ≤ 1− ε if φ(A) ≤ ε

Definition 3.2 Let P be a transition function on a space X which satisfies the Doeblin

hypothesis. A set E is said to be an invariant set if

P (x,E) = 1 for all x ∈ E

E is said to be a minimal invariant set if E ′ ⊂ E and E ′ invariant implies φ(E ′) =

φ(E).

Theorem 3.1 If the only minimal invariant subset of X with respect to P is X, then

there exists a unique stationary probability distribution.

Proof: This is a corollary of theorem A.5

Q.E .D.

Now I shall apply this to the case of the circle. Suppose that the transition density

f(x|y) has a uniform upper bound C. It is easily seen that the Doeblin hypothesis is

satisfied. For, taking φ to be Lebesgue measure, n = 1 and ε = 1
2C
≤ 1

2
since C > 1 by

hypothesis..

P (x,A) =
∫
A
f(y|x)dy ≤

∫
A
C dy ≤ Cφ(A)

So P (x,A) ≤ C
2C

= 1
2
≤ 1− ε when φ(A) ≤ ε.

Further, if f(x|y) > 0 for all x and y, then

∫
E
f(y|x) dy = 1 ⇒

∫
[0,1]\E

f(x|y) dy = 0
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which implies [0, 1] \E has null Lebesgue measure. So we have φ(E) = φ([0, 1]). That

is [0, 1] is a minimal invariant set. So, by theorem 3.1, there exists a unique stationary

probability distribution.

Sometimes, instead of defining the transition density, one will specify a function

which will be the joint density ofXt andXt−1 for any choice of t. Clearly this determines

the transition density in (3.1), since this is merely the conditional density of Xt with

respect to Xt−1. It also clearly defines the initial distribution. For the definition to

be consistent we must require that Xt and Xt−1 have the same marginal distribution.

Thus any bivariate circular distribution defines a unique stationary process if, and only

if, its marginal distributions are identical.

3.2 Bivariate circular distributions

In this section, I shall examine a number of bivariate distributions which have been

proposed by others, and consider their suitability for use as transition distributions for

Markov processes. A number of figures are included in this section, which require some

explanation. In each case a bivariate distribution of two circular random variables is

under consideration. Five of the small sub-figures show a graph of fY |X(y|x) for a given

value of x. The sixth shows the marginal density of Y . The value of x is indicated by

a short vertical line from the horizontal axis. For the sake of clarity the range of y for

each plot is [0, 2] thus giving two copies, side by side, of the density.

3.2.1 Bivariate von Mises distribution

Proposed by Mardia in [24], this distribution is an attempt to define a bivariate ana-

logue of the von Mises distribution on the circle. The density is given by

fΘ,Φ(θ, φ) =

C exp (κ1 cos 2π(θ − µ) + κ2 cos 2π(φ− ν) + ρ
√
κ1κ2 cos 2π(θ ± φ− ψ)) (3.2)

where ρ ≤ 1, C is a normalising constant, and κ1 and κ2 are positive. This density has

the mathematically attractive property of being the maximum entropy density under

the constraints E[eiθ] = eiµ, E[eiφ] = eiν and E[ei(θ±φ)] = ρeiψ. It is clear that (3.2)
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also defines a bivariate density when ρ > 1. However, in this case f(θ, φ) will not have

the property of maximum entropy.

We shall now examine what constraints are imposed on the parameters of the

density by the requirement that θ and φ should have the same marginal distribution.

The marginal density of Φ is known to be (see [24])

fΦ(φ) = Ceκ2 cos 2π(φ−ν)I0(Q
1
2
Φ)

where

QΦ = κ2
1 + ρ2 cos2 2πφ+ ρ2 sin2 2πφ

+ 2κ1ρ(cos 2πψ cos 2πµ+ sin 2πψ sin 2πµ) cos 2πφ

+ 2κ1ρ(− sin 2πψ cos 2πµ+ cos 2πψ sin 2πµ) sin 2πφ

and I0 is the incomplete Bessel function of order 0. A similar expression holds for the

marginal density of Θ. We see therefore that for the marginal densities to be the same

it is necessary and sufficient that κ1 = κ2 and µ = ν. Mardia shows in [24] that the

marginals cannot be von Mises unless the variables are independent. This is clear, for

if the marginal distribution of Φ is von Mises, then QΦ must be constant as a function

of φ, and so ρ must be zero. So in this respect, at least, the analogy between the

bivariate normal and the bivariate von Mises distribution is incomplete.

Now assume that κ1 = κ2 and µ = ν. We shall examine the conditional and

marginal distributions in more detail. First, the conditional densities are unimodal,

since for any given φ

fΘ|Φ(θ|φ) ∝ exp (κ cos 2π(θ − µ) + κ cos 2π(φ− µ) + ρκ cos 2π(θ − φ− ψ))

and so

∂

∂θ
fΘ|Φ(θ|φ) ∝ {−2πκ sin 2π(θ − µ)− 2πρκ sin 2π(θ − φ− ψ)}

exp (κ cos 2π(θ − µ) + κ cos 2π(θ − φ− ψ))

Equating the derivative to zero gives

sin 2π(θ − µ) + ρ sin 2π(θ − φ− ψ) = 0
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which, by expansion, gives

sin 2π(θ − µ){1 + ρ cos 2π(φ− µ+ ψ)} − cos 2π(θ − µ)ρ sin 2π(φ− µ+ ψ) = 0

Therefore, either 1 + ρ cos 2π(θ − µ+ ψ) = 0 or

tan 2π(θ − µ) =
ρ sin 2π(φ− µ+ ψ)

1 + ρ cos 2π(φ− µ+ ψ)
(3.3)

1. 1 + ρ cos 2π(θ − µ+ ψ) = 0 implies that cos 2π(θ − µ) = 0. This is only possible

for two values of θ, one of which must correspond to a maximum of the density,

and the other to a minimum, since it is continuous.

2. Equation (3.3) is also only possible for two values of θ and again one must cor-

respond to a maximum of the density and the other to a minimum.

Figure 3.1 shows graphs of the conditional density for certain values of φ and the

marginal density, when κ = 0.4, ρ = 0.8, ψ = 0 and µ = 0. Certain features of

these graphs appear to be typical of the behaviour of this density. The mode of the

conditional density appears to be “pulled” towards the value of φ being conditioned

upon. However, as φ passes through 0.5, the mode must move from one side of the

circle to the other. This happens by having the mode move back towards 0 as φ gets

close to 0.5. It is also noteworthy that while the marginal density of Θ is not von Mises,

it is at least unimodal and does not seem an unreasonable circular density, though it

is possible that this may not be true for other values of the parameters.

3.2.2 Johnson and Wehrly distributions

This family of distributions was proposed in [33]. The joint density of Θ and Φ is given

by

fΘ,Φ(θ, φ) = g(F1(θ)− F2(φ))f1(θ)f2(φ)

where g, f1 and f2 are univariate circular densities, and F1 and F2 are the distribution

functions corresponding to f1 and f2.

The marginal densities of Θ and Φ are f1 and f2 respectively. For

fΘ(θ) =
∫ 1

0
fΘ,Φ(θ, φ) dφ
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Figure 3.1: Graphs of the marginal and conditional densities for the bivariate von Mises
distribution with κ = 0.4, p = 0.8, ψ = 0 and µ = 0.
Each figure shows a density function. The range of values of y ranges from 0 to 2, thus
giving two copies of the density side by side. The first five plots are of the density
fY |X(y|x) for different values of x, the value of x being indicated by the short vertical
lines. The sixth plot shows the marginal density fY (y).
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=
∫ 1

0
g(F1(θ)− F2(φ))f1(θ)f2(φ) dφ

= f1(θ)
∫ 1

0
g(F1(θ)− z)dz

= f1(θ)

and, similarly fΦ(φ) = f2(φ).

If we now impose the constraint that the marginals of Θ and Φ be the same, we

obtain

fΘ,Φ(θ, φ) = g(F (θ)− F (φ))f(θ)f(φ)

One might think that this would be a very rich family of bivariate distributions, but

this is not the case. Suppose we have a Markov process Θt with this distribution

defining the transition function. Then

fΘt|Θt−1
1

(θt|θt−1
1 ) = g(F (θt)− F (θt−1))f(θt)

If we suppose that f(θ) is positive for almost all θ, then the inverse function of F exists,

and we can define a new process Zt by Zt = F (Θt) without any loss of information.

But

fZt|Zt−1
1

(zt|zt−1
1 ) = g(zt − zt−1)

or, in other words Zt is a random walk. So by using this family of distributions, the

only Markov processes we can obtain are those which are univariate transformations

of random walks. Consider the special case when g and f are von Mises densities. i.e.

f(x) =
1

I0(κf )
e−κf cos 2πx

Figure 3.2 shows graphs of the conditional densities and the marginal density when

κg = 0.6 and κf = 0.5. We see that, as in the case of the bivariate von Mises, Θ

is “pulled” toward Φ which is what we would expect when we almost have random

walk behaviour. However the “pull” does not weaken as Φ tends towards 0.5. The

bimodality of the conditional density may be seen as a consequence of this fact, since

as Φ passes through 0.5 the mode of the distribution must change from one side of the

circle to the other. Therefore either there must be a discontinuity or the density must

be bimodal. In the next section we shall see an example of a distribution which has

the discontinuity instead.
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Figure 3.2: Graphs of the conditional and marginal densities for the von Mises based
Wehrly and Johnson distribution with κf = 0.5 and κg = 0.6. For an explanation of
te information displayed see figure 3.1
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3.2.3 Saw’s Distributions

In [30] Saw proposed two families of bivariate distributions on the n-dimensional hy-

persphere and noted that the two approaches he used could be combined. For the circle

this reduces to using a bivariate distribution on [−1, 1] to determine the distribution

of (cos Θ, cos Φ), and independently using some bivariate distribution on {−1, 1} to

generate the sign of sin Θ and the sign of sin Φ. i.e.

fΘ,Φ(θ, φ) = P [sign(Θ) = sign(θ) ∩ sign(Φ) = sign(φ)]f|Θ|,|Φ|(|θ|, |φ|)

providing we assume that Θ and Φ are in [−1
2
, 1

2
].

He suggested further a way for generating distributions for f|Θ|,|Φ| having given

marginal distributions, based on collections of functions orthogonal to the marginal

distributions of (cos Θ, cos Φ). In the particular case where we want uniform marginals

for Θ and Φ, the appropriate set of functions are the Gegenbauer polynomials, which

for the circle are proportional to cosnθ. The net result of this is the density

f|Θ|,|Φ|(|θ|, |φ|) = 1 +
∞∑
j=1

αj cos jθ cos jφ

where the αj are chosen so that this is a density. Clearly this has uniform marginals

for |Θ| and |Φ|. In fact, it can be generalised further to

f|Θ|,|Φ|(|θ|, |φ|) = 1 +
∞∑

j,k=1

αj,k cos jθ cos kφ

and still have the desired marginality.

A choice must also be made for the distribution of sign(Θ) and sign(Φ). The most

general possible case is

sign(Φ)

sign(Θ)

−1 1

−1 p q

1 r 1− p− q − r

However if we impose the constraint of Θ and Φ having the same marginal distributions,

then this must also apply to the marginal distributions of sign(Θ) and sign(Φ) and so
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we get

sign(Φ)

sign(Θ)

−1 1

−1 p q

1 q 1− p− 2q

However, this will generally give rise to marginal and conditional densities for Θ and Φ

having discontinuities unless we also require P [sign(Θ) = −1] = P [sign(Θ) = 1] = 1
2
,

in which case we get

sign(Φ)

sign(Θ)

−1 1

−1 p q

1 q p

where p+ q = 1
2
. However, we shall see that the conditional densities have discontinu-

ities unless p = q = 1
4
.

Figure 3.3 illustrates the conditional densities and the marginal behaviour in the

case where the αj,k are zero except for α11 = 0.7. The marginals are continuous with

p = 0.7 and q = 0.3. We see that the conditional densities have discontinuities at 0

and 0.5. In the (somewhat dubious) sense that they have a mode, we can see that Θ

is “pulled” towards Φ, as Φ tends toward 0.5. The problem of what happens to the

mode as Φ passes through 0.5 is solved in this case by the discontinuity at 0.5.

The question arises as to whether the Saw distribution is truly a circular one. Since

cos Θ and sign(sin(Θ)) are independent it can only have a limited range of marginal

densities. Also because the dependence between cos(Φ) and cos(Θ) is unconnected with

the dependence between sign(Φ) and sign(Θ), it can only model a very restricted form

of dependence between circular random variables. On the other hand, the same is true

of Wehrly and Johnson’s family of distributions. The Saw family can obviously model

a very great range of dependence between cos Θ and cos Φ. This of course is due simply

to the large number (potentially infinite) number of αj,k parameters. It is merely a
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Figure 3.3: Conditional and marginal densities for Saw’s distribution, with the only
non-zero αij being α11 = 0.7 and with p = 0.7. For an explanation of the display see
figure 3.1.
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special case of writing the density as a Fourier series, which is discussed in the section

3.3 and if one is going to use this style of distribution one may as well have the full

generality. In higher dimensions, however, the Saw distribution appears to have much

nicer properties. The discontinuities disappear. The independence property remains,

but the Saw distribution could be useful in testing for exactly such a phenomenon in

data.

3.2.4 The Wrapped Bivariate Normal

This distribution is the obvious equivalent of the wrapped univariate normal. The joint

density is then

fΘ,Φ(θ, φ) =
∑
j,k∈Z

fX,Y (θ + j, φ+ k)

where fX,Y (x, y) is bivariate normal density,

X, Y ∼ N(0,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

The marginals are wrapped normal with variances σ2
1 and σ2

2 respectively. Under

the constraint of identical marginals, obviously we must have σ1 = σ2. The conditional

densities appear to be unimodal from examination of a few cases. Figure 3.4 shows

the conditional densities and marginal distribution in the case when σ = 0.3 and

φ = 0.5. There seems to be a great deal of similarity between this distribution and the

bivariate von Mises. Perhaps this is not surprising in view of the similarity between

the univariate versions of these distributions.

3.2.5 Comparison and Conclusions

When considering which, if any, of the preceding families of bivariate distributions

may be most useful, a number of considerations arise. One must consider marginal

behaviour, conditional behaviour, computational convenience and mathematical con-

venience.

The marginal behaviour of the wrapped normal and bivariate von Mises distribu-

tions is similar, and must be unimodal. The wrapped normal has a certain advantage,
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Figure 3.4: Conditional and marginal densities for the wrapped bivariate normal dis-
tribution with σ2 = 0.25 and φ = 0.6. For an explanation of the display see figure 3.1
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in that its marginal behaviour is the familiar wrapped normal. The Wehrly and John-

son family, being simple transformations of random walks, are capable of any marginal

behaviour, and the same is true for the Saw family due to the large number of param-

eters.

The conditional behaviour of these families is the most interesting feature from the

point of view of time series analysis. One might consider that the simplest form of

dependence other than a pure random walk is that where the Y is pulled towards X

away from zero, but does not actually have its mode as far round the circle as X. All

of these families, except the Saw distribution, display this property to some degree. In

fact no bivariate circular distribution can have this property totally and be completely

continuous in its behaviour. The reason is quite simple. Consider the density fY |X(y|x).

The attraction towards X may be expressed as saying that the mode of f as a function

of y for fixed x should be found somewhere around the circle in between 0 and x. Then

there is clearly a difficulty as y passes through 0.5, as the mode must “jump” from one

side of the circle to the other. Each of the families gets around this in a different way.

1. The bivariate von Mises lets the mode be pulled towards x more strongly the

further x is from 0, except that as x gets close to 0.5, the pull weakens again

until, when x = 0.5 the mode has returned to 0.

2. The Wehrly and Johnson family have unimodal conditional densities for x close

to 0 and the mode is pulled towards x away from 0. However, as x approaches

0.5 a second mode appears on the other side of the circle and increases in size as

x gets closer to 0.5 until, when x = 0.5, the two modes are of equal size, enabling

a smooth transition.

3. The wrapped normal has unimodal conditional densities. Again there is pull of

the mode towards x away from 0. This time however, the solution is that as x

approaches 0.5, the pull exerted on the mode increases to the point where the

mode is itself 0.5 when x = 0.5.

4. The conditional behaviour of the Saw distribution can only be said to be ugly.

It seems very unlikely to be useful.
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5. A form of behaviour which is not exhibited by any of these families is for the

conditional density of Y given X to be continuous for each X but to have a

change of behaviour at some value of X. An example where this is the case

appears in chapter 4.

Computationally, the wrapped normal and Wehrly and Johnson distributions are

easy to use. The summations required for the wrapped normal converge extremely

quickly. On the other hand, the von Mises has complicated normalisation, and a diffi-

cult marginal distribution. The Saw distribution, with its large number of parameters

could require the computation of many transcendental functions.

Mathematically, the wrapped normal and Wehrly and Johnson families are very at-

tractive. The former retains its un-wrapped stability properties and infinite divisibility

and has a convenient characteristic function. The latter is easy to work with because

it gives rise to stochastic process which are transformations of random walks. The

von Mises and Saw distributions do not appear to have any particularly convenient

properties.

In conclusion, the wrapped normal distribution appears the most interesting with

the Wehrly and Johnson family a good second. However it must be emphasised that a

great deal depends on the type of dependence to be modelled.

3.3 Densities as Fourier Series

We can write any bivariate circular density as a Fourier series in its variables. We have

fΘ,Φ(θ, φ) =
∞∑

j,k=−∞
cjke

2πijθe2πikφ (3.4)

where various (unknown) constraints are placed on the cj,k in order for this to be a

density. In particular, we do know that c00 = 1 in order for the function to integrate

to 1. The marginal distributions are

fΘ(θ) =
∞∑

j=−∞
cj0e

2πijθ

and

fΦ(φ) =
∞∑

k=−∞
c0ke

2πikφ
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Thus to satisfy the constraint that Θ and Φ have the same marginal distribution, it is

necessary and sufficient that c0j = cj0 for all j.

To use this in practice we should have to make a finite approximation to the infinite

series. There are severe problems. The number of parameters increases rapidly as we

increase the degree of the finite approximation to the sum. Because it takes a large

number of terms to adequately Fourier approximate a straight line, simple phenomena

of random walk type would require a very large number of the cjk to be non-zero. From

the point of view of numerical maximisation of likelihoods, one might be concerned that

there would be a “hole” in the space of the cjk where the functions generated were not

densities. Fortunately this particular problem does not exist. The set of values of the

cjk for which equation 3.4 defines a density is convex since a linear combination with

positive coefficients of densities is a density when appropriately normalised.

Log Densities as Fourier Series

A simple modification of the above approach is to write the log of the density as a

Fourier series. i.e.

log fΘ,Φ(θ, φ) =
∞∑

j,k=−∞
cjke

2πijθe2πikφ

Here we have no issue of positivity. Integration to 1 is more difficult. Any arbitrary

choice of those cjk for which either j or k is non-negative determines a unique value of

c00 for which we obtain a density. Further, it is not clear what constraints are imposed

on the cjk by requiring that the marginals to be the same. This might seem to make this

approach useless. However for a large sample, we have the advantage that calculating

the log likelihood for a large number of different values does not get more difficult as

the sample size grows. The hard part of maximising the likelihood is therefore the

constraint on c00 which does not depend on the sample size. It may be that, for large

samples, this approach is more suitable.

3.4 Markov processes of higher order

First order Markov processes are often inadequate for modelling purposes. Higher

orders of dependence are required. In this section a family of higher order Markov
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models is discussed. These models are known as linear conditional probability models.

They were originally proposed in [27] for finite Markov chains and further discussed

in a more general context in [25]. The advantages of the approach are that we do not

have to find explicit forms for general multivariate circular distributions, but rather

can generate a family of higher order conditional distributions using only bivariate

distributions. It does however impose severe restrictions upon the type of higher order

dependence which results.

Define a model for lth order Markov processes as follows.

fXt|Xt−1
1

(xt|xt−1
1 ) = fXt|Xt−1

t−l
(xt|xt−1

t−l ) =
l∑

j=1

λjgj(xt|xt−j) (3.5)

where the gj are some bivariate conditional densities, and choose some initial distri-

bution for Xl
1. Clearly this defines a Markov process whenever (3.5) defines a valid

conditional density. Integrating (3.5) over xt we get
∑l
j=1 λj = 1. Also since the den-

sity must be non-negative this imposes some constraint upon the λj. Provided we

take λj ≥ 0 for all j there is obviously no difficulty. For the remainder of this section

consider the case when all the gj are the same, i.e. gj = g for all j.

Stationarity

As earlier, stationarity imposes some constraint on the choice of initial distribution.

We shall use the theorems of section 3.1 to show that whenever there exists C such that

0 < g(x|y) < C for all x and y there is a unique stationary distribution for X1, . . . , Xl.

Note that g(x|y) ≤ C implies that fXt|Xt−1
t−l

(xt|xt−1
t−l ) ≤ C. Consider the vector process

Zt = (Xt, Xt+1, . . . , Xt+l−1) = Xt+l−1
t Then Zt is a first order Markov process since

the first l − 1 components of Zt+1 (Xt+1, . . . , Xt+l−1) are determined by Zt and the

dependence of the lth component Xt+l on the past is captured entirely in Zt.

Zt satisfies the Doeblin hypothesis with φ being Lebesgue measure on the product

of l copies of the circle, n = l, and ε = min(1
2
, 1

2Cl
). This is true because

P [Zt+l ∈ A|Zt = zt]

= P [Xt+2l−1
t+l ∈ A|Xt+l−1

t = xt+l−1
t ]

=
∫
A
fXt+2l−1|Xt+2l−2

t+l−1
(xt+2l−1|xt+2l−2

t+l−1 )× · · · × fXt+l|Xt+l−1
t

(xt+l|xt+l−1
t ) dXt+2l−1

t+l
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≤
∫
A
C l dXt+2l−1

t+l

= C lφ(A)

≤ C l

2C l
=

1

2

≤ 1− ε

when φ(A) ≤ ε.

Now suppose E is such that P [Zt+1 ∈ E|Zt = zt] = 1 whenever zt ∈ E. Iterating

this we get

P [Zt+l ∈ E|Zt = zt] = 1 whenever zt ∈ E

But as before

P [Zt+l ∈ E|Zt = zt]

=
∫
E
fXt+2l−1|Xt+2l−2

t+l−1
(xt+2l−1|xt+2l−2

t+l−1 )× · · · × fXt+l|Xt+l−1
t

(xt+l|xt+l−1
t ) dXt+2l−1

t+l

Clearly g(x|y) > 0 for all x and y implies that

fXt|Xt−1
t−l

(xt|xt−1
t−l ) > 0 for all xt−1

t−l

and therefore integration to 1 implies E is equal to the whole space of the product of

l copies of the circle. Applying corollary 3.1 shows there exists a unique stationary

distribution.

Marginal behaviour

It is sometimes important to know the marginal behaviour of the process, i.e. the

distribution of a single Xt without reference to any other XT , T 6= t. Now by definition

fXt
t−l+1

(xtt−l+1) =
∫
fXt|Xt−1

t−l
(xt|xt−1

t−l )fXt−1
t−l

(xt−1
t−l ) dxt−l

=
l∑

j=1

λj

∫
g(xt|xt−j)fXt−1

t−l
(xt−1

t−l ) dxt−l

Now integrate withe respect to xt−1, xt−2, . . . , xt−l+1 to get

fXt(xt) =
l∑

j−1

λj

∫
g(xt|xt−j)fXt−j(xt − j) dxt−j
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But assuming the Xt process is stationary fXt−j(xt−j) = fXt(xt−j) and so we get

fXt(xt) =
l∑

j=1

λj

∫
g(xt|xt−j)fXt(xt−j) dxt−j

=
l∑

j=1

λj

∫
g(xt|y)fXt(y) dy

=
∫
g(xt|y)fXt(y) dy

Thus the marginal distribution of the higher order process is simply the stationary

distribution of the first order Markov process defined by g.

3.5 Estimation for Markov Processes

In the next chapter Markov processes wil be used to model data. It will be assumed

that maximum likelihood estimation is consistent and that the estimates obtained

have, asymptotically, a normal distribution with covariance given by the inverse of the

hessian matrix of the log-likelihood function. i.e. the usual properties will be assumed.

A brief justification is given here for those assumptions.

Definition 3.3 Let P(.,.) be a transition probability function on a space X. Then the

coefficient of ergodicity α(P ) is defined by

α(P ) = 1− sup
x,y∈X,B⊂X

|P (x,B)− P (y,B)|

The point behind this definition is that if α(P ) > 0 then the resulting Markov

process is strongly mixing with geometrically decreasing mixing coefficients. (For an

explanation of mixing see the appendix). For a derivation of this fact see [15]. The

rest of the proof draws on the ideas in [7]

Let fXt|Xt−1(.|.; θ) be a transition density for a circular Markov process with pa-

rameters θ ∈ Θ. Then, under the following assumptions, the maximum likelihood

estimates are weakly consistent and asymptotically normal.

1. θ1 6= θ2 implies fXt|Xt−1(.|.; θ) and fXt|Xt−1(.|.; θ) are not almost everywhere equal.

2. Given θ0 ∈ Θ, there exists a neighbourhood O of θ0 such that infθ∈O α(f) > 0.

3. There exists a continuous C1(θ) <∞ such that

∣∣∣ln fXt|Xt−1(x|y; θ)
∣∣∣ < C1 for all x, y and θ ∈ Θ.
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4. There exists a continuous C2(θ) <∞ such that

∣∣∣∂θj ln fXt|Xt−1(x|y; θ)
∣∣∣ < C2 for all j, x, y and θ ∈ Θ.

5. There exists a continuous C3(θ) <∞ such that

∣∣∣∂θj∂θk ln fXt|Xt−1(x|y; θ)
∣∣∣ < C3 for all j, k, x, y and θ ∈ Θ.

6. There exists a continuous C4(θ) <∞ such that

∣∣∣∂θj∂θk∂θl ln fXt|Xt−1(x|y; θ)
∣∣∣ < C4 for all j, k, l, x, y and θ ∈ Θ.

Denote the log likelihood by Ln(θ), the vector of derivatives by L′n(θ) and the

matrix of second derivatives by L′′n(θ, θ1) where the elements are evaluated on the line

segment between θ and θ1.

Since L′n(θ) is the sum of a stationary sequence where each term depends only on two

observations, and each term is bounded by assumption 4, it converges in distribution

to a bivariate normal by theorem A.4. This is the first assumption of theorem A.6.

It is easily shown (and well known) that n−1E[−L′′n(θ, θ)] is the covariance matrix of

the vector with coefficients ∂θj ln fXt|Xt−1(x|y; θ). But

E[|∂θj ln fXt|Xt−1(x|y; θ)|2] > 0

for otherwise assumption 1 is contradicted. Equally

ρ
(
∂θj ln fXt|Xt−1(x|y; θ), ∂θk ln fXt|Xt−1(x|y; θ)

)
< 1

or again, assumption 1 is contradicted. Thus the smallest eigenvalue of E[−L′′n(θ, θ)]

converges to infinity. This is the second assumption of theorem A.6.

However, by assumptions 5 and 2 and the fact that L′′n(θ, θ) is the sum of a stationary

sequence, each term of which depends only on two observations, the strong law of large

numbers for mixing processes (theorem A.3) can be applied to show that n−1L′′n(θ, θ)

converges almost surely to its expectation. This is the third assumption of theorem A.6.

Finally, since the third derivatives are bounded by assumption 6, the fourth assumption

of theorem A.6 holds even without the probabilistic statement.

Thus the maximum likelihood estimates are weakly consistent and asymptotically nor-

mal.
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Chapter 4

Analysis of Wind Directions

In this chapter I attempt to model a series of wind directions observed at Roche’s Point

in Co. Cork on the south coast of Ireland. There is clear evidence of dependence on the

time of day. For this reason the rest of the analysis proceeds using daily averages. It is

seen that the models of Chapter 1 are inappropriate to this data. Modelling the data as

a Markov process appears to be reasonably successful, using a conditional distribution

which is not of any of the types discussed in Chapter 3. By applying the methods

of section 3.4, a superior model is obtained. Diagnostic techniques show that there is

probably an annual effect in the data which is modelled by allowing some parameters

to vary in a seasonal fashion. It is seen that this is not in itself sufficient to account

for all of the seasonal behaviour.

A few general points should be noted before proceeding to the actual analysis.

Graphical techniques are of great importance. Since the context is that of circular

data, it is important to remember that in many cases the left and right sides (and

sometimes the top and bottom) of graphs need to be identified together. For example,

in figure 4.7, the small clusters of points in the top-left and bottom-right corners are

overflows from the bottom-left and top-right corners.

In much of this chapter the methods used are ad hoc. In particular, significance

tests are rarely performed. This is due largely to the difficulty of performing tests on

periodograms. Also the conditional distribution function method of section 4.1.2 is,

while potentially powerful, unexplored. Its estimation properties are unknown and it

cannot be used quantitatively.

As far as possible, angles are represented as numbers in [0, 1). The exception to
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this is the raw hourly data for which degrees are used.

4.1 Useful Tools

In order to perform analysis of a circular time series we shall need a couple of tools.

The first is merely a clarification of the application of the usual methods of frequency

analysis to this kind of data.

4.1.1 The Circular Periodogram

One of the most important ways of detecting periodic behaviour in time series analysis

is by the periodogram. This is an estimate of the spectrum of a zero mean stochastic

process, given by

ĝ(p) =
1

n

∣∣∣∣∣∣
n∑
j=1

xje
2πipj/n

∣∣∣∣∣∣
2

for p = 0, 1, . . . , n/2 (4.1)

for the sequence x1, . . . , xn. We expect ĝ(p) to be large for those values of p for which

the periodic component at frequency p/n is large.

The definition of ĝ(p) holds good in the case when x1, . . . , xn are complex, instead

of real, numbers. However, any sequence of angles can be considered as a sequence

of points on the unit circle in the complex plane. Thus equation 4.1 can be used to

define a version of the periodogram for sequences of angles. Since our process may not

have zero mean, we shall remove the average from the series (considered as being in

the complex plane) before calculating the periodogram. Thus for a sequence of angles

x1, . . . , xn given as numbers in the range [0, 1) (i.e. distances along the circumference

of a circle of radius 1
2π

) we define

ĝ(p) =
1

n

∣∣∣∣∣∣
n∑
j=1

(
e2πixj − x̃

)
e2πipj/n

∣∣∣∣∣∣
2

where x̃ is the complex average of the complex numbers e2πix1 , . . . , e2πixn .

We shall use this tool in two circumstances. In the first case we will be looking

for evidence of some periodic (daily or annual) behaviour in a sequence of angles.

Secondly, we shall use it to test for dependence in a sequence of angles. If X1, . . . , Xn

is a sequence of uncorrelated (in particular, independent) circular random variables

then, by the standard asymptotic theory, ĝ(p) is, for large samples, an independent
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sequence of approximately identically distributed χ2
2 random variables. This provides

a test for dependence in a sequence based on the circular periodogram. For further

detail see [16]. Both these uses are largely ad hoc.

In practice we shall often use the cumulative periodogram which is the cumulative

sum of the ĝ(p) normalised so that
∑n/2
p=0 ĝ(p) = 1. The most important characteristic

of this sequence is that, for a large uncorrelated sequence, it should be approximately a

straight line — the Kolmogorov-Smirnov approach for empirical distribution functions

can be used to test whether the deviation is significant.

4.1.2 The Conditional Distribution Function

A most important aspect of the practical use of the ARMA models of [3] is the avail-

ability of a simple diagnostic technique for evaluating the appropriateness of a fitted

model — residual analysis. The simplest case is the AR(1) model, given by

Xt = φXt−1 + εt

where the εt are an independent sequence of identically distributed mean 0 normal ran-

dom variables having variance σ2. Having estimated φ and σ for a sequence x1, . . . , xn,

we can estimate the εt by et where

et = xt − φxt−1

We can then test the suitability of the model by testing to see if the e2, . . . , en are

compatible with being from an i.i.d sequence of normals.

For general stochastic models, however, no such technique has been available. We

can, in fact, define a useful sequence as follows. For any stochastic process Xt define

εt by

εt = FXt|Xt−1
1

(Xt|Xt−1
1 )

where FXt|Xt−1
1

is the distribution function of Xt conditional upon X1, . . . , Xt−1 for the

true model of the process. But, provided it is absolutely continuous, the distribution

of FXt|Xt−1
1

(Xt|Xt−1
1 ) is the uniform distribution, for

E[exp(iαFXt|Xt−1
1

(Xt|Xt−1
1 ))]
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=
∫

Ωt
exp(iαFXt|Xt−1

1
(xt|xt−1

1 ))dFXt
1
(xt1)

=
∫

Ωt−1

∫
Ω

exp(iαFXt|Xt−1
1

(xt|xt−1
1 ))dFXt|Xt−1

1
(xt|xt−1

1 )dFXt−1
1

(xt−1
1 )

=
∫

Ωt−1

∫ 1

0
exp(iαz)dzdFXt−1

1
(xt−1

1 )

=
∫ 1

0
exp(iαz)dz

Also, provided s < t,

E[exp(iαFXt|Xt−1
1

(Xt|Xt−1
1 ) + iβFXs|Xs−1

1
(Xs|Xs−1

1 ))]

=
∫

exp(iαFXt|Xt−1
1

(xt|xt−1
1 )) exp(iβFXs|Xs−1

1
(xs|xs−1

1 ))dFXt
1
(xt1)

=
∫

exp(iαz) exp(iβFXs|Xs−1
1

(xs|xs−1
1 ))dzdFXt−1

1
(xt−1

1 )

=
∫

exp(iαz)dz
∫

exp(iβFXs|Xs−1
1

(xs|xs−1
1 ))dFXs

1
xs1

= E[exp(iαFXt|Xt−1
1

(Xt|Xt−1
1 ))]E[exp(iβFXs|Xs−1

1
(Xs|Xs−1

1 ))]

and so FXt|Xt−1
1

(Xt|Xt−1
1 ) is independent of FXs|Xs−1

1
(Xs|Xs−1

1 ). Thus the εt sequence

is an independent sequence of uniformly distributed random variables.

We can use this property as a test for fit of a model. If we have a fitted model, we

put

et = F̂Xt|Xt−1
1

(xt|xt−1
1 )

where F̂Xt|Xt−1
1

is the conditional distribution of Xt given X1, . . . , Xt−1 according to the

fitted model. Then we can test the sequence e1, . . . , en for incompatibility with being

a realisation of an i.i.d uniform sequence, and this is a test for incompatibility of the

fitted model with the data. We shall call the et sequence the conditional distribution

function sequence.

An issue which arises in the case of modelling an angular sequence is whether the

εt are uniformly distributed on [0, 1) or on a circle of radius 1
2π

. The distinction is

that in the latter case 0 and 1 are identified with each other. The answer must be

that the circle is appropriate, since the origin on the circle with respect to which the

distribution function is defined can only be chosen in an arbitrary manner.
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4.2 The Raw Data

The data consists of almost nine years of hourly observations of wind direction at the

Irish Meteorological Office’s station at Roche’s Point in Ireland. A plot of part of the

series is shown in figure 4.1. The directions are given in degrees measured clockwise

from North. As we shall see, it is worth noticing that this station is located on the

coast. The total number of observations is 77241. The direction was not measured

exactly but is given to the nearest multiple of 10◦, that is, there are 36 possible observed

directions. This means that there is a severe grouping effect. This is not apparent from

the marginal distribution (a histogram of the data is shown in figure 4.2). If, however,

we examine the conditional behaviour we see that the data is heavily discretised as

in figure 4.3, which shows a histogram of the observations at time t given that the

observation at time t− 1 was 180◦. On those occasions when no measurable wind was

blowing no observation could be made, giving rise to the difficulty of “missing data”.

Also, the data shows clear signs of a 24-hour periodic effect. This can be seen from

figure 4.4 which is a plot of the cumulative periodogram of the data. This periodogram

was obtained by taking the complex Fourier transform of the data regarded as points

on the unit circle in the complex plane. There is a marked jump (large when compared

to the smoothness of the rest of the curve) at a frequency which corresponds to a 24-

hour period. This is to be expected because the directions were observed at the coast.

Any sailor is well aware of the phenomena known as “land-breeze” and “sea-breeze”.

During the day the wind tends to blow from the sea to the land, because the land is

colder than the sea, having cooled more quickly during the night. As the day proceeds

the land warms more quickly, eventually becoming warmer than the sea and the wind

direction then changes and blows from the land to the sea. One would expect there

to be some form of yearly behaviour in the wind directions since this temperature

phenomenon is more pronounced during the warmer parts of the year, in particular the

summer.

If we take 24-hour averages of the data we eliminate this 24-hour non-stationary

behaviour. The data also effectively becomes continuous through this operation as can

be seen in figure 4.5, which is a plot of the empirical marginal cumulative distribution
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Figure 4.1: Time plot of one month of hourly wind directions
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Figure 4.2: A barplot of the frequencies of directions for the raw hourly data
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Figure 4.3: A barplot of the frequencies of directions for the raw hourly data given
that the previous observation was at 180◦
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Figure 4.4: Cumulative periodogram for the raw hourly data
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Figure 4.5: The empirical marginal distribution function of the sequence of daily aver-
ages
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function for the averaged data. The data was averaged using the usual average for

circular data (see [22]),

Yt = the direction of
23∑
j=0

e2πiX24t−j

where Xt is the raw data and Yt is the average, giving a sequence of 3218 observations

of the daily average wind direction. There are very few missing values since a 24 hour

calm is rare. Those few have been replaced by the average for the previous 24 hours. It

is this sequence which we shall attempt to model and which shall be known henceforth

as the “data”, the term “raw data” being used for the original series.

4.3 Modelling the Daily Average Directions

In figure 4.6 we see the estimated marginal density of the data. This is not wrapped

normal in appearance, since it is not symmetric. This would appear to preclude the

use of the wrapped linear models discussed in chapters 1 and 2. However for the

sake of comparison with later models, the wrapped AR(1) model was fitted to the

data, having first transformed the series by rotation to have circular average 0. The

result of maximum likelihood estimation was a log-likelihood of 1242 at σ = 0.168 and

φ = 0.9975, when the maximisation stopped due to the difficulty of calculating the

likelihood for φ near 1. The path through parameter space being followed was tending

to φbeing 1, while σ was changing very little. The increases in the likelihood for the

last few iterations were very small and it is unlikely that finding the true maximum

would result in an increase of more than 1.

Further examination of the data was made after transforming the series to have the

uniform distribution as its marginal distribution by setting

Zt = F (Yt)

where F is the empirical marginal distribution function of the sequence of averages.

There are two reasons for doing this. Firstly, we can confine our attention to the

dependence which exists in the series and ignore the difficulties involved in modelling

the marginal behaviour. Secondly it makes the interpretation of graphical displays

such as lag scatterplots less difficult. This is because, if we now plot Zt+1 against Zt,
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Figure 4.6: Estimates of the marginal density of the daily average sequence. The log-
likelihood values are those obtained for the sequence of averages from these densities
under independence
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Figure 4.7: Lag 1 scatterplot of the cdfs sequence

the density of observations on each axis is constant which is advantageous, for we can

now place the same reliability on conclusions drawn about the behaviour of Zt+1 for

each different value of Zt. This new series will be known as the cdfs for the remainder

of the chapter.

We shall now proceed to examine the first order dependence of the cdfs. Figure 4.7

shows the lag 1 scatterplot of the cdfs. The next three subsections describe and estimate

models based on the most prominent features of this plot. All the models from now

on will be semi-parametric models for the sequence of daily averages. They will be

parametric models for the cdfs and the non-parametric component is the transformation

between Yt and Zt. The problem of comparing these models with parametric models
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for the daily averages arises naturally in the next section and will be considered there.

4.3.1 Random Walk Model

The most striking aspect of figure 4.7 is the high density of points along the main

diagonal ( the small clusters of points in the NW and SE corners are artifacts of the

fact that the edges of the graph should be identified, i.e. they are spill-over from the

main diagonal). This would appear to imply some sort of random walk model based

on some unimodal distribution such as those of wrapped normal type. That is, the

conditional distribution of Zt+1 given Zt is wrapped normal with mean Zt and some

fixed variance independent of Zt.

Zt+1|Zt ∼WN(Zt, σ
2)

The result of fitting this model is a loglikelihood value of 933 at σ = 0.187.

It should be noted that this value for the log-likelihood cannot be directly compared

to that obtained for the wrapped AR(1) previously, since the two values arise from

different sets of data. However, since the Zt are the image of the Yt under the bijective

transformation Zt = F (Yt), any density on the Zt induces a density on the Yt by

fYt|Yt−1
1

(yt|yt−1
1 ) = F ′(yt)fZt|Zt−1

1
(F (yt)|F (yt−1), . . . , F (y1))

and so the likelihood of the Yt series is given by

fYn
1
(yn1 ) = fZn1

(zn1 )
n∏
j=1

F ′(yj)

The product term is the likelihood of the averages under the assumption of indepen-

dence, i.e. the difference between the log-likelihoods for the averages and the cdfs will

be the log-likelihood function of the averages under independence. The remaining dif-

ficulty is that F is the empirical cumulative distribution function and F ′ corresponds

to the estimated marginal density, the estimation of which is governed by subjectivity.

Figure 4.6 shows four different estimates of the marginal density with the correspond-

ing values of log
∏3218
j=1 F

′(yj) underneath. Using the second one we find that the log

likelihood of the current model for the Yj is 1165 = 933 + 237 which is less than

that obtained for the wrapped AR(1). The subjectivity of the density estimates is, in

fact, unimportant, since the models considered later perform better than the wrapped
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Figure 4.8: Density function of the wrapped normal density with mean 0 and σ = 0.187

AR(1), no matter which of these density estimates is chosen. It might seem surprising

that this likelihood is different from that obtained for the AR(1), since the parameter

values obtained for the latter correspond to a random walk having a wrapped normal

for the conditional distribution. The difference lies in the fact that the two models are

fitted to different series. The AR(1) model is a random walk for the Yt series but not

for the Zt series. The model of this section is a random walk for the Zt, but not for

the Yt.

4.3.2 Uniformly contaminated Random Walk Model

A closer examination of figure 4.7 shows that more points are located on or near to

the main diagonal than would be expected for the value of σ obtained for the previous

model. Further, at larger distances from the diagonal the points appear to be scattered

more or less uniformly which is certainly not what should occur for a wrapped normal

density. The wrapped normal density for σ = 0.187 is shown in figure 4.8. It is clearly

seen that there is no area of roughly constant density. This suggests the use of a

different density for the random walk model. By contaminating the wrapped normal
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Figure 4.9: Density function of the uniformly contaminated wrapped normal distribu-
tion with mean 0, σ = 0.106 and contamination level p = 0.33

with an amount of uniform distribution a density is obtained which corresponds to the

requirements described for small values of σ. The model is then given by

fZt|Zt−1(zt|zt−1) = p.1 + (1− p).gσ(zt − zt−1)

where gσ is the density of a wrapped normal having mean 0 and variance σ2. p is the

proportion of contamination by the uniform distribution.

Fitting this model by maximum likelihood yields a log-likelihood of 1076 at σ =

0.106 and p = 0.330. Figure 4.9 shows the conditional density for these values of the

parameters. The model now incorporates the basic features of figure 4.7. There are,

however, still significant divergences.

4.3.3 Pseudo-Regression Model

Figure 4.10 is the same scatterplot as in figure 4.7, but with the addition of boundary

lines containing the area where the highest density of points is to be found. This

is purely for visual convenience and was not derived by any analytic procedure. It

does, however, suggest an improvement to the model. The outline seems to show that
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Figure 4.10: Lag 1 scatterplot of the cdfs sequence
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when Zt−1 < 0.4 or Zt−1 > 0.9 the random walk model describes the behaviour of Zt

accurately enough. But when 0.4 < Zt−1 < 0.9 there are two changes. Firstly the

mean of Zt appears to be pulled towards 0.65 or thereabouts. Also the conditional

dispersion of Zt appears to be greater. The uniform behaviour is about the same far

from the diagonal in either case. This suggests the following model which incorporates

a regression-like approach.

fZt|Zt−1(zt|zt−1) =



p.1 + (1− p).gσ1(zt − zt−1)

when 0 ≤ zt−1 < a or b < zt−1 < 1

p.1 + (1− p).gσ2(zt − {α + k(zt−1 − α)})

when a ≤ zt−1 ≤ b

where gσ is the density function of the wrapped normal having mean 0 and variance

σ2. This model has 7 parameters which is many more than for the previous models.

p is the proportion of uniform contamination. σ1 and σ2 are variances. α and k are

mean and coefficient of the regression and a and b are the end-points of the interval in

which the regression behaviour occurs. Estimation of this model is extremely difficult

because the likelihood function is not continuous in the parameters a and b, since the

likelihood will jump as a point moves from one region to the other. For this reason it

is neccesary to introduce an extra parameter δ as follows. Define

f1(x|y) = p+ (1− p)gσ1(x− y)

and

f2(x|y) = p+ (1− p)gσ2(x− {α + k(y − α)})

Then the model as so far proposed so far is

fZt|Zt−1(zt|zt−1) =


f1(zt|zt−1) when 0 ≤ zt−1 < a or b < zt−1 < 1

f2(zt|zt−1) when a ≤ zt−1 ≤ b
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Figure 4.11: Graph of the smoothing function h(x) for a = 0.25, b = 0.75 and δ = 0.1.

Let ψ(x) = 6x5 − 15x4 + 10x3. Define h(x) by

h(x) =



0 0 ≤ x ≤ a

ψ
(
x−a
δ

)
a < x ≤ a+ δ

1 a+ δ < x ≤ b− δ

ψ
(
b−x
δ

)
b− δ < x ≤ b

0 b < x < 1

h(x) is shown in figure 4.11 for a = 0.25, b = 0.75 and δ = 0.1. h has the important

property (for gradient maximisation routines) of continuous first and second derivatives.

We now finally define the new model by

fZt|Zt−1(zt|zt−1) = h(zt−1)f2(zt|zt−1) + (1− h(zt−1))f1(zt|zt−1)

This is the same as before except when zt−1 ∈ (a, a+δ) or zt−1 ∈ (b−δ, b), and deforms

continuously between f1 and f2 in these small intervals. It is worth noticing that while

the likelihood function is now smooth, there may be local maxima as a point moves

from a+ δ to a.
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Figure 4.12: The stationary marginal density of the pseudo-regression conditional den-
sity at the estimated parameter values

This model was fitted to the data by maximum likelihood. δ was not allowed to

vary, but was fixed at 0.01, for δ is not a true parameter of the model, but a contrivance

to ease the estimation process. The value of 0.01 seems reasonable. It is not so large as

to severely distort the behaviour of the basic model, yet large enough to ensure there

being 30 or so points in the range (a, a+ δ). The more points that are in this interval,

the smoother is the likelihood function and hence there is less chance of multiple local

maxima. The result of the maximisation was a log-likelihood of 1256 at

p = 0.253 a = 0.362 b = 0.916 σ1 = 0.076

σ2 = 0.158 k = 0.645 α = 0.634

One problem, not yet mentioned, with this model is that it does not have as its sta-

tionary marginal distribution the uniform distribution. Figure 4.12 shows the marginal

density for the estimated values of the parameters. However the model does fit signif-

icantly better than the previous ones.

An interesting question is the one of physical motivation for this model. The answer

may lie in the prevailing meteorological pattern over Ireland. Weather in Ireland is
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dominated by a regular sequence of pressure systems which sweep in over the west

coast of Ireland from the Atlantic. This pattern should be reflected in the sequence

of wind directions. As a pressure system passes over the country, there should be

some predictable change in the wind direction, because the wind is blowing clockwise

or anti-clockwise around the centre of the pressure system. I have not been able to

explain the precise form of the pseudo-regression model, but I believe the regression

part arises to some extent from the pressure system pattern.

4.4 Diagnostics

We now turn to the issue of diagnostics for the models so far considered. We shall use

the tool described at the outset of the paper, the conditional cumulative distribution

function. As shown there, if fZt|Zt−1
1

is a model for a circular time series, the sequence

FZt|Zt−1
1

(zt|zt−1
1 ) should be a sequence of i.i.d. uniformly distributed circular values

if the model is the correct one for the sequence z1, . . . , zn. Figure 4.13 shows the

estimated marginal density and the cumulative complex periodogram of this sequence

for each of the three models already fitted. The marginal behaviour is not as good

as might be desired, though this is a purely subjective judgement. The periodograms

are more difficult to interpret, comparison being made difficult by their closeness to

being straight lines. Figure 4.14 shows for each of these models the difference between

the cumulative periodogram and a straight line. Most of the improvement is contained

in the addition of uniform contamination. However the pseudo-regression model is an

improvement, though by a much smaller amount.

However, there are still clear signs of dependence in the periodogram for the pseudo-

regression model. This suggests the possibility either of higher order short-term de-

pendence or, perhaps, of the need to fit a seasonal model.

4.5 Higher Order Markov Models

In this section I shall use the linear conditional probability approach described in

section 3.4 for developing Markov models with more than lag 1 dependence from first
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Figure 4.13: Cumulative periodograms and densities of the conditional distribution
sequences for several models
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Figure 4.14: Difference between the cumulative periodogram and a straight line for
the conditional cumulative distribution sequence from the random walk, contaminated
random walk and the pseudo-regression model respectively
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order Markov models. That is

fZt|Zt−1
t−l

(zt|zt−1
t−l ) =

l∑
j=1

λjg(zt|zt−j) (4.2)

where g is som transition density.

We shall use the conditional densities of the pseudo-regression type of section 4.3.3

in conjunction with this definition as a family of models for the cdfs . The parameters

l and λj, j = 1, . . . , l are as defined by equation 4.2 The results of fitting this model

for a number of values of l were as follows. (λl can be obtained by subtraction from 1)

l = 2: p = 0.236 a = 0.362 b = 0.929 σ1 = 0.074

σ2 = 0.155 k = 0.663 α = 0.640 λ1 = 0.932

log-likelihood = 1264.

l = 3: p = 0.213 a = 0.362 b = 0.930 σ1 = 0.075

σ2 = 0.153 k = 0.668 α = 0.641 λ1 = 0.894

λ2 = 0.033

log-likelihood = 1274.

l = 4: p = 0.203 a = 0.362 b = 0.930 σ1 = 0.074

σ2 = 0.152 k = 0.671 α = 0.640 λ1 = 0.879

λ2 = 0.031 λ3 = 0.057

log-likelihood = 1276.

These are a nested family of models and since the increase in the log-likelihood from

l = 3 to l = 4 is not significantly large, fitting ceased at this point.

In case the dependence could be more accurately captured by allowing the depen-

dence on time t − 2 to be different from that on time t − 1, the following model was

fitted.

fZt|Zt−1,Zt−2(zt|zt−1, zt−2) = λf (1)(zt|zt−1) + (1− λ)f (2)(zt|zt−2) λ > 0
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Figure 4.15: Density, cumulative periodogram and difference between the latter and a
straight line for the conditional distribution sequence from the order 3 mixture model

where f (1) and f (2) are both conditional densities of the pseudo-regression type, but

with different values of the parameters. The result of the fit was as follows.

p(1) = 0.024 a(1) = 0.372 b(1) = 0.929 σ
(1)
1 = 0.074

σ
(1)
2 = 0.162 k(1) = 0.683 α(1) = 0.632

p(2) = 0.037 a(2) = 0.291 b(2) = 0.897 σ
(2)
1 = 700 (∞)

σ
(2)
2 = 0.269 k(2) = 0.438 α(2) = 0.685

λ = 0.745

log-likelihood = 1268

This is not a significant increase in the log-likelihood over the original pseudo-regression

model.

The usual diagnostic method was applied to the above mixture model with l = 3.

Figure 4.15 shows the estimated marginal density, the cumulative periodogram and the
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difference between the latter and a straight line for the conditional cumulative distri-

bution sequence. There is no noticeable improvement in the shape of the periodogram

over that obtained previously. There are two likely reasons for this. Firstly, the nature

of any higher than first order dependence may be too complicated to be captured by

this mixture approach. Secondly there may be some seasonal behaviour which will be

discussed in the next section.

4.6 A Seasonal Model

What evidence, if any, is there that a seasonal model is needed for this data ? There is,

of course, the intuitive feeling that all aspects of the weather vary according to the time

of year. More scientifically, there is the “land breeze” and “sea breeze” effect which

must be affected by temperature changes and these certainly exhibit annual variation.

It would be preferable if we could observe this in a quantitative way.

Classical time series analysis incorporates seasonality as an additive or multiplica-

tive term in the model and, in the case of ARMA models, by a lag 365 coefficient in a

linear model. For the circle we do not have available both algebraic operations. There

is only one operation, which can be viewed as either addition or multiplication depend-

ing on the context. A simple change in the mean direction is an inadequate form of

seasonality for this data. Figure 4.16 shows the smoothed periodogram of a sequence

of moving variances derived from the sequence of daily averages. While this does not

have its peak at an exact frequency corresponding to a period of 1 year or a precise

number of months we should not find this surprising since smoothing introduces bias

into periodogram estimates which makes precise interpretation of this kind impossible.

What is clear is that there is a high concentration of energy at very low frequencies

corresponding to periods greater than about two months. Almost all high frequency

variation has disappeared due to the taking of moving variances which automatically

damps the high frequency changes in the original sequence.

To facilitate understanding any seasonal behaviour, the second-order pseudo-regression

model was fitted separately to each month’s data. Figure 4.17 shows the smoothed

(using the smoother 4(3RSR)2H twice to remove outliers) trajectories of each of the
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Figure 4.16: Smoothed periodogram for a sequence of moving variances of the daily
average data

parameters and of the log-likelihood. The log-likelihood is clearly seasonal as may be

the uniform contamination parameter p. That p is the most clearly seasonal parameter

is not surprising since its major effect is to control the variance of the process.

I now extend the current model — the third-order pseudo-regression model — to

incorporate this fact as follows. The parameter p is made to depend on time in a

sinusoidal fashion, according to the formula

p = pM + pA. sin(2π(t− pP )/365.25)

Here pM is the mean value of p, pA the amplitude of its variation and pP is a phase pa-

rameter. Estimating this model by maximum likelihood gives the following parameter

values.

pM = 0.217 pA = 0.112 pP = 77.1 a = 0.372

b = 0.948 σ1 = 0.074 σ2 = 0.151 k = 0.696

α = 0.651 λ1 = 0.893 λ2 = 0.027

log-likelihood = 1281
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Figure 4.17: Trajectories of the model parameters. The x-axis units are years.
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Figure 4.18: Density, cumulative periodogram and difference between the latter and a
straight line for the conditional distribution sequence from the seasonal model

The usual diagnostic is used. Figure 4.18 shows the estimated marginal density,

the cumulative periodogram and the difference between the latter and a straight line

for the conditional distribution function sequence. It is not possible to ascertain vi-

sually whether the periodogram is an improvement on those obtained previously, but

figure 4.19 shows the difference between the periodogram in figure 4.18 and that in

figure 4.15. That for the seasonal model lies below the other at low frequencies and

above it for high frequencies. This makes sense since the seasonal model should im-

prove the low frequency fit. The differences at higher frequencies are more difficult to

explain. It is possible that in fact the high frequency behaviour of the series does not

vary seasonally and so the variation in the model parameters is worsening the high

frequency fit. Whether this is true or not, the improvement in the cumulative peri-

odogram is small. To illustrate the kind of change required, I have used simulation,

generating 8 sequences from the seasonal model, fitting the model to those sequences

and examining the diagnostic sequence. Figure 4.20 shows the marginal distribution

of the diagnostic sequence for each simulation, and figure 4.21 shows the difference be-
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Figure 4.19: Graph of the difference between the cumulative periodograms for the
order 3 pseudo-regression model and the seasonal model

tween the cumulative periodogram and a straight line for each simulation. It is obvious

that the behaviour exhibited is quite different from that in figure 4.18. The modelling

process has gone no further than this. Clearly more attention needs to be given to both

higher order dependence and to seasonality. There may also be an issue of long-term

variation in behaviour as discussed in [13] for wind speeds in Ireland.

In conclusion, it is true to say that significant aspects of the behaviour of the wind

directions have been modelled. It would be ludicrous to suggest that this provides a

method of forecasting, but perhaps the model may throw some light on the sequential

behaviour of wind directions. Comparison with other sequences of wind observations

would be interesting, for it seems likely that some of the features could be explained by

the local geography around the meteorological station where the measurement was per-

formed. There is obviously scope for exploration of more appropriate ways of modelling

second and higher order dependence than the mixture method. Residual seasonality

would appear to be a difficult problem. Unless some way can be found to define more

interesting seasonal models progress seems unlikely. Also, there remains the fact that
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Figure 4.20: Marginal densities for the conditional cumulative distribution sequence
obtained from simulations of the seasonal model
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Figure 4.21: Differences between the cumulative periodogram and a straight line for the
conditional cumulative distribution sequence obtained from simulations of the seasonal
model
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best models proposed here do not have the correct marginal distributions. There are

clear advantages to modelling a sequence with uniform marginal distribution, subject to

availability of a sufficiently large class of conditional distributions having this property.

A most interesting avenue of exploration is the properties of the conditional distribu-

tion function sequence. While its estimation properties under the null hypothesis of

the correct model seem likely to be extremely difficult to calculate, it is potentially so

useful (in any multivariate application, not just time series) that they are worthy of

some effort.
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Appendix A

Borrowed Material

A.1 Mixing Processes

This section brings together a number of results on mixing processes from various

sources.

Definition A.1 A stationary stochastic process {Zt} is said to be strongly mixing if

ψZ(τ) = sup
A∈F0

−∞(Z),B∈F∞τ (Z)

∣∣∣P [A ∩B]− P [A]P [B]
∣∣∣→ 0 as τ →∞

The ψZ(τ) are called the (strong) mixing coefficients for {Zt}.

Theorem A.1 Let Zt be a stationary Gaussian sequence. Then

ψZ(τ) ≤ inf
φ

sup
λ

|fZ(λ)− eiλτφ(e−iλ)|
fZ(λ)

≤ 2πψZ(τ)

where the infimum is taken over those functions φ which are analytic in the unit disc.

Proof: Theorems 1, 2 and 3 of [20].

Theorem A.2 Let Zt be a strongly mixing stochastic process. Let X and Y be random

variables measurable with respect to Fa−∞ and F∞b resapectively, and that E[|X|p] <∞,

E[|Y |q] <∞ where p, q > 1 and p−1 + q−1 < 1. Then

|C[X, Y ]| ≤ 8E[|X|p]
1
pE[|Y |q]

1
qψZ(b− a)1−p−1−q−1

Proof: Corollary A.2 of [12]
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Theorem A.3 Let Zt be a strongly mixing stationary process with geometrically di-

minishing mixing coefficients ψZ(τ). Let f0(Z−∞, . . . , Z∞) be a function of the Zt such

that

E
[∣∣∣E[f0|ZM

−M ]− f0

∣∣∣2]
tends geometrically to 0. Then, if fn is the time-shifted version of f0

1

n

n∑
j=1

fj
a.s.→ E[f0]

Proof: A trivial corollary of theorem 3.1 of [26]

Theorem A.4 Let {Zt} be a strongly mixing stationary sequence. Let W be a zero-

mean measurable function of {Zt}. Let {Wt} be the stationary process obtained by

time-shifting W . Then, if

(1) There exists C > 0 such that P [|W | < C] = 1.

(2)
∑∞
k=1E[|W − E[W |Fk−k(Z)]|] <∞.

(3)
∑∞
k=1 ψZ(k) <∞,

there exists σ̃2 = E[W 2
0 ] + 2

∑∞
k=1 E[W0Wk] which is finite and non-negative. Further,

if σ̃2 is positive,∑n
k=1Wt

σ̃
√
n
→d N(0, 1)

Proof: Theorem 18.6.3 of [14]

A.2 Markov processes

The following material drawn from [9] provides simple criteria for the existence and

uniqueness of stationary distributions for Markov processes.

Definition A.2 A transition function P on a space X is said to satisfy the Doeblin

hypothesis if there exists a finite measure φ on X with φ(X) > 0, an integer n ≥ 1 and

an ε > 0 such that

P (n)(x,A) ≤ 1− ε if φ(A) ≤ ε
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Definition A.3 Let P be a transition function on a space X which satisfies the Doeblin

hypothesis. A set E is said to be an invariant set if

P (x,E) = 1 for all x ∈ E

E is said to be a minimal invariant set if E ′ ⊂ E and E ′ invariant implies φ(E ′) =

φ(E).

Theorem A.5 Let P be a transition function on a space X satisfying the Doeblin

hypothesis. Then

q(x,E) = lim
n→∞

1

n

n∑
m=1

P (m)(x,E)

defines for each x a stationary probability distribution. As a function of x, q(x,E)

depends only on the minimal invariant set to which x belongs. Further every station-

ary probability distribution is a linear combination of the q(x,E) with non-negative

coefficients .

Proof: Theorem V.5.7 of [9].

A.3 M.L.E for Dependence

The following is a summary of certain parts of [7]. There is a flaw in that paper, where

reference is made to a theorem in [15]. Unfortunately the theorem does not apply

to the case being considered. There are no problems with the material in the paper

until the middle of section 4 — more precisely until equation (4.11). This equation is

stated to be a consequence of a theorem found on page 17 of [15]. That theorem is

strong law statement for a sequence of functions of a mixing process Xt under certain

conditions. One of the conditions is that the functions concerned involve a finite time

range from the mixing sequence, i.e. ft is a function only of Xt−n, . . . , Xt+n where n is

independent of t. The sequence of functions to which the theorem is being applied in

[7] is the second derivative of the log of the conditional density function — ∂2
θ ln fXt|Xt

1

— which, in general, for each time point involves the whole of the past. A considerable

amount of the work involved in showing consistency and asymptotic normality lies in

actually showing that dependence on the distant past is slight for these functions. It is
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not apparent to me that this is a simple consequence of mixing. Despite this problem

much of the earlier part of the paper is extremely useful and can be paraphrased as

follows.

Suppose a model has parameter vector θ. Denote the log-likelihood function by

Ln(θ), the derivative vector by L′n(θ) and the second derviative matrix by L′′n(θ, θ1)

where the elements of the matrix are evaluated at points on the line segment joining θ

and θ1. Denote by Bn(θ) the matrix

E[−L′′n(θ, θ)]

Write dn(θ, θ1) for L′′n(θ, θ1)− L′′n(θ, θ)

Theorem A.6 Under the following conditions the maximum likelihood estimates are

weakly consistent and asymptotically normal

1. L′n(θ) converges in distribution to a normal distribution with mean 0.

2. The smallest eigenvalue an of Bn converges to infinity.

3. −B−1
n L′′n(θ, θ) converges in probability to the identity matrix.

4. given ε > 0 there exists δ > 0 such that

P [a−1
n |dn(θ, θ1)| < ε]→ 1

as n tends to infinity whenever |θ1 − θ| < δ.

A.4 Miscellaneous

A.4.1 Taylor expansions

The following theorem provides a version of Taylor’s theorem for functions of random

variables.

Theorem A.7 Let Zn be a sequence of k-dimensional random variables with distribu-

tion functions Fn(z) and let fn(z) be a sequence of functions from Rk to R. Let δ > 0

and α = δ−1(1 + δ). Suppose that for some positive s and N0 in N

1.
∫
|z− µ|αsdFn(z) = aαsn where an → 0 as n→∞.
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2.
∫
|fn(z)|1+δdFn(z) = O(1) as n→∞.

3. f (i1,...,is)
n (z) is continuous in z over a closed and bounded sphere S, for all n > N0.

4. µ is in the interior of S.

5. There exists real K such that for n > N0

|f (i1,...,is)
n (z)| ≤ K for all z in S.

|f (i1,...,ir)
n (z)| ≤ K for r = 1, . . . , s− 1.

|fn(µ)| ≤ K

Then

∫
fn(z)dFn(z) = fn(µ) +

s−1∑
j=1

1

j!

∫
Djfn(µ)(z− µ)jdFn(z) +O(asn)

The theorem also holds when α = 1, if (2) is replaced by the requirement that fn(z) be

uniformly bounded.

Proof: Theorem 5.4.3 of [11].

A.4.2 Gershgorin’s theorem

The following well-known theorem places crude bounds on the eigenvalues of a matrix

in terms of its elements.

Theorem A.8 A an n × n square matrix. Each e-value lies in one of the complex

discs

|Aii − reiθ| ≤
∑
j 6=i
|Aij|

Proof: This is known as Gershgorin’s theorem. See books on numerical linear algebra

(e.g. [2]).
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