7.
Product and Process Comparisons
7.3. Comparisons based on data from two processes
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The nonparametric equivalent of the t-test is due to Mann and Whitney, called the U test |
By "arbitrary" we mean that we make no underlying assumptions about
normality or any other distribution. The test is called the
Mann-Whitney U-Test, which is the nonparametric equivalent of
the t-test based for normal means.
The U-test (as the majority of nonparametric tests) uses the rank sums of the two samples. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Procedure |
The procedure flows as follows
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Null Hypothesis | The null hypothesis is: the populations have the same median. The alternative hypothesis is: The medians are NOT the same. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Test statistic |
The test statistic, U, is the smaller of Ua
and Ub. For sample sizes larger than 20, we can
use the normal z as follows:
![]() ![]() ![]() ![]() For small samples use tables, which are readily available in most textbooks on nonparametric statistics. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Example | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
An illustrative example of the U test |
Two processing systems were used to clean wafers. The following data
represent the (coded) particle counts. The null hypothesis is that
there is no difference between the means of the particle counts; the
alternative hypothesis is that there is a difference. The solution
shows the typical kind of output software for this procedure would
generate, based on the large sample approximation.
Enter value for
E(U) = 60.500000
The Z-test statistic = 1.346133
Cannot reject the null hypothesis. A two-sided confidence interval about U - E(U) is: DELTA is the absolute difference between U and E(U).
|