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a b s t r a c t

We consider local smoothing of datasets where the design space is the d-dimensional
(d ≥ 1) torus and the response variable is real-valued. Our purpose is to extend least
squares local polynomial fitting to this situation. We give both theoretical and empirical
results.
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1. Introduction

A circular observation can be regarded as a point on the unit circle, or a direction in the plane. Once an initial direction
and an orientation of the unit circle have been chosen, any circular observationmay be represented by an angle θ ∈ [0, 2π).
Typical examples include flight direction of birds from a point of release, wind and ocean current direction, energy demand
over a period of 24 h when the measurements are taken over a time interval much longer than the day and when the times
of the day are recorded. A circular observation is periodic, i.e., θ = θ + 2mπ for m ∈ Z. This periodicity sets apart circular
statistical analysis from standard real-line methods. Recent accounts are given by Jammalamadaka and SenGupta (2001)
and Mardia and Jupp (1999).
A much less studied subject is local regression in the case of circular predictors and real-valued responses. Its practical

relevance is easily seenwhen considering the analysis of meteorological data, or more generally in earth and environmental
sciences. Silverman (1986, sec. 2.10) suggests fitting data replicated along the interval [−2π, 4π), with a smoothing degree
depending on the original sample size. The only alternative approach appears to be periodic smoothing splines, introduced
by Cogburn and Davis (1974). Nothing specific and reasonably simple appears to exist for the high-dimensional case,
although this seems needed in many applications. For example, it could be of interest to predict ozone concentration given
the wind directions at 6 am and at noon. In this example, the number of angles is d = 2, but this could easily be extended
by considering more locations or time points for the explanatory wind directions; see Mardia and Jupp (1999, pp. 1–12) for
further examples.
In this paper we extend least squares local polynomial fitting (Ruppert and Wand, 1994, for example) to the case when

a design point θ is a vector of angles (θ1, . . . , θd)T ∈ [0, 2π)d, and the response is real-valued. Geometrically, θ identifies
a point of a d-dimensional torus made of the Cartesian product of d unit circles. Our strategy is twofold. We (i) introduce a
class of circular weight functions (or kernels), and (ii) locally approximate the design density and the regression function by
the pth degree polynomial
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β0 +

d∑
j=1

p∑
t=1

βjt sint(· − θj). (1)

Point (ii) is motivated by the fact that the difference between two angular observations needs to beminimal at 2mπ,m ∈ Z.
Moreover, because sin(θ) w θ as θ tends to 0, the polynomial (1) satisfies a Taylor series interpretation.
In Section 2 we define the kernels suitable for our polynomial fitting, and explore their efficiency properties. In Section 3

we consider the local linear (p = 1) regression estimator, alongwith conditionalmean squared error and optimal smoothing.
We also extend the analysis, for univariate predictors, to general p. Finally, Section 4 contains a small simulation study to
illustrate the finite sample behaviour of the results.

2. Circular kernels

2.1. Definitions

We introduce our kernels in the one-dimensional setting. Such an approach seems adequate in that we will use weight
functions which are products of univariate kernels, as the torus geometry allows for.

Definition 1 (Circular Kernels of Order r). A circular kernel, of order r and concentration (smoothing) parameter κ > 0, is a
function Kκ : [0, 2π)→ R such that

(i) it admits, at θ ∈ [0, 2π), a convergent Fourier series representation 1/(2π){1+ 2
∑
∞

j=1 γj(κ) cos(jθ)};

(ii) denoting ηj(Kκ) :=
∫ 2π
0 sinj(θ)Kκ(θ)dθ , then

η0(Kκ) = 1, ηj(Kκ) = 0 for 0 < j < r, and ηr(Kκ) 6= 0;

(iii) as κ increases
∫ ε
−ε
Kκ(θ)dθ tends to 1 for ε ∈ (0, π).

Condition (i) specifies that the kernel is symmetric around the null mean direction. The quantity ηj(Kκ) in (ii) plays a similar
rôle as the jth moment of a symmetric kernel in the linear theory, being zero if j is odd.

Remark 1. Most of the usual circular densities, which are symmetric about the null mean direction, are included in
Definition 1 as second-order kernels—this includes the kernel uniform on [−π/{κ + 1}, π/{κ + 1}). Dirichlet and Fejér
kernels

Dκ(θ) :=
sin({κ + 1/2}θ)
2π sin(θ/2)

, Fκ(θ) :=
1

2π(κ + 1)

[
sin({κ + 1}θ/2)
sin(θ/2)

]2
, κ ∈ N

are both circular kernels. In particular, Dκ has order κ + 1 if κ is odd, and κ + 2 otherwise, while Fκ has order 2.

Remark 2. Our order definition is consistent with the techniques used for obtaining higher-order kernels starting from
second-order ones. As an instance, we apply a technique of Lejeune and Sarda (1992), to get a result useful in Theorem 4.
Given a second-order circular kernel Kκ , let E` be a matrix of order `+ 1 with (i, j) entry given by ηi+j−2(Kκ), and U` be the
same as E` with the first column replaced by {1, sin(θ), . . . , sin`(θ)}T. Then

K(`)(θ) :=
|U`|
|E`|
Kκ(θ),

is a circular kernel of order `+ 1 when ` is odd, and of order `+ 2 otherwise.

Remark 3. The univariate setting allows for a comparison with previous work. Our kernels include kernels on the sphere
which are functions of κ{1−cos(θ)} studied by Beran (1979), Hall et al. (1987), Bai et al. (1988) andKlemelä (2000). However,
the kernels Dκ , Fκ and the wrapped Cauchy are not of this latter form, yet fulfill the conditions of Definition 1.

2.2. Kernel efficiency

We discuss the efficiency of our kernels in the density estimation setting to allow easy comparisons with the standard
theory.

Definition 2 (Kernel Circular Density Estimator). Let Θ1, . . . ,Θn be a random sample from a bounded, continuous circular
density f . Given a circular kernel Kκ , the kernel estimator of f at θ ∈ [0, 2π) is defined as

f̂ (θ; κ) :=
1
n

n∑
i=1

Kκ(θ −Θi). (2)
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The efficiency theory of euclidean kernels (p. 42 Silverman, 1986, for example) is based on the fact that the bandwidth
and the kernel have separable contributions to the mean integrated squared error MISE[ĝ] :=

∫
E[(ĝ − g)2] ≡

∫
(E[ĝ] −

g)2 +
∫
Var[ĝ], where ĝ gives the kernel estimate of the curve g at a point of the domain. Unfortunately, this is not the case

for theMISE of (2). In fact, we have

Theorem 1. Given a random sample Θ1, . . . ,Θn drawn from a density f , let f̂ (·; κ) be the kernel circular density estimator
equipped with the second-order kernel Kκ , if

(i) limn→∞γj(κ) = 1, for each j ∈ Z+;
(ii) limn→∞n−1

∑
∞

j=1 γ
2
j (κ) = 0;

(iii) f ′′ is continuous and square-integrable;

then

MISE
[
f̂ (·; κ)

]
=
1
16
{1− γ2(κ)}2

∫ 2π

0

{
f ′′(θ)

}2 dθ + 1+ 2
∞∑
i=1
γ 2j (κ)

2nπ
+ o(1),

Proof. See Appendix. �

Remark 4. The MISE of Hall et al. (1987) is very similar to that above. For example, consider the von Mises kernel, for
which γj(κ) := Ij(κ)/I0(κ), Ij(·) being the modified Bessel function of the first kind and order j. Using the notation of
(3.7) in Hall et al. (1987), we have: c20 (κ)c2(κ) = I0(2κ)/[2π{I0(κ)}2] = {1+ 2

∑
∞

i=1 γ
2
j (κ)}/(2π) and 1− c0(κ)c1(κ) =

1− I1(κ)/I0(κ) = 1− γ1(κ), consequently their asymptoticMISE differs from the leading terms in the aboveMISE of an
order of O(κ−4) .

In our efficiency analysis we need

Result 1. Let Θ1, . . . ,Θn be a random sample from a circular density f having Fourier series expansion f (θ) = 1/(2π)[1 +
2
∑
∞

j=1{αj cos(jθ)+ δj sin(jθ)}] for θ ∈ [0, 2π). Then

MISE
[
f̂ (·; κ)

]
=
1
π

∞∑
j=1

{γj(κ)− 1}2(α2j + δ
2
j )+

1
nπ

∞∑
j=1

γ 2j (κ)(1− α
2
j − δ

2
j ).

Without loss of generality we can suppose that the mean direction is 0, and we consider only densities and kernels which
are fully specified by their concentration parameters, respectively denoted as ρ and κ . For the above decomposition,
when considering the (relative) efficiency of two circular kernels, the smoothing parameters do not ‘‘cancel’’ and so their
equivalence needs first to be established as follows. For fixed ρ and n, we can obtain κ to minimizeMISE for a given kernel
function. The efficiency of one kernel relative to another may then be measured by taking the ratio of the minimizedMISEs.
As the Dirichlet kernel (γj(κ) = 1{j≤κ}) is of higher order for κ > 1 – and so expected to be asymptotically more efficient

– we have measured the efficiency of other kernels relative to this one. In Fig. 1 we show the relative efficiency of the von
Mises wrapped normal (γj(κ) = κ j

2
), and Fejér (γj(κ) = 1{j≤κ}(κ + 1 − j)/(κ + 1)) kernels for n = 5, 25, 125, 625 for

the von Mises and wrapped Cauchy (αj = ρ j; δj = 0) distributions. Not surprisingly, the wrapped Normal and von Mises
kernels are very similar, and both are better than the Fejér kernel. For small n, the von Mises kernel is more efficient that
the Dirichlet kernel; markedly so for the Cauchy distribution, or for data with low concentration.

3. Local polynomial regression

3.1. Linear fitting with von Mises based kernels

Consider the dataset {(Θi, Yi), i = 1, . . . , n}, where Θi := (Θi1, . . . ,Θid)T, and Yi ∈ R are both observable, absolutely
continuous, random variables taking values respectively in [0, 2π)d and R. From now on we will assume that

Yi = m(Θi)+ σ(Θi)εi, i = 1, . . . , n

where σ 2(·) is the conditional variance of Y and εi’s are real-valued random variables with zero mean and unit variance.
Our objective is to construct an estimator ofm(θ) as a function of the dataset when bothΘi’s and εi’s are i.i.d.
Let Pθ(·;β) := β0 +

∑d
j=1 βj sin(· − θj), and suppose that m(ψ) ' Pθ(ψ;β) for ψ in a neighborhood of θ. Here

Pθ(θ;β) = β0, which motivates estimating m(θ) by β̂0. Recalling that for very small values of θ we have sin(θ) ' θ ,
then a Taylor series expansion justifies both β̂0 and the values β̂j, j = 1, . . . , d, as estimates of the partial derivatives
βj = ∂m(θ)/∂θj. Viewed as local least squares estimators, β̂0, . . . , β̂d minimize

∑n
i=1{Yi − Pθ(Θi;β)}

2w(Θi, θ) where
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Fig. 1. Relative efficiency of Fejér (—), wrapped normal (- - - - -), and von Mises (· · ·) kernels to the Dirichlet kernel, for various values of n. With respect
to the underlying true density, the left group corresponds to the von Mises distribution with ρ = I1(ν)/I0(ν), while the right group corresponds to the
wrapped Cauchy distribution.

w(Θi, θ) is the weight function, (a symmetric, continuous function integrating to 1) which, if strictly positive, decreases
with some distance betweenΘi and θ. Now we provide an explicit expression for β̂0 together with its L2 properties.
Let y := (Y1, . . . , Yn)T be the response vector,

Θ :=

1 sin(Θ11 − θ1) · · · sin(Θ1d − θd)
...

...
...

...
1 sin(Θn1 − θ1) · · · sin(Θnd − θd)


the design matrix, and

W := diag {KC (Θ1 − θ), · · · , KC (Θn − θ)}

the weight matrix, where C := κI , I denoting the identity matrix of order d, and

KC (Θi − θ) :=
d∏
j=1

Kκ(Θij − θj), i = 1, . . . , n. (3)

The local linear kernel estimator ofm(θ) is given by the first entry of the vector

β̂ := argmin
β

n∑
i=1

(Yi − βTΘ)2KC (Θi − θ),

where β := (β0, β1, . . . , βd)
T. Assuming the non-singularity of ΘTWΘ, standard weighted least squares theory yields

β̂ = (ΘTWΘ)−1ΘTWy, and

m̂(θ; C) = eTj (Θ
TWΘ)−1ΘTWy, (4)

where ej is a (d+ 1)× 1 vector having 1 as the jth entry and 0 elsewhere.
Given its efficiency, as well as its prevalence in kernel smoothing of circular data, we firstly give results when the von

Mises kernel Vκ(·) := exp{κ cos(·)}/{2πI0(κ)} is used to define the d-dimensional weight function.

Theorem 2. Given the dataset {(Θi, Yi), i = 1, . . . , n}, whereΘi’s are i.i.d. observations from the circular design density f , and
Yi’s are i.i.d. real-valued random variables, take the local linear kernel regression estimator m̂(·; C) equipped with the weight
function VC (Θi − θ) :=

∏d
j=1 Vκ(Θij − θj). Assume that

(i) limn→∞κ−1 = 0;
(ii) limn→∞n−1κd/2 = 0;
(iii) the conditional variance σ 2 is continuous, and the density f is continuously differentiable;
(iv) all second-order derivatives of the regression function m are continuous.
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Then at θ ∈ [0, 2π)d the conditional mean squared error of m̂(θ; C) is given by

E[{m̂(·; C)−m(θ)}2 | Θ1, . . . ,Θn] =
1
4

{
I1(κ)

κI0(κ)

}2
tr2{Hm(θ)} +

[
I0(2κ)

2π{I0(κ)}2

]d
σ 2(θ)

nf (θ)

+ op
(
κ−2 + n−1κd/2

)
, (5)

where Hm(θ) denotes the Hessian matrix of m at θ.
Proof. See Appendix. �

Once more, in the proof of the above theorem a major technical issue is that the concentration parameter κ cannot be
‘‘separated’’ from the kernel.

Remark 5. Since κ corresponds to the inverse of the squared bandwidth of the euclidean smoother, the remainder term in
(5) is consistent with that obtained by Ruppert and Wand (1994).

Finally, the optimal smoothing degree is given by

Corollary 1. The concentration parameter which minimizes the asymptotic mean squared error, i.e. the first two summands in
the RHS of formula (5), is[

tr4{Hm(θ)}{nf (θ)}222dπd

d2σ 4(θ)

]1/(4+d)
.

Proof. See Appendix. �

3.2. Generalizations and extensions

The results of Theorem 2 can be generalized to the class of second-order circular kernels Kκ . Given the square-integrable
function g , define R(g) :=

∫
g2, then

Theorem 3. Given the dataset {(Θi, Yi), i = 1, . . . , n}, where Θi’s are i.i.d. observations from the circular design density f ,
and Yi’s are i.i.d. real-valued random variables, take the local linear kernel regression estimator m̂(·; C) equipped with the weight
function in (3)with Kκ being a second-order circular kernel. Assume conditions (i) of Definition 1, and (iii) of Theorem 2, together
with
(i) limn→∞n−1R(KC ) = 0.
Then, at θ ∈ [0, 2π)d,

E[{m̂(·; C)−m(θ)}2 | Θ1, . . . ,Θn] =
1
16
{1− γ2(κ)}2tr2{Hm(θ)} +

R(KC )σ 2(θ)
nf (θ)

+ op(1).

Proof. See Appendix. �

It would be of interest to determine the optimal smoothing degree in this case, but since the coefficients γj’s depend on κ
in a specific way for each kernel, the result in Corollary 1 is hard to generalize. Concerning the extension to higher-degree
polynomials and whatever second-order circular kernel, we have

Theorem 4. Given the dataset {(Θi, Yi), i = 1, . . . , n}, where Θi’s are i.i.d. observations from the circular one-dimensional
density f , and Yi’s are i.i.d. real-valued random variables, take the local pth degree polynomial regression estimator m̂(·; κ)
equipped with a second-order circular kernel Kκ . Assume conditions (i) of Definition 1, (iii) and (iv) of Theorem 2. Moreover,
assume that
(i) for the kernelK(p) in Remark 2, limn→∞n−1R(K(p)) = 0;
(ii) m(p+2) is continuous in a neighborhood of θ .
Then, for any θ ∈ [0, 2π),

E[m̂(θ; κ)−m(θ) | Θ1, . . . ,Θn] =


ηp+1(K(p))

m(p+1)(θ)
(p+ 1)!

+ op(1), if p is odd;

ηp+2(K(p))

{
m(p+1)(θ)f ′(θ)
f (θ)(p+ 1)!

+
m(p+2)(θ)
(p+ 2)!

}
+ op(1), otherwise;

and

Var[m̂(θ : κ) | Θ1, . . . ,Θn] = R(K(p))
σ 2(θ)

nf (θ)
{1+ op(1)}.

Proof. See Appendix. �
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Fig. 2. Comparison of averaged squared error as a function of κ over 200 simulations (dashed line), and asymptoticmean squared error given by Theorem2
(continuous line) with locations of minima. Top row: n = 50; lower row: n = 500, withm estimated at θ = 0 (left), θ = 2 (middle) and θ = 3 (right).

4. Simulation results

We briefly explore the asymptotic result given by Theorem 2 in a simulation study. We first investigate the dependence
of the mean squared error on θ, n and κ when d = 1 and choose a sharp-peaked response

m(θ) = 2+ sin (θ − 1.2π)+ 3 exp

{
−10

(
15
(θ − π)

2π

)2}
,

with εi ∼ N(0, 1), σ 2(Θi) = 1/2, and Θi, i = 1, . . . , n coming from a von Mises density with mean π and concentration
parameter 1. We estimate m(θ) at θ = 0, 2, 3 and compare the average squared error of (4) with the asymptotic mean
squared error given in Theorem 2 over κ for n = 50 and n = 500. The results are displayed in Fig. 2, and the asymptotic
nature of the result is clear. Note that the values of the second derivative of m at θ = 0, 2, 3 are −0.59, 0.98, 140.89,
respectively, which explains the poorer performance at θ = 3.
Secondly, we explore the dependence on d. In this case we use the model

m(θ) =
1
d

d∑
i=1

sin θi +
1

d(d− 1)

∑
i6=j

cos θi cos θj (d ≥ 2)

where θ = (θ1, . . . , θd)T, σ 2(Θi) = 1/2, i = 1, . . . , n, and f is a product of (independent) von Mises densities with mean
zero and concentration parameter 1.We estimatem(θ) at θ = (0, . . . , 0)T and (π/2, . . . , π/2)T for a range of κ , for n = 500.
Fig. 3 shows good agreement for d = 2 between the average squared error and the asymptoticmean squared error. However,
we note increasingly poor behaviour as d increases, indicating that the asymptotic nature of the result also depends on d,
and again illustrating the well-known phenomenon of the curse of dimensionality.
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Fig. 3. Comparison of averaged squared error as a function of κ over 200 simulations (dashed line), and asymptoticmean squared error given by Theorem2
(continuous line) with locations of minima shown by the integers 2, 3, 4 which corresponds to the dimension of the data.m is estimated at θ = (0, · · · , 0)T
(left) and θ = (π/2, · · · , π/2)T (right).

Appendix

Proof of Theorem 1. Express Kκ(θ) in terms of a Fourier series, and, recalling that for very small values of u sin(u) ' u,
use the expansion f (u+ θ) = f (θ)+ sin(u)f ′(θ)+ 1/2 sin2(u)f ′′(θ)+ O{sin3(u)}. Then, starting from (2), make a change
of variable and use assumption (i) to get

E[f̂ (θ; κ)] =
∫ 2π

0
Kκ(ψ − θ)f (ψ)dψ

=

∫ 2π

0
Kκ(u)f (u+ θ)du

= f (θ)+
1
4
{1− γ2(κ)}f ′′(θ)+ o(1).

Now, recalling assumptions (i) and (ii), we have

Var[f̂ (θ; κ)] =
1
n

∫ 2π

0
{Kκ(ψ − θ)}2f (ψ)dψ −

1
n

{
E[f̂ (θ; κ)]

}2
=
1
n

∫ 2π

0
{Kκ(u)}2{f (θ)+ o(1)}du−

1
n
{f (θ)+ o(1)}2

=
1
2nπ

{
1+ 2

∞∑
j=1

γ 2j (κ)

}
f (θ)+ o(1). �

Proof of Theorem 2. Put

SΘi−θ := {sin(Θi1 − θ1), . . . , sin(Θid − θd)}
T, i = 1, . . . , n

and use Dg(θ) to denote the first-order partial derivatives vector of the function g at θ. To derive the conditional bias, we
firstly note that (4) yields

E[m̂(θ; C) | Θ1, . . . ,Θn] = eT1(Θ
TWΘ)−1ΘTWm, (6)

wherem := {m(Θ1), . . . ,m(Θn)}T, andW := diag {VC (Θ1 − θ), · · · , VC (Θn − θ)}. Using the expansion

m = Θ
[
m(θ)
Dm(θ)

]
+
1
2

ST
Θ1−θ

Hm(θ)SΘ1−θ
...

ST
Θn−θ

Hm(θ)SΘn−θ

+ Rm(θ),

where Rm(θ) denotes the remainder, we have that the first term in the expansion of (6) ism(θ). Thus
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E[m̂(θ; C)−m(θ) | Θ1, · · · ,Θn] =
1
2
eT1(Θ

TWΘ)−1ΘTW


ST

Θ1−θ
Hm(θ)SΘ1−θ
...

ST
Θn−θ

Hm(θ)SΘn−θ

+ Rm(θ)

 .
Observe that

ΘTWΘ =


n∑
i=1

VC (Θi − θ)
n∑
i=1

VC (Θi − θ)ST
Θi−θ

n∑
i=1

VC (Θi − θ)SΘi−θ
n∑
i=1

VC (Θi − θ)SΘi−θS
T
Θi−θ

 (7)

and

ΘTW

ST
Θ1−θ

Hm(θ)SΘ1−θ
...

ST
Θn−θ

Hm(θ)SΘn−θ

 =


n∑
i=1

VC (Θi − θ)ST
Θi−θ

Hm(θ)SΘi−θ
n∑
i=1

VC (Θi − θ)
{
ST
Θi−θ

Hm(θ)SΘi−θ
}
SΘi−θ

 , (8)

then, using the expansion

f (u+ θ) = f (θ)+ ST
uDf (θ)+ O(S

T
u Su),

and recalling assumption (i), a change of variables leads to these approximations

1
n

n∑
i=1

VC (Θi − θ) =
∫
[0,2π)d

VC (α− θ)f (α)dα+ op(1)

= f (θ)+ op(1);

1
n

n∑
i=1

VC (Θi − θ)SΘi−θ =
∫
[0,2π)d

VC (α− θ)Sα−θ f (α)dα+ op(1)

=
I1(κ)

I0(κ)
C−1Df (θ)+ op(C−11);

1
n

n∑
i=1

VC (Θi − θ)SΘi−θS
T
Θi−θ

=

∫
[0,2π)d

VC (α− θ)Sα−θST
α−θ f (α)dα+ op(I)

=
I1(κ)

I0(κ)
C−1f (θ)+ op(C−1);

1
n

n∑
i=1

VC (Θi − θ)ST
Θi−θ

Hm(θ)SΘi−θ =
∫
[0,2π)d

VC (α− θ)ST
α−θHm(θ)Sα−θ f (α)dα+ op(1)

=
I1(κ)

κI0(κ)
tr {Hm(θ)}f (θ)+ op

(
κ−1

)
;

1
n

n∑
i=1

VC (Θi − θ)
{
ST
Θi−θ

Hm(θ)SΘi−θ
}
SΘi−θ =

∫
[0,2π)d

VC (α− θ)
{
ST
α−θHm(θ)Sα−θ

}
Sα−θ f (α)dα+ op(1)

= Op(C−21);

where 1 is the unit vector of length d. Hence, recalling assumption (i) we have

eT1
(
n−1ΘTWΘ

)−1
w
[
{f (θ)}−1 + op(1) −Df (θ)T{f (θ)}−2 + op(1)

]
, (9)

thus

E[m̂(θ; C)−m(θ) | Θ1, . . . ,Θn] =
1
2

I1(κ)

κI0(κ)
tr {Hm(θ)} + op(κ−1).

For the conditional variance, according to multivariate local linear regression theory

Var[m̂(θ; C) | Θ1, . . . ,Θn] = eT1(Θ
TWΘ)−1ΘTWΣWΘ(ΘTWΘ)−1e1,
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whereΣ := diag {σ 2(Θ1), . . . , σ 2(Θn)}. Consider that

n−1ΘTWΣWΘ =


n−1

n∑
i=1

{VC (Θi − θ)}2σ 2(Θi) n−1
n∑
i=1

{VC (Θi − θ)}2ST
Θi−θ

σ 2(Θi)

n−1
n∑
i=1

{VC (Θi − θ)}2SΘi−θσ
2(Θi) n−1

n∑
i=1

{VC (Θi − θ)}2SΘi−θS
T
Θi−θ

σ 2(Θi)

 , (10)

and approximate the components of the above matrix using the following relationships

1
n

n∑
i=1

{VC (Θi − θ)}2σ 2(Θi) =
∫
[0,2π)d

{VC (Θi − θ)}2σ 2(α)f (α)dα+ op(1)

=

[
I0(2κ)

2π{I0(κ)}2

]d
σ 2(θ)f (θ){1+ op(1)};

1
n

n∑
i=1

{VC (Θi − θ)}2ST
Θi−θ

σ 2(Θi) =

∫
[0,2π)d

{VC (αi − θ)}2ST
α−θσ

2(α)f (α)dα+ op(1)

= op(1);

1
n

n∑
i=1

{VC (Θi − θ)}2SΘi−θS
T
Θi−θ

σ 2(Θi) =

∫
[0,2π)d

{VC (αi − θ)}2Sα−θST
α−θσ

2(α)f (α)dα+ op(I)

=
F̃ (2, κ2)
4π{I0(κ)}2

[
I0(2κ)

2π{I0(κ)}2

]d−1
σ 2(θ)f (θ){I + op(I)},

where F̃ (2, κ2) := {I0(k)}2+{I1(k)}2+2
∑
∞

j=2 Ij(κ){Ij(κ)−Ij−2(κ)} is the regularized confluent hypergeometric function
of the first kind. Combining the previous results with the approximations in (9), and recalling assumption (ii), we finally
obtain

Var[m̂(θ; C) | Θ1, . . . ,Θn] =
[

I0(2κ)
2π{I0(κ)}2

]d
σ 2(θ)

nf (θ)
+ op(n−1κd/2). �

Proof of Corollary 1. Replace I1(κ)/I0(κ) by 1 with an error of magnitude O(κ−1), and use

lim
κ→∞

[
I0(2κ)

2π{I0(κ)}2

]d
=

( κ
4π

)d/2
,

then minimize the asymptotic MSE. �

Proof of Theorem 3. Follow the proof of Theorem 2, with KC (Θi − θ) as ith entry of the weight matrix, i = 1, . . . , n. In
particular, to derive the conditional bias firstly note that

n−1ΘTWΘ w

[
f (θ)+ op(1) 1/2{1− γ2(κ)}DT

f (θ)+ op(1)
1/2{1− γ2(κ)}Df (θ)+ op(1) 1/2{1− γ2(κ)}f (θ)I + op(I)

]
,

and, in virtue of condition (i) of Definition 1,

eT1(n
−1ΘTWΘ)−1 w

[
{f (θ)}−1 + op(1) −DT

f (θ){f (θ)}
−2
+ op(1)

]
.

Moreover, observe that

n−1ΘTW

ST
Θ1−θ

Hm(θ)SΘ1−θ
...

ST
Θn−θ

Hm(θ)SΘn−θ

 ' [1/2{1− γ2(κ)}tr{Hm(θ)}f (θ)+ op(1)Op(1)

]
,

to get

E[m̂(θ; C)−m(θ) | Θ1, . . . ,Θn] =
1
4
{1− γ2(κ)}tr{Hm(θ)} + op(1).

To derive the conditional variance, observe that the upper-left entry of the matrix (10) generalizes as

1
n

n∑
i=1

{KC (Θi − θ)}2σ 2(Θi) w R(KC )σ 2(θ)f (θ){1+ op(1)},
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where R(KC ) = {R(Kκ)}d = {(2π)−1(1+ 2
∑
∞

j=1 γ
2
j (κ))}

d, the diagonal blocks are op(1), whereas letting

A(KC ) :=

[
γ 20 (κ)+ γ

2
1 (κ)+ 2

∞∑
j=2
γj(κ){γj(κ)− γj−2(κ)}

]
{R(Kκ)}d−1

4π
,

where γ0(κ) :=
∫ 2π
0 Kκ(θ) cos(0)dθ = 1, the lower-right entry is

1
n

n∑
i=1

{KC (Θi − θ)}2SΘi−θS
T
Θi−θ

σ 2(Θi) w A(KC )σ 2(θ)f (θ){I + op(I)}.

Hence, it finally results

Var[m̂(θ; C) | Θ1, . . . ,Θn] =
R(KC )σ 2(θ)
nf (θ)

{1+ op(1)}. �

Proof of Theorem 4. Follow the proof of Theorem 4.1 of Ruppert and Wand (1994) with these two recommendations: in
the design matrix replace (Xi − x)j, with sinj(Θi − θ), and use the expansion f (u + θ) = f (θ) + sin(u)f ′(θ) + O{sin2(u)}.
In particular, to derive the conditional bias, let Qp be the matrix of order p+ 1 having as (i, j) entry ηi+j−1(Kκ), and observe
that, in virtue of assumption (i) of Definition 1, n−1ΘTWΘ = f (θ)Ep+ f ′(θ)Qp+ op(1), with Ep being the matrix defined in
Remark 2, to get

rT
1 (n
−1ΘTWΘ)−1 = f (θ)−1{rT

1E
−1
p − f

′(θ)f (θ)−1rT
1E
−1
p QpE−1p } + op(1),

where r1 is a (p + 1) × 1 vector having 1 as first entry and 0 elsewhere. For the conditional variance, denoting as Tp the
matrix of order p+1 having

∫
sini+j−2(u){Kκ(u)}2du as (i, j) entry, and recalling condition (i), it follows that n−1ΘTW 2Θ =

f (θ)Tp + op(I). �

References

Bai, Z.D., Rao, R.C., Zhao, L.C., 1988. Kernel estimators of density function of directional data. Journal of Multivariate Analysis 27, 24–39.
Beran, R., 1979. Exponential models for directional data. The Annals of Statistics 7, 1162–1178.
Cogburn, I., Davis, H.T., 1974. Periodic splines and spectral estimation. The Annals of Statistics 2, 1108–1126.
Hall, P., Watson, G., Cabrera, J., 1987. Kernel density estimation with spherical data. Biometrika 74, 751–762.
Jammalamadaka, S.R., SenGupta, A., 2001. Topics in Circular Statistics. World Scientific, Singapore.
Klemelä, J., 2000. Estimation of densities and derivatives of densities with directional data. Journal of Multivariate Analysis 73, 18–40.
Lejeune, M., Sarda, P., 1992. Smooth estimators of distribution and density functions. Computational Statistics & Data Analysis 14, 457–471.
Mardia, K.V., Jupp, P.E., 1999. Directional Statistics. John Wiley, New York.
Ruppert, D., Wand, M.P., 1994. Multivariate locally weighted least squares regression. The Annals of Statistics 22, 1346–1370.
Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.


	Local polynomial regression for circular predictors
	Introduction
	Circular kernels
	Definitions
	Kernel efficiency

	Local polynomial regression
	Linear fitting with von Mises based kernels
	Generalizations and extensions

	Simulation results
	Aknowledgements
	Appendix
	References


