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SUMMARY 
A new model for an angular regression link function is introduced. The model employs 

an angular scale parameter, incorporates proper and improper rotations as special cases, 
and is equivalent to the MObius circle mapping for complex variables. Desirable prop- 
erties of the circle mapping carry over to angular regression. Parameter estimation and 
inferential methods are developed and illustrated. 

Some key words: Angular regression; Circle mapping; Mdbius transformation; Primary symmetry point; 
Reflection; Rotation; Torus; Von Mises distribution. 

1. INTRODUCTION 

Circular regression methods have been used in many diverse applications including 
crystallography by MacKenzie (1957), vectorcardiography by Downs et al. (1970), pre- 
dicting direction of ground movement during an earthquake by Rivest (1997) and studies 
of correlations among circadian biological rhythms, wherein a 24-hour clock is considered 
as a circle (Binkley, 1990; Downs, 1974; Moore-Ede et al., 1982). Medical applications 
include circadian timing of cancer chemotherapy to reduce the number and severity of 
toxic side effects (Hrushesky, 1985) and medical imaging (Jones & Silverman, 1989; Weir 
& Green, 1994). Recent work on the genetic and molecular aspects of mammalian circad- 
ian rhythms suggests the need for more powerful circular regression models (Lowrey et al., 
2000; Shearman et al., 2000). 

One of the earlier angular-linear regression models was proposed by Gould (1969). 
Mardia (1975) developed a nonparametric rank correlation coefficient for circular data. 
Johnson & Wehrly (1978) improved the Gould model by restricting the range of the 
independent variables to the half-open interval (0, 2i]. Stephens (1979) has applied a 
directional regression scheme to spatial rock magnetism data. Fisher & Lee (1992) general- 
ised Johnson & Wehrly's model via a link function that maps the real line on to the unit 
circle. Recently Lund (1999) proposed a regression model where the independent variables 
consist of one circular variable and a set of linear variables, and Follman & Proschan 
(1999) provided a test of circadian circular uniformity of epileptic seizure times using 
correlated successive seizure times on the same individuals. 

Most of the models cited above are rotational in nature, with the mean of the dependent 
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direction assumed to be a rotation, proper or improper, of the independent direction. 
Non-rotational models have been proposed by Gould (1969), Johnson & Wehrly (1978) 
and Fisher & Lee (1992), all of whom used linear combinations of linear concomitant 
variables, and by Downs (1974) and Downs et al. (1970). All these non-rotational models 
are relatively intractable and difficult to interpret. A serious shortcoming of all existing 
models is the absence of any topologically appropriate method for angular scale changes. 
For rotational models, this shortcoming is the equivalent of forcing the slope of the 
regression curve to be + 1 in simple linear regression. Our proposed regression model is 
relatively tractable and incorporates a topologically valid form of angular scale parameter, 
thus maintaining a one-to-one correspondence between the independent angle and the 
mean of the dependent angle. As the model parameters vary, the resulting models form a 
group, with closure and other desirable group properties. Furthermore, rotational models 
are special cases. Some spherical extensions are proposed in Downs & Mardia (2000). 

To our knowledge, no bivariate angular probability distribution has been used to model 
this type of circular regression. A bivariate von Mises distribution was introduced by 
Mardia (1975), but we show in ? 6-2 that the conditional probability distribution for that 
model is somewhat different from the conditional von Mises distribution used herein; we 
also discuss in ? 6-2 a special case of this distribution which has been used by Rivest (1997) 
for a circular regression link function. 

The circular regression model is defined in ? 2. Properties of the model are described 
in ? 3, parameter estimation and inferential methods in ? 4 and practical examples in ? 5. 
Additional topics are briefly discussed in ? 6. 

Unless otherwise specified all angles and their sums or differences are expressed as their 
principal values in the half-open interval (- i, n] radians, and all half-angles of these 
principal values are in the half-open interval (- n/2, n/2]. 

2. CIRCULAR REGRESSION MODEL 

2"1. Regression curve: Relationship of angular mean to independent angle 
Let o and / be angular location parameters, w a slope parameter in the closed interval 

[- 1, 1], and u and v running angular variables. The mapping 

tan '(v - P) = m tan ?(u - o), 
(2.1) 

which has the unique solution 

v = + 2 atan{w tan l(u - O)}, (2-2) 

defines a one-to-one relationship between u and v provided wo is not zero. The locus of 
the points (u, v) satisfying (2-1) is a continuous closed curve winding once around a toroidal 
surface. Fisher & Lee (1992) suggested the link function p = 2 atan x for linear-circular 
regression, since it maps the linear variable x to (-in, i ]. Our circular regression link has, 
in addition, the linear x as a function of angle u via x = o tan(u - a)/2. 

Now assume that u is the fixed independent angle, v the dependent random angle and 
v in (2-1) replaced by p, the mean direction for v given u. The resulting link function, or 
regression curve, is given by 

tan (p- f- l) = wo tan -(u - o), (2-3) 

which has the unique solution 

p= p + 2 atan{wo tan ?(u - o)}. (2-4) 
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From (2-3) we get 

tan p'/2 = ow tan p'/2, (2-5) 

where 1' = - /f, u'= u - a. We call the version (2-5) the centred regression curve. We 
show how to construct ' graphically from a given u'. Imagine a v'-circle with unit diameter 
and tangent to a horizontal t-axis at the point (t = 0, v'= 0), and a u'-circle with diameter 

wo < 1 and likewise tangent to the t-axis at the point (t = 0, u'= 0). Given a point u' on 
the u'-circle, draw the line from the top of the u'-circle through the point u' thereon to 
intersect the t-axis at the point t, say. Next draw the line from the top of the v'-circle to 
the same point t on the t-axis, intersecting the v'-circle at the point v', say. Then t = tan v'/2 
and also t = Co tan u'/2, so v' = y'. Use - u' if wO < 0. 

When we are numerically evaluating the tangent functions in (2-3), (2-4) and (2-5), 
principal values for u' and u - a must be used before division by 2, otherwise the half- 
angles (u - cx) and u'/2 will not lie in the interval (-rn/2, n/2] and numerical errors will 
result. 

To obtain a simple complex form for the link (2-5), let M' = exp{i(Yu - P)} and U' = 

exp{i(u - o)} be points on the unit circle. Substitute (M' - 1)/i(M'+ 1) and 

o(U' - 1)/i(U' + 1) for the left-hand and right-hand sides of (2-5) respectively, and solve 
for M' to obtain 

M'= (U' + 00)/(/U' + 1), (2-6) 

where 
S 

=(1 - O)/(1 + co), 0 -= (1- 0)/(1 + ), i2_-1 

2-2. Probability model for angular error: Properties of the von Mises distribution 
A random angle t has the von Mises distribution, with mean y and nonnegative 

concentration parameter K, when the density for t is 

f(t) = {2nlo(Kc)}-1 exp{Kc cos(t - y)}, (2-7) 

in which case we write t - M(y, K), where Io(K) = j=o ((K/2)J/j!)}2 is the modified Bessel 
function of the first kind and order zero. The expected value of the unit vector (cos t, sin t) 
is 

E{(cos t, sin t)} = p(cos y, sin y), (2-8) 

where p = Il (K)/Io(K), for 0 < p < 1, and I1(K) is the modified Bessel function of the first 
kind and order one. The parameter p is the precision, and increases from 0 to 1 as K 

increases from 0 to oo. The precision is the distance from the origin to the centre of gravity 
of the population of points on the unit circle, and the mean direction y is the direction 
from the origin to the centre of gravity. Mardia & Jupp (2000, Ch. 3-5, 7) have given 
extensive details about properties, estimation and inference aspects of the von Mises 
distribution. The family of distributions (2-7) is closed under rotations of t, with the 
concentration parameter unchanged: 

t - M(y, C) t + 0 
-l M(/ + 8, KC) (2-9) 

for any fixed angle 0 in (- n, i]. 
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2-3. Probability model for angular error: Angular error and the von Mises distribution 
We assume that v given u has the von Mises distribution with mean direction Y and 

nonnegative concentration parameter K. To emphasise that Y is a function of the 
independent variable u and the parameters (a, /, ow), we write 

vlu - MU{u(u; , /3, O0), K}, 
(2"10) 

where 

Pt(u; o, A, 0) = p + v(u - c; o), v(u - c; w) = 2 atan{ow tan 2(u - 0)}. (2-11) 

Applying (2-9) to (2-10) gives that 

vlu , M{yp(u; , fl, CO), K} >v + bIu + a , Ml{(u + a; o + a, p + b, wo), K} (2-12) 

for any fixed angles a, b in (-2n, tn], since, by (2-11), 

(fl + b)+ v{(u + a)- (a + a), w} = u(u + o; a + a, p + b, wO). 

Two important results derived from (2-12) are as follows: 

e = angular error = v - p(u; , fl, o) , M(O, K), E(cos e, sin e) = (p, 0); (2-13) 

t = special transform = e + y - M(y, K), E(cos t, sin t) = p(cos y, sin y). (2-14) 

3. PROPERTIES OF THE REGRESSION CURVE 

3-1. Special forms of the regression curve 
The special transform t is used whenever the slope parameter w takes one of the special 

values, - 1, 0 or 1. Then (2-12), (2-13) and (2-14) simplify to their special distributions, 
wherein only the mean direction y = (/ - wa) is estimable, and the individual parameters 
a and p are not. For ow = -1, 0 or 1, we have that 

vlu- M(It, K), 

where 

Pt = ou + (/p - wO), (3-1) 

e = angular error = (v u - 0) - (P - ca) ~ M(0, K), (3-2) 

t = special transform = (v - 0u) ~ M(y, K), (3-3) 

where y = p - wa. The expression for [ in (3-1) has the slope-intercept form of a linear 
regression model. If w = -1 then u is a rotation, through y = P + a, of a reflection of u in 
the horizontal axis. Also, w = 0 if and only if v is independent of u, in which case P = fl, 
a constant, and a disappears. If wo = 1 then p is a rotation of u through y = / - 1. Thus 
the three special models for the regression curve correspond to an improper rotation, no 
association and a proper rotation. 

For nonspecial cases the mean y of v and the independent angle u are negatively related, 
unrelated or positively related according to the algebraic sign of w. If u = cX then P = / so 
the point (a, fl) lies on the (u, v) regression curve, as does (a + 7r, # + 7r). The regression 
curve (2-3) is symmetric about both these points, and only these points. Thus a and / are 
location parameters for the points of symmetry of the regression curve and are not, in 

general, measures of central location for u or v. The point (x, /) will be called the primary 
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symmetry point. The points (0, 0) and (7r, 7r) lie on the centred (u', p') toroidal regression 
curve (2-5), and (0, 0) is the primary symmetry point. Planar graphs of the centred model 
are shown in Fig. 1 for selected values of w. No generality is lost by restricting the slope 
parameter wo to the interval [- 1, 1], for, if the magnitude of w exceeded unity then, since 

tan{(( + 7r)/2} = -cot(o/2), reparameterising (2-3) by adding 7r to each of a and / trans- 
forms the tangents therein to negative cotangents with wo unchanged. Taking reciprocals 
of both sides of this, and multiplying through by - 1, transforms the negative cotangents 
back to positive tangents, but replaces ow with its reciprocal. 

"-0,, 
"0, 

4' 

41' 
0 

-,,,C-. 
4IC 01 

##o? ,, 

)I .. 
U 

- 0t 

7E 7 

Fig. 1. Planar plots of y' versus u' for the centred 
regression curve (2-5) for selected values of c. 
Regression curves for negative ow are reflections in the 
horizontal line /t'= 0 of the corresponding curves for 
positive o. Short-dashed lines, ac= + 1; long-dashed 

lines, wc = 
+_3; 

solid lines w = + 
1. 

McCullagh (1996) has used mainly the real Mbbius group SL(2, R) to investigate M $bius 
transformations of the Cauchy distribution. The group SL(2, R) is the real analogue of 
the complex M6bius group SL(2, C) of fractional linear transformations on the extended 
complex plane. These have the form 

w = (az + b)/(cz + d), 

where a, b, c, d, w and z are complex and the determinant ad - bc is not zero. Some 
algebra shows, as in Needham (1997, pp. 176-8), that those elements of SL(2, C) which 
send the unit circle into itself are precisely those for which 

w z/A + 
(3-4) B z/A + 1' 

where A = exp(ia), B = exp(iPf). This is the noncentred version of (2-6) above, with 
M' = w/B, U' = z/A. 



688 T. D. DOWNS AND K. V. MARDIA 

3-2. Additional properties of the regression curve 
The three parameters (o, fl, wo) or (L, fl, /) are unique unless co takes one of the three 

special values. To show this, consider (2-6) with M' = M/B, U'= U/A, so that 

M = B(U + A)/(U + A). (3-5) 

Suppose that M = BJ(U + f1A1)/(ifr U + A1) and also that M = B2(U + I2A2)/(/2U + A2) 
for all values of U. Cross-multiplying and equating coefficients of U implies that the two 
sets of parameters are equal, so long as 0 is not 0, 1 or oo, corresponding to the three 
special values 1, 0 and -1 of wo. 

In addition, the complex regression curves (2-6) have an elegant linear representation: 
M' + U' can be shown to be parallel to U' + 0, which implies that M' and - U' on the 
unit circle are collinear with I on the nonnegative real axis. The points M, - U'B and 

OB are also collinear. 
Finally, using cross ratios we may show that the circle mapping (3-5) is completely 

determined, through (3-6) below, by any three distinct pairs (U1, Mj), (U2, M2) and 
(U3, M3) of mapped points on the U and M circles: 

(M - MJ)(M2 - M3) (U - U1)(U2 - U3) 

-(U(3.6) (M - M3)(M2 1) (U- U3 2 1 

The values of the parameters (A, B, 0) in (3-5) are readily deduced from (3-6). 

4. ESTIMATION AND INFERENCE 

4-1. Graphical estimation 

Despite potential data distortion, a planar graph of v versus u can be useful for evaluat- 
ing the regression model and for obtaining rough estimates of the regression parameters. 
Graphical consistency of the data with the regression curve model may be assessed in 
some cases. Non-monotonicity of the data discredits the model. Constant slopes of -1, 
0 or 1 around the toroidal surface are supportive of one of the three special cases of the 
model, while constant slopes of other values discredit the model. 

Data with a linear trend and shallow slope over a large range are consistent with a 
regression curve when wo is small and when the primary symmetry point is within the 
range of the data. Linear data with a sharp slope and a small range are again consistent 
with a regression curve when w is small, but now the secondary symmetry point, 
(a + 7r, + +r), is within or near the range of the data. Indications of convexity or concavity 
in the data are also useful for assessing model validity and graphically estimating (a, /f, w). 
We will illustrate these points in ? 5. 

4-2. Classification of regression curve models 
We classify our regression models as A, B or C according to the nature of the parameters 

(a, fl, C). Class A models have three functionally independent parameters, C, # and wo. 
Class B models have a and / functionally related by 

c' ? / = 0, 
so the parameters (, /3, wo) have the form (a, a, co). The equations a? + = 0 imply a kind 
of symmetry in the regression curves: the primary symmetry point (L, P) lies on the line 
y = u when o- > 0 or on the line y = -u when ow < 0. Class C models are the special 
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models where wo takes one of the special values of -1, 0 or 1, and is presumed known, 
in which case we write o = Oo. 

The three classes are hierarchical in that the parameter spaces of Class C models are 
contained in those of Class B models, which are in turn contained in those of Class A 
models. 

4-3. Maximum likelihood estimation for Class A and B models 
The loglikelihood function for a random sample of n pairs (uj, vj) from a Class A or B 

model is given by 

l(c, /, w, K; V1,... , v,) = -n log Io(K) + K cos{vj- fl- v(u - ; w)} + const. (4-1) 
J 

Recall that, for Class B models, / = + c. For both classes, the maximum likelihood 
estimator ^ of the precision parameter p is defined explicitly by 

j(ac, /f, ow) = (1/n) cos { vj - - v(uj - t; w)}. (4-2) 
J 

For a Class A model, we can obtain the estimator / of # which leads to 

-(t, A), 0)= -n 
( cos{vj - v(uj - c; o)} ? + sin (vj- 

v(uj- 
- 

c;)} (4-3) 

Thus, maximising the loglikelihood (4-1) is equivalent to maximising (4-3) with respect to 

(a, o); that is we are using a profile likelihood. Furthermore, the maximum likelihood 
estimator K of K is given by 

I1Q()/Io(A) = A 
,f/3, t). 

(4-4) 
However, we will concentrate on p rather than k in our examples. For Class B, the profile 
likelihood leads to maximising ^(cx, ? c, o) with respect to a and oo. 

4-4. Maximum likelihood estimation for Class C models 
A sample of n pairs (uj, vj) from any Class C model, in which wo is fixed at co0, can be 

considered as a univariate sample from a special M(y, K) distribution, by setting 

tj 
= 

(vj 
- oouj), y = 

(fl 
- )oC), (4-5) 

where 

tj- M(y, K) (j = 1, 2,...,n) 

Maximum likelihood estimators and ^ of the special mean direction y and precision p 
are known to be the sample centre of gravity analogues of their population counterparts 
in (2-8). Thus, for wo= two known, p and y are estimated implicitly from 

Po (y, to0)(coS s, sin Y) = (1/n) Y (cos tj, sin tj). (4-6) 
j 

If (y, o) are known or assumed to be (yo, 0o0) then the precision p is estimated explicitly 
by 

po(0o, CO0) = (1/n) Y cos(tj - yo). (4-7) 
J 
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4-5. Inference 
When e , M(0, K) and p is sufficiently large, it is known that 

2K(1 - cos e) Z X2(1), (4-8) 

approximately. The utility of (4-8) for regression parameter inference is illustrated with 
two scenarios. First, consider the important null hypothesis Ho: o = 0. The alternative 
hypothesis, H:o: w 0, must have a parameter space that contains the parameter space 
under Ho. Then an approximate test of the null hypothesis can be obtained by noting 
that, for sufficiently large n and p, the terms of the analysis of dispersion identity, 

2nK{1 - o(, 0)} = 2nK[{1 - o(^, 0)} - {1 - 
(~,/, 

,)}] + 2nK{1 - (, /, L )}, 
(4-9) 

where 0o(f, 0) and p3(, /3, 6A) are defined in (4-6) and (4-3), will by Wilks' theorem be 
approximately distributed under the null hypothesis as 

x2(n - 1))= Z2(n - 1)- (n - 3)} + Z2(n - 3), (4-10) 

so that 

F = (n - 3){f(, fl, 6) - po(, 0)}/[2{1 - (P, /L, )}]~ ' F(2, n - 3), 

approximately, since K cancels out. Large F values discredit Ho. The chi-squared distri- 
butions in (4-8) and (4-10) are reminiscent of the Watson & Williams (1956) analysis-of- 
variance-like equalities for directional statistics, and it is expected that we may not require 
n to be large for these results to hold so long as p is large. In practice it will suffice if p 
is only moderately large. 

The second scenario employs a generalisation to a regression framework of a procedure 
first proposed by Watson & Williams (1956) for testing equality of mean directions in 
two independent samples. We wish to test the hypothesis that the unknown regression 
parameters, d say in number, are the same for both samples. The relevant quantities for 
the first sample of size n,, for the second of size n2 and for the combined samples of size 
n are 

Q2 = 2nlK(1 ), Q2= 2n2K2(1 2) Q2= 2nK(1 -). 1l2 2 
- ^ 

) 

If K1 = K2 then the precisions are all equal, and equal to p, say, and if p is moderately 
large then, as above, the terms of the identity 

Q2= Q2 _ (Q + Q)} + (Q + Q2) Q2 =(2 1 2 ~2 
will be approximately distributed as 

Z2(n 
- d) = 2Z{(n - d) - (n, 

- d) - (n2 - d)} + 2{(n, 
- d) + (n2 - d)}, (411) 

so that 

F = (n - 2d)(n, 1, + n2A2 - n )/{d(n - n, ,1 
- n2 A2)} F(d, n - 2d), 

approximately, under the null hypothesis, with large F values discrediting the null 
hypothesis. 

All the tests for the M{IP(u;a /, fl,9), K} regression model in this paper are simple 
variations of the above two scenarios. 

We now calculate the information matrix. We write the loglikelihood with known 
parameters (O, fl, wo, K) as 

1= const - n log Io(K) + K Y cos(v, - [i), (4"12) 
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where 

pi = p + 2 atan {I tan (ui - 0)f. (4.13) 

Using the facts that 

E{cos(vi - i)} = A(K), E{sin(vi - 
p/)} 

= 0, 
(4.14) 

we find that various expressions for the information matrix simplify as we now summarise. 
Recall that A(K) = I (K)/0II(K). 

Let us now write OT=(fl, 
' , OW, K)=(01, 02, 03, 04) and suppose that I=(Iij) is the 

Fisher information matrix for 0. We find that 114 = 24 = 134 = 0 so that 01, 02 and 03 are 
independent of 04 as expected, asymptotically. Hence, we can concentrate on Iij 
(i, j = 1, 2, 3). Write 

I=[Cl, C2 

OT C22 

where 0T = (0, 0, 0), C11 is 3 x 3 and C22 is a scalar. Then it can be shown, using (4-12), 
(4-13) and (4-14), that 

C22 = 144 
= nA'(K), C11 = KA(K)B(01, 02, 03), (4-15) 

where the elements of the matrix B(/3, L, w) are 

bl= n, bl2= (i)a, b13 = Z 

b22= i), b23 = (i )(i) , b33 =Z i 

with 

2 tan l(u - ) o) sec2 (ui - x) 
(i)= 1 + tan2 (ui - )' 2 tan2 

ui- 

Thus 

cov(f, 
,, 

0) {I( , l,)}- = {1A(K)}-1{B(3, , )}')1, (4-16) 

A(lK) 
var(k)- {nA'(iZ)}', A'(K)= 1 - A2(ic)- (417) 

cov(fl, A) = cov(&, A) = cov(c, A) = 0. (4418) 

Other particular cases are much simpler. For example, for a = fl, all the terms are the 
same except that we replace (Ui)t by 1 + (pi), everywhere, and there is no term for P. 

5. EXAMPLES 

Example 1: Circadian biological rhythms. We are indebted to Franz Halberg and Michael 
Smolensky for providing us with data from ten medical students in Austria. The students 
measured each of about 20 variables several times daily for a period of several weeks. The 
study period was split into two prime time periods as part of the study, and the peak time 
for systolic blood pressure was estimated separately for each student for each period, 
giving values S, and S2. These data, shown in Table 1, are in degrees, with 15 degrees 
equal to one hour. The two blood pressure peak times should be nearly equivalent, if 
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circumstances are the same for each of the two periods. This can be checked by regressing 
S2 on S1. First we test that there really is an association between the peak times for S, 
and S2. The maximum likelihood estimates for the regression parameters are (B, /, ) )= 
jp(170, 60, 0-67) = 0-971 under H1, with n - 3 = 7 degrees of freedom. Asymptotic standard 
errors for (^, ^, ) are (190, 20, 0-16). Consequently, the Wald test for w =0 has 
z = 0-67/0-16 = 4-2 with P <<0-001. From Table 1, io(,0o)= 3o(-450, 0)= 0-718 under 

Ho, with 9 degrees of freedom. Then under the null hypothesis the F statistic is 
approximately F(2, 7). 

Table 1. Systolic blood pressure peak times (degrees) with sample angular means 2 and 
precisions P for Example 1: 0O is midnight, 90' is 6 a.m. and - 90' is 6 p.m. 

Student 
1 2 3 4 5 6 7 8 9 10A j3 

S1 -102 - 17 -23 -39 -77 -47 -65 -166 2 -44 -520 0.736 
S2 -98 - 14 -39 1 -76 -48 -45 -175 - 13 -32 -450 0-718 

S1, systolic blood pressure peak time for period 1; S2, systolic blood pressure peak time for period 2. 

The observed value is F = 7 x (0-971 - 0-718)/{2 x (1 - 0-971)} = 30-5, giving P << 0001, 
so the data show a strong association and severely discredit the null hypothesis. 

Next, we test the Class C null hypothesis that the blood pressure peak times for the 
two periods are identical, apart from random error. This will be true when y = 0 and 
wo = 1. Then &o(0, 1)= Ej cos(vj - uj)/10 = 0-962 by (4-7), with 10 - 0 = 10 degrees of 
freedom; and P(i, 3, 6) = 0-971 as above, with 7 degrees of freedom. We obtain F = 
7 x (0-971 - 0-962)/{(10 - 7)(1 - 0-971)} = 0-724, giving P > 0-5 when referred to the 
F(3, 7) distribution, indicating that the data do not conflict with the null hypothesis of 
identical peak times for the two periods. 

Example 2: Wind directions in Milwaukee. Wind directions u and v were measured at a 
weather station in Milwaukee, Wisconsin, at 6 a.m. and at noon, respectively, on each day 
for 21 consecutive days. These data are from Fisher (1993, Table B.21). A noncentred 
planar graph of the data is shown in Fig. 2. Figure 2 suggests little or no association, but 
this is deceptive. The top boundary represents values of u for v = 7r, and the bottom 
boundary values of u for v = - r. Imagine curling the rectangular data plot so as to join 
these two equivalent lines and form a cylinder, and then curling and stretching the cylinder 
so as to form a torus. The four corners of the original rectangle are now all the same 
point on the topologically appropriate torus. 

Data from separate days are considered independent. Take as null hypothesis the Class B 
symmetry hypothesis that a = P with, as alternative, the general Class A model. A graph 
of the sample precision versus the slope parameter for the likelihood profile grid search 
is shown in Fig. 3. The asymmetry and dramatic changes in precision therein suggest a 
strong positive correlation where the precision and slope estimates both seem to be about 

1. In contrast, the planar data plot of Fig. 3 wrongly suggests little or no association. 
Actual precision estimates are p(a, /, 6) = p^(41', 41', 0-367) = 0-398 with n - 2 = 19 
degrees of freedom, and P(c, /, 6) = /P(78', 119', 0-581) = 0-487 with n - 3 = 18 degrees of 
freedom. Asymptotic standard errors from (4-16) are (10, 0-23) for (&, 6) and 
(480, 550,0-23) for (, , 6)). The test statistic under the null hypothesis is F= 
18 x (0-487 - 0-398)/{1 x (1 - 0-487)} = 3-12. Under Ho, F - F(1, 18), approximately, 
giving P = 0-094, so the data do not markedly discredit the null hypothesis of symmetry. 



Circular regression 693 

300 - 

200 

100 a 

0- 
0 100 200 300 

u 

Fig. 2. Example 2. Deceptive planar data plot of wind 
directions, measured in degrees: v, measured at noon, 

versus u, measured at 6 a.m. Zero is north. 
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Fig. 3. Graph of the grid search for Example 2 for the 
maximum likelihood estimation where sample pre- 
cisions ^3 are plotted against the slope parameter o, 

for 17 different values of a. 

6. ADDITIONAL TOPICS 

6-1. Vectorial representation of this conditional density 
Define the product and quotient slope parameters ow, and (o by 

w = 2/(1 + 2), C 1 = 1/(1 + 2), (61) 
where cOp, Oq> 0, so that = Op/(,Oq and w p+ • 

= 1. 
Knowledge of any one of the four parameters (o, (op, o q and f is sufficient to determine 

the other three. Next, define the three vectors x, y and r by 
xT = (X1, X2, X3, X4) = (cos p/2, sin p/2, cos q/2, sin q/2), 

yT 
= 

(Yl, Y2, Y3, Y4) = (sin p/2, - cos p/2, sin q/2, - cos q/2), 

=T = 

(1 

], 2 c 
(3, 

+ 4) (62) 
= (t cos -((# + (), 

p 
sin ?(# + c), y cos ?(( 

- 
Lz), 

sin (( - a)), 
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where p = v + u and q = v - u. Note that x is perpendicular to y. The parameters (c, fl, o) 
can be obtained from the elements of q via 

=2 2 2 q=W+qq-2Op)/Oq= +qp)c 
cos I = (r11173 + 

11214)1/)pwDq, 
COS = (~i13 - u2h4)/wOp q; (6-3) 

sin a = (rq2r3 - 111114)/Op Oq, sin / = ( +r1213 + 1114)/Wpo0q* 
All the expressions determining (c, /, o) in (6-3) are of second order in the elements of q, 
so the same values for (c, /, wo) will result whether one uses the elements of q or the 
elements of - q. 

Now substitute Op/wOq for / in (2-6) and divide the resulting expression for M' into V' 
to get an expression for the complex angular error E. Multiply and divide this expression 
for E by the complex conjugate of (wq U' + oP) 

and rearrange to get 

({wc(V'U') + 
wq(V'/U')-}2 {(xTq) + i(yT)}2 E = exp(ie) 6(u') (yT)2 ' (6-4) & (u')2 (T 12 (T )2 ' 

where 

1 - w2 

65(U')2 = IWqU'+Wpl2 = 1 + 2WpWq cosu'= (xTl)2 (yTq)2, 2WpWOq = 1 02' (6-5) 
1 +(02 

where u'= u - cx. Taking square roots in (6-4) yields xT1/6(u') = cos e/2 as the real part of 
E? and yT11/6(u') = sin e/2 as the imaginary part. Hence the conditional density of v Iu in 
vectorial form is 

f(v I u) = {271io(K) exp(- K))}-1 exp{ - 2KyTrqTy/6(u')2 }. (6-6) 

Initially, we used this form of the density to obtain maximum likelihood estimates of the 
parameters, but found the likelihood profile grid search method to be better. 

6-2. Similarities with conditional bivariate von Mises distribution 
Mardia (1975) introduced a bivariate von Mises distribution wherein the conditional 

distribution of one angle v given the other angle u is also von Mises but had the form 

g(v I u) oc exp(K1 cos v + K2 sin v + K1 cos u cos v + K12 COS sin v 

+ K21 sin u COS v + K22 sin u sin v), (6-7) 

where the K's are parameters. An explicit expression for our conditional von Mises distri- 
bution with f(v I u) oc exp{K cos(v - u)} is obtained by getting cos(v - P) from the real part 
of (6-4), so that 

f(v I u) oc exp{(K2 cos v' + K1 cos u' cos v' + K22 sin u' sin v')/6(u')}, (6-8) 

where 6(u') is defined in (6-5), u'= u - L, v'= v - /, and the K's are parameters depending 
on p and ow. The presence of 6(u') in (6-8), which is a function of u', detracts from the 
similarities between (6-7) and (6-8). 

Rivest (1997) used a special case of Mardia's bivariate distribution (6-7) to obtain a 
conditional distribution for regression which has the same form as ours in (6-8), but in 
his case 6(u') = constant. As a result his link function still contained three parameters, 
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somewhat analogous to our (L, /3, w). Indeed, his regression function can be written as 

(u; , , ) = + atan (b) + h(b), (6-9) 

where a = sin(u - a), b = / + cos(u - a), I -> 0, h(b) = 1 if b < 0, and h(b) = 0 otherwise. 
There are two important distinctions between his model and ours. His a and / are func- 
tionally dependent on the mean directions of the dependent and independent directions, 
while ours are not. His f, like our 0, ranges from 0 to infinity, and has 0 = 0 corresponding 
to a pure rotation and y = oc to no association, while our 0 has 0 as a pure rotation, 1 as 
no association and infinity as a pure reflection. The most important difference is that our 
link function is a one-to-one mapping of the unit circle on to itself for all values of 0 
except the special values 0, 1 and infinity, thus preserving group properties and topological 
validity. Rivest's link function is only one-to-one and onto when f < 1. 

6-3. Barber pole regression curves 
All our regression curves have treated the mean y as a one-to-one invertible function 

of u. We extend this to a many-to-one 'barber pole' regression curve by supposing that P 
runs through an integral number, h, of cycles, as u runs through one cycle. The equation 
of such a regression curve is achieved by modifying (2-3) to 

tan ((p - /3) = o tan )(hu - L), 
(6"10) 

with unique solution 

~ = p + 2 atanl{c tan? (hu - c)}. (6-11) 

The centred form of (6-10) will be 

tan 1 
Y' = 

co tan u", (6I12) 

where '=' = y- and u" = hu - a. A centred planar graph of (6-11) will have h branches 
squeezed into the interval (- n,, n) on the horizontal u-axis. If this planar graph is metamor- 
phosed into a cylinder, the metamorphosed planar graph becomes a barber pole, lying on 
its side, with h visible stripes. 

6-4. Squared correlation coefficient 
Assume vlu. M{[L(u; C, /f, wO), K} conditionally as in (2-10), and v . M(y, K) marginally 

as in (2-7). Define the conditional variance, V(v I u), and marginal variance, V(v), by 

V(vlu)= E[{cosv-cos (u; c, /f, o)}2 + {sin v - siny(u; c, /, C)}2] 
= 2{1 - p(c, /f, o))}, 

V(v) = E[{cos v - cos (u; , /f, 0)}2 + {sin v - sin (u; a, /f, 0)}2] 

= 2{1 - po(y, 0)}. 

A squared circular correlation coefficient, R2, analogous to the squared linear correlation 
coefficient, is defined as the proportion of V(u) explained by u, namely 

R2= 1 - {V(vlu)/ (v)} = {p(c, /, w)- Po(y, 0)}/{1 - Po(y, 0)}. (6-14) 

Our circular regression techniques are not based on any bivariate angular distribution. 
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Nevertheless, circular regressions done both ways, v Iu and uI v, lead to different estimates 
R2 for R2 in (6-14). For example, computing '2 for v u and again for u v in Example 1 
yields 

0-9712 - 0-7184 0-9651 - 0-7359 
R2 = = 0-900, R5 u= 1- 7359 0868, 

R" 1 - 

0"7184 
1 - 

0"7359 which are distinctly different values. The search for a circular correlation coefficient with 
properties analogous to those of the linear correlation coefficient requires further study. 
We are unaware of any bivariate angular distribution that would provide a suitable model 
for developing such a correlation coefficient. 

6-5. Multiple circular regression 
We present a recursive method for regressing the dependent angle on multiple 

independent angles using a sequence of circle transforms for y as in (2-4). 

Stage 1. Summarise the model for regressing v on a single independent angle u1 as 
v = Jt1 + e, where It, = j=i(u1; a,, fl , 1,) is a circle transform of u1 and e is an angular 
error. The fitted version of the model can be expressed as v = ~, + e,, where 9, and el 
are obtained by maximising the sample precision. 

Stage 2. A second independent angle, u2, may explain some of the variability in the 
fitted errors el above, via the model el = 

2- 
+ e2, where 1P2 = 

"u2(U2; 02, 2,, 22) is a circle 
transform of u2 and e2 is now a new angular error. The fitted version of this model can 
be expressed as = l 2 ? e2, where 112 and e2 are obtained by maximising the sample 
precision for this second model. Combining these results we obtain the fitted model ^ 

= 
y, + 

-2 
+ 2 with sample precision at least as great as that for the initial model. If we 

continue in this manner, the circular regression can be extended recursively to an arbitrary 
number of independent angles. Note that the method depends on the order in which the 
independent variables are introduced. 
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