
Computational Statistics and Data Analysis 52 (2008) 3493–3500
www.elsevier.com/locate/csda
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Abstract

Given angular data θ1, . . . , θn ∈ [0, 2π) a common objective is to estimate the density. In case that a kernel estimator is used,
bandwidth selection is crucial to the performance. A “plug-in rule” for the bandwidth, which is based on the concentration of a
reference density, namely, the von Mises distribution is obtained. It is seen that this is equivalent to the usual Euclidean plug-in rule
in the case where the concentration becomes large. In case that the concentration parameter is unknown, alternative methods are
explored which are intended to be robust to departures from the reference density. Simulations indicate that “wrapped estimators”
can perform well in this context. The methods are applied to a real bivariate dataset concerning protein structure.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Given a random sample of angles θ1, . . . , θn ∈ [0, 2π) from some unknown density f (θ) a natural component of
exploratory data analysis is to estimate the function f (·). When a parametric form is assumed, this may be achieved
by maximum likelihood, or moment-based estimation. A nonparametric estimator may be naively written as

f̂ (θ; h) =
1
n

n∑
i=1

Kh(θ − θi ), (1)

where Kh(θ) = K (θ/h)/h is a kernel function, usually a symmetric probability density, and h is a smoothing
parameter. This kernel estimator was first proposed by Fisher (1989) for data lying on the circle, in which he adapted
the linear data methods of Silverman (1986) and used a quartic kernel function K (θ) = 0.9375(1 − θ2)2. However,
when using data on the circle, we cannot use distance in Euclidean space, so all differences θ − θi should be replaced
by considering the angle between two vectors:

di (θ) = ‖θ − θi‖ = min(|θ − θi |, 2π − |θ − θi |). (2)

This may also be written as di = cos−1(xTxi ), where xT
= (cos θ, sin θ) is a unit vector. A more natural choice for

the kernel function is therefore one of the commonly used circular probability densities, such as the wrapped normal
distribution, or the von Mises distribution. This leads to an alternative representation for the kernel density estimate
(Jammalamadaka and SenGupta, 2001, page 282):

f̂ (x; h) =
1
n

n∑
i=1

Kh(1 − xTxi ). (3)
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In studying properties of kernel density estimates in Euclidean space, it is common to take Taylor series
approximations to give an asymptotic form for the bias and variance. These can then be combined to give an
asymptotically optimal choice for the smoothing parameter; see, for example, Silverman (1986). For data lying on
the q-dimensional sphere (q ≥ 2), Hall et al. (1987) described the asymptotic bias and variance of two classes of
kernel estimators. This was done by the use of directional derivatives, thus making the results a close analogue of the
Taylor series methods used for data in Euclidean space.

One of the difficulties in nonparametric density estimation is to make good choices of the smoothing parameter h;
see Jones et al. (1996) for an excellent survey of methods. In the Euclidean setting, Silverman (1986) and Jones et al.
(1996) gave formulae which depend on derivatives of the unknown density f . When the data lie in Euclidean space,
there are many approaches to this problem, a simple example of which is based on a “Normal-scale rule” or a “rule of
thumb”. When the kernel function is taken as the Gaussian density, this leads to a plug-in selector h = 1.06σ̂n−1/5

(Silverman, 1986). The goal of this paper is to obtain an equivalent plug-in rule for density estimation on the circle.
Specifically, we consider the estimator in which the kernel function is the von Mises density, which gives

f̂ (θ; ν) =
1

n(2π)I0(ν)

n∑
i=1

exp{ν cos(θ − θi )}, (4)

where Ir (ν) is the modified Bessel function of order r , and the concentration parameter ν has now taken the role of
the (inverse of the) smoothing parameter h. A common approach to obtain the smoothing parameter is by considering
derivatives of the unknown density and then substituting a “reference” density in order to obtain a plug-in rule;
the results of Klemelä (2000) could probably be implemented here. However, we instead follow the approach of
Marron and Wand (1992) who obtained the form of the exact mean integrated squared error for densities which can
be expressed as a mixture of normal densities.

In Section 2 we write the exact expectation and variance of the estimator (4) under the assumption that the data
follow a von Mises distribution. This then leads to an expression for the asymptotic bias and variance, which can be
integrated to give AMISE as a function of the concentration parameter of the data (κ), the smoothing parameter (ν) and
the sample size (n). Finally, this can be solved to give a simple plug-in rule for ν dependent only on κ and n. Section 3
discusses robust estimation of κ , suited for the plug-in rule, which may be used in case that the underlying density is
not von Mises. Section 4 gives some simulation results, and Section 5 gives a real example using 2-dimensional data
from a bioinformatics dataset. We conclude with a discussion.

2. Asymptotic mean integrated squared error

We suppose that f (·) is von Mises (written in general as vM(µ, κ)), with concentration parameter κ and – without
loss of generality – mean direction µ = 0. Then the first two moments of (4) are given by

E{ f̂ (θ; ν)} =
1

(2π)2 I0(κ)I0(ν)

∫ 2π

0
exp{ν cos(θ − φ)+ κ cos(φ)}dφ

=
I0{(κ

2
+ ν2

+ 2νκ cos θ)1/2}
(2π)I0(κ)I0(ν)

,

(Jammalamadaka and SenGupta, 2001, p. 40) and

var{ f̂ (θ; ν)} =
1

n(2π)2 I0(ν)2
var[exp{ν cos(θ − Θ)}]

=
1

n(2π)2 I0(ν)2 I0(κ)

[
I0{(4ν2

+ κ2
+ 4κν cos θ)1/2} −

I0{(ν
2
+ κ2

+ 2κν cos θ)1/2}2

I0(κ)

]
.

Note that, when ν = 0 we have E{ f̂ (θ; 0)} = 1/(2π) which does not depend on θ and, in the limit, the estimator is
unbiased, i.e.

lim
ν→∞

E{ f̂ (θ; ν)} = f (θ).
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These equations may be used to write down an expression for the exact mean squared error. However, integrating the
resulting expression to obtain the exact MISE seems hard to do analytically, so we now derive asymptotic expressions
for the above.

As the smoothing parameter ν → ∞ the asymptotic bias is

{2π I0(κ)}
−1

(
exp

[
ν

{(
1 +

κ2

ν2 + 2
κ

ν
cos θ

)1/2

− 1

}]
− exp{κ cos θ}

)
+ O

(
ν−2

)
.

Expanding the square root in a Taylor series, then expanding the exponential function in a Taylor series give a simpler
form of the asymptotic bias as

{4π I0(κ)ν}
−1κ2 sin2 θ exp(κ cos θ)+ O

(
ν−2

)
. (5)

Similarly, for large n, and as ν → ∞ the variance has asymptotic form

{4nπ3/2 I0(κ)}
−1ν1/2 exp

[
2ν

{(
1 +

κ2

4ν2 +
κ

ν
cos θ

)1/2

− 1

}]
+ o

(
ν1/2

n

)
,

which is valid provided n/ν1/2
→ ∞. Again, by expanding the square root, and then the exponential function, as a

Taylor series, we obtain the simpler form of the asymptotic variance

{4nπ3/2 I0(κ)}
−1ν1/2 exp(κ cos θ)+ o

(
ν1/2

n

)
. (6)

We now integrate the square of the asymptotic bias (5) and the asymptotic variance (6), to obtain

3κ2 I2(2κ)/{32πν2 I0(κ)
2
}

and

ν1/2/
(

2nπ1/2
)

respectively. Thus the asymptotic integrated mean squared error is of the form aν−2
+ bν1/2 which can be minimized

by differentiating with respect to ν and equating to zero. This leads to a “von Mises-scale plug-in rule” for the
smoothing parameter ν based on the estimated κ:

ν =

[
3nκ̂2 I2(2κ̂){4π1/2 I0(κ̂)

2
}
−1
]2/5

. (7)

Note that this is of a similar asymptotic form as the normal-scale plug-in rule when we recall that ν is the concentration
parameter, and so takes the role of 1/h2 in h = 1.06σ̂n−1/5. Moreover, if we consider the limit as κ → ∞

then the von Mises distribution tends to a Normal distribution, with σ = κ1/2. Hence, in the limit we have
h = ν−1/2

= 1.06κ−1/2n−1/5 which is exactly the same as the usual rule of thumb used for the Normal distribution. A
simple method could be to estimate κ from the data, and use (7) to select the smoothing parameter for use in (4). Two
obvious questions arise at this point: what happens if the data do not come from this reference density (von Mises);
how good are all these Taylor series approximations in practice? The next two sections address these questions in turn.

3. Robust estimation of spread

When the data are unimodal, the above selection rule (7) is likely to work reasonably well. However, for bimodal
data, the usual estimate of κ – either by maximum likelihood, or the method of moments – may be almost useless.
In the most extreme case, an equal mixture of data tightly clustered around φ combined with a similar distribution of
data clustered around φ + π will lead to an estimate of κ close to zero. When κ̂ = 0 then (7) gives ν = 0 which will
result in f̂ (θ) ≡ 1/(2π), and so such automatic methods may lead to very misleading density estimates. Indeed, even
in the regular case, the maximum likelihood estimator of κ is far from robust, as it has infinite standardized gross error
sensitivity (Mardia and Jupp, 1999, p. 276).
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Ronchetti (1992) derived the “most B-robust self-standardized estimator” of the concentration parameter as
κ̂MR = log 2/median{ci }, where ci = 1 − xT

i µ, with µ the unit vector with direction µ. (In our implementation,
we estimated µ with the mean direction.) Alternative robust estimators are also given by Ronchetti (1992) and Ko
(1992), but our intention in this paper is to focus on density estimation.

In the case of Euclidean data, an alternative rule of thumb proposed by Silverman (1986, p. 47) was to take
σ̂ = min{s, IQR/1.349}, where s is the sample standard deviation, and IQR is the inter-quartile range. This will work
better for bimodal data, and give similar results when the data are normal. This proposal was obtained by comparing
the population inter-quartile range to the standard deviation. For circular data, if m is the (estimated) median then, for
0 < p < 0.5 define qi (p) ∈ [0, π) such that

p =

∫ m

m−q1(p)
f (θ)dθ =

∫ m+q2(p)

m
f (θ)dθ

which can be solved for known f (·) and given p. In particular, for the reference (von Mises) distribution, without
loss of generality we can set m = 0. The inter p-quantile range for the reference distribution is then given by
q2(p) + q1(p) = 2q1(p). The sample circular median is defined (Mardia and Jupp, 1999, p. 17) as the value m̂
such that half the data lies in [m̂, m̂ + π) and more data lies closer to m̂ than to m̂ + π . Sample values of qi (p) can
then be easily found from the data. The procedure is then as follows:

(1) Select p ∈ (0, 1/2).
(2) Form a look-up table which defines q1(p) as a function of κ for the reference distribution vM(0, κ).
(3) Find the sample median m̂ and q̂i (p), i = 1, 2 from the data.
(4) Obtain the estimated κ from the look-up table, using ‖m̂ + q̂2(p) − (m̂ − q̂1(p))‖, where the distance used is as

in (2).

An alternative approach is to note that, for the von Mises distribution, the maximum likelihood estimate of κ is
obtained from the solution to

A1(κ) =
1
n

n∑
i=1

cos(θi − µ̂),

where Ak(κ) = Ik(κ)/I0(κ) and µ̂ = tan−1(
∑

sin θi ,
∑

cos θi ). This follows from a more general identity using
trigonometric moments which states that E cos{k(θ − µ)} = Ik(κ)/I0(κ). Thus, alternative estimates of κ (for a von
Mises distribution) are given by solutions to

Ak(κ) =
1
n

n∑
i=1

cos(kθi − µ̂k), (8)

where µ̂k = tan−1(
∑

sin kθi ,
∑

cos kθi ), for k = 1, 2, . . . . In case that the data are von Mises, different values of k
will lead to similar estimates of κ . In simulations (not shown), we have observed that κ̂k is an increasing function of
k, with the bias decreasing, and the variance increasing as κ increases. However, in the case of multimodal data, then
rather different estimates will ensue. Hence, a possible procedure is to estimate κ using k = 1, . . . , K in (8) giving,
say, κ̂k and then taking κ̂ = max{κ̂k, k = 1, . . . , K } for use in (7).

4. Simulations

For the standard von Mises distribution, we can compare the average integrated squared error ISE with the
approximate MISE given in Section 2, when κ is known. The results, for 500 simulations, and n = 50 and n = 500
are shown in Fig. 1. The approximation looks quite good, improving with n.

We now explore the effectiveness of the plug-in rule, when the data are taken from a mixture of M(≥ 1) von Mises
distributions. Specifically, we simulate θ1, . . . , θn ∼ f (θ), where the distribution is given by

f (θ) =
1

2π

M∑
j=1

p j
exp{κ j cos(θ − µ j )}

I0(κ j )
, i = 1, . . . , n with

M∑
j=1

p j = 1 (9)
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Fig. 1. Average integrated squared error – ISE – (points) and MISE (lines) for 500 simulations of size n = 50 (top panel) and n = 500 (bottom
panel) from a von Mises distribution with κ = 1.

and we evaluate ISE(ν) =
∫
( f̂ (θ; ν) − f (θ))2dθ over N = 500 datasets (using a grid of 500 points to evaluate

the integrals numerically). For each distribution, we note the value of ν which minimizes ISE(ν), say ν0, as well as
ISE(ν0). We give ISE(ν) when ν is obtained for each dataset from the plug-in rule (7) and κ̂ is estimated by one of
the methods described in Section 3. In addition, we give results when cross validation is used to select the bandwidth.
Here, we select ν to maximize the likelihood cross-validation function LCV(ν) =

∏
i f̂−i (θi ; ν), where

f̂−i (θ; ν) =
1

(n − 1)(2π)I0(ν)

n∑
j 6=i

exp{ν cos(θ − θ j )}

is the leave-one-out estimator. (We have also tried least-squares cross validation to select the smoothing parameter.
The results of this were very similar to, but not quite as good as using likelihood cross validation, and so are
not shown.) Let νCV denote the value of ν which maximizes LCV(ν). Denote by νK when ν is estimated with
κ̂ = max{κ̂k, k = 1, . . . , K } and κ̂k is the solution to (8). Denote by νp the value of ν when κ is estimated using
the inter p-quantile range. We also include results for Fisher’s (1989) adaptation of the quartic kernel, in which his
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Table 1
Average integrated squared error results for various bandwidth selection rules

Parameters (1) (0.1)
(

4, 1
2 , π, 4

) (
2, 1

4 ,
π√

3
, 2
) (

5, 1
5 ,

π
2 , 5

)
n 50 500 50 500 50 500 50 500 50 500

ν0 3.32 8.59 0.23 0.65 10.29 29.52 4.59 13.25 14.37 40.49
100 ISE(ν0) 0.85 0.16 0.07 0.05 1.91 0.34 1.01 0.21 1.93 0.37

νCV 47.2 19.7 891.1 151.8 13.9 5.0 33.6 14.54 22.0 16.1
hF 13.9 3.8 569.1 98.8 385.8 2857.5 6.7 −1.8 5.6 8.6
hE 3.5 −3.9 487.4 50.0 431.7 3129.1 9.9 −9.3 16.4 20.9
ν1 32.8 15.2 61.3 30.3 465.1 3263.1 25.1 4.4 28.2 51.7
ν2 29.1 13.4 788.3 37.4 11.0 4.6 16.1 4.7 21.8 37.8
ν3 36.6 12.8 1744.0 218.3 11.1 4.6 32.8 16.3 9.2 3.0
ν4 54.7 21.5 2643.1 410.6 19.1 6.5 74.2 31.7 15.8 3.9
νMR 16.1 12.1 317.6 59.2 272.4 733.6 33.5 31.7 48.5 71.7
ν0.08 149.4 31.0 1229.0 20.3 182.4 1425.5 147.3 37.0 73.3 20.8
ν0.24 53.4 20.9 258.3 28.9 278.2 1982.9 57.6 32.9 29.5 18.0
ν0.40 38.4 17.4 143.4 32.5 372.4 2668.2 50.5 35.5 28.2 22.8

The parameters of the distribution, given in the top row by (9), are (κ1, p2, µ2, κ2, . . . , pM , µM , κM ), with µ1 = 0 in each case. Numerical
integration used on 500 grid values; averages taken over 500 datasets of size n. ν0 is the smoothing parameter to minimize MISE, and ISE(ν0)

the corresponding minimum. In the lower part of the table we give the percentage increase, i.e. (ISE(ν•)/ISE(ν0) − 1)100% for each method.
Here ν• is selected by cross validation (νCV), by νK , K = 1, 2, 3, 4 in the case where the wrapped estimator is used, by νp in the case where the
p-quantile range estimator is used, and by νMR in the case where Ronchetti’s (1992) robust estimator is used for κ . Two “linear” kernels are also
used: hF denotes the performance for the quartic kernel and respective plug-in rule described by Fisher (1989); hE uses an Epanechnikov kernel
with smoothing parameter hE = 2.345κ̂−1/2n−1/5.

smoothing parameter is given by hF =
√

7κ̂−1/2n−1/5, and for a similar method using the Epanechnikov kernel
with hE = 2.345κ̂−1/2n−1/5. This plug-in rule for a von Mises density was obtained by using a large concentration
approximation for the AMISE solution given by

hE =

(
120π I0(κ)

2

nκ2(2I0(2κ)+ I2(2κ))

)1/5

≈ κ−1/2(40
√
π/n)1/5.

The results are given in Table 1. Note that, for the standard von Mises distribution, if the known κ = 1 is used in (7),
then the smoothing parameter is ν = 3.51 for n = 50 and ν = 8.82 for n = 500, whereas if κ = 0.1 then ν = 0.06
for n = 50 and ν = 0.16 for n = 500, which shows the accuracy of the asymptotic results for finite samples. Note
that using the maximum likelihood estimator for κ with (7) leads to row ν1 in this table.

In Table 1 we see that for the standard von Mises distributions, only ν1 (using (7) with κ estimated by (8) with
k = 1) gives reasonable answers for both small and moderate κ . The linear kernel estimators are very poorly behaved
for large smoothing parameters (h > π ), which occur when κ̂ and/or n are small. An ad hoc solution is simply to
rescale the density estimate so that it integrates to unity, but this was not done here. However, note that for moderate
κ (=1), the linear kernels outperform the von Mises kernel estimator. We conjecture that this may be due to the fact
that the von Mises kernel is less efficient, though it is not immediately obvious how to define efficiency for angular
kernels.

For the mixtures of distributions, the “standard” plug-in rule ν1 can do very poorly, with both ν2 and ν3 performing
similarly, overall, to the cross-validation estimate, but at a cheaper computational cost. Interestingly, the plug-in
bandwidths for the linear kernels can perform surprisingly well for some of the mixtures. Amongst the p-quantile
range estimators, ν0.40 performed reasonably, except for one of the mixture distributions.

5. Application to protein angles

The backbone of a protein comprises a sequence of atoms

N1–Cα1 –C1–N2–Cα2 –C2– · · · –Np–Cαp–Cp,



C.C. Taylor / Computational Statistics and Data Analysis 52 (2008) 3493–3500 3499

Table 2
For a sequence of atoms (A1, A2, A3, A4) as specified, with A3 directly behind A2, and A1 directly below A2, we label the angle shown in the
sketch as one of φ,ψ,ω

and by choosing 4 atoms with A3 directly behind A2, and A1 directly below A2 (see Table 2) we can specify 3 dihedral
angles: φ,ψ,ω. The angle ω is restricted to be about zero, and is of little interest. The remaining angles (φ, ψ) are
measured between −π and π . A scatter plot of a collection of (φi , ψi ), i = 1, . . . , n for a protein is known as a
Ramachandran plot, and has been used to characterize the secondary structure of the protein.

We can extend the result of Section 2 to multivariate data by using a multiplicative kernel, with equal bandwidths in
each dimension. In two dimensions, if f is assumed to be a multivariate von Mises, with independent components, and
common concentration κ , then we can approximate the asymptotic integrated variance of the kernel density estimate
as ν/(4nπ) with asymptotic integrated bias-squared as

κ2
[
3I0(2κ)I2(2κ)+ I1(2κ)2

]
/(32π2 I0(κ)

4ν2).

Hence in this case, the rule of thumb is

ν =

[
nκ̂2

{
3I0(2κ̂)I2(2κ̂)+ I1(2κ̂)2

}
/(4π I0(κ̂)

4)
](1/3)

. (10)

We illustrate a kernel density estimate for the protein Malate dehydrogenase which has n = 343 observations. The
co-ordinates of the backbone can be obtained from the RCSB protein data bank (protein 5mdh); in turn the dihedral
angles are easily calculated and the Ramachandran plot is shown in Fig. 2. For the purposes of this example, we assume
that the sequence of angles is independent. To obtain κ̂ we use the geometric mean of the estimated concentrations
of the marginal data (using the wrapped estimate with K = 3). We obtain κ̂ = 5.69 and so, using (10), we use the
smoothing parameter ν = 36.85 in a multiplicative kernel. A contour plot of the square root – the transformation
was used in order to reveal more details – of the estimated density is shown in Fig. 2. These density estimates can
be used to suggest subpopulations within the data which can be compared with more standard representations of the
secondary structure of the protein. Interesting further analysis is possible by comparing the density estimates of angles
associated with various types of amino acids (which are defined by the side chains adjoining each Cα atom), but this
is yet to be fully explored.

6. Concluding remarks

Extending some of the above results to a mixture of von Mises distributions would also be straightforward, and
would proceed along the lines of Marron and Wand (1992). However, although we could obtain expressions for the
approximate MISE, it would depend on the mixing proportions (as well as the means and concentrations of each
component), and no plug-in rule would be readily available.

Agostinelli (2007) has considered alternative approaches to the robust estimation of κ which could also be used in
(7) in place of those considered here. However, based on our simulation results, we would recommend trying both ν1
and ν3 as smoothing parameters. These are simple to compute, and in each distribution one of these performed well.

Finally, we note the survey paper of Jones et al. (1996) which addresses the issue of bandwidth selection for real-
valued data. In addition to the ideas of the current paper, there are several alternatives which will have a counterpart for
directional data. In particular, there are now well-known results in the Euclidean case which obtain more sophisticated
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Fig. 2. Left: Ramachandran plot for Malate dehydrogenase, and Right: contour plot of the estimated (sqrt) density.

plug-in rules by estimating functionals of the derivatives. By using the results of Klemelä (2000) it should be possible
to obtain circular data counterparts.
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