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Preface

I.

In general terms, the shape of an object, data set, or image can be de
fined as the total of all information that is invariant under translations,
rotations, and isotropic rescalings. Thus two objects can be said to have
the same shape if they are similar in the sense of Euclideangeometry. For
example, all equilateral triangles have the same shape, and so do all cubes.
In applications, bodies rarely have exactly the same shape within measure
ment error. In such cases the variation in shape can often be the subject of
statistical analysis.

The last decade has seen a considerable growth in interest in the statis
tical theory of shape. This has been the result of a synthesis of a number of
different areas and a recognition that there is considerable common ground
among these areas in their study of shape variation. Despite this synthesis
of disciplines, there are several different schools of statistical shape analysis.
One of these, the Kendall school of shape analysis, uses a variety of mathe
matical tools from differential geometry and probability, and is the subject
of this book. The book does not assume a particularly strong background
by the reader in these subjects, and so a brief introduction is provided to
each of these topics. Anyone who is unfamiliar with this material is advised
to consult a more complete reference. As the literature on these subjects is
vast, the introductory sections can be used as a brief guide to the literature.

A few comments should be made about the numbering of figures and
propositions. Figures are numbered in order within chapters. Thus Figure
2.3 is the third figure to be found in Chapter 3. Propositions, lemmas,
corollaries, and definitions are numbered consecutively within each section.
Thus Proposition 2.6.3 is the third result (whether proposition, lemma,
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etc.) within Section 2.6. .
Chapter 1 is the basic introductory chapter for the rest of the book.

Many of the ideas that are developed in greater detail later are touched
upon briefly in this first chapter. Chapter 2 is essentially a review of some
basic tools from differential geometry and groups of transformations of
Euclidean space. The reader who is familiar with these methods can skim
this material for the notation that will be used throughout the rest of the
book, and proceed to the next chapter. Chapter 3, which describes various
ways of representing shapes on manifolds, is pivotal for all later material,
and leads into Chapters 4 and 5, where a stochastic theory is developed
on the shape manifolds. Chapter 6 has a collection of applications that are
rather loosely bound together by the theme of this book.

This book would not have been written without the support of a number
of people. Thanks are due to Martin Gilchrist at Springer, who approached
me about writing a book on shape. Thanks must go to John Kimmel, also
of Springer, whose timely and supportive responses to all my questions
made the job of writing much easier. To Springer's production staff and
my copyeditor, David Kramer, I offer my sincere thanks.

Whenever I had a problem in computing I turned to my colleague Michael
Lewis, whose assistance was invaluable. Some of the better-looking pictures
in this book are there through his help. Thanks also go to David Kendall, for
his inspiration and valued support over the years. I first began to work on
shape theory when I started my Ph.D. under David Kendall's supervision
in 1978. What is good in this book is largely due to him. What is bad is
my responsibility alone! Thanks also to my colleagues Huiling Le and Colin
Goodall for their excellent advice on the subject, and to Fred Bookstein
for his insights and energy. Zejiang Yang was also very helpful in catching
a number of errors in the manuscript.

I could not conclude this checklist of indebtedness without acknowledging
the support of my wife Kristin Lord, who put up with the long hours I spent
working on the manuscript. Kristin was also instrumental in bringing the
Mt. Tom dinosaur data set to my attention.

Christopher G. Small
University of Waterloo
June 1996
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1
Introduction

1.1 Background of Shape Theory

In 1977, David Kendall published a brief note [87] in which he introduced
a new representation of shapes as elements of complex projective spaces.
The result stated in the paper was unusual: under an appropriate random
clock, the shape of a set of independent particles diffusing according to a
Brownian motion law could be regarded as a Brownian motion on com
plex projective space. Many statisticians, who knew little about complex
projective spaces and who did not work on diffusion processes, did not see
immediate applications to their own work. However, in a sequence of talks
at conferences around the world, David Kendall continued to expound on
his theory, with some applications to problems in archeology. Presented
with great clarity and with excellent graphics, these talks gradually gener
ated wider interest. It was not until 1984 that the full details of the theory
were published [90]. At that point it became clear that Kendall's theory
of shape was of great elegance and contained some interesting areas of
research for both the probabilist and the statistician.

The full range of possible applications became much clearer when David
Kendall was invited to be a discussant for a paper by Fred Bookstein [19]
in the journal Statistical Science. Kendall and Bookstein, it turned out,
had been thinking along the same lines, namely that shapes could be rep
resented on manifolds. There were some intriguing differences. Whereas
Kendall represented the shapes of triangles in the plane as points on a
sphere, a space of positive curvature, a suggestion of Bookstein represented
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the shapes of those triangles as points on a Poincare half plane, a spaceof
negative curvature. Perhaps more important were the different applications
each researcher emphasized. Kendall's applications were in the archeolog
ical and astronomical sciences, and studied the shapes of random sets of
points, such as are to be found in a Poisson scattering. Bookstein's applica
tions were in the biological and medical sciences, and drew on the tradition
of researchers such as D' Arcy Wentworth Thompson, Julian Huxley, and
later researchers in allometry and multivariate morphometries. For Book
stein and his colleagues, the points under consideration were biologically
active sites on organisms called landmarks.

At present, we can speak of both Kendall and Bookstein schools of shape
analysis. It is within this context that this book is written. The primary
theme of the book will be the representation of shapes on differential man
ifolds, and the statistical consequences of this idea. The emphasis will be
more toward the Kendall school, where the differential geometry of shape
analysis is more developed. However, we shall frequently compare this with
some of the work of Bookstein and others, insofar as this is relevant to our
goal.

In tracing the history of methods that have produced this statistical
theory of shape, it is quickly apparent that a great variety of past work is
responsible for its development. It is difficult to imagine a time in history
when people have not been fascinated by shapes. Our visual fine arts, such
as painting and sculpture, have appeal across cultures and illustrate the
universality of shapes or forms.

As D'Arcy Thompson pointed out in his pioneering book 'On Growth
and Form [172], there is an important relationship between the form or
shape of a biological structure and its function. Thus the study of shape
is also the study of function. For example, the mathematical constraint
that a: body have minimum surface area for a given volume requires that
it be roughly spherical in shape. This result is known in mathematics as
an isoperimetric inequality, and can be used to explain why an organism
that seeks to minimize its boundary with an external environment, for heat
conservation or defense, will often have a simple spherical curvature. On the
other hand, if the boundary of an organism is required to be permeable to
allow oxygen or food to flow across it, then such a minimization of surface
area would be inappropriate. One would expect the surface area in this
case to be roughly proportional to the volume of the organism. However,
an organism cannot grow while maintaining the same shape and continuing
to have a constant ratio between its volume and its external surface area. In
this case, growth usually involves a change of shape, possibly through the
introduction of a highly convoluted boundary. The geometric structure of
lung tissue is a case in point. Recent developments in the theory of fractal
shapes have shown that the boundary of a three-dimensional structure need
not scale upwards as the square of its length or diameter. In fact, a highly
convoluted surface can be thought of as an approximation to a fractal.

:1

Sometimes the relationship between shape and function is of a more
contrived nature. For example, the amphorae used in antiquity had a variety
of forms. The particular shapes of amphorae were guides to the nature of
the contents. This relationship continues down to the present day: nobody
need confuse the contents of a bottle of white wine with the contents of a
bottle of whiskey, as shape tells all.

Much of statistical theory has been dedicated to the estimation of loca
tion and scale parameters. As the statistical theory of shape is concerned
with aspects of the data. that remain after location and scale information
are discounted, statistical shape concepts have not been as prominent as the
theory of inference for location and scale. In 1934, R. A. Fisher [57] intro
duced the concept of the configuration of a univariate sample. This concept
is equivalent to the formal definition of shape for dimension one that we
shall develop in this book. In 1939, E. J. G. Pitman [134] developed the
theory of minimum variance equivariant estimation of location and scale
parameters, and in so doing illustrated the importance of conditioning on
invariant statistics in the construction of best equivariant estimators for
location and scale. The idea of a shape statistic as a maximal invariant
under location and scale transformation can be seen in this work, although
the shape .statistics play an ancillary role to the estimation of parameters
associated with location and scale transformations.

The extension of the concept of invariance to multivariate data is straight
forward. However, it is in the psychometric literature that statistical tools
were first developed for the comparison of the shapes of data sets. The roots
of.Procrustes analysis can be traced to Mosier [123], and then through the
work of Sibson [150, 151] and Gower [75]. In comparing the differences in
shape between two data sets, Procrustes analysis proceeds by transform
ing one data set to try to match the other. The transformations allowed
in' a standard analysis include shifts in location, scale changes, and rota
tions. Together, these transformations are called similarity transformations
or shape-preserving transformations. When a transformation of one of the
data sets has been found to most nearly match the other, the sum of squared
differences of the coordinates between them is called the Procrustean dis
tance between the two data sets. We shall see that this concept is closely
related to the natural measure on distance between shapes that we shall
consider in Section 1.3.

Another line of research that has contributed to the statistical theory of
shape is to be found in the field of geometric probability and stochastic
geometry. It is here that we see geometric objects, such as points, lines,
and convex sets, as the basic data for the statistician. The set of outcomes
of a random experiment can often be represented as a region in space
whose volume, or p--dimensional content, can be ascertained. Within this
region is to be found some subset E corresponding to an event. According
to one definition, the probability P(E) of this event is the ratio of the
p--dimensional content of this subset to that of the entire region. Such a
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factor, then the size variable is itself increased or decreased by that same
factor. If we standardize the distances by scaling them to have unit size
variable, then the resulting ratios of dimensions are called shape variables.

Many of the key insights into the growth allometry of biological organ
isms were first outlined by Julian Huxley [85]. Allometry studies shape
differences by taking ratios of dimensions of objects. As much of statistics
is linear in nature, it is natural to take logarithms of the dimensions of ob
jects and plot these logarithmic coordinates on a graph. Now, two objects
of different size but common shape will have their dimensions in the same
ratio. Therefore the shape statistics can be associated with differences be
tween the logarithmic dimensions. For example, suppose we consider how
an organism changes shape as it matures and grows with age. Let Xt and
Yt be two recorded dimensions of the organism at age t, so that Yt/Xt is
a partial description of the shape of the organism. Now, if all parts of the
organism grow at a constant rate a as it matures, then growth will be
exponential in nature, and we will have the formulas

which does not involve the age t of the organism. So the logarithmic
coordinates (log Xtjl log YtJ, when plotted at different ages tj, will all
lie on a line of slope +1, which corresponds to constancy of shape. On the
other hand, if these coordinates do not all lie on a line of slope +1, then
we can deduce that there is some variation in shape between different ages.
However, if Xt grows at a constant rate a and Yt grows at rate {3 =I a,
then these logarithmic coordinates plotted at different ages will still lie on
a straight line. In this case, the slope of the line will differ from unity.

This fact, namely that the logarithms of size variables lie on straight
lines, is one of the basic empirical principles of allometry. This empirical
principle has a theoretical foundation in a model that presupposes expo
nential growth at varying rates in different parts of an organism. In turn,
this variation in the growth rate explains some of the variation in the shape
of an organism as it matures.

It should be noted that the size variables need not be linear in nature
in order that their logarithms lie on straight lines. We can extend from
comparing distances of bodies or organisms to more general size variables
such as surface area or volume, and we will still keep a linear functional
relationship between their logarithmic coordinates if growth is exponential.
The effect of using an area, say, rather than a length for Yt is to scale the
slope by a factor of two in the plot of log(xtJ and 10g(YtJ.

The analysis is seen to be statistical in nature when we reflect on the
fact that measurement error and a slight unevenness of growth are to be
expected under normal circumstances. Therefore, even when the model

definition is problematic for certain applications, and leads to paradoxes
such as that of Bertrand involving random lines. For this reason, the mod
ern theory of geometric probability makes use of invariance of probabilities
under Euclidean motions as a more fundamental notion for calculating the
probability of geometric events. That is, a probability measure can be said
to be geometric if it assigns equal probability that a random geometric
object such as a point or line will hit congruent sets.

In 1980, David Kendall and his son Wilfrid Kendall [95] proposed the
use of techniques from geometric probability to examine the hypothetical
alignments of megalithic stones from Land's End in Cornwall. This data
set of fifty-two sites at Land's End was originally investigated by Alfred
Watkins [177], who advanced the theory that megalithic cultures had de
liberately placed standing stones along straight lines known as ley lines.
The folklore around the existence and interpretation of such lines is quite
extensive despite the patchy evidence for the existence of ley lines. Kendall
and Kendall [95] followed the approach of Simon Broadbent [33J by calcu
lating the expected number of approximately collinear triplets of points if
the megalithic sites had been positioned at random. As a triangle can be
called approximately flat (or e-blunt in their terminology) if its maximum
internal angle is within tolerance € of a straight angle, Kendall and Kendall
were naturally drawn to the examination of the distribution of angles in a
random triangle, and thereby to the concept of an induced marginal dis
tribution on a space of triangle shapes. The paper by David Kendall [90]
in 1984 was seminal for the development of the geometry and distribution
theory of shape space. A key result of this paper was that the induced dis
tribution of shape for a set of independent identically distributed bivariate
normal points is uniform on the shape space when the covariance matrix is
a multiple of the identity. The univariate version of this result also holds,
although it is of much older vintage than the bivariate result. The work
of Dryden and Mardia [53, 116, 117] generalized this work to the shapes
of points from bivariate normal distributions having different means, and
set the stage for the distribution theory to be tied in to the work on shape
analysis developed in allometry, to which we now turn.

1.2 Principles of Allometry

Allometry can be defined as the study of the relationship between size and
shape. If we take a set of measurements of distances between points on
a body, then a size variable can be regarded as a summary of the overall
scale of these measurements. For example, the arithmetic mean and the
geometric mean of a set of distances are both size variables. Size variables
are required to be homogeneous functions of the set of distances. This means
that if all measurements are increased or decreased by a common scale

Thus

Xt = Xo exp(at) Yt = Yoexp(at) (1.1)

(1.2)
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assumptions are correct, we would.notexpectshe-points to lie ona perfect
straight line. Statistical tools such as principal components analysis can be
used to draw a line through the data. This is equivalent to fitting a bivariate
normal distribution to the scatter plot of points (log Xtj' log Ytj) and
finding the principal axis through the elliptical contours of the normal
density.

At first sight, the extension from two size variables Xt and Yt to several
would seem to be easy. While the linear statistical analysis ofmultivari
ate data through principal components is straightforward, the extension
is problematic because the assumption of multivariate normality is quite
stringent. In typical data sets, the set of size variables such as lengths
have complicated nonlinear relationships among them. For .example, if we
were to record a set of 21 interpoint distances between 7 points on a two
dimensional image, we would only have 11 degrees of freedom among the
21 distances. The particular restrictions on these variables would be com
plicated and nonlinear, and would make modeling of their logarithms us
ing normal assumptions difficult. It is at this point that the techniques of
Procrustes analysis provide an avenue of escape from these difficulties. The
problems that arise in taking ratios of size variables point us toward nonlin
ear mathematics and towards a theory of shape based upon configurations
of points rather than ratios of size variables. This theory of shape will be
the central topic of the book.

1.3 Defining and Comparing Shapes

When all information in a data set about its location, scale, and orientation
is removed, the information that remains is called the shape of the data.
Alternatively, we can say that two data sets have the same shape if a
combination of a rigid motion and rescaling of one of the data sets will
make it coincide with the other. In geometry, two figures that have the
same shape are said to be similar. For example, two triangles will be similar
provided their corresponding internal angles are equal.

To investigate the concept of shape more carefully, consider Figure 1.1,
which shows three examples of side views of Iron Age brooches from a
cemetery excavated at modern-day Miinsingen, inSwitzerland. As these
brooches can be ordered chronologically from the layout of the cemetery,
it is natural to consider how the shapes of the brooches developed over
time. These three brooches represent only a fraction of the total data from
the cemetery but will serve the purpose here of illustrating some basic
principles of shape analysis.

Let us suppose for the moment that we are given these pictures as our
primary data. How can we analyze the differences in shapes of the three
brooches? A first step in such an analysis might be to construct a finite-

3 '
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4 4 4

Brooch 1 Brooch 2 Brooch 3

FIGURE 1.1. Three Iron Age brooches. Prom each of the images, four landmarks
are chosen at locations coinciding with features in the brooches. The landmarks
correspond in a natural sense, so that landmarks in different images marking cor
responding features are labeledin a similar fashion. The shape analysis proceeds by
eliminating information in each of the configurations about location, scale and ori
entation. The brooches are adapted from Hodson, Sneath, and Doran, Biometrika
53 {1966}, p. 315, by kind permission of Biometrika Trustees.

dimensional representation of some of the important geometric informa
tion from each picture. For example, we could construct a set of points
Xl, X2, ••• , X n lying on each figure such that the locations of these points
coincide with important features. On different bodies or figures, sites used
for summarizing or encoding of geometric information are called landmarks.
For example, on the human face, the positions of the eyes and other features
can be used as landmarks to analyze the shape of the face. For our pur
poses, landmarks will be defined as points chosen from an image or object
to mark the location of important features and to give a partial geometric
description of the image or object.

Normally, we think of the features of a two-dimensional image as lying
in a very high-dimensional space, or, in an idealized sense, in an infinite
dimensional space. If we keep this in mind, then we recognize that there is
inevitably some loss of information in encoding pictures with a relatively
small number of landmarks. Nevertheless, small numbers of landmarks can
provide the basis for comparisons of important shape differences. Just as a
small number of landmarks within a city might help us find our way around
by identifying features of the city, so the landmarks chosen to summarize
a figure can be regarded as identifying its important geometric features.

Let us consider .how a set of four landmarks can be constructed for each
of the three images. The centers of the coiled springs on the right of each
figure represent corresponding points, and similarly, the leftmost points at
which the curvature is sharpest also correspond. For each brooch, let Xl

, and X2 be these two points respectively. Additionally, let X3 be the upper
point on each brooch where the left piece bends back and fastens to form a
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(1.3)

loop. Finally, we can choose the fourth landmark X4 to be the lower bend
on the loop. (This is the point of high curvature in the loop where the pin
is secured.) This locates four landmarks for each figure.

More generally, n landmarks can be chosen so that the vector (Xl, ..., xn ) ,

which lies in (R 2)n, provides a 2n-dimensional summary of some of the ma
jor geometric characteristics of the brooch, including location, orientation,
scale, and shape information. To perform a shape analysis on these land
marks, we must determine the class of all functions of the vector (Xl, ..., xn )

that measure its shape. This involves the elimination of information in
(Xl, ..., xn ) that describes the location, scale, or orientation of the land
marks. The location and scale statistics of a set of points are perhaps best
known to statisticians because they can be described by standard statistical
tools. For example, the location of a data set (Xl, ..., Xn) can be described
by its sample mean, or centroid, given by

1 n
X = - LXj

n j=l

In addition, the size or scale of our configuration of landmarks can be
described by a variety of statistics. Let us choose coordinates for each of
the landmarks so that Xj = (Xj!, Xj2) for j = 1, ... , n, and x = (Xl, X2).

The column vectors of residuals about the means are

is a natural measure of the size of the set of landmarks because it is inde
pendent of the orientation of the Cartesian coordinate system. The usual
way to eliminate location and size information in data is by standardiza
tion, which is a combination of a location shift and a rescaling so that
the data set has centroid X at the origin in R 2 and the matrix I' is
standardized to have trace equal to one. For our example, the standardized
data set becomes

(1.8)

A caveat must be mentioned here. In order for this representation to
be meaningful, the landmarks Xl, ..., X n must not all be coincident. This
presents no problem for our application to brooches. In general, a set of
landmarks that are all coincident will be said to have indeterminate shape.
Henceforth, we shall assume that this degeneracy does not arise. Note,
however, that we do not exclude cases in which some but not all of the
landmarks are coincident.

We shall refer to the vector T defined in (1.8) as the pre-shape of the land
marks. While this terminology is not particularly descriptive, it does em
phasize the order in which the reduction to shape progresses. The pre-shape
T lies in a constrained subset of the original Euclidean space (R2 )n. This
subset can be represented by the intersection of the (n - 2)-dimensional
subspace

n

(1.4) (1.9)

with the unit sphere

and n

LllXjW = I}
j=l

(1.10)

(1.5)
The intersection

where (.)T denotes the transpose operation. The trace of I', given by

Xn2 - X2

Then the matrix of squared residuals can be written as

(1.11)

is a (2n - 3)-dimensional sphere within the ambient Euclidean space R 2n .

. A subscripted star is included as a gentle reminder to ourselves that this
(2n - 3)-dimensional sphere is not the usual unit sphere embedded in
R 2n - 2 . We shall refer to this sphere as the pre-shape space or the sphere of
pre-shapes.

At the next stage of our analysis, we must eliminate the information
about the orientation of the data set, in order that the quantity which
remains be a shape statistic. At first glance, the problem of defining and
standardizing the orientation of the pre-shape of the data would seem to
be similar to the problems of defining and standardizing the location and

(1.7)

(1.6)

n

LllXj -xW
j=l
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(1.15)

(1.16)

function. If 6 were continuous, then the function

Proposition 1.3.1. For n > 2 there does not exist a continuous orien
tation function 6 : s;n-3 -+ s' that is compatible with rotations of the
original coordinates (X1,""Xn ) in the sense that 6[fJ(r)] = fJ[6(r)] for
all -r E s;n-3.

Two pre-shapes r1 and r2 will lie in the same equivalence class O(r)
provided they have the same shape. If this is the case, there will exist a
rotation fJ such that B(ri) = r2.

would be a retraction of s;n-3 onto the circle O(r). That is, 6-16,
would be a continuous function onto a subset of s;n-3 whose restriction
to that subset would be the identity mapping. An argument in algebraic
topology using fundamental homotopy groups, which we.omit, shows that
this is impossible. Thus we have the following:

Proposition 1.3.1 tells us that continuous methods to standardize the ori
entation of pre-shapes will fail. That is, we cannot find a single definition
that is continuous in the data and simultaneously orients all pre-shapes.

Our original purpose in standardizing the landmarks (Xl,,,,, Xn ) with
respect to location, scale, and orientation was to provide a set of coordi
nates for their shape. Proposition 1.3.1 does not exclude the possibility of
our constructing coordinate systems that work for some shapes but not
for others. In fact, we must distinguish between representing shapes and
constructing shape coordinates. As we shall see in Chapter 3, shapes are
naturally represented as points in a shape manifold. However, there will
typically be no single coordinate system on that shape manifold that is
non-degenerate and that provides coordinates for all points in the man
ifold. For example, on the Earth's surface, the coordinates of longitude
and latitude work perfectly well except at the poles, where the longitude
coordinate is redundant. Coordinates with latitude 900 N and different
longitudes refer to the same point, namely the north pole. The failure of
a single coordinate system to work at all points on the sphere is simply a
reflection of the fact that the sphere is not topologically equivalent to any
subset of the plane. .

Just as we do not identify the sphere with its coordinate system, 'So we
should not identify shapes and .shape representations with any particular
coordinates used to construct them. As we shall see, the appropriate setting
for representing shapes is as an orbit space I;~ of a sphere s;n-3. By an
orbit space of the sphere we mean a set I;2' of equivalence classes, namely

(1.13)

(1.14)

(1.12)

O(r) = {fJ(r): 0 :s; fJ < 2rr} c s;n-3

This defines a mapping fJ: s;n-3 -+ s;n-3 . Note that we abuse termi
nology slightly by using the symbol fJ to refer to the rotation on R 2 as
well as the rotation on s;n-3. There is seen to be a simple correspondence
between the two that makes the notation convenient. If 6 is an appropri
ate orientation function, then it should be compatible with the rotations
of the plane, so that 6[B(r)] = fJ[6(r)] for any pre-shape r E s;n-3.
However, it is here that we get into trouble in attempting to define the
function 6. It can be shown that there does not exist a continuous func
tion e: s;n-3 -+ 8 1 that satisfies this property.

In order to see this, consider ,the following. The orbit of any pre-shape
r E s;n-3 will be the circle

scale. However, this is not the case. Some topological problems arise that
cannot easily be removed.,

By the orientation of a set of planar landmarks we intuitively understand
the angle made by some axis through the landmarks with respect to some
given axis, independent, of the landmarks., For example, we could, use the
angle made by a ray from Xl to X2 as the description of the orienta
tion of (Xl> ..., x n ) . While this will be quite satisfactory for the data that
we are considering here, it will not suffice for orienting all configurations
(Xl, ... , xn ) . Those sets of landmarks for which Xl = X2 cannot be ori
ented by such a definition. Of course, another definition can be used for
these pre-shapes. However, we would obviously like to do better than this
by finding ?- single definition that works for all samples.

Any angle can be represented as a point on Sl, the unit circle about the
origin in R 2 . So the orientation of (Xl, ... , X n ) can be defined as a point
6(XI,""Xn ) E s-. The process of standardizing the location and scale of
(Xl, ..., xn ) does not disturb its orientation. Therefore, we can also refer to
the orientation 6(r) of the pre-shape -r. It follows that the orientation
of the pre-shape can be written as a function

Therefore 6, when restricted to the orbit O(r), would be a 1-1 corre
spondence between O(r) and s-. Let 6-1 : s- -+ O(r) be the inverse

from the sphere of pre-shapes into the unit circle of the plane. In addition,
it is reasonable to suppose that an ideal orientation function would be a
continuous function of its coordinates, so that 6 would be a continuous
function on the sphere s;n-3. Now suppose that fJ: R 2 -+ R 2 is a
rotation of the plane about the origin. Under the rotation of the landmarks
Xj -+ fJ(Xj), the corresponding pre-shapes transform as
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where < 71,72 > is the inner product between 71 and 72 as vectors in
R 2n . Note that the cos"! function is defined so as to have range [0,7r].
The induced metric on E2' is then defined as

Xk - X
7k = v"L-

k
IXk _ xj2 (1.19)

for k = 1,2, ... , n can also be regarded as complex quantities, being stan
dardized versions of the original coordinates.

However, this formal definition of E~ as a set of equivalence classes
is of little value unless we can compare shapes and obtain some geometric
intuition about E~. To do this, we must define a metric on E2" A metric is
a mathematical generalization of the concept of Euclidean distance between
points. Metrics have certain properties, which are listed in Problem 5 at the
end of the chapter. If we think of E2' as a space, then its elements can be
regarded as points in that space, for which we seek an appropriate definition
of distance. An obvious way to do this is to use a metric between orbits on
the pre-shape space 8:n - 3 • As pre-shapes can be represented as points on
this sphere, the distance between two pre-shapes is the geodesic, or great
circle distance, between pre-shapes. On the earth, the great circle distance
is the shortest distance one would have to travel to get from one place to
another. This is quite easy to compute for spheres of any dimension. If 71

and 72 are two preshapes on 8:n - 3 then the great circle distance between
71 and 72 is given by

(1.21)

(1.20)7j = (Tj1, 7j2, ..., 7jn)

d(0"1,0"2) = cos-
1 (I~ 7lkT;kl)

This is called the Procrustean distance or the Procrustean metric from 0"1
to 0"2. As the argument of the cos"! function is always nonnegative,
we note thecurious fact that the maximum Procrustean distance between
shapes in E2' is 7r/2 . The reader should also note that the right hand
side of this identity does not depend upon the orientation of the pre-shapes
71 and 72 . A rotation of these pre-shapes corresponds to multiplying each
Tjk by an element of the unit circle in the complex plane. This factors out
of the summation and has modulus one.

Let us apply this formula to the shape differences of the landmarks of
Figure 1.1. An inspection of this figure would suggest that the landmarks of
the second and third brooches are closer in shape to each other than they
are to the landmarks of the first brooch. It remains to be seen whether
the shape analysis from landmarks supports this conclusion. In each of the
three images, we have n = 4 landmarks. Let 71, 72, and 73 be the
pre-shapes of the respective configurations of landmarks shown in Figure
1.1, as defined by formula (1.8). Additionally, let 0"1, 0"2, and 0"3 be the
respective shapes of these sets of landmarks. Then from formula (1.21),
we get d(0"1,0"2) = 0.380, d(0"1,0"3) = 0.308, and d(0"2,0"3) = 0.132. As
would be expected, the smallest shape difference is between the second and
third brooches. The first brooch can be distinguished from the other two
by the fact that its loop is fastened at the top much further to the right
than the others. In terms of landmarks, we can see that' X3 and X4 are
shifted closer to Xl in the first brooch than is the case for the second and
third brooches. The landmark analysis also suggests that the third brooch
is slightly closer in shape to the first brooch than is the second.

The three brooches that we have considered here for the sake of example
are part of a larger set of brooches. In Section 3.7 we shall conduct a shape
analysis of the complete set of images. Of course, such conclusions are
dependent upon the choice of landmarks on the brooches. Four landmarks
are too few to draw more than crude comparisons between the shapes of
the brooches. In Chapter 6 we shall consider methods to study the shape
variation between the brooches in finer detail.

where rs» is the kth complex standardized coordinate of Tj. Furthermore,
let Tjk be the complex conjugate of 7jk. We will go into the details of the
mathematics in Example 2.3.16 of the next chapter. For the moment, we
shall note that the minimum in formula (1.18) can be found algebraically
to be

Let 0"1 and 0"2 be two shapes in E2', and let us choose representative
pre-shapes T1 and T2 so that O"j = 0(7j) for j = 1,2. Write

(1.18)

(1.17)

where inf A is the infimum function over any set A of real numbers. In
more informal language, we can say that the distance between two shapes,
or orbits of 8;"-3, is the minimum of the distances between all pairs of
pre-shapes lying in the respective orbits. The reader should note that to
perform the minimization, it is sufficient to fix (h and minimize over all
values of 82 , or vice versa. Problem 5 at the end of the chapter asks the
reader to show that formula (1.18) satisfies the properties of a metric. With
this metric, the space E2' turns out be be a manifold. In fact, as we shall
see in the next chapter, it is an example of a complex projective space. We
shall leave the definition of these spaces to Section 2.3 and shall concentrate
for the moment on calculating this metric on the shape space E2"

To evaluate this metric on E~ we can make use of the algebraic proper
ties of the complex plane. Suppose we consider the landmarks Xl, ... j Xn
to be elements ofthe complex plane by identification of the complex num
bers C with R 2

• Then Xk can be regarded as a complex quantity by
identifying the two coordinates of Xk E R 2 with the real and imaginary
components of a complex number. Under this identification, the pre-shape
coordinates
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While the shape metric provides a geometric structure to ~~, we are
still left with a considerable difficulty in interpreting and visualizing this
space. In Chapter 3, we shall construct some concrete representations of
shape spaces. Moreover, before we leap upon such a choice for the geometry
of shape space, it is worth bearing in mind that this choice of metric is
closely connected to the concept ofa metric between pre-shapes. However,
the great circle distance between pre-shapes on the sphere s~n-3 is a
consequence of the standardization technique, namely the rescaling of the
original centered landmarks so that tr(r) = 1, where tr( .. ) is the trace
function defined in formula (1.7). The conclusions drawn from a shape
analysis based upon a metric geometry of shape space will depend in part
upon the choice of size variable used to compare shapes. In Chapter 3, we
will examine various geometries of shape space and will find some simple
representations for special cases.

xl

xl

'cJ::LI..lJ;;:=wI x3

1.4 A Few More Examples

1.4.1 A Simple Example inDne Dimension

Throughout this and subsequent chapters, we shall be primarily concerned
with the representations of shapes of landmarks in dimension two or above.
However, before proceeding to that material, it is useful to consider what
happens with landmarks that lie along a line.

First and foremost, we should note that one dimensional configurations of
landmarks cannot be rotated. Therefore, the pre-shapes of such configura
tions of landmarks can be identified with their shapes, there being nothing
more to remove upon reduction to the pre-shape. This makes the represen
tation of shapes in dimension one a very easy thing to do. Pre-shapes lie
naturally on a sphere. We have seen this, in particular, for landmarks in
the plane. However, it remains true for landmarks in any dimension. If we
have n::::: 3 landmarks along a line, then the pre-shape

xl

xl

(1.23)

(1.22), ... ,T

of these n landmarks will lie in a sphere

of dimension n - 2. A sphere of dimension one is, of course, a circle.
Even three landmarks along a line can sometimes be used to make ba

sic shape comparisons. Consider for example Figure 1.2, which shows the
profiles of four skulls. Also plotted over each of the skulls is a set of three
landmarks, chosen according to a landmark selection method proposed by

FIGURE 1.2. Side view of skulls. Prom top to bottom: modern human, Nean
derthal, australopithecine, chimpanzee. The skull profiles are redrawn from Figure
3.53 of [131].
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h - human

n - Neanderthal

a - australopithecine

Michael Lewis of the University of Waterloo. Upon examination, the four
skulls are seen to vary particularly in the ratio of the size of the cranium
to the size of the jaw. In the human skull this ratio is the largest, while it
is smallest for the chimpanzee. The landmarks Xl, x2, and X3 capture
some of this variation because the cranium-to-jaw ratio is proportional to
the ratio of the distances from Xl to X2 and from X2 to X3.

As Xl, X2, and X3 lie along a line in each picture, we can put some coor
dinates along each line and consider (Xl, X2, X3) to be a vector in R 3 . The
pre-shape r of such a vector will then be an element of the unit circle s'.
Figure 1.3 shows the pre-shapes of these four configurations of three points
plotted on a circle. The reader may be surprised by the small amount of arc
length enclosed within the range of the four pre-shape points in Figure 1.3.
This is quite typical of landmarks chosen on biological organisms. Usually,
the amount of variation of landmark coordinates between images is small
compared to the distances between the landmarks within an image.

A small arc of a circle can be approximated by a line segment. So it is
tempting to approximate the positions of pre-shapes on the circle in Figure
1.3 by a similar configuration along a straight line. Such an approximation
is called a tangent approximation, and works quite well for many biological
data sets. More generally, however, configurations of points on a circle can
not be approximated by a configuration of points along a line without major
distortion of the interpoint distances. Similarly, a configuration of points
on a shape space such as I:~ cannot be approximated by a multivariate
configuration in R 2n - 4 without distorting the interpoint Procrustean dis
tances. So it is fortunate when such a tangent approximation is possible,
because it permits the researcher to apply the large collection of multivari
ate statistical techniques designed for data in Euclidean space. In general,
the tangent approximation cannot always be used. Therefore, we must turn
to the methods of differential geometry to represent shapes.

~,.

2 1 3 2 -,• • • .-.-.~-.:;,,----,
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FIGURE 1.3. Pre-shapes of the four skulls plotted on a circle (above), and with a
tangent approximation (below). Also marked on the circle are the six pre-shapes
of configurations of equally spaced points for reference purposes.

c a

1.4.2 Dinosaur Trackways From Mt. Tom, Massachusetts

The statistical theory of shape is particularly concerned with the study of
random shapes, and shape comparisons in the presence of random variation
in shape. Why should a theory of shape incorporate stochastic assump
tions? Let us consider two examples in this and the following section.

Consider Figure 1.4, which shows the footprints of dinosaurs of the Late
Triassic/Early Jurassic period at the Mt. Tom site north of Holyoke, Mas
sachusetts. This data set is described by Ostrom [130]. One of the inter
esting features of this data set is the presence of multiple tracks that are
sufficiently separated to permit the examination of

• variation of tracks along the path of a single dinosaur;

• variation of tracks between dinosaurs of the same species;
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n
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.'~ and, to a certain extent,

• variation in tracks between species.

Multiple comparisons between species and individuals are possible when
footprints can be clearly delineated as belonging to different dinosaurs or
different species.

For example, Ostrom was struck by the tendency of most of the dinosaur
tracks to go in roughly the same direction. He considered the evidence from
this site and others for the possible gregarious behavior of dinosaurs. The
question of whether dinosaurs had any tendency to congregate in packs or
herds is an interesting problem within a much larger issue. Experts have
long recognized that.dinosaurs had a combination of reptilian and avian fea
tures. In modern animals, gregarious behavior is most commonly found in
birds rather than reptiles. So any evidence for such behavior would support
a more avian interpretation of dinosaurs. In examining the site, Ostrom
found indications of twenty-eight trackways made of three distinct types of
footprints: large broad footprints identified as made by Eubrontes., interme
diate size prints resembling those made by Anchisauripus, and small prints
identified as made by Grallator. Each of the twenty-eight trackways was as
signed an overall direction, and these directions were examined within and
between species. The trackway directions were classified into two types:
those tracks pointing in a roughly westerly direction ranging through an
angle of about 30° and sundry directions far removed from the westerly
trackways.

The fact that the majority of the trackways point in a westerly direction
is suggestive of herding behavior. However, we must be cautious with this
conclusion. We cannot automatically conclude that the directionality is due
to herding because we do not know about the presence of other external
agencies that might have forced the dinosaurs in this direction. A more re
liable indicator is any possible relationship between species (as determined
by footprint classification) and behavior (as determined by track direction).
Ignoring trackway 13, which consists of a single print pointing south and
whose identification as Eubrontes is suspect, we can classify the trackways
using a 2 x 2 table as follows.
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FIGURE 1.4. Dinosaur footprints at the Mt. Tom site near Holyoke, Mas
sachusetts. Footprints can be grouped in partly overlapping trackways correspond
ing to three species of dinosaurs.

A simple method for detecting the presence of gregarious behavior from
this table is to test for independence between species, listed vertically, and
direction, listed horizontally. So the null hypothesis that gregarious behav
ior is absent can be modeled by the hypothesis of independence of rows and
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Michael Lewis of the University of Waterloo. Upon examination, the four
skulls are seen to vary particularly in the ratio of the size of the cranium
to the size of the jaw. In the human skull this ratio is the largest, while it
is smallest for the chimpanzee. The landmarks Xl, X2, and X3 capture
some of this variation because the cranium-to-jaw ratio is proportional to
the ratio of the distances from Xl to X2 and from X2 to X3.

As Xl, X2, and X3 lie along a line in each picture, we can put some coor
dinates along each line and consider (Xl, X2, X3) to be a vector in R 3 . The
pre-shape r of such a vector will then be an element of the unit circle 8 1 •

Figure 1.3 shows the pre-shapes of these four configurations of three points
plotted on a circle. The reader may be surprised by the small amount of arc
length enclosed within the range of the four pre-shape points in Figure 1.3.
This is quite typical of landmarks chosen on biological organisms. Usually,
the amount of variation of landmark coordinates between images is small
compared to the distances between the landmarks within an image.

A small arc of a circle can be approximated by a line segment. So it is
tempting to approximate the positions of pre-shapes on the circle in Figure
1.3 by a similar configuration along a straight line. Such an approximation
is called a tangent approximation, and works quite well for many biological
data sets. More generally, however, configurations of points on a circle can
not be approximated by a configuration of points along a line without major
distortion of the interpoint distances. Similarly, a configuration of points
on a shape space such as E~ cannot be approximated by a multivariate
configuration in R 2n - 4 without distorting the interpoint Procrustean-dis
tances. So it is fortunate when such a tangent approximation is possible,
because it permits the researcher to apply the large collection of multivari
ate statistical techniques designed for data in Euclidean space. In general,
the tangent approximation cannot always be used. Therefore, we must turn
to the methods of differential geometry to represent shapes.

FIGURE 1.3. Pre-shapes of the four skulls plotted on a circle {above}, and with a
tangent approximation (below). Also marked on the circle are the six pre-shapes
of configurations of equally spaced points for reference purposes.
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1.4.2 Dinosaur Trackways From Mt. Tom, Massachusetts

The statistical theory of shape is particularly concerned with the study of
random shapes, and shape comparisons in the presence of random variation
in shape. Why should a theory of shape incorporate stochastic assump
tions? Let us consider two examples in this and the following section.

Consider Figure 1.4, which shows the footprints of dinosaurs of the Late
Triassic/Early Jurassic period at the Mt. Tom site north of Holyoke, Mas
sachusetts. This data set is described by Ostrom [130]. One of the inter
esting features of this data set is the presence of multiple tracks that are
sufficiently separated to permit the examination of

• variation of tracks along the path of a single dinosaur;
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• variation of tracks between dinosaurs of the same species;
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Multiple comparisons between species and individuals are .possibl(3 when
footprints can be clearly delineated as belonging to different dinosaurs or
different species.

For example, Ostrom was struck by the tendency of most of the dinosaur
tracks to go in roughly the same direction. He considered the evidence from
this site and others for the possible gregarious behavior of dinosaurs. The
question of whether dinosaurs had any tendency to congregate in packs or
herds is an interesting problem within a much larger issue. Experts have
long recognized that dinosaurs had a combination of reptilian and avian fea
tures. In modern animals, gregarious behavior is most commonly found in
birds rather than reptiles. So any evidence for such behavior would support
a more avian interpretation of dinosaurs. In examining the site, Ostrom
found indications of twenty-eight trackways made of three distinct types of
footprints: large broad footprints identified as made by Eubrontes, interme
diate size prints resembling those made by Anchisauripus, and small prints
identified as made by Grallator. Each of the twenty-eight trackways was as
signed an overall direction,and these directions were examined within and
between species. The trackway directions were classified into two types:
those tracks pointing in a roughly westerly direction ranging through an
angle of about 30° and sundry directions far removed from the westerly
trackways.

The fact that the majority of the trackways point in a westerly direction
is suggestive of herding behavior. However, we must be cautious with this
conclusion. We cannot automatically conclude that the directionality is due
to herding because we do not know about the presence of other external
agencies that might have forced the dinosaurs in this direction. A more re
liable indicator is any possible relationship between species (as determined
by footprint classification) and behavior (as determined by track direction).
Ignoring trackway 13, which consists ofa single print pointing south and
whose identification as Eubrontes is suspect, we can classify the trackways
using a 2 x 2 table as follows.
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FIGURE 1.4. Dinosaur footprints at the Mi. Tom site near Holyoke, Mas
sachusetts. Footprints can be grouped in partly overlapping trackways correspond
ing to three species of dinosaurs.

A simple method for detecting the presence of gregarious behavior from
this table is to test for independence between species, listed vertically, and
direction, listed horizontally. So the null hypothesis that gregarious behav
ior is absent can be modeled by the hypothesis of independence of rows and
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columns. A test for independence on this 2 x 2 table is quite significant,
and in favor of the hypothesis that there is gregarious behavior. However,
we must be cautious in our conclusions because other factors could affect
the relationship between track direction and species other than the herding
hypothesis.

More generally, we might seek to model dinosaur movements across the
area so as to make inferences about differences between individuals within
species and between species. Quite a large number of footprints of Eu
brontes are available. In track 1, for example, the footprints are clearly
defined as belonging to a single Eubrontes, and can be interpreted in or
der as a sequence of successive footprints. Can we use this and similar
tracks to model dinosaur motion? We can model a sequence of consecutive
footprints as generated by some appropriate random mechanism and then
attempt to make inferences by decomposing the geometric configuration of
footprints in a trackway into orientation, size, and shape information. We
have already performed a rough analysis of the orientations in considering
herding behavior. In Chapter 6, we shall consider how size information,
available through stride length, can be used to estimate the speed with
which the dinosaurs crossed the site. Finally, we shall perform a shape
analysis on the trackways and in particular shall investigate how the shape
of the triangle formed by three successive footprints is correlated with size
variables such as stride length. The unifying approach to such data sets
will be to decompose the geometric information into its orientation, size,
and shape components, and to consider the variation in these components
and their relation to each other.
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FIGURE 1.5. Post mold configuration at Aldermaston Wharf showing links be
tween neighboring post molds. Later features are marked as shaded reqions. Ir
regular unshaded regions are pits at the site. This figure is adapted from [32}
by kind permission of The Museum Applied Science Center at the University of
Pennsylvania.

1.4.3 Late Bronze Age Post Mold Configurations in England

Consider the configuration of post molds from two Late Bronze Age sites at
Aldermaston Wharf and at South Lodge camp in Wiltshire, England. See
Figures 1.5 and 1.6. In archeological excavations, clear evidence is often
found for the existence of wooden buildings at the site through the configu
rations of supporting posts of the structure. While these posts are no longer
present at the site, the positions of many of them can be determined from
the presence of round discolorations of the soil beneath the surface. These
discolorations, or post molds, are often found in a roughly regular geometric
pattern that indicates the presence of a wall. However, complications can
arise in interpreting the post mold evidence. Destructive processes such as
erosion can prevent post molds from being detected. Sometimes a building
at a particular location was demolished and a succession of other buildings
erected at the same place. In these cases, the superimposed post mold pat
terns can be very difficult to disentangle. From Figures 1.5 and 1.6 we see
such problems. It is known that typical buildings of the time were circular
structures called roundhouses. Neighboring posts were usually 1.6 to 2.2
meters apart, and possibly up to three meters apart. In Figure 1.6, the
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FIGURE 1.6. Post mold configuration at South Lodge Camp showing links be
tween neighboring post molds. A large, highly regular circular configuration of
post molds can be seen on the east side of the site. A smaller circle adjacent to it
is also visible~ This figure is adapted from [32} by kind permission of The Museum
Applied Science Center at the University of Pennsylvania.
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post molds whose interpoint distances are less than three meters have been
linked by a line segment. Four main clusters of points, labeled A, B, C, and
D can be seen. Strong visual evidence for the existence of a roundhouse can
be seen in cluster D of the outline plan of South Lodge Camp. The clearly
circular arrangement of posts would be difficult to explain as a coincidence
from a purely random mechanism. On the other hand, the evidence from
cluster C is more ambiguous. Here there is also some indication of a round
house. However, in this case it is more difficult to determine whether the
circular pattern is too regular to arise simply by chance. Finally, in cluster
.A there is a very slight indication of a roundhouse. But here we would have
to admit that any evidence of a circle could quite possibly be coincidental.
There is no clear confirmation that a circular building was present here,
although there is a suggestion of circularity in the positions of the post
molds.

At Aldermaston Wharf, the evidence for circular buildings is provided by
the positions of post molds clustered visually as Structure I and Structure
II in Figure 1.5. Of these two, Structure II is the better formed, and has
six post molds that can be placed on a rough circle. Structure I looks
very irregular. Again, there are six post molds that can be interpreted as
circular. Neither structure is as compelling as Cluster D from South Lodge
Camp.

How should we assess the patterns at these two sites, and how can we
determine whether such configurations are likely by chance in a random
scattering? A method for fitting circles that is particularly amenable to
analysis of this kind has been provided by Cogbill [44]. He proposed that
circular configurations of posts can be detected by running an annulus
across the window in which the posts are plotted. If the inner and outer
radii of the annulus are close, the thin annulus will cover few points in any
given position. However, by chance, at certain positions a larger number
of points will be covered. Such configurations of. posts can be examined
for the possibility that they form the circular boundary of a roundhouse.
For example, the six points of Structure II at Aldermaston Wharf can be
completely contained in an annulus whose inner radius is 3.66 meters and
whose outer radius is 3.95 meters. Is such a fit likely by chance? We could
define chance configurations as those arising in a random uniform scattering
of equally many points over a similar region. In such a scattering, what is
the expected number of circles that will be found of six points covered by
an annulus of inner and outer.radii3.66 and 3.95 meters respectively? Early
work by Mack [111] provides a powerful tool for answering this question.
In Chapter 6, we shall see that we would expect to discover a circular
arrangement of this tolerance simply by chance if the posts were randomly
scattered across the region of excavation. Such a calculation casts doubt
upon the strength of the archeological interpretation at Aldermaston. A
similar analysis of Cluster D at South Lodge Camp is more reassuring for
archeological interpretation. In this case, a set of eight points can be fit with
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columns. A test for independence on this 2 x 2 table is quite significant,
and in favor of the hypothesis that there is gregarious behavior. However,
we must be cautious in our conclusions because other factors could affect
the relationship between track direction and species other than the herding
hypothesis.

More generally, we might seek to model dinosaur movements across the
area so as to make inferences about differences between individuals within
species and between species. Quite a large number of footprints of Eu
bronies are available. In track 1, for example, the footprints are clearly
defined as belonging to a single Eubrotites, and can be interpreted in or
der as a sequence of successive footprints. Can we use this and similar
tracks to model dinosaur motion? 'vVe can model a sequence of consecutive
footprints as generated by some appropriate random mechanism and then
attempt to make inferences by decomposing the geometric configuration of
footprints in a trackway into orientation, size, and shape information. We
have already performed a rough analysis of the orientations in considering
herding behavior. In Chapter 6, we shall consider how size information,
available through stride length, can be used to estimate the speed with
which the dinosaurs crossed the site. Finally, we shall perform a shape
analysis on the trackways and in particular shall investigate how the shape
of the triangle formed by three successive footprints is correlated with size
variables such as stride length. The unifying approach to such data sets
will be to decompose the geometric information into its orientation, size,
and shape components, and to consider the variation in these components
and their relation to each other.

FIGURE 1.5. Post mold configuration at Aldermaston Wharf showing links be
tween neighboring post molds. Later features are marked as shaded regions. Ir
regular unshaded regions are pits at the site. This figure is adapted from [32}
by kind permission of The Museum Applied Science Center at the University of
Pennsylvania.

1.4.3 Late Bronze Age Post Mold Configurations in England

Consider the configuration of post molds from two Late Bronze Age sites at
Aldermaston Wharf and at South Lodge camp in Wiltshire, England. See
Figures 1.5 and 1.6. In archeological excavations, cl~ar evidence is often
found for the existence of wooden buildings at the site through the configu
rations of supporting posts of the structure. While these posts are no longer
present at the site, the positions of many of them can be determined from
the presence of round discolorations of the soil beneath the surface. These
discolorations, or post molds, are often found in a roughly regular geometric
pattern that indicates the presence of a wall. However, complications can
arise in interpreting the post mold evidence. Destructive processes such as
erosion can prevent post molds from being detected. Sometimes a building
at a particular location was demolished and a succession of other buildings
erected at the same place. In these cases, the superimposed post mold pat
terns can be very difficult to disentangle. From Figures 1.5 and 1.6 we see
such problems. It is known that typical buildings of the time were circular
structures called roundhouses. Neighboring posts were usually 1.6 to 2.2
meters apart, and possibly up to three meters apart. In Figure 1.6, the
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FIGURE 1.6. Post mold configuration at South Lodge Camp showing links be
tween neighboring post molds. A large, highly regular circular configuration of
post molds can be seen on the east side of the site. A smaller circle adjacent to it
is also visible. This figure is adapted from [32] by kind permission of The Museum
Applied Science Center at the University of Pennsylvania;

post molds whose interpoint distances are less than three meters have been
linkedbya line segment. Four main clusters of points, labeled A, B, C, and
D can be seen. Strong visual evidence for the existence of a roundhouse can
be seen in cluster D of the outline plan of South Lodge Camp. The clearly
circular arrangement of posts would be difficult to explain as a coincidence
from a purely random mechanism. On the other hand, the evidence from
cluster C is more ambiguous. Here there is also some indication of a round
house. However, in this case it is more difficult to determine whether the
circular pattern is too regular to arise simply by chance. Finally, in cluster
A there is a very slight indication of a roundhouse. But here we would have
to admit that any evidence of a circle could quite possibly be coincidental.
There is no clear confirmation that a circular building was present here,
although there is a suggestion of circularity in the positions of the post
molds.

At Aldermaston Wharf, the evidence for circular buildings is provided by
the positions of post molds clustered visually as Structure I and Structure
II in Figure 1.5. Of these two, Structure II is the better formed, and has
six post molds that can be placed on a rough circle. Structure I looks
very irregular. Again, there are six post molds that can be interpreted as
circular. Neither structure is as compelling as Cluster D from South Lodge
Camp.

How should we assess thepatterns at these two sites, and how can we
determine whether such configurations are likely by chance in a random
scattering? A method for fitting circles that is particularly amenable to
analysis of this kind has been provided by Cogbill [44]. He proposed that
circular configurations of posts can be detected by running an annulus
across the window in which the posts are plotted. If the inner and outer
radii of the annulus are close, the thin annulus will cover few points in any
given position. However, by chance, at certain positions a larger number
of points will be covered. Such configurations of posts can be examined
for the possibility that they form the circular boundary of a roundhouse.
For example, the six points of Structure II at Aldermaston Wharf can be
completely contained in an annulus whose inner radius is 3.66 meters and
whose outer radius is 3.95 meters. Is such a fit likely by chance? We could
define chance configurations as those arising in a random uniform scattering
of equally many points over a similar region. In such a scattering, what is
the expected number of circles that will be found of six points covered by
an annulus of inner and outer radii 3.66 and 3.95 meters respectively? Early
work by Mack [111] provides a powerful tool for answering this question.
In Chapter 6, we shall see that we would expect to discover a circular
arrangement of this tolerance simply by chance if the posts were randomly
scattered across the region of excavation. Such a calculation casts doubt
upon the strength of the archeological interpretation at Aldermaston. A
similar analysis of Cluster D at South Lodge Camp is more reassuring for
archeological interpretation. In this case, a set of eight points can be fit with
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an annulus with inner radius 3.95 meters and outer radius 4.21 meters. As
we shall see, we expect such circular arrangements in a comparable random
scattering less than one time in six. Even this looks rather high in view of
the precision of the circle of points in Cluster D. However, the circular fit
does not take into account the even spacing of posts, which is also unlikely
in a random scattering.
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FIGURE 1.7. Side view of skulls. From top to bottom: modern human, Nean
derthal, australopithecine, chimpanzee. To the right of each skull is a coordinate
grid determined with Thompson's method of coordinates, with the modern human
skull as the base image. Reproduced from Figure 3.53 of {l3i] by kind permission
of Hong Kong University Press.

In the biological sciences, sites or landmarks on different organisms are
said to be homologous if they share a common structure and evolutionary
origin. For example, the eyes of a chimpanzee arc homologous to the eyes
of a human despite the shape differences between the head of a chimpanzee
and the head of a human. More generally, outside the biological sciences,
sites on different bodies or images are said to be homologous if they nat
urally correspond due to a common structure. We considered an example
of this in Section 1.3, where we chose four landmarks on each of three Iron
Ages brooches so that correspondingly labeled landmarks were homologous
between images. Homologous landmarks are not always obvious, and may
depend upon insight or expert opinion for their construction.

As an illustration of the problems associated with constructing satisfac
tory homologies between images, let us consider the work of Thompson
[172], who devised a method for examining shape differences between bi
ological organisms called the method of coordinates. The reader can find
an example of Thompson's method by looking at Figure 1.7. In this fig
ure, we see four lateral views of the skulls that. we considered in Section
1.4.1 and Figure 1.2. Thompson proposed the placement of a rectangular
grid over one of the images, say the modern human skull at the top. Now,
each of the intersection points of the grid corresponds to a feature of some
kind in the skull. (The detection of such features requires more detailed
information than is available in Figure 1.7.) Suppose that for each feature
at every intersection point in the top grid we are able to find the corre
sponding (homologous) feature in the other skulls. A horizontal or vertical
line of the Cartesian grid on the top image is mapped to a curvilinear line
in each of the other images by connecting sites in the other images that
are homologous to sites on the same horizontal or vertical line of the top
image. The resulting coordinate system superimposed on the second image
is typically curvilinear in nature. The degree to which the curvilinear co
ordinate systems depart from a Cartesian frame is a measure of the shape
differences between the images.

By looking at the curvilinear coordinate systems of Figure 1.7, we can
make some detailed observations about the shape variation among the four
skulls. In particular, by looking at the upper left and lower right corners,

1.5 The Problem of Homology
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(Hint: consider six such random points.)

(1.25)

(1.24)

4. Four random planar points are independent, with a common absolutely
continuous distribution. Show that with probability greater than or equal

3. The next two problems involve the concept of a random shape statistic.
In this problem, the shape statistic in question is the maximum internal
angle.of a random triangle. In the next problem, the statistic is an indicator
of the event that a random quadrilateral is convex. The reader who is not
familiar with the probability theory used in these questions can safely pass
over these problems until we return to probability theory in Chapter 4.

Three random planar points are independent, with a common absolutely
continuous distribution. Let M be the maximum internal angle of the
triangle whose vertices are the three points. Show that

2. Two triangles are congruent if their corresponding sides are of equal
length. A researcher proposes to encode the size and shape information
about a triangle as a vector (d12, d 13, d 23) E R 3 where djk is the length
of the side joining the jth and kth vertices. A size variable W{d12, d13' d23 )

is a nonnegative function that is homogeneous, in the sense that

for all t 2: O. Give two distinct examples of size variables and show how
shape coordinates for a triangle can be constructed by standardizing the
djk with respect to size.

1. A researcher proposes to define the shape of a triangle as a vector
(al,a2,a3) of three internal angles. Discuss the advantages and disad
vantages of encoding shape information in this way.

1.7 Problems

prominent features of the organism or biological structure. For the analysis
of more general shapes outside the biological sciences, the choice of natural
sites for landmarks remains a desirable goal, but is very restrictive for shape
description. Therefore, we choose a generalized interpretation of landmark
data. A synthesis of the Kendall, or Procrustean, school of shape with the
use of landmarks can be found in the survey paper of Goodall [66].

An alternative approach to the selection of landmarks can be found in
[60].

-~ -

The theory of shape owes much to D'Arcy Thompson [172] for its inspira
tion. His work has long been regarded as a model for the fusion of scientific,
mathematical, and literary skills. Although his analyses of biological growth
and form are now dated, his exposition of the theory of biological shape is
unparalleled for its clarity. The reader who has not encountered his work
is strongly encouraged to do so.

For a comprehensive discussion of the theory and methods of morpho
metries, the reader is referred to [139]. Brief surveys of allometric methods
are to be found in [81] and [125]. A variety of applications is readily avail
able in the literature, including [7], [10], [13], [24], [45], [63], [85], [107], and
[126], to name afew.

The mathematical theory of shape that has beenintroduced in this chap
ter can befound in Kendall [90]. This paper was seminal for the develop
ment of .this particular school of shape theory, which can be called the
Kendall school or perhaps the Procrustean school of shape analysis. Much
of the; material in the following chapters relies on the Kendall school of
shape and takes advantage of its comprehensive methodology for the anal
ysis of finite point sets in arbitrary dimensions. In particular, the definition
and metric of I;;, the space of shapes of n points in p dimensions, is due
to Kendall. For extensions of Kendall's work to more general multivariate
normal models, see [53].

The Bookstein school of shape analysis uses a different geometric struc
ture on shape spaces that will be discussed in Chapter 3. As mentioned
earlier, we have used the word landmark in a more general sense than
Bookstein as a point chosen from a body that helps summarize its geo
metric features. Bookstein has recommended the use of landmarks for the
analysis of biological features and constrains the choice of landmarks to

1.6 Notes

we can see what was observed in Section 1.4.1, namely that an important
source of variation is to be found in the change in the relative sizes of jaw
and cranium. With far more coordinates available for comparison, we are
able to make a much more detailed examination of these differences.

However, Thompson's method of coordinates has several problems. The
first of these is the problem of how to draw a smooth line appropriately
through a set of points. This is essentially an interpolation, or fitting prob
lem. The second problem is that mentioned above, namely of finding a
correspondence, or homology, between landmarks on different images. A fi
nal problem is to decide how to summarize the information available about
the differences in shapes among the images from such complicated grids of
curvilinear coordinates. We will consider these problems again in Chapter
3.
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an annulus with inner radius 3.95 meters and outer radius 4.21 meters. As
we shall see, we expect such circular arrangements in a comparable random
scattering less than one time in six. Even this looks rather high in view of
the precision of the circle of points in Cluster D. However, the circular fit
does not take into account the even spacing of posts, which is also unlikely
in a random scattering.
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FIGURE 1.7. Side view of skulls. Prom top to bottom: modern human, Nean
derthal, australopithecine, chimpanzee. To the right of each skull is a coordinate
grid determined with Thompson's method of coordinates, with the modern human
skull as the base image. Reproduced from Figure 3.53 of [131/ by kind permission
of Hong Kong University Press.
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In the biological sciences, sites or landmarks on different organisms are
said to be homologous if they share a common structure and evolutionary
origin. For example, the eyes of a chimpanzee are homologous to the eyes
of a human despite the shape differences between the head of a chimpanzee
and the head of a human. More generally, outside the biological sciences,
sites on different bodies or images are said to be homologous if they nat
urally correspond due to a common structure. We considered an example
of this in Section 1.3, where we chose four landmarks on each of three Iron
Ages brooches so that correspondingly labeled landmarks were homologous
between images. Homologous landmarks are not always obvious, and may
depend upon insight or expert opinion for their construction.

As an illustration of the problems associated with constructing satisfac
tory homologies between images, let us consider the work of Thompson
[172J, who devised a method for examining shape differences between bi
ological organisms called the method of coordinates. The reader can find
an example of Thompson's method by looking at Figure 1.7. In this fig
ure, we see four lateral views of the skulls that we considered in Section
1.4.1 and Figure 1.2. Thompson proposed the placement of a rectangular
grid over one of the images, say the modern human skull at the top. Now,
each of the intersection points of the grid corresponds to a feature of some
kind in the skull. (The detection of such features requires more detailed
information than is available in Figure 1.7.) Suppose that for each feature
at every intersection point in the top grid we are able to find the corre
sponding (homologous) feature in the other skulls. A horizontal or vertical
line of the Cartesian grid on the top image is mapped to a curvilinear line
in each of the other images by connecting sites in the other images that
are homologous to sites on the same horizontal or vertical line of the top
image. The resulting coordinate system superimposed on the second image
is typically curvilinear in nature. The degree to which the curvilinear co
ordinate systems depart from a Cartesian frame is a measure of the shape
differences between the images.

By looking at the curvilinear coordinate systems of Figure 1.7, we can
make some detailed observations about the shape variation among the four
skulls. In particular, by looking at the upper left and lower right corners,

1.5 The Problem of Homology
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(Hint: consider six such random points.)

1.7 Problems

(1.25)

(1.24)

1. A researcher proposes to define the shape of a triangle as a vector
(aI, a2, (3) of three internal angles. Discuss the advantages and disad
vantages of encoding shape information in this way.

3. The next two problems involve the concept of a random shape statistic.
In this problem, the shape statistic in question is the maximum jntemal
angle of a random triangle. In the next problem, the statistic is an indicator
of the event that a random quadrilateral is convex. The reader who is not
familiar with the probability theory used in these questions can safely pass
over these problems until we return to probability theory in Chapter 4.

Three random planar points are independent, with a common absolutely
continuous distribution. Let M be the maximum internal angle of the
triangle whose vertices are the three points. Show that

for all t:2: O. Give two distinct examples of size variables and show how
shape coordinates for a triangle can be constructed by standardizing the
djk with respect to size.

4. Four random planar points are independent, with a common absolutely
continuous distribution. Show that with probability greater than or equal

prominent features of the organism or biological structure. For the analysis
of more general shapes outside the biological sciences, the choice of natural
sites for landmarks remains a desirable goal, but is very restrictive for shape
description. Therefore, we choose a generalized interpretation of landmark
data. A synthesis of the Kendall, or Procrustean, school ofshape with the
use of landmarks can be found in the survey paper of Goodall [66].

An alternative approach to the selection of landmarks can be found in
[60].

.J; 2. Two triangles are congruent if their corresponding sides are of equal
length. A researcher proposes to encode the size and shape information
about a triangle as a vector (d I 2 , dl 3 , d23 ) E R 3 where djk is the length
of the side joining the jth and kth vertices. A size variable W(d12 , d13 , d23 )

is a nonnegative function that is homogeneous, in the sense that
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we can see what was observed in Section 1.4.1, namely that an important
source of variation is to be found in the change in the relative sizes of jaw
and cranium. With far more coordinates available for comparison, we are
able to make a much more detailed examination of these differences.

However, Thompson's method of coordinates has several problems. The
first of these is the problem of how to draw a smooth line appropriately
through a set of points. This is essentially an interpolation, or fitting prob
lem. The second problem is that mentioned above, namely of finding a
correspondence, or homology, between landmarks on different images. A fi
nal problem is to decide how to summarize the information available about
the differences in shapes among the images from such complicated grids of
curvilinear coordinates. We will consider these problems again in Chapter
3.

The theory of shape owes much to D' Arcy Thompson [172] for its inspira
tion. His work has long been regarded as a model for the fusion of scientific,
mathematical, and literary skills. Although his analyses of biological growth
and form are now dated, his exposition of the theory of biological shape is
unparalleled for its clarity. The reader who has not encountered his work
is strongly encouraged to do so.

For a comprehensive discussion of the theory and methods of morpho
metrics, the reader is referred to [139]. Brief surveys of allometric methods
are to be found in [81] and [125]. A variety of applications is readily avail
able in the literature, including [7], [10], [13], [24]' [45], [63], [85], [107], and
[126], to name a few.

The mathematical theory of shape that has been introduced in this chap
ter can be found in Kendall [90]. This paper was seminal for the develop
ment of this particular school of shape theory, which can be called the
Kendall school or perhaps the Procrustean school of shape analysis. Much
of the material in the following chapters relies on the Kendall school of
shape and takes advantage of its comprehensive methodology for the anal
ysis of finite point sets in arbitrary dimensions. In particular, the definition
and metric of I;;, the space of shapes of n points in p dimensions, is due
to Kendall. For extensions of Kendall's work to more general multivariate
normal models, see [53].

The Bookstein school of shape analysis uses a different geometric struc
ture on shape spaces that will be discussed in Chapter 3. As mentioned
earlier, we have used the word landmark in a more general sense than
Bookstein as a point chosen from a body that helps summarize its geo
metric features. Bookstein has recommended the use of landmarks for the
analysis of biological features and constrains the choice of landmarks to

1.6 Notes
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to 1/5 one of the four points will lie in the triangle formed by the other
three.

5. In formula (1.21) we encountered the Procrustean metric. A metric
d(x, y) between points x, y of a set is a nonnegative real valued func
tion satisfying

(i) d(x, y) = a if and only if x = Yi
(ii) d(x, y) = dey, x) for all x and Yi
(iii) d(x, z) ::; d(x, y) + dey, z) for all x, y, and z,

Show that the Procrustean metric d defined in Section 1.3 satisfies these
properties on the set L:2'.

-~

2
Background Concepts and
Definitions

2.1 Transformations on Euclidean Space

In this section, we shall begin with some preliminary definitions relevant
to shape analysis.

2.1.1 Properties of Sets

Let RP be the usual p-dimensional Euclidean space. A subset A c RP
is said to be open if for every x E A, there is some to > a such that yEA
whenever Ilx - vll < e. A subset A is said to be closed if its complement
Ac in RP is open. By the interior AO of any subset A we mean the
largest open subset of A, possibly the empty set. The interior of A is
found as the union of all open subsets of A.

A subset A c RP is said to be convex if for every x, YEA, the line
segment with endpoints at x and y lies entirely in A. The convex hull of
any given A c RP is the smallest convex set that contains A. The convex
hull of A is found as the intersection of all convex sets that contain the
set A.

2.1.2 Affine Transformations

Let A = (Aj l,) be a q x p matrix. By a linear transformation from
RP to Rq we shall mean a mapping of the form x ----> Ax, where x is
a p x 1 column vector. Linear transformations are special cases of affine
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transformations, which have the general form x -+ Ax + a, where a is
any p x 1 column vector.

Suppose that Xl, .•• , X p+! are P + 1 points in RP. These points form
the vertices of a p-simplex in RP, which can be defined as the convex hull
of these points. Suppose Xl, ... ,xp+! and Yl, .•. , Yp+! are the vertices of
two p-simplexes with positive p-dimensional volume. Then there exists a
unique affine transformation RP -+ RP of the form x -+ Ax + a such
that Yj=Axj+a for all j=1,2, ... ,p+1.

is a column vector of p complex values and A is a p xp unitary matrix,
is said to be a unitary transformation of CP. For any unitary matrix A
the determinant det(A) is a complex number with modulus one. We say
that A is a special unitary matrix provided det(A) = l.

Just as the complex plane C can be identified with R2, so the unitary
transformations of CP can be identified with particular orthogonal trans
formations of R 2P . The 2p x 2p matrix of real values corresponding to
the unitary matrix A is found by replacing each complex entry Ajk by
the 2 x 2 block of real values

where ~(z) and SS(z) are the real and imaginary parts of the complex
number z respectively. Thus every unitary transformation of CP can be
regarded as an orthogonal transformation of R 2P. Under this identification,
the determinant ofthe 2px2p orthogonal matrix will be the modulus of the
determinant of its p x p unitary counterpart. While every unitary matrix
or transformation can be identified with an orthogonal transformation, the
converse is not true. This follows easily from the previous observation that
the determinant of its 2p x 2p orthogonal counterpart equals one, being
the modulus of a complex number on the unit circle of C. Thus reflections
of R 2p

, and many other orthogonal transformations, cannot be represented
as unitary transformations.

Henceforth, we shall let U(p) and SU(p) denote, respectively, the
classes of unitary and special unitary transformations on CP.

2.1.3 Orthogonal Transformations

A p x p matrix A = (Ajk) is said to be orthogonal if AT = A-\ where
AT and A-I denote the transpose and inverse matrices of A respectively.
Equivalently, we can say that AT A = I, where I is the p x p identity
matrix. By an orthogonal transformation from RP to itself we shall mean
a linear transformation x -+ Ax corresponding to multiplication of a
p-dimensional column vector on the left by a p x p orthogonal matrix.
For any orthogonal matrix A the determinant det(A) = ±1. Those
orthogonal matrices with det(A) = 1 are said to be special orthogonal
matrices, and their corresponding transformations of RP are said to be
special orthogonal transformations. Special orthogonal transformations can
be regarded as generalizations into higher dimensions of the families of
rotations about the origin in dimensions two and three. An example of an
orthogonal transformation that is not a special orthogonal transformation
is the reflection

(2.1)

(2.2)

of RP through the hyperplane Xl = O.
Henceforth, we shall let O(p) and SO(p) denote the classes of orthog

onal and special orthogonal transformations on RP respectively.

2.1.4 Unitary Transformations

We now describe an analog to the class of orthogonal transformations on
RP. Let C be the complex plane, and CP the :space. of p-vectors whose
entries are elements of C. Linear transformations from RP to RP can
be represented as x -+ Ax, where A is a p x p matrix of real entries. The
complex analogs of these transformations are also of the form x-+ Ax,
with the real entries of the column vector x and the matrix A replaced
by complex values. These are linear transformations from CP to CPo

Suppose A = (Aj k ) is a p x p matrix of complex values. Let A* be the
p x p matrix whose (j, k)th entry is the complex conjugate of the (k,j)th
entry of A. Then A is said to be a unitary matrix if A*A = I, where I
is the p x p identity matrix. A linear transformation x -+ Ax, where x

2.1.5 Singular Value Decompositions

Let A be a matrix of dimension q x p that has rank r. Then AAT

(or equivalently ATA) has r nonzero eigenvalues. It is easy to check
that the eigenvalues of AAT are nonnegative. Therefore we can write the
eigenvalues as At, A~, ...,A;. We define the matrix r = (rj k ) to be a q xp
matrix for which r j j = IAjl for j = l,2, ... ,r and whose other elements
are zero.

Then A can be written as

(2.3)

where Wand W' are orthogonal matrices of dimension q x q and p x p
respectively. This decomposition is called a singular value decomposition
of A. The eigenvalues IA1I, ... ,IArl are called the singular values of the
matrix A. Note that the singular value decomposition of A is not unique,
although the set of singular values of A is uniquely determined.



28 1. Introduction

to 1/5 one of the four points will lie in the triangle formed by the other
three.

5. In formula (1.21) we encountered the Procrustean metric. A metric
d(x,y) between points x,y of a set is a nonnegative real valued func
tion satisfying

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x and y;
(iii) d(x, z) ::s: d(x, y) + d(y, z) for all x, y, and z.

Show that the Procrustean metric d defined in Section 1.3 satisfies these
properties on the set E2'.

2

Background Concepts and
Definitions

2.1 Transformations on Euclidean Space

In this section, we shall begin with some preliminary definitions relevant
to shape analysis.

2.1.1 Properties of Sets

Let RP be the usual p-dimensional Euclidean space. A subset A c RP
is said to be open if for every x E A, there is some 10 > 0 such that yEA
whenever Ilx - yll < 10. A subset A is said to be closed if its complement
AC in RP is open. By the interior A 0 of any subset A we mean the
largest open subset of A, possibly the empty set. The interior of A is
found as the union of all open subsets of A.

A subset A c RP is said to be convex if for every x, yEA, the line
segment with endpoints at x and y lies entirely in A. The convex hull of
any given A c RP is the smallest convex set that contains A. The convex
hull of A is found as the intersection of all convex sets that contain the
set A.

2.1.2 Affine Transformations

Let A = (A j k ) be a q x p matrix. By a linear transformation from
RP to Rq we shall mean a mapping of the form x --+ Ax, where x is
a p x 1 column vector. Linear transformations are special cases of affine
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transformations, which have the general form x -> Ax + a, where a is
any p x 1 column vector.

Suppose that Xl, ... , x p+! are P + 1 points in RP. These points form
the vertices of a p-simplex in RP, which can be defined as the convex hull
of these points. Suppose z i , ... ,Xp+l and Yl, ... ,Yp+!· are the vertices of
two p-simplexes with positive p-dimensional volume. Then there exists a
unique affine transformation RP -> RP of the form X -> Ax + a such
that Yj = AXj + a for all j = 1,2, ... ,p + 1.

.~ .

is a column vector of p complex values and A is a p x p unitary matrix,
is said to be a unitary transformation of CP. For any unitary matrix A
the determinant det(A) is a complex number with modulus one. We say
that A is a special unitary matrix provided det(A) = 1.

J list as the complex plane C can be identified with R 2 , so the unitary
transformations of CP can be identified with particular orthogonal trans
formations of R 2P . The 2p x 2p matrix of real values corresponding to
the unitary matrix A is found by replacing each complex entry Ajk by
the 2 x 2 block of real values

where ~(z) and SJ'(z) are the real and imaginary parts of the complex
number z respectively. Thus every unitary transformation of CP can be
regarded as an orthogonal transformation of R 2P . Under this identification,
the determinant of the 2px 2p orthogonal matrix will be the modulus of the
determinant of its p x p unitary counterpart. While every unitary matrix
or transformation can be identified with an orthogonal transformation, the
converse is not true. This follows easily from the previous observation that
the determinant of its 2p x 2p orthogonal counterpart equals one, being
the modulus of a complex number on the unit circle of C. Thus reflections
of R 2p

, and many other orthogonal transformations, cannot be represented
as unitary transformations.

Henceforth, we shall let U(p) and SU(p) denote, respectively, the
classes of unitary and special unitary transformations on CP.

(2.2)

(2.1)

2.1.3 Orthogonal Transformations

A p x p matrix A = (Ajk) is said to be orthogonal if AT = A-\ where
AT and A-I denote the transpose and inverse matrices of A respectively.
Equivalently, we can say that ATA = I, where I is the p x p identity
matrix. By an orthogonal transformation from RP to itself we shall mean
a linear transformation x -> Ax corresponding to multiplication of a
p-dimensional column vector on the left by a p x p orthogonal matrix.
For any orthogonal matrix A the determinant det(A) = ±1. Those
orthogonal matrices with det(A) = 1 are said to be special orthogonal
matrices, and their corresponding transformations of RP are said to be
special orthogonal transformations. Special orthogonal transformations can
be regarded as generalizations into higher dimensions of the families of
rotations about the origin in dimensions two and three. An example ofan
orthogonal transformation that is not a special orthogonal transformation
is the reflection

where Wand Wi are orthogonal matrices of dimension q x q and p x p
respectively. This decomposition is called a singular value decomposition
of A. The eigenvalues IAll, ..., jArl are called the singular values of the
matrix A. Note that the singular value decomposition of A is not unique,
although the set of singular values of A is uniquely determined.

2.1.5 Singular Value Decompositions

Let A be a matrix of dimension q x p that has rank r, Then AAT

(or equivalently ATA) has r nonzero eigenvalues. It is easy to check
that the eigenvalues of AAT are nonnegative. Therefore we can write the
eigenvalues as A~, A~, .,., A~. We define the matrix r = (r j k ) to be a q xp
matrix for which rjj = IAj I for j = 1,2, ... , r and whose other elements
are zero.

Then A can be written as

of RP through the hyperplane Xl = O.
Henceforth, we shall let O(p) and SO(p) denote the classes of orthog

onal and specialorthogonal transformations on RP respectively.

2.1..4 Unitary Transformations

We now describe an analog to the dass of orthogonal transformations on
RJ'. Let C be the complex plane, and CP the space of p-vectors whose
entries are elements of C. Linear transformations from RP to RP can
be represented as X -> Ax, where A is a px p matrix of real entries. The
complex analogs of these transformations are also of the form x -> Ax,
with the real entries of the column vector x and the matrix A replaced
by complex values. These are linear transformations from CP to CP.

Suppose A = (Aj k ) is a p x p matrix of complex values. Let A* be the
p x p matrix whose (j, k)th entry is the complex conjugate of the (k,j)th
entry of A. Then A is said to be a unitary matrix if A* A = 1, where I
is the p x p identity matrix. A linear transformation x -> Ax, where x

A = W r Wi (2.3)
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Suppose h is a 1-1 function that maps RP onto itself. We shall let h-1

denote the inverse function, where h-l(y) = x whenever h(x) = y. There
is nothing special about RP in these definitions, as RP can be replaced
by CP or any other set.

2.1.7 Groups of Transformations

The classes O(p), SO(p), and their complex analogs U(p) and SU(p)
are classes of transformations of a space to itself. We now summarize some
definitions and properties of groups, of which these classes are examples.

Let h l and h2 be any two transformations from RP to RP. By the
composition of b, and h2 we shall mean the function h2 °h 1 from RP
to RP defined by

(2.7)

A case that will be of particular interest to us occurs when p = q and A
is of full rank. In this case, r is a square diagonal matrix whose diagonal
elements are the singular values. The singular value decomposition allows
us to represent a matrix in diagonal form, with i[1 and i[11 serving to
provide a change of coordinate systems for the purpose.

The singular value decomposition has an important geometric interpre
tation that will be of use in the next chapter. Suppose x is a 2 x 1
column vector and that A is a 2 x 2 matrix of full rank. Under the linear
transformation x --> Ax the unit circle in the plane. R 2 is mapped to an
ellipse. The lengths of the semimajor and semi minor axes of this ellipse are
seen from equation (2.3) to be the singular values of A.

This geometric interpretation generalizes into higher dimensions. A p x p
matrix A of full rank will have p singular values. If x is a p x 1 column
vector, then x -, Ax will map the unit sphere in RP to an ellipsoid with
p principal axes. The singular values of A can be seen to be one half the
lengths of the principal axes of the ellipsoid.

2.1.6 Inner Products

The inner product between two elements, x
(Yl, .", Yp) of RP is defined as

(Xl, ..., xp) and Y

Definition 2.1.1. A nonempty collection H = {h} of 1-1 transformations
on a set is said to be a group provided that it is closed under composition
and inversion of transformations.

Its complex counterpart for CP is called the Hermitian inner product. We
encountered the Hermitian inner product in Chapter 1 when defining the
distance between two shapes in formula (1.21), We define the Hermitian
inner product between two vectors X= (Xl""'Xp ) and Y = (Yl,""YP)
of complex coordinates to be

P,

< X,Y > = LXiYj
j=l

(2.4)
In order for a nonempty collection H of transformations on a set to be
a group, it is necessary and sufficient that for any h l , h2 in H the
transformation h1 0 hi1 be in H. Setting hl = h2 we see that the
identity transformation e is always an element of H.

Definition 2.1.2. Two transformations h 1 and h2 are said to commute
when h2oh1 = h1oh2 • We say that a group H is commutative or Abelian
provided that any two elements of H commute.

for all x and Y in RP. Similarly, Hermitian inner products on CP are
preserved under unitary transformations.

By the center of a group H we mean the set of elements of H that com
mute with every other element of H. Obviously, a group H is commutative
if and only if the center of H is H itself.

The class of orthogonal matrices is closed under matrix multiplication as
well as matrix inversion. Similarly, the class O(p) of orthogonal transfor
mations is closed under function composition and function inversion. Thus
the class of orthogonal transformations is a group, that is commutative
only for the cases where p = 1,2. The class SO(p) of special orthogonal
transformations is a subgroup of the group of orthogonal transformations.
That is, it is a subset of O(p) that is a group in its own right, being also
closed under composition and inversion. When p = 1 this subgroup is the
trivial group consisting of the identity transformation alone. Similar results
hold true for the class of unitary transformations of CPo The class U(p)
is also a group, containing the subgroup SU(p).

(2.6)

(2.5)

< Ax, Ay> = < X,Y >

p

«x,y» = LXjyj
j=l

where Y~ is the complex conjugate of Yj E C. Under the identification of
C with JR 2 the inner product on R 2p can be defined from the Hermitian
inner product on CP by noting that <.,. >= lR« ". ».

Orthogonal transformations can be characterized as linear transforma
tions that preserve inner products. Thus if A = (Aj k ) is an orthogonal
matrix, then representing x, Y E RP as column vectors, we have
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2.1.8 Euclidean Motions and Isometries

Bya Euclidean motion of RP we shall mean a transformation h: RP -Jo

RP that can be written as the composition of a special orthogonal transfor
mation and a translation of RP. The class Euc(p) of Euclidean motions
of RP is a group and is commutative only for the case where p = 1. The
group of Euclidean motions allows us to define the concept of congruence
between subsets of RP. Two subsets Al and Az of RP are said to
be congruent if there exists a Euclidean motion h E Euc(p) such that
h(AI) = A z , or equivalently h-I(Az) = AI'

The concept of congruence between sets forms the basis for Euclidean
geometry, which involves the investigation of the geometric properties of
subsets of Euclidean space RP. A property of a subset is said to be a
geometric property if it is shared by any subset that is congruent to it.

The definition of a-Euclidean motion of RP can be generalized to arbi
trary metric spaces. A metric space M is a seton which a metric d(x, y)
is defined, where d satisfies the abstract properties (i), (ii), and (iii) of
Problem 5 in Chapter 1.

Definition 2.1.3. A 1-1 correspondence h: M -Jo N between metric
spaces is said to be an isometry if d(x, y) = d[h(x), h(y)] for all x, y E M.
Two metric spaces are said to be isometric if there is an isometry mapping
one to the other. When M and N are isometric, we shall write M ~ N.

In particular, the class of all isometries fromM to itself shall be denoted
Iso(M). It is immediate that the identity transformation on M is an
isometry, and it can be checked that the transformations of Iso(M) form
a group. On RP, for example, the class of Euclidean motions Euc(p) forms
a subgroup -of Iso(RP). This subgroup is a proper subgroup, because the
Eucidean motions of RP do not include reflections through a (p - 1)
dimensional hyperplane.

We may also speak of a linear isometry between vector spaces.

Definition 2.1.4. A linear transformation of full rank between two vector
spaces is said to be a linear isometry if it preserves the lengths of vectors.

Clearly, an orthogonal rotation of RP is an example of a linear isometry
from RP to itself.

2.1.9 Similarity Transformations and the Shape of Sets

Let (Xl, ..., xp ) be an element of RP. A transformation (Xl, ..., x p ) -Jo

(AXI, ... , AXp ) , where A> 0, is said to be an isotropic rescaling or simply a
rescaling of RP. By a shape-preserving transformation ora similarity trans-

\

formation of RP, we shall mean a transformation that can be represented
as the composition of a rigid Euclidean motion and a rescaling of RP.
Once again, it can be checked that the class of similarity transformations
forms a group under composition. Henceforth, we shall denote the class of
similarity transformations of RP by Sim(p).

The group of similarity transformations has a special representation when
p = 1,2. In these cases, additional algebraic structure is available from
multiplication of real and complex numbers respectively. In the latter case,
we can again identify R Z with the complex plane C. Then we can write
transformations in Sim(l) and Sim(2) in the form X -Jo ax + b, where
a f= 0 and b are arbitrary elements of R or C in the. respective
dimensions. Multiplication and addition are the usual algebraic operations.

Just as the group of Euclidean motions leads to the concept of congruence
between sets, so the group of similarity transformations leads to the concept
of similar sets.

Definition 2.1.5. Two subsets Al and A z of RP are said to be
similar or to have the same shape if there exists a similarity transformation
hE Sim(p) such that h(AI) = A z or equivalently if h-I(Az) = AI. If
Al and Az are similar, then we shall write Al rv A z.

We shall also be concerned with labeled figures or sets. For example, a
triangle is often labeled at its vertices in Euclidean geometry in order to
compare corresponding points on different triangles or simply to clarify a
construction. The definitions of congruent and similar sets have obvious
extensions to labeled sets, provided the labels correspond.

Definition 2.1.6. We shall say that two correspondingly labeled sets have
the same shape if one set can be transformed by a similarity transforma
tion to the other set in such a way that labeled points are mapped to the
corresponding points of the other figure.

For example, two triangles XIXZX3 and YIYZY3 have the same shape if
the angle at vertex Xj equals the angle at Yj for j = 1, 2, and 3.

While the distinction between labeled and unlabeled sets can be regarded
as a mathematical convenience in defining shapes, it is a more substantial
distinction for the comparison of shape differences, as we noted in Chapter
1. An attempt to discover the shape differences between sets will typically
involve a matching of the sets to determine how differences in the coordi
nates of corresponding points can be explained through similarity transfor
mations. Any residual differences that cannot be explained through simi
larity transformations can be understood to be due to differences in shape.
The problem of constructing .an appropriate correspondence between unla
beled sets (or unparametrized sets in general) is the problem of homology,



A case that will be of particular interest to us occurs when p = q and A
is of full rank. In this case, r is a square diagonal matrix whose diagonal
elements are the singular values. The singular value decomposition allows
us to represent a matrix in diagonal form, with IlJ and 1lJ' serving to
provide a change of coordinate systems for the purpose.

The singular value decomposition has an important geometric interpre
tation that will be of use in the next chapter. Suppose x is a 2 x 1
column vector and that A is a 2 x 2 matrix of full rank. Under the linear
transformation x -> Ax the unit circle in the plane. R 2 is mapped to an
ellipse. The lengths of the semimajor and semiminor axes of this ellipse are
seen from equation (2.3) to be the singular values of A.

This geometric interpretation generalizes into higher dimensions. A p x p
matrix A of full rank will have p singular values. If x is a p x 1 column
vector, then x -, Ax will map the unit sphere in RP to an ellipsoid with
p principal axes. The singular values of A can be seen to be one half the
lengths of the principal axes of the ellipsoid.
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(2.7)

2.1 Transformations on Euclidean Space

Suppose h is a 1-1 function that maps RP onto itself. We shall let h- I

denote the inverse function, where h-l(y) = x whenever h(x) = y. There
is nothing special about RP in these definitions, as RP can be replaced
by CP or any other set.

2.1.7 Groups of Transformations

The classes O(p), SO(p), and their complex analogs U(p) and SU(p)
are classes of transformations of a space to itself. We now summarize some
definitions and properties of groups, of which these classes are examples.

Let hI and h2 be any two transformations from RP to RP. By the
composition of b: and h2 we shall mean the function h2 0 hI from RP
to RP defined by-';
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2.1.6 Inner Products

The inner product between two elements, x
(Yl,''''YP) of RP is defined as

Definition 2.1.1. A nonempty collection H = {h} of 1-1 transformations
on a set is said to be a group provided that it is closed under composition
and inversion of transformations.

Its complex counterpart for CP is called the Hermitian inner product. We
encountered the Hermitian inner product in Chapter 1 when defining the
distance between two shapes in formula (1.21). We define the Hermitian
inner product between two vectors x = (Xl> ... ,xp) and Y = (Yl' ...,Yp)
of complex coordinates to be

P,

< X,Y > = LXiYj
j=1

(2.4)
In order for a nonempty collection H of transformations on a set to be
a group, it is necessary and sufficient that for any h l , h2 in H the
transformation hI 0 h2

I be in H. Setting h l = h2 we see that the
identity transformation e is always an element of H.

Definition 2.1.2. Two transformations h l and h2 are said to commute
when h20hl = hloh2 . We say that a group H is commutative or Abelian
provided that any two elements of H commute.

for all X and Y in RP. Similarly, Hermitian inner products on CP are
preserved under unitary transformations.

where Y~ is the complex conjugate of Yj E C. Under the identification of
C with JR 2 the inner product on R 2p can be defined from the Hermitian
inner product on CP by noting that <.,. >= lR « .,. ».

Orthogonal transformations can be characterized as linear transforma
tions that preserve inner products. Thus if A = (Aj k ) is an orthogonal
matrix, then representing x, Y E RP as column vectors, wehave

p

«x,y» = LXjyj
j=l

< Ax, Ay > = < x, Y >

(2.5)

(2.6)

.,.,

By the center of a group H we mean the set of elements of H that com
mute with every other element of H. Obviously, a group H is commutative
if and only if the center of H is H itself.

The class of orthogonal matrices is closed under matrix multiplication as
well as matrix inversion. Similarly, the class O(p) of orthogonal transfor
mations is closed under function composition and function inversion. Thus
the class of orthogonal transformations is a group, that is commutative
only for the cases where p = 1,2. The class SO(p) of special orthogonal
transformations is a subgroup of the group of orthogonal transformations.
That is, it is a subset of O(p) that is a group in its own right, being also
closed under composition and inversion. When p = 1 this subgroup is the
trivial group consisting of the identity transformation alone. Similar results
hold true for the class of unitary transformations of CPo The class U(p)
is also a group, containing the subgroup SU(p).
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2.1.8 Euclidean Motions and Isometries

By a Euclidean motion of RP we shall mean a transformation h: RP -:->

RP that can be written as the composition of a special orthogonal transfor
mation and a translation of RP. The class Euc(p) ofEuclidean motions
of RP is a group and is commutative only for the case where p = 1. The
group of Euclidean motions allows us to define the concept of congruence
between subsets of RP. Two subsets Al and Az of RP are said to
be congruent if there exists a Euclidean motion h E Euc(p) such that
heAl) = Az , or equivalently h-I(Az) = AI.

The concept of congruence between sets forms the basis for Euclidean
geometry, which involves the investigation of the geometric properties of
subsets of Euclidean space RP. A property of a subset is said to be a
geometric property if it is shared by any subset that is' congruent to it.

The definition of a Euclidean motion of RP can be generalized to arbi
trary metric spaces. A metric space M is a seton which a metric d(x, y)
is defined, where d satisfies the abstract properties (i), (ii) , and (iii) of
Problem 5 in Chapter 1.

Definition 2.1.3. A 1-1 correspondence h: M -:-> N between metric
spaces is said to be an isometry if d(x, y) = d[h(x),h(y)] for all x, y E M.
Two metric spaces are said to be isometric if there is an isometry mapping
one to the other. When M and N are isometric, we shall write M ~ N.,

In particular, the class of all isometries from M to itself shall be denoted
Iso(M). It is immediate that the identity transformation on M is an
isometry, and it can be checked that the transformations of Iso(M) form
a group. On RP, for example, the class of Euclidean motions Euc(p) forms
a subgroup of Iso(RP). This subgroup is a proper subgroup, because the
Eucidean motions of RP do not inchidereflections through a (p - 1)
dimensional hyperplane.

We may also speak of a linear isometry between vector spaces.

Definition 2.1.4. A linear transformation of full rank between two vector
spaces is said to be a linear isometry if it preserves the lengths of vectors.

Clearly, an orthogonal rotation of RP is an example of a linear isometry
from RP to itself.

2.1.9 Similarity Transformations and the Shape of Sets

Let (Xl, ...,xp ) be an element of RP. A transformation (Xl, ...,Xp ) -:->
(AXI, ... , AXp ) , where >. > 0, is said to be an isotropic rescaling or simply a
rescaling of RP. By a shape-preserving transformation or a similarity trans-
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formation of RP, we shall mean a transformation that can be represented
as the composition of a rigid Euclidean motion and a rescaling of ~p.

Once again, it can be checked that the class of similarity transformations
forms a group under composition. Henceforth, we shall denote the class of
similarity transformations of RP by Sim(p).

The group of similarity transformations has a special representation when
p = 1,2. In these cases, additional algebraic structure is available from
multiplication of real and complex numbers respectively. In the latter case,
we can again identify R Z with the complex plane C. Then we can write
transformations in Sim(l) and Sim(2) in the form X -:-> ax + b, where
a f= 0 and b are arbitrary elements of R or C in the respective
dimensions. Multiplication and addition are the usual algebraic operations.

Just as the group of Euclidean motions leads to the concept of congruence
between sets, so the group of similarity transformations leads to the concept
of similar sets.

Definition 2.1.5. Two subsets Al and A z of RP are said to be
similar or to have the same shape if there exists a similarity transformation
hE Sim(p) such that heAl) = A z or equivalently if h-I(Az) = AI' If
Al and Az are similar, then we shall write Al rv A z.

We shall also be concerned with labeled figures or sets. For example, a
.triangle is often labeled at its vertices in Euclidean geometry in order to
compare corresponding points on different triangles or simply to clarify a
construction. The definitions of congruent and similar sets have obvious
extensions to labeled sets, provided the labels correspond.

Definition 2.1.6. We shall say that two correspondingly labeled sets have
the same shape if one set can be transformed by a similarity transforma
tion to the other set in such a way that labeled points are mapped to the
corresponding points of the other figure.

For example, two triangles XlXZX3 and YlYZY3 have the same shape if
the angle at vertex Xj equals the angle at Yj for j = 1, 2, and 3.

While the distinction between labeled and unlabeled sets can be regarded
as a mathematical convenience in defining shapes, it is a more substantial
distinction for the comparison of shape differences, as we noted in Chapter
1. An attempt to discover the shape differences between sets will typically
involve a matching of the sets to determine how differences in the coordi
nates of corresponding points can be explained through similarity transfor
mations. Any residual differences that cannot be explained through simi
larity transformations can be understood to be due to differences in shape.
The problem of constructing an appropriate correspondence between unla
beled sets (or unparametrized sets in general) is the problem of homology,
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discussed in Section 1.5. When p = q, the Jacobian matrix becomes a p x p square matrix. The
determinant

-]

(.Jh)x = det(A) (2.12)
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It defines a linear transformation u -t Au where u is a p x 1 column
vector. This linear transformation

2.2.2 Topological Spaces

The properties of continuity and differentiability on RP can be abstracted
to more general sets, leading to the concepts of the topological space, the
topological manifold, and the differential manifold. Suppose M is a set
endowed with a collection of subsets U = {U}. We say that U is a topology
on the set M provided that (i) the empty set and M itself are both
elements of U, (ii) any arbitrary union of elements of U is an element of
U, and (iii) any finite intersection of elements of U is an element of U.

The set M, endowed with a topology, is called a topological space, and
the elements of U are called the open sets of M. A subset of M is said to
be closed if its complement is open. The standard example of a topological
space, which we have already considered, is when M is Euclidean space
RP and U is the class of open sets of RP. Let M and N be topological
spaces endowed with topologies Ul and U2 respectively. A function
h: M -t N is said to be continuous if h-1(U) E U1 for all U E U2 . If h
is both 1-1 and onto, then we say that h is a homeomorphism provided
that both hand h- 1 are continuous.

In RP a subset that is both closed and bounded has the property of
compactness. This can be generalized to an arbitrary topological space. A
subset A of a topological space M is said to be compact if every collection
of open sets whose union contains A has a finite sub collection whose union
also contains A. The Heine-Borel theorem states that a subset of RP is
compact if and only if it is closed and bounded. For our purposes in this
and subsequent chapters, only a few properties of compactness will be used.
Important among these properties is the fact that the continuous image of

is simply called the Jacobian of h at x, at the risk of some confusion. Note
that the Jacobian matrix is a matrix valued function at each point x E U
while the Jacobian at x is a real valued function. The Jacobian measures
the rate of change of volume induced by the transformation x -t h(x)
locally around x.

Suppose that p = q and that h is a 1-1 correspondence from U
to V. Then h is said to be a homeomorphism from U to V provided
that both hand h- 1 are continuous. When a homeomorphism can be
established between U and V we say that U and V are homeomorphic.
A homeomorphism h is called a CT-diffeomorphism between U and V
if both hand h- 1 are C-functions. We will normally refer to a coo_
diffeomorphism simply as a diffeomorphism. When a diffeomorphism can
be established between U and V we shall say that U and V are
diffeomorphic.

(2.9)

(2.8)

(2.11)

(2.10)

A

h(x + u) = h(x) + ('Oh)x(u) + o(llulD

8Tl+T2+ +TpYk

8X~' ax~2 ax~p

for all k = 1, ... , q and all nonnegative integers rl, r2, ... , r p such that
rl +r2+...+rp ~ r. Clearly, any function that is cr on U is a CS-function
for any s < r,

If h is a CT-function for all r 2: 1, then we say that h is a Coo-function.
By convention, CD-functions are understood to be the class of continuous
functions on U.

Associated with any smooth function h: U -t V and any point x =
(Xl> .." xp ) in U is the Jacobian matrix. This is the matrix of partial
derivatives

is called the derivative of h at x. The Jacobian matrix can be regarded
as a coordinate representation of the derivative of h. The derivative Dh.
is the second term in the Taylor approximation to the function h at x,
namely

2.2.1 Homeomorphisms and DijJeomorphisms of Euclidean
Space

Let h: U -t V be a continuous function between two open sets U c RP
and V c Rq. Let us write (Yl,Y2, ..., Yq) = h(Xl' X2, ... , x p). We say that
h is a smooth, or differentiable, mapping on U provided that h possesses
finite partial derivatives 8Yk/8xj for all j = 1, ... ,p and all k = I, ... , q.
If all these partial derivatives are continuous functions, then we say that
h is a C1-function on U.

This definition can be extended to higher order derivatives. We say that
h is a C -function on U for any r = 1,2, ... if h has continuous partial
derivatives -,



a compact set is compact. More specifically,tLMand N are topological
. spaces and h: M --+ N is a continuous function then h(A) is-compact

for all compact subsets A C M.

2.2.3 Introduction to Manifolds

A manifold is a generalization of our understanding ofacurved surface in
three dimensions. We usually think of a curved surface as a subset of three
dimensional Euclidean space R 3 that inherits its geometric properties from
the geometric structure of the Euclidean space in which it lies.

The representation of a space as a subset of another space is formally
called an embedding. However, our intuition, being limited to objects in
dimensionsless than or, equal to three, has trouble visualizing curvature
of sets or spaces that cannot be embedded in three-dimensional Euclidean
space. The formal definition of a differential manifold has no such con
straint. As much of calculus involves local constructions, differential man
ifolds, which locally resemble Euclidean space, become a natural domain
for operations such as taking a gradient of a function, calculating tangent
vectors, and other constructions from multivariable calculus.

Examples of differential manifolds are common. A torus (the surface of a
doughnut) is a differential manifold, as is a sphere or a flat plane. Some very
small two-dimensional being situatedin a torus would have trouble distin
guishing the space around it from the space of a two-dimensional sphere
or a plane. This is because curved surfaces look approximately flat when
viewed over a small region. The immediate vicinity of the being provides
local information about the surface but little in the way of information
about global properties of the surface that distinguish spheres from tori.
To find global information, the being would have the walk around both
surfaces and be very careful to 'check angles and distances. If the being
were nearsighted and could not check distances and angles, then its exami
nation of the local vicinity, or neighborhood, would fail to detect any local
distortions due to the curvature of the surface, It might then conclude that
the surrounding space was Euclidean, or flat, in nature. This is what we
mean when we say that a differential manifold 10Qks locally like RP.

Our two-dimensional being might well consult an atlas to find its way
around the geography of these two-dimensional worlds. Weare used to
seeing the surface of the Earth displayed in an atlas. However, we know
that because the Earth is a sphere, we cannot get all points plotted on a
single page or chart without tearing the picture and destroying the natural
continuity between neighboring points. Just as a portion of the surface of
the Earth can be described by a chart, so a portion of a differential mani
fold is described by a chart, here understood in a mathematicalsense. Just
as a single page of an atlas cannot cover the entire surface of the Earth
without disrupting continuity, so a single chart cannot usually cover the
entire region of a differential manifold. The mathematical charts used to
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{U", : aEA}

2.2·4 Topological and Differential Manifolds

Let MP be a topological space with a collection of open subsets

and a collection of functions

such that

that are all homeomorphisms onto the open subsets h(U",) of RP. Note
that we do not assume {U'" : a E A} is the entire topology on MP.
Then we say that the functions c'" are charts on MP provided that

describe a manifold must also be collected together into an atlas. Of course,
such charts, if they cover the manifold, will overlap in places. Thus they
are not arbitrarily related, but must, in a certain sense, describe the same
smoothness on the region of overlap. If the same town appeared on twodif
ferent pages of a geographical atlas, we would expect the local descriptions
on the two pages to be compatible, even if not identical. On a differential
manifold, that notion of compatibility is described using a diffeomorphism.

is a homeomorphism from c'"(U'"nU{3) to c{3 (Uo nU{3) for all a and f3 in
A. See Figure 2.1. We can think of the charts {c",}"'EA as providing local
coordinate systems on MP. Formula (2.16) provides a patching criterion,
telling us that these different coordinate systems can be glued together in
a topologically consistent way.

Definition 2.2.1. The collection of subsets {U"'}"'EA with the charts
{c",}"'EA is said to form an atlas on MP. The set MP toqeiher with its
atlas {(U""c",): a E A} is called a topological manifold of dimension p.

Definition 2.2.2. If the functions C{3 0 C;:;l in (2.16) are also required to
be Cr -diffeomorphisms then the topological manifold MP is said to be a
Cr -differential manifold.

A subset V C MP is open if c",(V n U",) is an open subset of RP for
. every a E A. This definition formalizes our basic understanding that a
topological manifold is a space that is locally homeomorphic to Euclidean
space.

2. Background Concepts and Definitions38
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2.2.2 Topological Spaces

The properties of continuity and differentiability on RP can be abstracted
to more general sets, leading to the concepts of the topological space, the
topological manifold, and the differential manifold. Suppose M is a set
endowed with a collection of subsets U = {U}. We say that U is a topology
on the set M provided that (i) the empty set and M itself are both
elements of U, (ii) any arbitrary union of elements of U is an element of
U, and (iii) any finite intersection of elements of U is an element of U.

The set M, endowed with a topology, is called a topological space, and
the elements of U are called the open sets of M. A subset of M is said to
be closed if its complement is open. The standard example of a topological
space, which we have already considered, is when M is Euclidean space
RP and U is the class of open sets of RP. Let M and N be topological
spaces endowed with topologies Ul and U2 respectively. A function
h: M --4 N is said to be continuous if h-l(U) E Ul for all U E U2' If h
is both 1-1 and onto, then we say that h is a homeomorphism provided
that both hand h -1 are continuous.

In RP a subset that is both closed and bounded has the property of
compactness. This can be generalized to an arbitrary topological space. A
subset A of a topological space M is said to be compact if every collection
of open sets whose union contains A has a finite subcollection whose union
also contains A. The Heine-Borel theorem states that a subset of RP is
compact if and only if it is closed and bounded. For our purposes in this
and subsequent chapters, only a few properties of compactness will be used.
Important among these properties is the fact that the continuous image of

is simply called the Jacobian of h at x, at the risk of some confusion. Note
that the Jacobian matrix is a matrix valued function at each point x E U
while the Jacobian at x is a real valued function. The Jacobian measures
the rate of change of volume induced by the transformation X --4 hex)
locally around x.

Suppose that p = q and that h is a 1-1 correspondence from U
to V. Then h is said to be a homeomorphism from U to V provided
that both hand h- l are continuous. When a homeomorphism can be
established between U and V we say that U and V are homeomorphic.
A homeomorphism h is called a C -diffeomorphism between U and V
if both hand h- l are C-functions. We will normally refer to a coo _

diffeomorphism simply as a diffeomorphism. When a diffeomorphism can
be established between U and V we shall say that U and V are
diffeomorphic.

When p = q, the Jacobian matrix becomes a p x p square matrix. The
determinant
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for all k = 1, ... , q and all nonnegative integers rl, r2, ... , rp such that
rl +r2+ ... +rp ~ r. Clearly, any function that is cr on U is a CS-function
for any s < r.

If h is a cr-fu.nction for all r ~ 1, then we say that h is a COO-function.
By convention, CD-functions are understood to be the class of continuous
functions on U.

Associated with any smooth function h: U --4 V and any point x =
(Xl, ..., xp) in U is the Jacobian matrix. This is the matrix of partial
derivatives

is called the derivative of h at x. The Jacobian matrix can be regarded
as a coordinate representation of the derivative of h. The derivative Dli
is the second term in the Taylor approximation to the function h at z ,
namely

It defines a linear transformation u -> Au where u is a p x 1 column
vector. This linear transformation

2.2.1 Homeomorphisms and Diffeomorphisms of Euclidean
Space

Let h: U -> V be a continuous function between two open sets U c RP
and V c Rq. Let us write (Yl,Y2, ...,Yq) = h(Xl,X2,''''Xp). We say that
h is a smooth, or differentiable, mapping on U provided that h possesses
finite partial derivatives 8Yk/8xj for all j = 1, ... ,p and all k = 1, ..., q.
If all these partial derivatives are continuous functions, then we say that
h is a Cl-function on U.

This definition can be extended to higher order derivatives. We say that
h is a Cr-function on U for any r = 1,2, ... if h has continuous partial
derivatives -,
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{U" : Q E A}

2.2·4 Topological and Differential Manifolds

Let MP be a topological space with a collection of open subsets

and a collection of functions

such that

that are all homeomorphisms onto the open subsets h(U,,) of RP. Note
that we do not assume {U" : Q E A} is the entire topology on MP.
Then we say that the functions c" are charts on MP provided that

describe a manifold must also be collected together into an atlas. Ofcourse,
such charts, if they cover the manifold, will overlap in places. Thus they
are not arbitrarily related, but must, in a certain sense, describe the same
smoothness on the region of overlap. If the same town appeared on two dif
ferent pages of a geographical atlas, we would expect the local descriptions
on the two pages to be compatible, even if not identical. On a differential
manifold, that notion of compatibility is described using a diffeomorphism.

is a homeomorphism from c"(U,,nuj3) to cj3(U"nuj3) for all Q and (3 in
A. See Figure 2.1. We can think of the charts {c,,}"EA as providing local
coordinate systems on MP. Formula (2.16) provides a patching criterion,
telling us that these different coordinate systems can be glued together in
a topologically consistent way.

Definition 2.2.1. The collection of subsets {U"}"EA with the charts
{C"}"EA is said to form an atlas on MP. The set MP together with its
atlas {(U",c,,): Q E A} is called a topological manifold of dimension p.

Definition 2.2.2. If the functions Cj3 0 C~l in (2.16) are also required to
be Cr -diffeomorphisms then the topological manifold MP is said to be a
cr-differential manifold.

A subset V c MP is open if c,,(V n U,,) is an open subset of RP for
.every Q E A. This definition formalizes our basic understanding that a
topological manifold is a space that is locally homeomorphic to Euclidean
space.

2. Background Concepts and Definitions

A manifold is a generalization of our understanding of a curved surface in
three dimensions. We usually think of a curved surface as a subset of three
dimensional Euclidean space R 3 that inherits its geometric properties from
the geometric structure of the Euclidean space in which it lies.

The representation of a space as a subset of another space is formally
called an embedding. However, our intuition, being limited to objects in
dimensions less than or equal to three, has trouble visualizing curvature
of sets or spaces that cannot be embedded in three-dimensional Euclidean
space. The formal definition of a differential manifold has no such con
straint. As much of calculus involves local constructions, differential man
ifolds, which locally resemble Euclidean space, become a natural domain
for operations such as taking a gradient of a function, calculating tangent
vectors, and other constructions from multi variable calculus.

Examples of differential manifolds are common. A torus (the surface of a
doughnut) is a differential manifold, as is a sphere or a fiat plane. Some very
small two-dimensional being situated in a torus would have trouble distin
guishing the space around it from the space of a two-dimensional sphere
or a plane. This is because curved surfaces look approximately fiat when
viewed over a small region. The immediate vicinity of the being provides
local information about the surface but little in the way of information
about global properties of the surface that distinguish spheres from tori.
To find global information, the being would have the walk around both
surfaces and be very careful to <check angles and distances. If the being
wei€: nearsighted and could not check distances and angles, then its exami
nation of the local vicinity, or neighborhood, would fail to detect any local
distortions due to the curvature of the surface. It might then conclude that
the surrounding space was Euclidean, or fiat, in nature. This is what we
mean when we say that a differential manifold looks locally like RP.

Our two-dimensional being might well consult an atlas to find its way
around the geography of these two-dimensional worlds. We are used to
seeing the surface of the Earth displayed in an atlas. However, we know
that because the Earth is a sphere, we cannot get all points plotted on a
single page or chart without tearing the picture and destroying the natural
continuity between neighboring points. Just as a portion of the surface of
the Earth can be described by a chart, so a portion of a differential mani
fold is described by a chart, here understood in a mathematical sense. Just
as a single page of an atlas cannot cover the entire surface of the Earth
without disrupting continuity, so a single chart cannot usually cover the
entire region of a differential manifold. The mathematical charts used to
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a compact set is compact. More specifically, if M and N are topological
spaces and h: M --+ N is a continuous function then h(A) is compact
for all compact subsets A c M.
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h : MP ~ N" (2.17)

is differentiable. Similarly, we will say that h is a C"-function provided
that the function defined in formula (2.18) is a -C"-function, If p = q and
h is 1-1 and onto, then h is called a Cr-diffeomorphism provided that h
and h-1 are cr. Once again, when h is a COO-diffeomorphism, then we
shall simply refer to h as a diffeomorphism. When a C"-diffeomorphism
can be established between two manifolds MP and NP then MP and
NP are said to be C"-diffeomorphic. If r = 00 then we shall simply say
that MP and NP are diffeomorphic.

Atlases provide coordinate systems for manifolds. For example, if x is
a point in U", then the coordinates of c",(x) in the Euclidean space RP
can be used to locate the point. Unfortunately, there is usually no single
chart that can provide a nondegenerate coordinate system simultaneously
for the entire manifold, as charts have to be patched together to cover the
manifold. However, in many cases, the points of degeneracy of coordinate
systems introduced by charts need not be a hindrance to calculations. For
this reason, we often suppress the chart notation, and say that point x
has coordinates (Xl, x2, ... , Xl') rather than the more precise statement
that these coordinates belong to c",(x).

The intrinsic properties of a manifold are those that are invariant under
a change of coordinates that is compatible with the differential structure,
as explained in Figure 2.1. On the other hand, those properties that are
dependent upon the coordinate system are called extrinsic properties of the
manifold.

As we defined a differential manifold to be a space that is locally dif
feomorphic to Euclidean space, it is not surprising that Euclidean space
RP turns out to be a differential manifold. To do this, we make the atlas
consist of a single chart, with U = RP and c = e, where e is the identity
transformation from RP to Rp. With this construction, it becomes a
routine matter to check that RP satisfies the definition of a differential
manifold.

is said to be differentiable, or smooth, if for every x E MP there exists a
chart (Uo , c",) on MP and a chart (V,B, c,B) on N? such that x E U""
hex) E VJ3, and such that the~mapping

F6r convenience, we shall refer to a Coo-differential manifold simply as
a differential manifold. Again, informally we can say that a differential

\
manifold is a space that is locally diffeomorphic to Euclidean space.

Now let MP and N? be differential manifolds of dimension p and q
respectively. A continuous function

. ~
.~

/
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2. Background Concepts and Definitions

FIGURE 2.1. Charts on a manifold. A chart provides a coordinate system on
a manifold. In order to ensure that the coordinate systems are consistent wit.h
each other, a patching criterion is required on the sets of the manifold where the
coordinate systems overlap. For the figure shown, the patching criterion requires
that C/3 0 C;:;-l be a diffeomorphism between subsets of R". A set of compatible
charts that cover the manifold is called an atlas. In RP it is often useful to
change coordinate systems for the convenience of calculations. The same is true
for differential manifolds. As it is the charts that provide coordinates for points
in the manifold, a change of coordinate systems about a point x E MP is simply
a change in the choice of the chart Co that provides coordinates for x. If the
change in coordinates is to be compatible with the differential structure defined
on M", then the new chart C/3 will need to satisfy the patching criterion above.
Such a criterion will automatically be satisfied if the chart C/3 belongs to the
atlas on M". However, the new chart: is not required to belong to the atlas. If
the new chart satisfies the patching criterion, it can be included in the atlas, and
thereby enlarge the atlas.

40
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ds = Ilx(t)11 dt

X(I)

\

\

FIGURE 2.2. Tangent and normal vectors to a surface. At any point on a surface,
the tangent vectors to the surface are perpendicular to a normal vector that is the
gradient of the defining equation.

point. However, all paths through Xo having the same tangent vector at
Xo form an equivalence class of paths. It is this equivalence class that we
will formally identify with the tangent vector at Xo in the next section.

We close this section by considering how tangent vectors to a surface
can be used to represent infinitesimal displacements of points within the
surface. Consider Figure 2.3. Along a smooth path in a surface, position
two points x and y. From the point x draw a vector in R3 out to y.
This vector is called a secant vector because it points along a secant line
segment whose endpoints are the two points x and y in the surface.
Secant vectors point in the direction of the displacement from x to y, but
are represented in the Euclidean space R3 rather than the surface itself.
When the displacement from x to y becomes infinitesimally small, then
the secant vector in limiting form becomes a tangent vector to the surface.
Thus we can write dx = x(t) dt where dx =x(t + dt) - x(t) and x(t)
is, once again, the tangent to the curve at x = x(t). Thus the length ds
of the displacement dx is

2.2.6 Tangent Vectors and Tangent Spaces

Henceforth, we shall assume that MP is a differential manifold. Let x(t)
and y(t) be two smooth paths in MP passing through a common point Xo

"1 '

(2.22)
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(2.19)
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be a path in the surface passing through a pointxo at t = 0 and defined
for values of t in some open interval (-c, c). For each t, define the vector
x(t) by

When we turn to general differential manifolds this construction unfor
tunately does not generalize. Nevertheless, the space of tangent vectors can
be defined in a more abstract sense, despite the fact that a normal vector
to a surface is a property of the embedding in R 3 and not intrinsic to
the differential geometry of that surface. A key insight in generalizing the
concept of a tangent vector is to note that on a surface, the tangent vectors
at a point x can be placed in 1-1 correspondence with equivalence classes
of paths through x, which we shall now consider.

Let Xo be a point on the surface M2. Now let

Then it can. be seen that the vector X(O) is a tangent vector to the surface
at the point xo. See Figure 2.2. Thus every smooth path through Xo defines
a tangent vector at Xo. This tangent vector is not unique to the path, as
there exist many paths through Xo having the same tangent vector at that

is nonvanishing, it will point in a direction perpendicular to the surface.
Tangent vectors to the surface at the point x will then be those vectors
in R 3 that are orthogonal to this normal vector. The set of all vectors
that are tangent to the surface at x is said to be the tangent spaceofthe
surface at x. Thus a vector v = (VI, V2, V3) is a tangent vector to the
surface at the point x if and only if

where h is a real valued function defined on R 3 . Let us denote this surface
by M 2 as shown in Figure 2.2. Suppose that x = (Xl,X2, X3) is a point
on this surface. Now if the gradient vector

2.2.5 An Introduction to Tangent Vectors

Let us return to our intuitive example of a differential manifold, namely a
surface embedded in Euclidean space R 3 . A typical way in which a surface
can be defined is as the solution set to an equation of the form
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is differentiable. Similarly, we will say that h is a cr-function provided
that the function defined in formula (2.18) is a ·Cr-function. If p = q and
h is 1-1 and onto, then h is called a Cr-diffeomorphism provided that h
and h- l are cr. Once again, when h is a COO-diffeomorphism, then we
shall simply refer to h as a diffeomorphism. When a cr-diffeomorphism
can be established between two manifolds MP and NP then MP and
NP are said to be Cr -diffeomorphic. If r = 00 then we shall simply say
that MP and NP are diffeomorphic.

Atlases provide coordinate systems for manifolds. For example, if x is
a point in Ua then the coordinates of ca(x) in the Euclidean space RP
can be used to locate the point. Unfortunately, there is usually no single
chart that can provide a nondegenerate coordinate system simultaneously
for the entire manifold, as charts have to be patched together to cover the
manifold. However, in many cases, the points of degeneracy of coordinate
systems introduced by charts need not be a hindrance to calculations. For
this reason, we often suppress the chart notation, and say that point x
has coordinates (Xl, X2, ... , xp) rather than the more precise statement
that these coordinates belong to ca(x).

The intrinsic properties of a manifold are those that are invariant under
a change of coordinates that is compatible with the differential structure,
as explained in Figure 2.1. On the other hand, those properties that are
dependent upon the coordinate system are called extrinsic properties of the
manifold.

As we defined a differential manifold to be a space that is locally dif
feomorphic to Euclidean space, it is not surprising that Euclidean space
RP turns out to be a differential manifold. To do this, we make the atlas
consist of a single chart, with U = RP and C = e, where e is the identity
transformation from RP to RP. With this construction, it becomes a
routine matter to check that RP satisfies the definition of a differential
manifold.

is said to be differentiable, or smooth, if for every x E MP there exists a
chart (U"', c,,,) on MP and a chart (V/3' c/3) on Nq such that x E Ua,

h(x) E V/3, and such that the~mapping

For convenience, we shall refer to a COO-differential manifold simply as
a differential manifold. Again, informally we can say that a differential
manifold is a space that is locally diffeomorphic to Euclidean space.

Now let MP and N? be differential manifolds of dimension p and q
rsspectively. A continuous function
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2. Background Concepts and Definitions

FIGURE 2.1. Charts on a manifo/4. A chart provides a coordinate system on
a manifold. In order to ensure that the coordinate systems are consistent wit/!,
each other, a patching criterion is required on the sets of the manifold where the
coordinate systems overlap. For the figure shown, the patching criterion requires
that cl3 0 C;;l be a diffeomorphism between subsets of RP. A set of compatible
charts that cover the manifold is called an atlas. In RP it is often useful to
change coordinate systems for the convenience of calculations. The same is true
for differential manifolds. As it is the charts that provide coordinates for points
in the manifold, a change of coordinate systems about a point x E MP is simply
a change in the choice of the chart c'" that provides coordinates for x. If the
change in coordinates is to be compatible with the differential, structure defined
on MP, then the new chart C{3 will need to satisfy the patching crit~rion above.
Such a criterion will automatically be satisfied if the chart CI3 belongs to the
atlas on MP. IIowever, the new chart is not required to belong to the atlas. If
the new chart satisfies the patching criterion, it can be included in the atlas, and
thereby enlarge the atlas.
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ds = 11i:(t)11 dt

x(t)

\
\

FIGURE 2.2. Tangent and normal vectors to a surface. At any point on a surface,
the tangent vectors to the surface are perpendicular to a normal vector that is the
gmdient of the defining equation.

point. However, all paths through Xo having the same tangent vector at
Xo form an equivalence class of paths. It is this equivalence class that we
will formally identify with the tangent vector at Xo in the next section.

We close this section by considering how tangent vectors to a surface
can be used to represent infinitesimal displacements of points within the
surface. Consider Figure 2.3. Along a smooth path in a surface, position
two points x and y. From the point x draw a vector in R 3 out to y.
This vector is called a secant vector because it points along a secant line
segment whose endpoints are the two points x and y in the surface.
Secant vectors point in the direction of the displacement from x to y, but
are represented in the Euclidean space R3 rather than the surface itself.
When the displacement from x to y becomes infinitesimally small, then
the secant vector in limiting form becomes a tangent vector to the surface.
Thus we can write dx = i:(t) dt where dx = x(t + dt) - x(t) and i:(t)
is, once again, the tangent to the curve at x = x(t). Thus the length ds
of the displacement dx is

(2.22)

(2.23)

(2.21)

(2.20)

(2.19)

a

(
oh oh oh )

Vh(x) = ~,~, ~
UXI UX2 UX3

i:(t) = dx(t) = .(..dXI(t) dX2(t) dX3(t))

dt dt ' dt ' dt

2. Background Concepts and Definitions

When we turn to general differential manifolds this construction unfor
tunately does not generalize. Nevertheless, the space of tangent vectors can
be defined in a more abstract sense, despite the fact that a-normal vector
to a surface is a property of the embedding .in R 3 and not intrinsic to .
the differential geometry of that surface. A key insight in generalizing the
concept of a tangent vector is to note that ona surface, the tangent vectors
at a point x can be placed in 1-1 correspondence with equivalence classes
of paths through x, which we shall now consider.

Let Xo be a point on the surface M 2 • Now let

be a path in the surface passing through a point Xo at t = 0 and defined
for values of t in some open interval (-E, E). For each t, define the vector
i:(t) by

is nonvanishing, it will point in a direction perpendicular to the surface.
Tangent vectors to the surface at the point X will then be those vectors
in R 3 that are orthogonal to this normal vector. The set of all vectors
that are tangent to the surface at X is said to be the tangent space of the
surface at x. Thus a vector v = (VI, V2, V3) is a tangent vector to the
surface at the point x if and only if

where h is a real valued function defined on R 3 . Let us denote this surface
by M 2 as shown in Figure 2.2. Suppose that x = (Xl, X2, X3) is a point
on this surface. Now if the gradient vector
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2.2.5 An Introduction to Tangent Vectors

Let us return to our intuitive example of a differential manifold, namely a
surface embedded in Euclidean space R 3 . A typical way in which a surface
can be defined is as the solution set to an equation of the form

Then it can be seen that the vectori:(O) is a tangent vector to the surface
at the point xo. See Figure 2.2. Thus every smooth path through xodefines
a tangent vector at xo. This tangent vector is not unique to the path,as
there exist many paths through Xo having the same tangent vector at that

2.2.6 Tangent Vectors and Tangent Spaces

Henceforth, we shall assume that MP is a differential manifold. Let x(t)
and y(t) be two smooth paths in MP passing through a common point Xo
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(2.29)
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which also passes through Xo at t = O. It is not immediately obvious
that this definition of the sum of tangent vectors is well defined. To prove
that it is, it is necessary to show that the definition is independent of the
coordinate system used to express the paths and is independent of the
choice of paths used to represent the tangent vectors :i; and v. However,
this can be done. See Problem 7 at the end of the chapter.

Similarly, we can multiply the vector :i; by a scalar >. E R. Define >':i;
to be the equivalence class of paths tangent at t = 0 to the path with
coordinates

See Figure 2.4. In order to show that these equivalence classes deserve to
be called tangent vectors, it is necessary to show that they have the same
properties that vectors have, namely, the ability to be added together and
multiplied by a scalar. Suppose that x(t) and z(t) are two paths passing
through a point Xo E MP at t = O. We define the vector sum :i; + z to
be the tangent vector at Xo to the path whose coordinates are'

FIGURE 2.4. A tangent vector represented as an equivalence class of paths
through a point on the manifold. At any point Xo in a manifold, we consider
all smooth paths passing through Xo at time t = O. The property of tangency
between two such paths defines an equivalence relation between the paths. The
tangent vectors to the manifold at the point Xo are formally defined as the
equivalence classes of this relation..

(2.28)

(2.25)

(2.26)

-------

(Xl(t), X2(t), , xp(t))

(Yl(t), Y2(t), , Yp(t))

x(t)

y(t)

2. Background Concepts and Definitions

for all j = 1, ... .p. It is important to note that although the condition
of tangency is expressed in terms of the coordinate system, the tangency
property is independent of the choice of coordinates. This follows from
the fact that in RP, the diffeomorphic images of two tangent paths will
also be tangent. Changing coordinate systems on MP is equivalent to a
diffeomorphism on RP as formula (2.16) shows.

Xo = (X01, X02, ... , xop) (2.27)

The paths x(t) and' y(t) are said to be smooth if their coordinates
are differentiable functions of the time coordinate t. Henceforth, we shall
restrict attention to smooth paths. The paths x(t) and y(t) are said to
be tangent at Xo provided that

dXj(O) dYj(O)
~=di-

and

at t = 0, say. Let us suppose that a coordinate system has been constructed
by a chart (Uc<, cc<) around Xo so that the paths have coordinates

FIGURE 2.3. Secant vectors to a surface. In the limit, as the displacement between
points becomes infinitesimal, the secant vectors converge to a tangent vector.
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Definition 2.2.3. We define the tangent vector ± to the path x(t) at
the point Xo = x(O) to be the equivalence class of all paths y(t) such that
y(O) = Xo and such that y(t) is tangent to x(t) at t = O.

(2.30)

Scalar multiplication can also be shown to be well defined. Note that we



can add tangent vectors at the same point Xo but cannot add tangent
vectors that are tangent to the manifold at different points.
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2.2:7 Metric Tensors and Riemannian Manifolds

Suppo~~ that

47

(2.35)

(2.37)< L ajoj , L bkOk > = L L gjkajbk
j k j k

g(X)

P P P P

< Laj(x)oj(x), Lbk(X)Ok(X) > = LLgjk(x)aj(x)bk(X) (2.36)
j=l k=l j=l k=l

is a positive definite symmetric matrix for all x E MP. Then g(x) defines
an inner product on Tx(MP) as follows. Consider two tangent vectors in
Tx(MP), namely E j aj (x)Oj (x) and Ek bk(x)Ok(X). Then we define the
inner product of these tangent vectors to be

Definition 2.2.5. The inner product defined on the tangent spaces of the
manifold by (2.37) is said to be a Riemannian metric tensor, or simply
a metric tensor on MP. A differential manifold endowed with a smooth
metric tensor is said to be a Riemannian manifold.

In the classical notation of differential geometry, the notation is even more
compact, with equation (2.37) written with the summation signs under
stood, following the Einstein summation convention. This classical nota
tion is not well suited to our purposes here. Therefore we shall continue to
use a less compact notation that includes summation signs.

Metric tensors allow us to define inner products between tangent vectors at
the same point XE MP but do not define inner products between tangent
vectors at different points.

This notation is cumbersome if used on a regular basis. We shall suppose
that gjk is a smoothly varying function in x across the manifold and
shall suppress the x, both in gjk and the tangent vectors. Thus we can
also write this in more compact form as

~ .

'r;,

(2.33)

(2.32)

(2.31)

P

x(t) = LXj(t) OJ[x(t)]
j=l

P

Laj(x) OJ(x)
j=l

where each aj is a real valued function of x E MP. For example, we can
write

where

defined in a neighborhood of x = (Xl, ..., x p ) around t = O. These paths
pass through the point x at t = 0 and follow the axes of the coordinate
system about x. For each j = 1, ...,n we define OJ(x) E Tx(MP) to be
the tangent vector to the path defined by formula (2.31) at the point x
where t = O.

The tangent vectors Ol(X), 82(x), ..., op(x) collectively form a basis
for the tangent space Tx(MP). That is, any tangent vector in TAMP)
can be written as

Definition 2.2.4. The vector space of all tangent vectors to the manifold
MP at a given point x E MP is called the tangent space at x and is
denoted by Tx(MP).

Xj(t) = dXj(t) (2.34)
dt

It should be noted that the definition of the basis vectors 01, 02, ... , op
depends upon the particular coordinate system used. Under a change in the
coordinate system around x, a different set of basis vectors emerges. How
ever, both sets span the same space Tx(MP), whose elements are intrinsic
to the manifold and not artifacts of the choice of coordinate system.

As the tangent vector of formula (2.32) is a function of x, it defines a
tangent vector at every X E MP where the coordinate system is defined.
A function that assigns an element of Tx(MP) for every x E MP is
called a tangent vector field on MP. The tangent vector field is said to be a
cr-vector field provided that when expressed in terms of the basis vectors
Ol(X), ..., op(x), the real valued functions aj are cr-functions of X E MP.

The tangent space Tx(MP) can be shown to have the same dimension as
the manifold MP. So Tx(MP) is linearly isomorphic to Euclidean space
W. .

Within Tx(MP) it is possible to construct a set of basis vectors as
follows: For each j = 1, ...,p consider the path
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FIGURE 2.3. Secant vectors to a surface. In the limit, as the displacement between
points becomes infinitesimal, the secant vectors converge to a tangent vector.

at t = 0, say. Let us suppose that a coordinate system has been constructed
by a chart (UQ" en) around Xo so that the paths have coordinates

FIGURE 2.4. A tangent vector represented as an equivalence class of paths
thmugh a point on the manifold. At any point XQ in a manifold, we consider
all smooth paths passing through XQ at time t = O. The property of tangency
between two such paths defines an equivalence relation between the paths. The
tangent vectors to the manifold at the point XQ are formally defined as the
equivalence classes of this relation.

Definition 2.2.3. We define the tangent vector :i; to the path x(t) at
the point Xo = :/:(0) to be the equivalence class of all paths y(t) such that
y(O) = Xo and such that y(t) is tangent to x(t) at t = O.

Xo = (XOl, X02, ..., xop) (2.27)

The paths x(t) and' y(t) are said to be smooth if their coordinates
are differentiable functions of the time coordinate t. Henceforth, we shall
restrict attention to smooth paths. The paths x(t) and y(t) are said to
be tangent at Xo provided that (2.29)

(2.30)

See Figure 2.4. In order to show that these equivalence classes deserve to
be called tangent vectors, it is necessary to show that they have the same
properties that vectors have, namely, the ability to be added together and
multiplied by a scalar. Suppose that x(t) and z(t) are two paths passing
through a point Xo E MP at t = O. We define the vector sum :i; + i to
be the tangent vector at Xo to the path whose coordinates are

which also passes through Xo at t = O. It is not immediately' obvious
that this definition of the sum of tangent vectors is well defined. To prove
that it is, it is necessary to show that the definition is independent of the
coordinate system used to express the paths and is independent of the
choice of paths used to represent the tangent vectors :i; and y. However,
this can be done. See Problem 7 at the end of the chapter.

Similarly, we can multiply the vector :i; by a scalar A E R. Define A:i;
to be the equivalence class of paths tangent at t = 0 to the path with
coordinates

Scalar multiplication can also be shown to be well defined. Note that we

(2.28)

(2.25)

(2.26)

(Xl(t), X2(t), , xp(t))

(Yl(t), Y2(t), , Yp(t))

x(t)

y(t)

dXj(O) dYj(O)
dt dt

for all j = 1, ... , p. It is important to note that although the condition
of tangency is expressed in terms of the coordinate system, the tangency
property is independent of the choice of coordinates. This follows from
the fact that in RP, the diffeomorphic images of two tangent paths will
also be tangent. Changing coordinate systems on MP is equivalent to a
diffeomorphism on RP as formula (2.16) shows.

and
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where each aj is a real valued function of x E MP. For example, we can
write

can add tangent vectors at the same point Xo but cannot add tangent
vectors that are tangent to the manifold at different points.

(2.37)< L aj8j , L h8k > = L L:gjkajbk
j k j k

2.ft. 7 Metric Tensors and Riemannian Manifolds
\

SuppoSe that

911 (x) 9l2(X) 9lp(X)

9(X) 92l(X) g22(X) 92p(X)
(2.35)

9pl(X) gp2(X) 9pp(x)

P P P P
< L aj (x)8j (x), L bk(X)8k(x) > = L L gjk(x)aj(x}bk(x) (2.36)

j=l k=l j=1 k=l

This notation is cumbersome if used on a regular basis. We shall suppose
that 9jk is a smoothly varying function in x across the manifold and
shall suppress the x, both in gjk and the tangent vectors. Thus we can
also write this in more compact form as

is a positive definite symmetric matrix for all x E MP. Then g(x) defines
an inner product on Tx(MP) as follows. Consider two tangent vectors in
Tx(MP), namely Lj aj (x)8j (x) and Lk bk(x)8k(x). Then we define the
inner product of these tangent vectors to be

(2.32)

(2.33)

(2.31)

p

L aj(x) 8j(x)
j=l

P

x(t) = LXj(t) 8j[x(t)]
j=l

defined in a neighborhood of z = (Xl, ... , xp) around t = O. These paths
pass through the point x at t = 0 and follow the axes of the coordinate
system about x. For each j = 1, ... , n we define8j(x) E Tx(MP) to be
the tangent vector to the path defined by formula (2.31) at the point z
where t = O.

The tangent vectors 8 l (x), 82(x), ..., 8p (x) collectively form a basis
for the tangent space Tx(MP). That is, any tangent vector in Tx(MP)
can be written as

The tangent space Tx(MP) can be shown to have the same dimension as
the manifold MP. So Tx(MP) is linearly isomorphic to Euclidean space
RP.

Within Tx(MP) it is possible to construct a set of basis vectors as
follows: For each j = 1, ...,p consider the path

Definition 2.2.4. The vector space of all tangent vectors to the manifold
MP at a given point x E MP is called the tangent space at x and is
denoted by Tx(MP).

It should be noted that the definition of the basis vectors 8l , 82 , ... , 8p

depends upon the particular coordinate system used. Under a change in the
coordinate system around x, a different set of basis vectors emerges. How
ever, both sets span the same space Tx(MP), whose elements are intrinsic
to the manifold and not artifacts of the choice of coordinate system.

As the tangent vector of formula (2.32) is a function of x, it defines a
tangent vector at every x E MP where the coordinate system is defined.
A function that assigns an element of Tx(MP) for every x E MP is
called a tangent vector field on MP. The tangent vector field is said to be a
C -vector field provided that when expressed in terms of the basis vectors
8 l(x), ..., 8p (x ) , the real valued functions aj are C-functions of x E MP.

where
X.(t) = dXj(t)

J dt (2.34)

.~ -

In the classical notation of differential geometry, the notation is even more
compact, with equation (2.37) written with the summation signs under
stood, following the Einstein summation convention. This classical nota
tion is not well suited to our purposes here. Therefore we shall continue to
use a less compact notation that includes summation signs.

Definition 2.2.5. The inner product defined on the tangent spaces of the
manifold by (2.37) is said to be a Riemannian metric tensor, or simply
a metric tensor on MP. A differential manifold endowed with a smooth
metric tensor is said to be a Riemannian manifold.

Metric tensors allow us to define inner products between tangent vectors at
the same point x E MP but do not define inner products between tangent
vectors at different points.



be the length of the vector x(t). The inner product generated by the metric
tensor can be calculated using formula (2.37). So we can write
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FIGURE 2.5. The geodesic path on a manifold displayed as the path of locally
shortest length. On the sphere we see a variety of paths between two points. The
shortest path is a geodesic between the two points, which in this case is an arc of
a great circle of the sphere.

for all j = 1, 2, ... , p. To interpret the partial derivatives in this formula,
note that for fixed t the expression -y( t) depends upon Xl (t), ...,x p (t) and
Xl(t), ...,xp(t) . Variation in the position coordinates Xj(t) is suppressed
in the notation, but arises from the metric tensor 9 in formula (2.41),
which is a function of (Xl,""Xp ) . The partial derivatives are understood
to be the partial derivatives in each of these 2p variables holding the other
2p - 1 variables fixed. The example in Section 2.2.10 below shows how to
interpret this formula in RP with the usual coordinate system. Problems
5 and 6 at the end of the chapter ask the reader to check the equations for
various settings.

the paths connecting the endpoints of the pieces are all the shortest paths.
This definition does not require that the endpoints of the path x( t) be
specified in order to determine whether it is a geodesic: the property can
be investigated locally along the path. See Figure 2.5. In Euclidean space
RP, the shortest distance between two points is, of course, a straight line.
Thus the geodesic paths of a manifold can be regarded as the analogs of
straight lines for spaces that are not flat. We can find formulas for geodesic
paths by applying the calculus of variations to the arc length formula (2.43)
above.

To find a condition to ensure that this path is minimal in length, we
consider a perturbation of the path along a coordinate. If the integral is
minimized then its derivative with respect to this perturbation is zero.
This leads to the following set of equations from the calculus of variations.
The path is a geodesic provided the Euler-Lagrange equations are satisfied,
namely that

(2.42)

(2.41)

(2.40)

(2.39)

(2.38)

P P

:E:E gjk(t)Xj(t)Xk(t)
j=lk=l

ds = -y(t) dt

P

x(t) = :EXj(t)Oj(t)
j=l

X(t) = t dX~?) OJ(t)
j=l

-y(t)

-y(t) = Ilx(t)11 = J< x(t), x(t) >

2. Background Concepts and Definitions

Therefore we can write the length of the path x(.) from t = to to

t = tl as

L = f
t ,

ds = it '
-y(t) dt . (2.43)

lto to

It should be noted that not only does the metric tensor determine the
lengths of arcs, but the metric tensor is also itself determined by thc arc
length. That is, if ds can be calculated for any increment of a path
from x(t) to x(t + dt) then there is at most one metric tensor 9 that
is compatible with this definition. In some cases, we shall determine the
structure of a Riemannian manifold by calculating the arc length function

ds.
Roughly speaking, a geodesic path on a Riemannian manifold is the path

between two points that has shortest length. This definition is a bit too
narrow to work but serves for the basic intuition. More correctly, we can
say that a geodesic x(t) is a path in a Riemannian manifold that is locally
shortest. This means that the path can be broken up into pieces such that

where 9jk(t) is the value of the metric tensor at x(t).
Suppose t undergoes a small increment to t + dt. Then, as in formula

(2.24), the length ds of the path segment from x(t) to x(t + dt) is

For any t let

where Xj(t) is the jth coordir~ateof x(t) and OJ(t) = OJ [x(t)] is the jth
basis vector of the tangent space Tx(t) (MP). In more compact notation,
this becomes

2.2.8 Geodesic Paths and Geodesic Distance

Consider a smooth path x(t) on a Riemannian manifold MP. The tangent
vector to the path at a time t is

48



Having defined the conceptof a geodesic path in a Riemannian manifold,
we are in a position to define the concept of the geodesic distance between
two points in the manifold.
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(2.45)

(2.46)

(2.49)
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, =

2.2.10 Example

8, Xj Xj

8xj , IIxll
This is a directional cosine of x. Thus the left-hand side measures how
this directional cosine of the tangent vector along the path changes. On
the right-hand side of the Euler-Lagrange equations the partial derivatives
are all zero because the metric tensor gjk in the formula for ,(t) is
a constant function of position x(t). Therefore, we see that the Euler
Lagrange equations reduce to stating that the directional cosines of the
path are constant. The path must therefore be a straight line.

2.2.11 Building New Manifolds From Old: Product Manifolds

Just as it is possible to build Euclidean spaces of arbitrarily high dimension
by taking Cartesian products of R, so it is possible to build differential
manifolds by taking Cartesian products of differential manifolds. Suppose
MP and Nq are differential manifolds of dimension p and q respectively.
We can make MP x Nq into a differentialmanifold by using charts of the
form

(Uo. x V{3 , Co. xC(3) (2.47)

where (Uo.,co.) is a chart on MP, (V{3,c{3) is a chart on Nq,and

The partial derivative fJ,/8xj on the left-hand side of (2.44) can be
computed directly from this formula by holding all other Xk constant for
k =1= [, We obtain

We consider the geodesics on RP and check that they are straight lines.
The usual Cartesian coordinates are used so that the atlas consists of a
single chart (RP, e), where e: RP -+ RP is the identity map. The metric
tensor g is the p x p identity matrix. Consider a smooth path x(t) in
RP. Then

phhe curvature of the manifold.

is defined by

The manifold MP x N? resulting from this definition is of dimension p+q.
Tangent spaces of MP x N? can be identified with Cartesian products of

,
, .

2. Background Concepts and Definitions

With this definition, a pathwise connected Riemannian manifold becomes
a metric space, as was defined in Problem 5 of Chapter l.

It can be shown that the path of shortest length is a geodesic in MP.
However, the converse does not hold. The length of a geodesic path from
x to y can be strictly greater than the geodesic distance from x toy.
This can easily be seen by considering the fact that on a sphere any great
circle passing through two distinct points can be subdivided into two paths
from one point to the other. Both of these paths are geodesics, but their
lengths need not be equal. It is the smaller of these two lengths that is the
geodesic distance from one point to the other.

Definition 2.2.6. Suppose that a Riemannian manifold MP is pathwise
connected, in the sense that for any two points x, yE MP there exists a
smooth path x(t) such that x(to) = x and x(t l ) = y. We define the
geodesic distance from x to y to be the length of the shortest path from
x to y.

2.2.9 Affine Connections

Closely related to the concept of a geodesic path is the concept of an affine
connection. We noted earlier that the metric tensor allows us to compare the
lengths and orientations oftangent vectors within a tangent space TAMP).
However, the metric tensor does not give us a direct method of compar
ing vectors in different tangent spaces, say Tx(MP) and Ty(MP). The
way we would naturally think of doing this is to rigidly transport a vector
from one place in the manifold to another. For example, we could draw a
geodesic from x to y and move a vector along the geodesic so that its
length remains constant and its angle with respect to the tangent vector
of the geodesic path is also constant. A method for transporting tangent
vectors is called an affine connection. The particular method just described
using geodesics and the metric tensor is called the Levi-Civita connection.
A curious property of connections such as the Levi-Civita connection is
that when vectors are transported around the manifold along a sequence of
geodesic paths, they can arrive back at their starting place with a different
orientation from the one they started with. This is paradoxical when we
recall that the method of transport associated with the Levi-Civita connec
tion requires that the orientation remain fixed with respect to the paths.
However, the reader can try it on a sphere and observe this, moving a vec
tor from the north pole to the equator, part way around the equator, and
back to the north pole again. This change in orientation is a consequence
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for all j = 1, 2, ... , p. To interpret the partial derivatives in this formula,
note that for fixed t the expression I(t) depends upon Xl (t), ..., xp(t) and
Xl(t), ...,xp(t) . Variation in the position coordinates Xj(t) is suppressed
in the notation, but arises from the metric tensor 9 in formula (2.41),
which is a function of (Xl, ... , xp ) . The partial derivatives are understood
to be the partial derivatives in each of these 2p variables holding the other
2p - 1 variables fixed. The example in Section 2.2.10 below shows how to
interpret this formula in RP with the usual coordinate system. Problems
5 and 6 at the end of the chapter ask the reader to check the equations for
various settings.

FIGURE 2.5. The geodesic path on a manifold displayed as the path of locally
shortest length. On the sphere we see a variety of paths between two points. The
shortest path is a geodesic between the two points, which in this case is an arc of
a great circle of the sphere.

the paths connecting the endpoints of the pieces are all the shortest paths.
This definition does not require that the endpoints of the path x(t) be
specified in order to determine whether it is a geodesic: the property can
be investigated locally along the path. See Figure 2.5. In Euclidean space
RP, the shortest distance between two points is, of course, a straight line.
Thus the geodesic paths of a manifold can be regarded as the analogs of
straight lines for spaces that are not flat. We can find formulas for geodesic
paths by applying the calculus of variations to the arc length formula (2.43)
above.

To find a condition to ensure that this path is minimal in length, we
consider a perturbation of the path along a coordinate. If the integral is
minimized then its derivative with respect to this perturbation is zero.
This leads to the following set of equations from the calculus of variations.
The path is a geodesic provided the Euler-Lagrange equations are satisfied,
namely that

(2.42)

(2.41)

(2.40)

(2.39)

(2.38)

P P

L L 9jk(t)Xj(t)Xk(t)
j=lk=l

ds = I(t) dt

P

x(t) = LXj(t)8j(t)

j=l

x(t) = t dX~it) 8j (t )
j=l

"I(t) = Ilx(t)11 = v< x(t), x(t) >

2. Background Concepts and Definitions

Therefore we can write the length of the path x(.) from t = to to

t = tl as

it, itl
L = ds = "I(t) dt . (2.43)

to to

It should be noted that not only does the metric tensor determine the
lengths of arcs, but the metric tensor is also itself determined by the arc
length. That is, if ds can be calculated for any increment of a path
from x(t) to x(t + dt) then there is at most one metric tensor 9 that
is compatible with this definition. In some cases, we shall determine the
structure of a Riemannian manifold by calculating the arc length function

ds.
Roughly speaking, a geodesic path on a Riemannian manifold is the path

between two points that has shortest length. This definition is a bit too
narrow to work but serves for the basic intuition. More correctly, we can
say that a geodesic x(t) is a path in a Riemannian manifold that is locally
shortest. This means that the path can be broken up into pieces such that

where 9jk(t) is the value of the metric tensor at x(t).
Suppose t undergoes a small increment to t + dt. Then, as in formula

(2.24), the length ds of the path segment from x(t) to x(t + dt) is

be the length of the vector x(t). The inner product generated by the metric
tensor can be calculated using formula (2.37). So we can write

For any t let

-----------------------=~-------------------------

where Xj(t) is the jth coordinate of x(t) and aj(t) = aj[x(t)] is the jth
basis vector of the tangent space Tx(t) (MP). In more compact notation,

this becomes

2.2.8 Geodesic Paths and Geodesic Distance

Consider a smooth path x( t) on a Riemannian manifold MP. The tangent
vector to the path at a time t is
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Having defined the concept of a geodesic path in a Riemannian manifold,
we are in a position to define the concept of the geodesic distance between
two points in the manifold.

Definition 2.2.6. Suppose that a Riemannian manifold MP is pathwise
connected, in the sense that for any two points x, y E MP there exists a
smooth path x(t) such that x(to) = x and x(t1) = y. We define the
geodesic distance from x to y to be the length of the shortest path from
x to y.
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(2.45)

(2.46)

(2.49)

2.2 Differential Geometry

P

LXJ(t)
j=l

'Y =

2.2.10 Example

ofthe curvature of the manifold.

8'Y Xj Xj

8xj 'Y Ilxll
This is a directional cosine of X. Thus the left-hand side measures how
this directional cosine of the tangent vector along the path changes. On
the right-hand side of the Euler-Lagrange equations the partial derivatives
are all zero because the metric tensor gjk in the formula for 'Y(t) is
a constant function of position x(t). Therefore, we see that the Euler
Lagrange equations reduce to stating that the directional cosines of the
path are constant. The path must therefore be a straight line.

We consider the geodesics on RP and check that they are straight lines.
The usual Cartesian coordinates are used so that the atlas consists of a
single chart (RP, e), where e: RP -+ RP is the identity map. The metric
tensor g is the p x p identity matrix. Consider a smooth path x(t) in
RP. Then

The partial derivative 8'Y/8xj on the left-hand side of (2.44) can be
computed directly from this formula by holding all other Xk constant for
k -I j. We obtain

2.2.11 Building New Manifolds From Old: Product Manifolds

Just as it is possible to build Euclidean spaces of arbitrarily high dimension
by taking Cartesian products of R, so it is possible to build differential
manifolds by taking Cartesian products of differential manifolds. Suppose
MP and N? are differential manifolds of dimension p and q respectively.
We can make MP x Nq into a differential manifold by using charts of the
form

CUe< x V,a , Ce< x c,a) (2.47)

where (Uc",ce<) is a chart on MP, (V,a,c,a) is a chart on Nq,and

is defined by

The manifold MP x N? resulting from this definition is of dimension p+q.
Tangent spaces of MP x Nq can be identified with Cartesian products of

2. Background Concepts and Definitions

2.2.9 Affine Connections

Closely related to the concept of a geodesic path is the concept of an affine
connection. We noted earlier that the metric tensor allows us to compare the
lengths and orientations of tangent vectors within a tangent space Tx (MP).
However, the metric tensor does not give us a direct method of compar
ing vectors in different tangent spaces, say Tx(MP) and Ty(MP). The
way we would naturally think of doing this is to rigidly transport a vector
from one place in the manifold to another. For example, we could draw a
geodesic from x to y and move a vector along the geodesic so that its
length remains constant and its angle with respect to the tangent vector
of the geodesic path is also constant. A method for transporting tangent
vectors is called an affine connection. The particular method just described
using geodesics and the metric tensor is called the Levi-Civita connection.
A curious property of connections such as the Levi-Civita connection is
that when vectors are transported around the manifold along a sequence of
geodesic paths, they can arrive back at their starting place with a different
orientation from the one they started with. This is paradoxical when we
recall that the method of transport associated with the Levi-Civita connec
tion requires that the orientation remain fixed with respect to the paths.
However, the reader can try it on a sphere and observe this, moving a vec
tor from the north pole to the equator, part way around the equator, and
back to the north pole again. This change in orientation is a consequence

With this definition, a pathwise connected Riemannian manifold becomes
a metric space, as was defined in Problem 5 of Chapter 1.

It can be shown that the path of shortest length is a geodesic in MP.
However, the converse does not hold. The length of a geodesic path from
x to y can be strictly greater than the geodesic distance from x to y.
This can easily be seen by considering the fact that on a sphere any great
circle passing through two distinct points can be subdivided into two paths
from one point to the other. Both of these paths are geodesics, but their
lengths need not be equal. It is the smaller of these two lengths that is the
geodesic distance from one point to the other.
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(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

2.2 Differential Geometry/
/

We can also define (Vh)x directly using coordinates on the manifold. In
terms of the coordinates

Definition 2.2.7. The mapping (Vh)x in formula (2.55) above is called
the derivative of h at X E MP I and can be shown to be a linear transfor
mation between the tangent spaces.

h : MP ----> N? (2.54)

be 'a differentiable function, and suppose that x(t) is a smooth path in
MP. Then h[x(t)] can be seen to be a smooth path in the manifold Nq.

Differentiable mappings preserve tangency. For example, if Xo is any
point on the path x(t), and if y(t) is a path in MP that is tangent to
x(t) at xo, then h[y(t)] is tangent to h[x(t)] at the point h(xo) E N". It
follows from this fact that h maps the equivalence class of paths in MP
tangent to x(t) at Xo to the equivalence class of paths in Nq tangent
to h[x(t)] at h(xo). But these equivalence classes are tangent vectors at
Xo and h(xo) respectively. So this defines a mapping

extend our definition to the case where h is defined between differential
manifolds.

Let

Let ~l' ,8r: be the coordinate basis of Tx(MP), and correspondingly,
let 81 , , 8q be the coordinate basis for Th(x)(Nq). Then (Vh)x can
be expressed in terms of these basis vectors as . .

a ----> Aa

where

suppose that we can write hex) as

bk = taj 8hk

j=l 8xj

The expression can be seen to be left multiplication

where a = (al, ... ,ap ) is the row vector of coefficients and A is the
Jacobian matrix of the coordinate transformation from RP to Rq.

(2.53)

(2.52)

(2.51)

(2.50)

U n N" = {x E U : xq+l = xq+2 = ... = xp = O}

2. Background Concepts and Definitions

make a local smooth coordinate system of the right dimension on the sub
manifold.

Using the coordinate system X = (Xl' X2, ... , X p ) we can set up the basis
81,cJz ,... ,8p for the tangent space Tx(MP). Among these basis vectors,
the first q tangent vectors Eh, 82, ... ,8q form a basis for the tangent
space Tx(Nq). Thus any tangent vector in Tx(Nq) can be written as
'L.:]=l aj(x)8j(x). If MP is a Riem~nnian manifold, then Nq can be
made into a Riemannian manifold by inheriting the concept of arc length
from MP. A geodesic path in Nq is simply a path of shortest length in
MP among those constrained to lie wholly within Nq. If 9 is the metric
tensor associated with the coordinate system (Xl, ... , xp ) then the induced
metric tensor on N? is constructed as the q x q matrix consisting of the
first q rows and columns of g.

2.2.12 Building New Manifolds From Old: Bubmanifolds

2.2.13 Derivatives of Functions between Manifolds

In 2.2.1, we defined the derivative of a differentiable function h: U ----> V,
where U and V are open sets of RP and Rq respectively. We shall now

More informally we can say that a q-dimensional submanifold of MP is a
subset that is locally diffeomorphic to a linear subspace. The submanifold
N" inherits a coordinate system from this construction. The coordinates

With this understanding, we can make MP x Nq into a Riemannian
manifold by putting the metric tensor elements as blocks down the main
diagonal. If gM is a metric tensor on MP and gN is a metric tensor on
N" then an appropriate metric on MP x Nq is

It is also possible to construct new manifolds by looking inside a manifold.
Suppose N? is a.subset of a differential manifold MP. We say that N? is
a q-dimensional submanifold of MP for q < p if for every point y E N",
there exists a smooth coordinate system x = (Xl, ... , X p ) on some open set
U c MP containing y such that

thoseof MP and N? so that
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(2.70)

(2.69)

(2.68)

(2.61')

2.2 Differential Geometry

d(x,y) = cos"! « x,y »

d(x, y) = r cos"! (r-2 < X, Y »

2.2.15 Example: Real Projective Spaces

In R 3 , consider the set of all lines passing through the origin. Any such
line can be represented as the set of scalar multiples

The Cartesian product 8P x sq of two spheres SP and sq is a
generalization of a torus, which becomes the special case when -p = q = 1.
Although the representation of the torus 8 1 x 8 1 is as a subset of R 4

this torus is well known to be diffeomorphic to a surface in R 3 that i~
the boundary of a doughnut. See Problem 2. However, the next example
we shall consider is a two-dimensional manifold or surface that cannot be
represented as a subset of R 3 .

where again <.,. > is the usual inner product on RP+l. More generally,
on the sphere SP (r), the geodesic distance from X to y is

can be imposed on SP(r) in a manner similar to the 2-sphere above. The
j-sphere s' is simply the unit circle.

The usual geodesic distance betweentwo points of SP is the shorter of
the two arcs of the great circle joining the points. This is simply the angle
made between the two vectors from the origin to the two points. Thus if
X and yare elements of 8P C RP+l the geodesic distance from X to
y is given by

Again, we let 8P denote the sphere of radius r = 1. An atlas

(2.64)

(2.63)

(2.62)

(2.61)

2. Background Concepts and Definitions

Similarly, we define Cl-(X) = (X2,X3) on Ul-. Charts C2+,C2-,C3+, and
C3- on the other open sets are defined correspondingly.

Although these coordinate systems establish 82 (r ) as a differential
manifold, there are more charts than necessary. A minimum of two charts
is necessary to define an appropriate atlas on 8 2 (r ) that corresponds to
our intuitive understanding of the geometry of the sphere. For practical
calculations, it is usually sufficient to set up a coordinate system through
a single chart. These coordinates are the longitude (h and the colatitude
(J2, defined so that the point

has coordinates ((Jr, (J2).
To impose the usual metric of great circle distance on 8 2 (r) we introduce

the metric tensor 9 = (gjk) for the coordinate system ((Jr, (J2) where

For notational simplicity, we typically let 82 denote the special case where
82 (r ) has canonical radius r = 1. The set 82 (r ) is called the 2-sphere of
radius r. We can put an atlas on 82 (r ) using the open sets Ul+, Ul - ,

and correspondingly the open sets U2+,U2- and U3+, U3-, where Uj+
and Uj _ are the set of points of 82 (r ) with positive and negative xr
coordinate respectively. To define a chart on Ul+ we set
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2.2.14 Example: The Sphere

We finish this chapter with some examples of differential manifolds that
will be useful in the next chapter. Examples of manifolds that are surfaces
in R 3 (and one surface that is not) can be found in Problems 2-6 at the
end of the chapter. .

In R3, let 82(r ) , r » 0 be the set of all points z = (Xl, X2, X3) such
that

and
(2.65)

The off-diagonal elements g12 = g21 are set to zero. The geodesics of the
manifold can be shown to be arcs of great circles.

Extending to arbitrary dimensions is straightforward. In general, the p
sphere of radius r will be denoted 8P(r ) and can be identified with the
set of all points (Xl, X2, ... , x p ) in RP such that

Definition 2.2.8. We call the set of such lines through the origin real
projective 2-space and symbolize it as RP2. As any line through the origin
meets the unit sphere about the origin in exactly two antipodal points, it can
be seen that real projective 2-space is naturally identifiable with the set of
all pairs of antipodal points on the unit sphere.

X~ + x~ + ... + x; = r2 (2.66) See Figure 2.6. This representation is particularly useful in making Rp2
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(2.54)

(2.55)

(2.56)

(2.57)

(2.59)

(2.58)

(2.60)

2.2 Differential Geometry

;
I

/

/

Definition 2.2.7. The mapping (Dh)x in formula (2.55) above is called
the derivative of h at X E MP, and can be shown to be a linear transfor
mation between the tangent spaces.

I
be 'a differentiable function, and suppose that x(t) is a smooth path in
MI'. Then h[x(t)] can be seen to be a smooth path in the manifold N".

Differentiable mappings preserve tangency. For example, if Xo is any
point on the path x(t), and if yet) is a path in MP that is tangent to
x(t) at xo, then h[y(t)] is tangent to h[x(t)] at the point h(xo) E N", It
follows from this fact that h maps the equivalence class of paths in MP
tangent to x(t) at Xo to the equivalence class of paths in N? tangent
to h[x(t)] at h(xo). But these equivalence classes are tangent vectors at
Xo and h(xo) respectively. So this defines a mapping

extend our definition to the case where h is defined between differential
manifolds.

Let

We can also define (Dh)x directly using coordinates on the manifold. In
terms of the coordinates

Let ~1' , Of be the coordinate basis of Tx(Mp), and correspondingly,
let 01 , , Oq be the coordinate basis for Th(x)(Nq). Then (Dh)x can
be expressed in terms of these basis vectors as

X = (Xl, X2, ... , Xl')

suppose that we can write hex) as

a --> Aa

where

where a = (a 1, ... , ap ) is the row vector of coefficients and A is the
Jacobian matrix of the coordinate transformation from RP to Rq.

I'
bk = Laj ohk

j=l OXj

The expression can be seen to be left multiplication

(2.53)

(2.52)

(2.51)

(2.50)

Un N? = {x E U : xq+l = Xq+2 = ... = xl' = O}

2. Background Concepts and Definitions

2.2.12 Building New Manifolds Prom Old: Submanifolds

2.2.13 Derivatives of Functions between Manifolds

In 2.2.1, we defined the derivative of a differentiable function h: U --> V,
where U and V are open sets of RP and R? respectively. We shall now

make a local smooth coordinate system of the right dimension on the sub
manifold.

Using the coordinate system x = (Xl,X2, ... ,xp) we can set up the basis
01,{)2,.."Op for the tangent space Tx(Mp). Among these basis vectors,
the first q tangent vectors 01,~, ... , Oq form a basis for the tangent
space Tx(Nq). Thus any tangent vector in TANq) 'can be written as
2:3=1 aj(x)oj(x). If MP is a Riemannian manifold, then N? can be
made into a Riemannian manifold by inheriting the concept of arc length
from MI'. A geodesic path in N" is simply a path of shortest length in
MP among those constrained to lie wholly within N". If 9 is the metric
tensor associated with the coordinate system (Xl, ..., Xl') then the induced
metric tensor on N? is constructed as the q x q matrix consisting of the
first q rows and columns of g.

More informally we can say that a q-dimensional submanifold of MP is a
subset that is locally diffeomorphic to a linear subspace. The submanifold
N? inherits a coordinate system from this construction. The coordinates

It is also possible to construct new manifolds by looking inside a manifold.
Suppose N? is a subset of a differential manifold MI'. We say that N" is
a q-dimensional submanifold of MP for q < p if for every point y E Nq,
there exists a smooth coordinate system x = (Xl, ..., Xl') on some open set
U c MP containing y such that

With this understanding, we can make MP x N? into a Riemannian
manifold by putting the metric tensor elements as blocks down the main
diagonal. If gAl is a metric tensor on MP and 9N is a metric tensor on
N? then an appropriate metric on MP x N" is

those' of MP and N? so that
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2.2.14 Example: The Sphere

We finish this chapter with some examples of differential manifolds that
will be useful in the next chapter. Examples of manifolds that are surfaces
in R 3 (and one surface that is not) can be found in Problems 2-6 at the
end of the chapter.

In R3, let S2(r) , r > 0 be the set of all points x = (XL,X2, X3) such
that

Again, we let SP denote the sphere of radius r = 1. An atlas

(2.67)

(2.70)

(2.69)

(2.68)d(x, y) = cos- l « X, y »

d(x, y) = r cos"! (r- 2 < X, Y »

2.2.15 Example: Real Projective Spaces

In R 3, consider the set of all lines passing through the origin. Any such
line can be represented as the set of scalar multiples

The Cartesian product SP x sq of two spheres SP and sq is a
generalization ofa torus, which becomes the special case when p = q = 1.
Although the representation of the torus 8 1 x Sl is as a subset of R 4 ,

this torus is well known to be diffeomorphic to a surface in R3 that is
the boundary of a doughnut. See Problem 2. However, the next example
we shall consider is a two-dimensional manifold or surface that cannot be
represented as a subset of R 3.

where again <.,. > is the usual inner product on RP+I. More generally,
on the sphere SP(r), the geodesic distance from X to yis

can be imposed on 8 P(r ) in a manner similar to the 2-sphere above. The
I-sphere Sl is simply the unit circle.

The usual geodesic distance betweehtwo points of SP is the shorter of
the two arcs of the great circle joining the points. This is simply the angle
made between the two vectors from. the origin to the two points. Thus if
x and y are elements of SP c RP+1the geodesic distance from X to
y is given by

..~
l;

(2.63)

(2.64)

(2.62)

(2.61)

Similarly, we define Cl_(X) = (X2,X3) on Ul - . Charts £:2+,C2-,C3+, and
C3- on the other open sets are defined correspondingly.

Although these coordinate systems establish S2(r) as a differential
manifold, there are more charts than necessary. A minimum of two charts
is necessary to define an appropriate atlas on S2(r) that corresponds to
our intuitive understanding of the geometry of the sphere. For practical
calculations, it is usually sufficient to set up a coordinate system through
a single chart. These coordinates are the longitude fh and the colatitude
fh, defined so that the point

has coordinates (01,0 2 ) ,

To impose the usual metric of great circle distance on S2(r) we introduce
the metric tensor 9 = (9jk) for the coordinate system (01 , O2) where

For notational simplicity, we typically let S2denote the special case where
S2(r) has canonical radius r = 1. The set S2(r) is called the 2-sphere of
radius r, We can put an atlas on S2(r) using the open sets Ul+, Ul - ,
and correspondingly the open sets U2+, U2- and U3+, U3-, where Uj+
and Uj _ are the set of points of S2(r) with positive and negative Xj

coordinate respectively. To define a chart on Ul+ we set

and
2922. = r (2.65)

The off-diagonal elements g12 = g2l are set to zero. The geodesics of the
manifold can be shown to be arcs of great circles.

Extending to arbitrary dimensions is straightforward. In general, thep
sphere of radius r will be denoted. SP(r) and can be identified with the
set of all points (Xl, X2, ... , x p ) in RP such that

(2.66)

Definition 2.2.8. We call the set of such lines through the origin real
projective 2-space and symbolize it as RP2. As any line through the origin
meets the unit sphere about the origin in exactly two antipodal points, it can
be seen that real projective 2-space is naturally identifiable with the set of
all pairs of antipodal points on the unit sphere.

See Figure 2.6. This representation is particularly useful in making Rp2
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(2.82)

(2.83)

(2.81)

(2.80)

(2.79)

(2.78)

(2.77)

(2.76)

2.2 DifferentialGeometry

foA: 8 2 -> R

where 8 1 and 82 form a coordinate basis for Tx(82
) . Let 8; = (VA)x(8j )

for j = 1,2. Then 8~ and a; form a basis for TA(x)(R p 2). If in addition,
we set

becomes a linear isometry between tangent spaces.
With this metric tensor on Rp2, the covering map A maps the geodesic

great circles of 8 2 to geodesic paths in Rp2 and A becomes a local
isometry between Riemannian manifolds. That is, if x and yare points
of 8 2 separated by a geodesic distance of less than 'ff /2 then the geodesic
distance from x to y in 8 2 equals the geodesic distance from A(x) to
A(y) in R P 2 . However, the two manifolds are not isometric because A
is not 1-1.

then

is a linear transformation of full rank, i.e., is onto, at all points x E 8 2 .

This fact can be used to motivate a particular choice of metric tensor on
RP2. As (VA)x maps onto TA(x) (RP2), we can write any element of
this tangent space as

is differentiable. Another property of the covering mapping A is that its
derivative

This particular differential structure on Rp2 has the property that a
function f: Rp2 -> R is differentiable if and only if the function

Similarly, we define C2: U2 -> R 2 to be

where Uj+ and Uj _ are as defined for the sphere 8 2 above. Define
Cl'i U1 -> R 2 to be

011 Rp2 by defining the three open sets

(2.75)

(2.74)

(2.73)

(2.72)

(2.71)

/
/

/

/
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\
\

\
\

\

A(x) = {x, -x}

/
/

/

\
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\

\
\ ,
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2. Background Concepts and Definitions

These three sets are open in the natural topology on RP2. For any real
number a =I 0, let sgn(a) denote the sign of the number a. We construct
charts

Similarly, we have

To make Rp2 into a differential manifold, we can modify the charts of
Example 2.2.1. Note that

into a differential manifold. Note that there is a natural mapping

FIGURE 2.6. Real projective 2-space represented as the space of lines passing
through the origin in 3-dimensional Euclidean space. Each line defines a pair of
antipodal points on the unit sphere. Therefore a 1-1 correspondence exists between
such lines and pairs of antipodal points.

that maps any point of the unit sphere to the set of two antipodal points
of which it is an element. This mapping is an example of a special type of
differentiable function between manifolds called a covering mapping. The
image under A of any point x = (Xl, X2, X3) E 8 2 is the pair of antipodal
points
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(2.88)

(2.87)

(2.86)

2.2 DifferentialGeometry

in a great circle. These circles partition the sphere, so that any point
(Zl, Z2, ... , Zp+l) in 8 2p+l will be an element of a unique circle of the
form

found by taking a point (Zl, Z2, ... , Zp+l) E Cp+l distinct from the origin
and drawing the complex line through this point and the origin (0,0, ... ,0).
Any such complex line intersects the sphere

Let us call this circle O(Zl, Z2, ... , zp+d. The use of the symbol 0 reflects
the fact that these great circles are orbits, or equivalence classes, in the ter
minology of differential geometry. To a certain extent our low-dimensional
intuition fails us here, because we are used to having geodesic great cir
cles of the 2-sphere 8 2 always intersecting. However, the spheres we are
considering are 3-spheres or of higher dimension. The additional room that
this provides allows for the partition of the spheres (in certain cases) into
great circles.

We can build charts on the set of such great circles as follows: For j =
1,2, ...,p + 1 let Uj be the set

Uj = {O(Zl, ... , Zj, ... , Zp+l) E CpP Zj l' O} (2.89)

2.2.16 Example: Complex Projective Spaces

The manifolds that we shall consider next will be written with complex
coordinates in what follows. However, they can be understood as examples
of the differential manifolds that we have been discussing up to now. This
can be seen through the identification of R 2 with the complex plane C.
The differential manifold CpP that we shall consider will have p complex
dimensions or equivalently 2p real dimensions. It can be regarded as a
collection of complex lines through the origin in Cp+l or as a collection of
planes through the origin in R 2P+2. Note that the latter interpretation has
to be made with some care after identifying R 2 with C. Every complex
line through the origin of CP can be considered as a plane through the
origin in R 2p+2. However, the converse is not true. Similarly, we saw earlier
that every unitary transformation of CP is an orthogonal transformation
of R 2p, without the converse holding.

Let CpP be the collection of all complex lines

tained by replacing the real coordinates of Euclidean space RP+l with
complex coordinates. We shall encounter this space in the context of shape
manifolds in Section 3.2 in the next chapter.

.;~

":J.
-:-<:. I

':j

~
t
,

(2.85)

2. Background Concepts and Definitions

Definition 2.2.9. We define real projective p-space, denoted by Rpp,
to be the space of lines through the origin in RP+l. This space can be
interpreted as the set of antipodal pairs of points on the p-dimensional
unit sphere SP C RP+l .

by noting that the covering map A wraps the circle 8 1, whose circumfer
ence has length 21f twice around the circle Sl(1/2), whose circumference
has length 1f. This is akin to winding a thread tightly twice around a spool
and then joining the ends of the thread to form a loop. The change of ra
dius by a factor of one half is a natural consequence of the fact that the
covering mapping A is 2 to 1.

A consequence of this construction is that the geodesic distance between
two points A(x ) and A(y) in RpP is found to be the smaller of the two
geodesic distances from d(x, y) and d(x, -y) in SP. This can be used as
a definition of the metric on RPP without reference to the metric tensor.
Furthermore, the image under the mapping A of a geodesic great circle
path in 8P is a geodesic path in RpP.

The projective spaces RpP have a role in the representation of shapes.
In Section 1.4.1, we noted that the pre-shape of n landmarks along a line
can be represented as a point on a sphere of dimensionn -2. Antipodal
points on this sphere represent the pre-shapes of reflected configurations.
For example, if Xl, X2, and X3 are three landmarks on the real line,
then the pre-shapes of (Xl, X2, X3) and (-Xl, -X2, -X3) are antipo
dal points on the circle. This can be seen in Figure 1.3, where the three
pairs of antipodal points displayed are the pre-shapes of equally spaced
landmarks. So the projective spaces Rpn-2 are appropriate manifolds
for representing the pre-shapes of aligned landmarks when the distinction
between a configuration and its reflection is. ignored. This is particularly
appropriate for the example in Section 1.4.1, wherea reflection along the
line of alignment corresponds to a rotation by 1800 in the plane in which
the images lie. We can summarize this by saying that the shapes of n 2: 3
aligned landmarks in the plane can be naturally represented as elements of
the real projective space Rpn-2.

A variant of real projective space, which we shall consider next, is ob-

The constructions above generalize in a natural way. Again, the covering
map A: SP -> RpP establishes a local isometry between SP and RpP
that is not an isometry. To visualize what this means, consider the case
where p = 1. In this case, it can be shown that Rpl is a circle of radius
1/2. We can establish a local isometry between a circle

Extensions, some straightforward and others more substantial, are pos
sible.
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(2.97)

(2.96)

Geodesic

Horizontal Geodesic

Vertical Orbits

O(z)

Plugging this in, we see that

The inner product we are working with here is the inner product on S2P+l

as embedded in R 2p+2 . We can write this in terms of the Hermitian inner
product on S2p+l as embedded in Cp+1. This becomes

< x, y > ~ !Il(4: x, y:») ~ !Il (~X;Y;) (2.93)

where Xj and Yj are the jth complex coordinates of x and Y

respectively. The next observation we make is that the minimization can
be achieved by fixing x = Z and writing Yj = ei8wj, where i = y"=1,
minimizing over 0:::; 0 < 21f. Thus

d [O(z), O(w)] ~;nr {ooo-. [!Il%Z;V"wj)] ,0 < 0 < 2~} (2.94)

We can perform the minimization by maximizing the sum with respect to
O. Now

R [e-W(zjwj)] = cos(O)R(zjwj) + sin(O)8'(zjwj) (2.95)

and so the maximum can be found by differentiating with respect to 0
and setting the result equal to zero. This yields

,",p+l "L.Jj=l ZjWj

l ,",p+ 1 "IL.Jj=l ZjWj

FIGURE 2.7. Complex projective space represented as a space of circles on the
sphere. In this picture, a small portion of a sphere is seen with circular arcs (the
orbits) displayed vertically. Prom a given point on the left orbit of the picture, a
variety of geodesics (great circle arcs) can be drawn to the right orbit. A "hor
izontal" geodesic will have the shortest length and will meet "vertical" orbits at
right angles. The distance between two orbits is the shortest great circle path from
one arc to another.

(2.91)

x E CJ(z),y E O(w)] (2.92)inf [cos-1 « z , y >)

d[O(z),O(w)] = inf [d(x,y)] : x E O(z);y E O(w)]

d[O(z),O(W)\

It remains to construct a metric on the manifold CPp. Rather than
beginning at the local level, so to speak, with the construction of the metric
tensor, it will be more convenient to define geodesic distance globally on
CpP and to note that it leads to a Riemannian geometry on the differential
manifold. Let us contract our notation a bit more here by letting z stand
for the full vector (Zl, ... , zp+d, which lies in S2p+l. Similarly O(z) will
be the element of CpP in which Z lies. Now suppose we wish to define
the geodesic distance between two elements O(z) and O(w) of CPp.
Write w = (w1, ... ,wp+d. We could naturally define the distance between
O(z). and O(w) to be

where d(x, y) is the geodesic distance on S2p+1 from x to y. We can
intuitively think of this formula as saying that the distance from one great
circle to another is the shortest gap between them. See Figure 2.7. Now,
while this is a perfectly well-defined quantity, there is no reason a priori to
suppose that this satisfies the properties that a distance measure, or metric,
has. In particular, the triangle inequality has to be checked carefully. The
triangle inequality does hold, in a sense, because of the symmetry of the
sphere S2p+1. The minimum can be achieved at every value of z by
minimizing over y , or correspondingly, at every value of y by minimizing
over x.

The reader should note the similarity between our construction here and
the Procrustean minimization of formula (1.18) in Section 1.3 of the previ
ous chapter. The differences in notation and context should not disguise the
fact that the geometric situations are equivalent. In Section 1.2, the points
on the sphere were pre-shapes and the orbits or great circles were shapes.
We proceed similarly. Writing the geodesic distance on S2p+1 explicitly,
we have

Definition 2.2.10. We define complex projective p-space, denoted by
CpP, to be the set of complex lines through the origin in C p+1 as in
formula (2.86) above. This space can be naturally identified with the set of
great circles of S2p+1 defined by formula (2.88).

O(Zl, ... ,Zj, ...,Zp+1) ----> (zdzj, ... ,zj-dzj,ZHdzj"",zp+dzj) (2.90)

This coordinate system maps the open set Uj onto CP ~ R 2P. Patching
these charts together makes CpP into a differential manifold.

We can summarize this as follows:

On Uj we can set up the coordinates
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(2.104)

(2.102)

(2.101)

(2.100)

2.2 Differential Geometry

w

HS2={zEC: !2S(z»O}

z = a + r cos({3z) + i r sin(,Bz)

l
w rPw {[1 - cos({3w)] sin({3z) }

z ds = Jp: csc({3) d{3 = log [1 - cos({3z)] sin({3w) .

and

ds2 = Idzl
2

[~(z')J2

Using this complex notation, we can calculate the geodesic distance between
two points z and w in HS2 by integrating ds, given by formula (2.101),
along a geodesic path from z to w. As we noted above, these geodesics
are circles that are orthogonal to the real axis (with vertical straight lines
as the limiting case). Let z and w lie on a geodesic circle centered at
a with radius r. As the circle is orthogonal to the real axis, the point
a must be a real number. Let rays be drawn from a to z and w
making counterclockwise angles {3z and {3w with the real axis. A simple
calculation will show that the geodesic distance from z to w is a function
of {3z and (3w alone, the quantities a and r disappearing from the
final answer. To see this, note that we can write

w = a + r cos({3w.) + i r sin(,Bw) (2.103)

where i = yCI. Then the geodesic distance from z to w is given by

with

the Euler-Lagrange equations, we find that the geodesic paths of HSP
are half circles orIines that meet the boundary x p = 0 orthogonally. An
important special case is p = 2, which is called the Poincare Plane. See
Figure 2.8.

It is convenient to represent HS2 using complex coordinates as

FIGURE 2.8. The Poincare Plane. Geodesic paths in the Poincare Plane are the
arcs of circles that meet the x-axis at right angles. In the limiting form, as the
radius goes to infinity, these circles become vertical lines, which are also geodesics.

(2.98)

2. Background Concepts and Definitions

2.2.17 Example: Hyperbolic Half Spaces

Consider the Riemannian manifold consisting of the upper half space in
RP given by

gjj(Xl' ... , xp) = X;2 (2.99)

for all j = 1, ... ,p and gjk = 0 for all 1 S; j f k S; p. The reader will
notice the similarity between this space and ordinary Euclidean space. The
major difference is the appearance of the last coordinate in the denominator
of the diagonal terms of the metric tensor.

Definition 2.2.11. The space HSP with the metric tensor of formula
(2.99) is called the hyperbolic half space of dimension p.

and metric tensor

The family of hyperbolic half spaces HSP represents the negative cur
vature counterpart of the family of positively curved spheres SP. Solving

This is the famous Fubini-Study metric on CPp. As inSection 1.3, when
considering distances between shapes, we note that the maximum distance
between elements of CpP is IT /2. In addition, the right-hand side in this
distance formula does not depend upon the specific choice of z and w
within the orbits O(z) and O(w). The modulus operation nullifies the ef
fect of this selection, which corresponds to multiplication of the coordinates
by a common complex factor of modulus one.

As this provides us with a metric on CpP we can now consider the
geodesics on this manifold. In Section 2.2.15, we found that the geodesics
on RpP were images under the covering map A of geodesic great circle
paths of SP. It is natural to consider whether this is the case here. In fact,
the geodesics of GpP are images of geodesics on S2p+l. However, they
are images of particular geodesics called horizontal geodesics. Intuitively,
we think of the orbits of S2p+l as arranged vertically with the mapping
S2p+l ~ Cpp as mapping downwards. Thus the horizontal geodesics are
always perpendicular to the orbits. See Figure 2.7. These geodesics are great
circle paths of S2p+l with the property that they intersect the orbits O(z)
orthogonally. More precisely, we can say that a great circle path z(t) is
horizontal if for every t the tangent vector z(t) is orthogonal to the
vectors of the tangent space of O[z(t)]. It is not the case, in general, that
any two points in S2p+l can be joined by a horizontal geodesic. However,
if z and ware chosen from O(z) and O(w), respectively, so as to
minimize the geodesic distance as above, then z and w can be joined
by a horizontal geodesic. The construction of horizontal geodesics will play
an important role in Chapter 3, where we shall consider them in greater
detail.
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(2.113)

(2.112)

(2.111)

(2.109)

(2.110)

2.2 Differential Geometry

10
hex) = -

X

h,h:R-+R

-Jx2 - 102
hex) = + log (x + y'x2 - 102)

X .

Now define

by

Formula (2.112) maps the region of the Poincare Plane where -err < Xl ::::;

eJr to a surface

in R 3 . See Figure 2.10. While this representation is perhaps the most intu
itive way to represent a space of constant negative curvature, the Poincare
Trumpet is the least satisfactory in other respects. If the representation is
extended to the entire half plane then the mapping ceases to be 1-1. The
mapping of the entire half plane onto the trumpet is, in fact, a covering
map that wraps the half plane infinitely many times around the trumpet.
Thus the correspondence is only locally correct.

and

this surface and HS2 so that the geodesics of HS2 correspond to the
geodesics of the curved surface. To do this, we can construct the Poincare
Trumpet HT2

. It is convenient to use real coordinates (Xl, X2) on the
upper half plane of R 2 in this case. For arbitrary 10 > 0, define the
functions

FIGURE 2.9. The Poincare Disk. Geodesic paths in the Poincare Disk are the
arcs of circles that meet the boundary of the disk at right angles. In the limiting
form, as the radius of these arcs goes to infinity, they become diameters of the
disk and are also geodesics.

(2.108)

(2.107)

(2.105)

HD2 = {w E C : Iwi < 1}

l
w

l\.'f(W) du [C;S(W)]ds = - = log --
z \.'f(z) U C;S(z)

2, Background Concepts and Definitions

where C;S(w);::: ~(z) > O. This particular formula will have an important
role to play when we examine shape variation due to affine transformations
in Chapter 3.

The transformation

where we choose the direction of integration so that 0::::; f3z < f3w ::::; rr.
From formula (2.104), we can see that the real axis C;S(z) = 0 is not

really a boundary at all, but rather an infinite horizon. Half circles that
are geodesics in the upper half plane HS2 have finite length as measured
by Euclidean geometry, but have infinite length when measured using the
hyperbolic formula of (2.104). The difference is a consequence of the ap
pearance of C;S(z) in the denominator of the formula for the metric tensor.
This has the effect of greatly inflating distances compared to the Euclidean
metric between points close to the real axis.

As we noted above, the geodesic curves of HS2 include not only the
circles of the half plane that meet the real axis orthogonally, but also
vertical lines of the form W( z) = constant. These can be thought of as
geodesic circles that have infinite radius. For points z and w connected
by such a geodesic, formula (2.46) must be interpreted with some care. As
~(z) = ~(w), we can simply integrate formula (2.101) along the imaginary
coordinates on which they differ. Alternatively, we can take the limiting
form of formula (2.104). In either case, we find that the geodesic distance
from z to w is equal to

See Figure 2.9. This mapping defines an isometry between HS2 and HD2

when the disk is endowed with the metric

This formula can be derived in a straightforward manner by doing a change
of variables from z to w on formula (2.101).

It can be checked that the real axis of the Poincare Plane is mapped to
the circle Iwl = 1 on the Poincare Disk. This circle becomes its circle at
infinity. In addition, the geodesic half circles and lines of HS2 are mapped
to circles and lines in HD2 that are orthogonal to the circle Iwl = 1.

As an additional way of representing the geometry of HS2
, we might

wish to construct a curved surface in R 3 and a correspondence between

z-i
z -+ i -- (2.106)

z+i

maps the points of the Poincare Plane HS2 onto the the Poincare Disk
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(2.117)

(2.118)

(2.116)

2.4 Problems

y(to) + w(to)

X2(t) = sin (at)

x(to) + z(to)

Xl(t) = cos(at)

and

for arbitrary real values a and b.

7. Prove that formulas (2.29) and (2.30) make tangent vector summation
and scalar multiplication well defined. That is, show that the equivalence
classes of paths defined for x(to) +z(to) and X x(to) do not depend upon
the coordinate system used. Furthermore, show that if y(to) = x(to) and
w(to) = z(to) then as defined by (2.28) and (2.29) we have

4. Following from Problem 3 above, we note that another manifold with
boundary whose boundary is 8 1 is the disk D 2. This is the set of all
(Xl,X2) such that xI + x~ .~ 1. As the boundary of D2 is diffeomorphic
to the boundary of M 2 from Problem 3 above, in principle (given four
dimensions to do it in), we could glue the boundaries together by fusing
diffeomorphic points. If the two surfaces were cut out from paper we could
try to tape their boundaries together. However, as we progressed with the
taping in three dimensions we would simply run out of room to do it in.
In four dimensions there is enough room. Show that the resulting manifold
without boundary is diffeomorphic to the projective plane RP2.

5. Show that the geodesic paths on the sphere 8 2 are arcs of great circles
found by slicing the sphere with a plane through the center of the sphere.

6. Consider the cylindrical surface in R 3 defined as the set of all (Xl, X2, X3)

such that xI + 4 = 1 with -00 < X3 < +00..This surface is also repre
sented as 8 1 x R. Show that the geodesics of 8 1 x R are helixes ofthe
form

3. An interesting surface called the Moebius strip can be embedded in the
interior of the doughnut T from Problem 2 above. LetM2 be the set of
all (Xl, X2, X3) such that

(r - 2)2 + x~ ~ 1 X3 sin(9/2) =(r - 2) cos(9/2) (2.115)

where (r,9) are the polar coordinates of (Xl, X2). This is, in fact, a
manifold with boundary. The manifold proper is constructed with strict
inequality above. Show that the boundary of M 2 is diffeomorphic to .81 .

(If we glue the boundaries of two separate copies of a Moebius strip together
we also get a manifold without boundary. This manifold is called the Klein
bottle K 2 . )

2.. Background Concepts and Definitions

FIGURE 2.10. Hyperbolic geometry representation in three dimensions: the
Poincare Trumpet.

The reader looking for a good introduction to differential geometry may
be somewhat overwhelmed by the variety of books that are formal intro
ductions to the subject but make few concessions to the reader who is not
trained in abstract mathematics. Such a reader would be well served by
looking at the book by Guillemin and Pollack [78] and the book by Mor
gan [122]. For a general overall introduction to differential geometry, see
Spivak [163].

1. The Hairy Ball Theorem says that for any continuous tangent vector
field on a sphere 8 2 there is some point on the sphere at which the vector
field vanishes. Is the analogous result true for the torus 8 1 x s-:

2. We can construct a two-dimensional surface that is diffeomorphic to the
torus 8 1 x 8 1 as follows: Let T be the set of all points (Xl, X2, X3) E R 3
such that

(JXI +x~ - 2)2 + x~ = 1 (2.114)

This is the standard doughnut shape. Show that T is diffeomorphic to
8 1 x 8 1.
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3.1 The Sphere of Triangle Shapes

3

(3.1)

(3.2)
2X3 - (Xl + X2)

Z =
X2 - Xl

In this and the next two sections, we shall develop a geometric theory of
shape due to Kendall [90].

Consider three landmarks

in the complex plane such that at least two of the three landmarks are
distinct. We shall now consider how to naturally represent the shape of the
triangle with vertices at Xl, x2, and X3. It can easily be seen that the
shape of the triangle can be represented as the complex number

Shape Spaces

provided that X2 f Xl' The point z in the complex plane has the following
interpretation. The triangle XlX2X3 has the same shape as the triangle
whose vertices lie at the three points -1, +1, and z. Thus to encode the
shape of the triangle we need only move two points, say Xl and X2, to
standard positions using a similarity transformation and record the posi
tion of the third point under this transformation. The real and imaginary
coordinates of z, which determine the shape of the triangle, are called
Bookstein coordinates, after F. Bookstein [19], who popularized them. See
Figure 3.1.
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c

real axis

3.1 The Sphere of Triangle Shapes

Such a coordinatization is not without its deficiencies, and it is these that
we shall now consider. The most obvious difficulty in using the coordinates
of z is that the representation breaks down if Xl = X2. Note that if
Xl = X2 and X3 is a distinct point, then the shape of the triangle is
perfectly well defined even if the Bookstein coordinates are not. A related
problem is that the use of Xl and X2 to standardize a side of the triangle
is rather arbitrary. One of the other pairs of points could just as well be
chosen.

Now suppose Xl = X2 and that X3 is distinct from the other two
points. Then the shape of this triangle is most naturally interpreted as
z = 00, the point at infinity in the complex plane. So the representation
of shape is non-degenerate for all shapes provided this point' is included.
The complex plane, with the point at infinity added, is topologically equiv
alent to a sphere. Putting this another way, we could say that if a point
is removed from the sphere S2 the resulting set is homeomorphic to the
plane. The complex plane, together with its point at infinity, is called the
closed complex plane. A standard mathematical tool that puts the closed
complex plane into 1-1 correspondence with the points of a sphere is the
stereographic projection. See Figure 3.2.

As the point z in Figure 3.2 follows the locus of a circle in the complex

FIGURE 3.2. The stereographic projection. On the complex plane C a sphere
sits so that its south pole is at the 'origin. For any point z E C we draw the line
passing from the north pole of the sphere through the surface of the sphere at w
and meeting the complex plane at z, The stereographic projection thereby puts
the points of the closed plane and the sphere into 1-1 correspondence by mapping
z to w. The stereographic projection maps the point at infinity in the complex
plane to the north pole of the sphere.

+1-1

3. Shape Spaces

FIGURE 3.1. Bookstein coordinates for three planar points. A triangle of land
marks Xl, X2, and Xa is translated, rotated, and rescaled so that the base
points Xl and X2 are mapped to -1 and +1, respectively, in the complex
plane. The third point xa is then mapped to a point z that encodes the shape
information in the triangle. The real and imaginary parts of z are called the
Bookstein coordinates.
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(3.7)

(3.6)

(3.5)

(3.4)

3.1 The Sphere of Triangle Shapes

Z ----t

1 -lzlz/ 3 R(z)/V3 ~(z)/V3
WI = 2(1 + Izlz/3)' Wz = 1 + Izlz/3' W3 = 1 + Izlz/3

Then

which is an example of a Moebius transformation of the complex plane. In
a similar way to the above, if we switch the triangle points Xz and X3

then the induced transformation of shape becomes

3-z
z ----t--

1+z

points are antipodal.
We can also look for clues to the role of the stereographic projection.

Note that the Procrustean distance given in formula (1.21) is indifferent
as to the labeling of the landmarks Xl, X2, and X3, provided all triangles
are relabeled consistently. For example, using n = 3 in formula (1.21),
we could interchange Tn and TIZ and the distance d(aI, az) would not
change provided that we similarly interchanged T2l and TZZ. Another way
of saying this is that the group of relabelings of landmarks is an isometry
of the shape space ~2'. So let us consider how the group of relabelings
of XIXZX3 induces transformations on Bookstein coordinates for triangle
shapes. If we switch Xl and Xz then z, as defined by formula (3.2), is
mapped to -z. This is an isometry of the complex plane. However, if we
switch Xl and X3 then the point z is mapped by the transformation

z + 3
z - 1

is a stereographic projection of the triangle shape in Bookstein coordinates
onto a sphere of radius 1/2 centered at the origin in R 3 . The mapping

which is also a Moebius transformation. In fact, our first transformation
z ----t -z is also a special case of a Moebius transformation. The group of
relabelings of shapes is the set of six transformations of the complex plane
that can be written as the arbitrary composition of these three Moebius
transformations.

It is no coincidence that the Moebius transformations of the complex
plane arise in relabeling triangle landmarks and also as the images under
stereographic projection of rotations of the sphere. In both cases we are
dealing with isometries - in the former case the isometries of ~~ and in
the latter case isometries of the sphere. The type of transformation that we
are seeking should be a stereographic projection from the closed complex
plane onto a sphere of radius 1/2 taking the two equilateral triangles into
antipodal points!

Suppose the shape of triangle XIXZX3 is displayed by Bookstein coor
dinates as a point z in the closed complex plane. Now define

(3.3)

3. Shape Spaces

where a, b, c, and d are complex numbers such that ad i= be. Just as
the class of rotations of the sphere maps circles to circles, so the Moebius
transformations map circles in the plane, including straight lines as circles
of infinite radius, to circles or straight lines.

Using the stereographic projection, we can represent the shape of any
triangle XIX2X3 as a point on a sphere in a topologically natural way. For
any such triangle, we compute the point z given by formula (3.2) whose
real and imaginary parts are the Bookstein coordinates of the shape. We
then map z to a point w on the sphere by a stereographic projection.
This takes us partway towards the goal stated in Chapter 1, namely the
representation of shapes as points on manifolds.

However, we are not yet finished. Using the stereographic projection we
can make a strong case for the argument that the space of triangle shapes
should be homeomorphic to a sphere. However, topological considerations
can tell us nothing about distances between shapes. In order to construct
a satisfactory representation of triangle shapes as points on spheres we
need to find a representation of triangle shapes such that the Procrustean
metric of formula (1.21) in Chapter 1 is equivalent to geodesic distance on a
sphere. At this stage we have no guarantee that this can be done, and even
less of a guarantee that the stereographic projection will be instrumental
in the construction.

If there is a representation on a sphere that works, we can easily see
what the radius of the sphere must be. In Chapter 1, we found that the
maximum Procrustean distance between any two triangle shapes was 1f /2.
If this is interpreted as a geodesic distance on a sphere, then the radius
of the sphere wou.ld be equal to 1/2, and such shapes would be antipodal
points on the sphere. In fact, we can find two such shapes. Two triangles
whose Bookstein coordinates are z = ±V3i are equilateral triangles that
are reflections of each other and have a Procrustean distance of tt/2 from
each other. Thus we seek a representation on a sphere in which these two

plane, the point W on the sphere also follows the locus of a circle, although
not necessarily a great circle. As lines in the closed complex plane can be
regarded as circles of infinite radius passing through 00, we find that as z
follows the locus of a line in the plane, the corresponding point w follows
the locus of a circle passing through the north pole. The class of circles
generated by such loci for w is the full class of all circles on the sphere.

An interesting class of transformations emerges when we look at rotations
of the sphere. Suppose we rotate the sphere so that w goes to some point
w'. Correspondingly, the point z will move to some point z' elsewhere
in the closed complex plane. The transformation z ----t z' is an example
of a type of transformation called a Moebius transformation or a linear
fractional transformation, whose general form is

a z + b
z ----t

C Z + d
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FIGURE 3.4. A close-up look at the great circle of collinear triangles from Figure
3.3. Three points separated by arcs of 1200 mark the collinear triangles where two
landmarks are coincident. Halfway between these points are the collinear triangles
of equally spaced points.

great circle of

collinear triangles

3. Shape Spaces

FIGURE 3.3. Spherical geometry for three planar points. The shape of any tri
angle X1X2X3 is encoded in Bookstein coordinates z as a point in the closed
complex plane and then mapped by a particular stereographic projection to the
sphere. There are two antipodal points on the sphere that correspond to the two
equilateral triangles of landmarks in the plane. Passing through these two an
tipodal points are three great circles that correspond to the isosceles triangles of
landmarks - each great circle characterized by the choice of vertex at which the
isosceles angle occurs. A family of isosceles triangles around one such great cir
cle is displayed around the outside ofthe sphere. Triangles of aligned landmarks
(i.e., collinear triangles) are. to be found on the great circle of the sphere that is
equidistant from the ~wo equilateral triangles and orthogonal to the great circles
of isosceles triangles.
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from the pre-shape of XlX2X3 to the shape of the triangle is a mapping

We leave the reader to check that the great circle distance defined by this
formula is equivalent to that of Chapter 1. See Problem 2.

Before we turn to the study of 2;2 it is worth considering some of the
geometry of the sphere and its relationship to Bookstein coordinates. The
geodesic paths are the shortest paths between points. As we noted, these
are the arcs of great circles on S2(1/2). To find the corresponding paths
in Bookstein coordinates, we need to construct the images of the great
circles under stereographic projection. Any circle on the sphere S2(1/2}
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(3.12)

(3.11)

(3.10)

3.2 Complex Projective Spaces of Shapes

(Xl - ii ; X2 - x, ..., X n - x)

[>'(Xl - x), >'(X2 - x), ..., >'(xn - x)] .i

!
is to scale the centered points by 1>'1 and rotate them by arg(>.). To
remove the effect of complex multiplication, we identify all such multiples
and decl~re them to lie in the same equivalence class.

So, tIl shape space 2;2 can be identified with the set of complex lines
througj the origin in the subspace

! Fn
-

l = {(Xl, ..., Xn)E en : tXj = O}
j=l

which has n - 1 complex dimensions. This looks very similar to complex
projective space Cpn-2, as given in Definition 2.2.10. The difference is

This vector lies in a subspace of en having n - 1 complex dimensions
or 2n - 2 real dimensions. The effect of multiplication of these variables
by a complex nonzero quantity >.

3.2 Complex Projective Spaces of Shapes

In this section we shall study the spaces 2;2 where n ::::: 3. As we shall see,
the sphere of triangle shapes described in the previous section is a special
case of a complex projective space having two real dimensions.

We will continue to identify landmarks Xj in the plane with elements of
the complex plane e. Suppose (Xl, X2, ... , X n ) are n such landmarks,
at most n - 1 of that are coincident. To discover the information in this
configuration of landmarks that is invariant under Sim(2), we first remove
the effect of translations by centering the points about their centroid x
yielding'

is mapped by the inverse of the stereographic projection defined by (3.6)
to a circle or a straight line in the plane. Among these, the images of the
great circles are a subset. The z-axis of collinear shapes is an example
of a geodesic in Bookstein coordinates. To find the others, note that any
two great circles of S2(1/2) will intersect in antipodal points. In fact, we
can characterize a great circle of the sphere as a circle meeting the equator
of collinear shapes in antipodal points. Now in Bookstein coordinates, two
points Zl, Z2 E e are images of antipodal points on the sphere if Z2 =

-3/zj. This can be checked by plugging z = -3/zj and Z = Zl into the
coordinates of the stereographic projection in formula (3.6). After some
rearranging, we see that the resulting stereographic coordinates become
the negatives of each other. Therefore, any circle in the plane of Bookstein
coordinates that passes through points of the form a and -3/a on the
real axis will be the stereographic image of a great circle of S2(1/2).

(3.9)

(3.8)

1
d(u,v) = 2 cos-l(4 < u,v »

3. Shape Spaces

It is helpful to study the sphere S2(1/2) by finding the coordinates of
interesting triangles on it. For example, there are two equilateral triangles
represented by antipodal points on the sphere at W3 = ±(1/2). That
there are two equilateral triangles rather than one is a consequence of the
fact that triangle shapes are not identified with their reflections. Halfway
between these antipodal points are the shapes corresponding to W3 = O.
These shapes lie on a great circle of S2(1/2) that is the set of collinear
triangles. In other words, these are the triangles that have a straight angle
at one of the vertices. Included in this set are the three shapes corresponding
to triangles where two of the points are coincident and the third point is
distinct. These shape points are equally spaced at angles of 27f/3 radians
around the great circle W3 = O. See Figure 3.4.

The reader should make a careful comparison of Figures 1.3 and 3.4. In
both figures, we see collinear triangles of landmarks displayed as points
around a circle. However, there is an important difference. In Figure 1.3,
the pre-shapes of triangles that are reflections of each other are distinct
antipodal points of the circle. However, as we argued earlier in Example
2.2.15, the shapes of collinear triangles in the plane lie naturally on a real
projective space and not a sphere. As it happens, the real projective space
Rpl is isometric to the circle Sl(1/2). So each pair of antipodal points
of Figure 1.3 is represented as a single point in Figure 3.4. For example,
the earlier figure has six points that represent the shapes of triangles where
one landmark is at the midpoint between the other two. However, Figure
3.4 has only three such points around the circle. The pre-shape space of
Figure 1.3 is the unit circle s', whereas the space of collinear shapes in
Figure 3.4 is the real projective space Rpl ~ s-(1/2). .

To obtain the great circle distance on S2(1/2) between any two shapes,
we use the inner product between vectors on S2(1/2). If u = (Ul,U2,U3)

and v = (VI, V2,Va) are two points on S2(1/2) then the geodesic distance
from u to V is given by formula (2.69) using r = 1/2. We obtain
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for 1 ~ j ~ n - 1. The mapping
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(3.17)

3.3 Landmarks in Three and Higher Dimensions

Snp- p.' l {( ) Rnp ~ 0 ~ II 11 2 }* , = Yl, ... , Yn E : L.J Yj = , L.J Yj = 1

3.3 Landmarks in Three and Higher Dimensions

3.3.1 Introduction

I

The space ~; of shapes of Xl, ... ,xncan now be formally identified
with t~k collection of equ.ivalence classes in S~P-p-l of all pre-shapes
sharing' a common shape. For any pre-shape TE S~P-P-l, let OCT) be
be the/set of all pre-shapes T' that have the same shape as T.

For example, in dimension p= 3 the special orthogonal group SO(3) is
simply! the group of rotations about the origin in three-dimensional space.
Let h ESO(3). Suppose that the landmarks Xl, ... , X n have pre-shape T.

For j = 1, ... ,n, let xj = h(xj) be the jth landmark rotated by h. So
the landmarks x~, ...,x~ are a rotated version of Xl,'''' X n. If T' is the
pre-shape of X~ , ... , x~, then T' will be an element of OCT). The converse
will also follow. If X~, ...,x~ have a pre-shape T'E OCT), then there will
exist a rotation ue SO(3) such that xj= h(xj) for all j.

So far, we have only considered the shapes of landmarks in two dimensions.
However, the shapes ofsolid objects are of common interest, and are most
naturally represented by landmarks in three dimensions. Landmarks in four
and higher dimensions are of interest in multivariate statistics, where the
shapes of multivariate data sets provide information about normality, lin
earity, and correlation between variables.

Let Xl, X2, ... , X n be n ~ 3 landmarks in RP, where p ~ 3. We
shall suppose that at least two of these landmarks are distinct, so that
L Ilxj - xl1 2 > O. The standardization of the location and scale of these
n landmarks can proceed in a manner similar to the two-dimensional case.
The pre-shape T .can be constructed by centering the landmarks about
their centroid x and by rescaling the centered configuration of landmarks
so that 2:: Ilxj - xl1 2 = 1. Thus the pre-shape T of Xl, ... , X n can be seen
to be an element of the sphere

The change of radius is a secondary consideration here. A continuous func
tion from S3 to S2 of this kind is an example of what is known as a Hop!
fibration between the spheres. In general, it is impossible to find continuous
mappings from a sphere of one dimension to a sphere of a lower dimension
that are locally projections of this kind. However, there are special dimen
sions for which it is possible. From three dimensions to two dimensions is
one such case. Such limitations in. dimensions already give us a clue that
the Procrustean approach to the shape of a general number of points in
general dimensions will not be as smooth a theory as for the shapes of
points in dimension 2.

(3.16)

(3.15)

(3.14)

(3.13)

3. Shape-Spaces

So, the shape spaces ~2 are Riemannian manifolds such that geodesic
distance between points in the shape space is equivalent to the Procrustean
metric defined in Chapter 1. A technical note on this point is that the
Gaussian curvature of ~2' is a constant throughout the manifold and
equal to 4. By contrast, the sphere s2n-3 of pre-shapes has a constant
positive curvature equal to 1. (The reader who is not familiar with Gaussian
curvature on manifolds should rest assured that this notion will not playa
large role in our exposition of shape geometry.) A special case of this was
seen previously for the sphere of shapes, which is required to have radius
1/2. In general, the mapping

Proposition 3.2.1. The shape space ~2 endowed with the Procrustean
metric is isometric to the complex projective space ep n

-
2

.

of each pre-shape into its shape equivalence class becomes what is known
as a Riemannian submersion, a local projection that will be described in
greater detail in the next section where we shall consider the general spaces
~;.

A special case of our construction is quite famous in differential geometry.
We have seen that ~~ is isometric to the sphere S2(1/2). Thus the
mapping from each pre-shape to its corresponding shape is equivalent to a
mapping

is a linear isometry from F n- l to e n- l that preserves the complex lines
of (3.11) above.

Under the identification established by (3.14), we can see that the defi
nition of the Procrustean metric in Section 1.3 is completely parallel to the
definition of the Fubini-Study metric in Section 2.2. In particular, formulas
(2.92) and (1.18) yield equivalent metrics under the identification of (3.14).
Thus we have proved the following result:

that we are considering complex lines through the subspace Fn,-l rather
than en. However, this difference turns out to be superficial, because we
can construct a linear isometry from Fn-l .to e n- l that maps complex
lines through the origin in the subspace Fn-l to complex lines through
the origin in en-l. To construct this linear isometry, we define
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3.3 Landmarks in Three and Higher Dimensions

Definition 3.3.1. Let h: MP -> N? be a differentiable mapping onto the
manifold N", where q:S; p. We say that h is a submersion at a point
x E MP when the linear mapping

Now let us consider the space 'E~ for n = 3,4, .... The Euclidean space
R n-1 can be canonically embedded in R" so as to be an (n - 1)
dimensional subspace of R". This embedding induces a mapping from
'E~-l to 'E~ that takes the shape of a set of n points in Rn-l c R"
into the shape of the same set of points considered as lying in R n .

In the case where n = 3 we can see what this does. See Figure 3.5.
The shapes of point configurations in R 2 that are relections of each other
through some line are not generally of the same shape. However, in R3 a
plane can be reflected about some line by a rotation. Thus configurations
that are mirror images in R 2 have the same shape when embedded in R3.
The shape space 'E~ is the sphere S2(1/2), and the associated mapping
into 'E~ identifies every triangle shape with its mirror image in R 2 . In
the coordinate notation of formula (3.6) this identifies points of the form
(WI,W2, W3) with (WI,W2, -W3). Thus 'E~ is topologically a hemisphere
with the collinear shapes forming its boundary.

This example points out a major obstacle to the study of the shape
spaces in general dimensions. On the boundary, the hemisphere is not lo
cally homeomorphic to R 2 as it is in its interior. So a hemisphere is not a
topological manifold at all, but must be classified as a manifold with bound
ary. Generally, the spaces 'E; will have boundaries whenever p 2: n. Even
when E; is a topological manifold, it need not have a natural definition
as a differential manifold. Singularities in the smoothness can arise much
as one can introduce a crease into a surface.

In a private communication to David Kendall, A. J. Casson proved that
the shape spaces 'E~+l are all topologically spheres for n 2: 2. That
this is the case for n = 2 we have already seen. However, that it should
be true for the topology of 'E~+l for n 2: 3 is interesting because
it is kno~n that these spaces are not diffeomorphic to the usual spheres
of equivalent dimension. The presence of singularities in the differential
structure is enough to ensure this. In honor of Casson's discovery, D.G.
Kendall proposed that the shape spaces 'E~+l be called Casson spheres.
Unfortunately, Casson's proof is not available in the literature although
another p~bof has been published. See Le [104J. Le's proof makes use of
the Riemannian geometry off the singularity sets of the Casson spheres to

I
prove Casson's result. See also Carne [38] for an analysis of the geometry
of these shape spaces.

Let us Ip.ow consider the differential geometry of the general shape spaces
'E;. In oirer to do this we shall need to define the concept of submersion
between differential manifolds. We have the following definition:

\

(3.21)

(3.20)

(3.19)

(3.18)

O(T) = {h(T) ; hE SO(p)}

3. Shape Spaces

Interpreted in this way, the group SO(p) becomes a subgroup of the group
of special orthogonal transformations on Rnp, namely SO(np).

The next thing; to note is that S~p-P-l is a subset of Rnp, and that
transforming according to (3.20), the transformations h E SO(p) map
S~p-p-l onto itself. So SO(p) is a class of isometries of the sphere
S~p-p-l. Moreover, we can write

We can introduce a Procrustean metric between shapes in 'E; in a
manner similar to the twa-dimensional case. So for any shapes 0'1 = O(Tl)
and 0'2 = 0(T2) in 'E; we can set the Procrustean metric d(0'1,0'2) to
be

inf{cos-1«Tl,T2» : O'j=O(Tj) forj=I,2} (3.22)

This is equivalen.t to the definition given in formula (1.18) with the ap
propriate change in dimension. However, as we shall see, appearances are
deceiving here. The extension of the geometry of 'E2' to higher-dimensional
settings is not as routine as this formula would suggest. One algebraic ad
vantage is lost in the generalization: the algebra of the complex plane is
not available for representing the Procrustean metric when landmarks are
chosen from three or higher dimensions.

The metric of (3.22) does not in itself provide much immediate insight
into the topological and differential structure of 'E; .We can construct
the topology directly on 'E; without direct reference to the metric d. A
subset U of 'E; will be open if and only if sp,;(U) is an open subset

of S~p-p-l. With this topology, the function spn becomes continuous. It
follows immediately from this that all the shape spaces 'E; are compact,

h Snp- p- l
because they are continuous images of the compact sp eres * .

taking each pre-shape T to its corresponding equivalence class, or shape,
O(T).

Now any set of n landmarks in RP can be identified with an element
of RnP. Since the elements of the group SO(p) transform the landmarks
individually, we can regard SO(p) as a group of transformations on Rnp.
Each hESO(P) mapsapoint (Xl,""Xn) in Rnp=(RP)n by the rule

We can also define the function

Such equivalence classes can be defined similarly in higher dimensions
p using the special orthogonal group SO(p). Then we can define
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(3.26)

3.3 Landmarks in Three and Higher Dimensions

In other words, if H is free, then every transformation h that moves some
point of the manifold will move all points of the manifold. For example,
the group SO(2) acts freely on s-, whereas the group SO(3) does not
act freely on S2.

As Le and Kendall [105J have noted, the singularities in :E~ arise because
they are the images under spn of pre-shapes at which the action of the
group SO(p) on S:,p-p-l is not free. For example, let p:::: 3 and consider

taking the pre-shapes of planar configurations of landmarks to their shapes.
In particular, the Hopf fibration from S3 to S2 is a submersion.

The problem at hand is to make :E; into a differential manifold in such a
way that its atlas is compatible with its topology and so that the mapping
spn : S:,p-p-1 ->:E~ becomes a submersion. The detailed conditions under
which this is possible are given by Dieudonne [51, Section XVI.10J and will
not be explained in detail here. We shall simply note that the submersion
can be constructed for some pre-shapes (and their corresponding shapes)
but not for others. The result is that there exists a singularity set within
each shape space :E; such that outside this set a local smooth structure
can be imposed at all the points, making spn a submersion. The particular
locus of this singularity/set within E; is determined by the failure of the
group SO(p) to a,et,!reely on the sphere S:,p-p-1 as defined below.

//'
Definition ;r:3.2. Let H be a group oj transformations h: MP -> MP
on a manifold MP. We say that H acts freely onMP iJ the only
transjormaiion. h E H for which hex) = X [or some X E MP is the
identity transformation.

A submersion between manifolds can be regarded as a differentiable map
ping that is locally equivalent to a projection. From our point of view,
perhaps the most important examples of submersions that we have en
countered are the mappings

We have already encountered a number of examples of submersions. For
example, the class of submersions includes linear projections

is of Jull rank q or equivalently, when (Vh)x is onto. The mapping h
is said to be a submersion provided that it is a submersion at all points
xEMP.

Rq x RP-q -> Rq (3.24)

• • mapping
• • (Xl, ••• , X q , ... , X p ) (X1, ...,:1;q) (3.25)•

->
•

3. Shape Spaces

FIGURE 3.5. The effect of embedding a configuration of three planar landmarks
into three dimensions. Configurations of landmarks in R 2 which are reflections
of each other have different shapes, because transformations that reflect the plane
are not elements of the group Sim(2). By contrast, coplanar configurations of
landmarks in R 3 that are reflections ofeach other do have the same shape. This
is because the group Sim(3) includes 1800 rotations of planes in R 3 about
an axis in the plane. The shape of three landmarks in R 2 lies in Et while the
shape of three landmarks in R 3 lies in Eg. The identification of shapes that
are reflections of each other in E~ can be regarded as the identification of points
on opposite hemispheres of the sphere of triangle shapes. Topologically, the effect
of identifying points in opposite hemispheres is to fold one hemisphere into the
other and to glue the two surfaces together. Thus the space of triangle shapes in
three dimensions is topologically a hemisphere.
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I
\
\

FIGURE ~.6. Singularity sets in shape spaces. If a set of landmarks in R 3 is
collinear,. in the top diagram, then rot~tio.ns about the line through the land
marks wzll leave the landmarks fixed. This is an example of the failure of the
group of ro ations to act freely. Singularities in the shape space Ej occur at
points corres~onding to such configurations of landmarks. Singularities in high
dimensional mfLnifolds are difficult to understand, although singularities do appear
in low enough dimensions to help us visualize them. Two types of singularities .
are illustrated in the middle and bottom diagrams. In the middle diagram, we see
a topological singularity in a space. The singularity is the set of points where two
surfaces intersect. At these points, the space fails to be locally homeomorphic to
R 2

, and is not a topological manifold. However, if this intersection set is cut out,
the remaining set does become a topological manifold. In the bottom diagram, we
see another type of singularity set in a surface. In this case, the singularity is
in the smoothness, or differential structure, of the manifold. Unlike the middle
diagram, there is no topological singularity. The singularity set in the shape space
E~ is of this nature. This shape space is topologically a sphere, but contains a
higher-dimensional analog of the type of singularity displayed in the bottom dia
gram. We cannot do differential geometry [i.e., construct tangent vectors or set
up a metric tensor) at the singularity set, but we can do it elsewhere.

(3.28)

(3.27)Xl - X, X2 - X, ... , X n - X

3. Shape Spaces

3.3.2 Riemannian Submersions

In addition, the rotation h will induce a transformation on the sphere of
pre-shapes 8~n-4, mapping the pre-shape of Xl,'''' X n to the pre-shape of
h(XI), ...,h(xn ) . If the transformation in (3.28) leaves centered landmarks
Xj - x fixed, the same will be true of the pre-shapes. Thus 80(3) does
not act freely on 8~n-4. See Figure 3.6 for an illustration of this.

In general dimensions the group 80(p) will fail to act freely on 8~p-p-I

when n, p ::::: 3. The singularity set in ~; will be the set of those shapes
of landmarks Xl, ... , xn which lie, when recentered as in formula (3.27)
above, in a (p _. 2)-dimensional subspace. In the five-dimensional Casson
sphere ~~, for example, this subspace is one-dimensional. Therefore, the
singularity set is the subset of collinear shapes.

Let us now turn to the problem of defining a metric tensor 9 on the
open subset of E; that is the complement of the singularity set. In or
der to describe this, we have to define a type of submersion, called the
Riemannian submersion, which is specific to the theory of Riemannian
manifolds. Suppose MP and N", for p > q, are Riemannian manifolds
with metric tensors gM and 9N respectively. These metrics define inner
products on the tangent spaces T(MP) and T(Nq) respectively. Now let
h : MP --4 N" be a submersion. Then for each X E MP and y E N? such

all lie. Then there exists a special orthogonal transformation of RP that
is not the identity transformation and that leaves this (p - 2)-dimensional
subspace fixed.

To illustrate this, let us consider what happens in p = 3 .dimensions.
Put rather simply, we can say that it is possible to rotate a configuration
of landmarks without changing the orientation (i.e, leaving the pre-shape
fixed) provided the landmarks all lie along the axis of rotation. This is in
contrast to dimension two, where a configuration cannot be left invariant
under a rotation unless all the landmarks are coincident. Suppose that
Xl, ... , X n are collinear landmarks in R 3 , and that n::::: 3. Then the
centered landmarks Xl -x, ... ,X n -x will all lie along a line passing through
the origin. Now suppose a rotation hE 80(3) is chosen that has this line
as its axis of rotation. Then h will leave the vector (Xl - X, ... , X n - x)
fixed under the transformation

a set of n ::::: p+1. points Xl, X2, ••• , X n lying in RP. We center the location
of the points by subtracting the centroid x. Now suppose that there exists
some (p - 2)-dimensional subspace in which the centered points
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(3.33)
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3.4 Principal Coordinate Analysis
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at all points x(t) along the geodesic path.

FIGURE 3.7. Decomposition of T,,(MP) into vertical and horizontal components.

The basic principle for constructing a metric tensor on 'E~ off the singu
larity set is to define it so that spn is a Riemannian submersion at all
pre-shapes T E S:,p-p-l at which spn is a submersion (i.e., pre-shapes
outside, the singularity set). Such a metric tensor is uniquely defined. Thus
the determination ofthe metric tensor on'E~ is equivalent to the evalua
tion of the metric tensor on S:'P-P-l restricted to the horizontal tangent
spaces.

D.G. Kendall and H. Le have carried out this program to evaluate the
metric tensor on the shape spaces. See [104] and [105]. With this geometry,
the geodesics of 'E~ become the images under the mapping spn of the
horizontal geodesicsof S:'P-P-l. These are the geodesics x(t) of the sphere
for which

(3.31)

(3.30)

(3.29)

3. Shape Spaces

Similarly, the vectors of the horizontal subspace are called the horizontal
tangent vectors at x E MP. It is easy to see that any tangent vector at
x can be uniquely written as a vector sum of a horizontal and a tangent
vector that are orthogonal to each other with respect to the metric tensor
gM' See Figure 3.7 for an illustration of the horizontal and tangent vectors
at a point x E MP.

Using concepts of horizontal and vertical tangent vectors, it is now pos
sible for us to define the concept of a Riemannian submersion.

Definition 3.3.5. A submersion h: MP -+ Nq is said to be a Riemannian
submersion at x if

Definition 3.3.4. The horizontal subspace V/(MP) is defined to be the
set

This is the kernel of the mapping (Dhk

The vectors of the vertical subspace are called the vertical tangent vectors
at x E MP. Orthogonal to the vertical subspace is the horizontal subspace,
which we now define.

Definition 3.3.3. Let h: MP -+ Nq be a submersion as described above,
and let x E MP. We define the vertical subspace Vx(MP) to be that subset
of Tx(MP) defined by

where the inner product is calculated in Tx(MP) using the metric tensor

gM'

is a linear transformation of full rank. We shall say that h is a Riemannian
submersion if (Dh)x is equivalent to an orthogonal projection for all
x E MP. The following more precise definition can be given:

that y = hex) the derivative
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(3.32)

is a linear isometry when these spaces have metric tensors gM and gN

respectively. We shall say that h isa Riemannian submersion if h is a
Riemannian submersion at all points x E MP.

3.4 Principal Coordinate Analysis

The Procrustean metric and the shape spaces of the previous sections pro
vide very general tools for the representation of the shapes of landmark



configurations as points in manifolds. However, mathematically elegant as
these representations are, they represent an impediment to the graphical
representation for exploratory data analysis, which much be accomplished
in a small number of dimensions. For example, if three landmarks are se
lected from each of fifty images, then the resulting landmark shapes can
be displayed as a configuration of fifty points on an appropriate projection
of the sphere E~. However, more detailed descriptions of the shapes will
require more lanclmarks from each image, and a correspondingly higher
dimensional manifold in which to portray the fifty points.

The tools for shape representation that we have been considering can
be useful for the exploratory analysis of shapes when they can be coupled
with dimension reduction methods that are designed to approximate the
high-dimensional configuration of the points by low- (usually one or two)
dimensional configurations whose interpoint distances most appropriately
approximate those of the high-dimensional configuration. Such methods are
called multidimensional scaling. There is considerable reason for optimism
about the use of multidimensional scaling, because from formula (1.21) we
see that the geodesic distance between two shapes can be quite simple to
compute even when the complex projective spaces in which the shapes live
are hard to visualize.

Suppose Xl, Xz, ... , Xn are elements of some Riemannian manifold MP.
We shall let djk == d(xj, Xk) be the geodesic distance from Xj to Xk. The
n x n distance matrix (dj k ) is a symmetric matrix of nonnegative values.
(The particular application we have in mind is that where MP is a shape
manifold and d is possibly the Procrustean metric given by (1.21).) The
task of multidimensional scaling is to find a set of points Xl, X2, ... , Xn E Rq
(where usually q = 1 or 2) such that if djk = d(Xj,Xk) then the matrix
(djk) approximates (djk) in some predetermined sense. The various meth
ods used to approximate (djk) by (djk) can be used to categorize the
types of multidimensional scaling. Broadly speaking, the methods divide
into two groups called metric scaling and nonmetric scaling respectively. In
metric scaling, the task is to make the distance matrix (djk) match (djk)
as closely as possible. In nonmetric scaling this requirement is relaxed. A
typical criterion is that the distances dj k should be ordered as closely as
possible to the ordering of the distances djk.

In this section we shall describe a computationally straightforward tech
nique for metric scaling called principal coordina1ean-alystnIueTo-G~wer
[74]. This should not be confused with the better-known term principal
component analysis, although the two techniques are related and rely on
the common principle of an appropriate eigenvector decomposition of a
positive definite matrix.

Let us begin with the following problem: Suppose that Xl, Xz, ..., Xn are
n points in some p-dimensional space that we can take to be Euclidean.
The coordinates, or positions, of the points themselves are unknown. How-
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(3.37)

(3.36)

(3.35)

(3.34)

3.4 Principal Coordinate Analysis

- 1~-
1 = - L..J1j

n j=l

Gower [74] notes the following result, which we state without proof.

and then defining the matrix n = (njk) by

njk = 1jk-tj- t k + i'

c==] Xl Xz Xn

W1 Vll VIZ V1n

Proposition 3.4.1. Let (djk) be a matrix of interpoint distances. Then
the matrix n defined in Steps 1 and 2 above is nonnegative definite. That
is, the eigenvalues of n. are nonnegative.

Step 3. In the third step, we construct an n x n matrix whose jth row
is the eigenvector Vj corresponding to the jth largest eigenvalue Wj of
the matrix n. The eigenvector Vj is standardized so that Wj = Ilvj W·
(This is possible because Wj::::: 0 for all i, by Proposition 3.4.1.) We can
display this n x n matrix as in (3.37) below.

and

Step 2. In the second step, we standardize the matrix 1 so that its rows
and columns sum to zero. This is accomplished by defining

Step 1. From the distance matrix (djk) we form the association matrix
1 = (1 jk) by defining 1 jk = -d]k/2, for all 1::; i, k ::; n.

ever, the distances djk = d(xj, Xk) between the points are given to us.
As the original points are unknown, how can we construct a set of points
Xl, X2, ..., Xn, which are not necessarily in p dimensions, with interpoint
distances djk = d(xj, Xk), such that djk = djk for all 1::; j, k ::; n?

Let us start with any matrix (djk) of interpoint distances. The task of
constructing the set of points Xl, ... , xn proceeds as follows:

3. Shape Spaces88
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(3.47)

(3.45)

(3.44)

(3.43)

(3.42)

(3.41)

n

2 "2: VljVlk
1=1

n

"2:vfj = r!jj
1=1

n n

dJk = "2: Vrj + "2: Vrk
1=1 1=1

The dimensionality of Xl, .•., Xn is typically too high for convenient graphi
cal representation. However, the principal coordinate analysis also provides
a principal component analysis of these points. The eigenvalues have been
ordered in decreasing size from top to bottom in the rows of the matrix
(Vjk), thereby ordering the coordinates of Xl, ... , x n from the coordinates
along the axis with highest variation (coordinates at the top) to those
of lowest variation (at the bottom). So, for example, to choose a two
dimensional projection of the vectors Xl,""Xn , we can take the 2 x n
block consisting of the first two rows of (Vjk) in (3.37).

In shape analysis for planar landmarks, we will start with a matrix (d jk)
of interpoint geodesic distances d(aj, ak) between shapes, rather than the
matrix of Euclidean distances described above. In this case, d(aj, ak) will
be the Procrustean distance between two shapes in 2J~. Now, there is no
a priori guarantee that the matrix r! will be nonnegative definite, as in

and complete the proof. Q.E.D.

d;k = n j j + n kk - 2njk = T jl + T kk - 2Tjk (3.46)

We now use the fact that Tjk = -d;k/2 and that T j j = T kk = 0 from
Step 1 to obtain the desired conclusion that

So

and

But from Proposition 3.4.3 we can write

3.4 Principal Coordinate Analysis

above. Then for all 1 ~ j < k ~ n, we have

djk =d(Xj,Xk) = djk

Proof. We can write d;k = Ilxj - xklj2. Expanding this out, we get

(3.40)

(3.39)

(3.38)

n

n = "2:vJVj
j=l

3. Shape Spaces

Then

Proof. Two n x n matrices can be shown to be identical if they share
common eigenvalues and eigenvectors, and the latter span R". It .suffices to
show that VI, ... , V n and IIvll12, ... , IIvn l12 are respectively the eigenvectors
and eigenvalues of the matrix .2:. vJVj' As the eigenvectors are known to
be orthogonal by Lemma 3.4.2, the inner product VkVJ =0 when j f k.
Using the fact that vkvf= IIvkl12, we have

Vk (t, viv;) ~ t, (Vkvilv;

But equation (3.40) simply establishes that Vk is an eigenvector of E vJVj
as required, with eigenvalue Wk. Q.E.D.

In particular, the matrix n is symmetric. From this lemma, we can prove
the following:

We can now prove our basic result.

Proposition 3.4.3. For j = 1, .:., n let the TOW vector Vj be the jth
eigenvector of n with corresponding eigenvalue Wj' We suppose that Vj
is standardized so that

Proposition 3.4.4. Let Xl>..., xn be the vectors constructed in step 4

To prove this result, we shall need the following lemma, which we state
without proof.

Step 4. Reading across the columns of this matrix, we obtain the eigen
vectors VI, ... ,Vn of the matrix n. However, reading down the rows of
the matrix gives us the required vectors Xl, ... ,xn . For example,xl =
(Vl1, V2l,... ,Vnl)T.

Lemma 3.4.2. The eigenvectors of a symmetric n x n matrix are orthog
onal.

90

For example, VI = (Vu, Vt2,.." Vln). At the left of each row, the eigenvalue
Wj is listed that corresponds to the eigenvector Vj'
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3.5 An Application of Principal Coordinate Analysis to Brooch Data

FIGURE 3.8. Side and top views of 28 Iron Age brooches. Brooches are labeled
from 1 to 30. Note that brooches 7 and 29 do not appear in the diagram. The
brooches are reproduced from Hodson, Sneath, and Doran, Biometrika 53 (1966),
p. 315, by kind permission of Biometrika Trustees.

3. Shape Spaces

3.5 An Application of Principal Coordinate
Analysis to Brooch Data

Let us now apply the techniques of principal coordinate analysis to the
Iron Age brooch data described in Chapter 1. Figure 3.8 shows the lateral
and superior views of 28 brooches. In our analysis, we shall use only the
lateral image. However, for a more complete shape analysis, both perspec
tives need to be studied. From each of the 28 brooches four landmarks are
chosen according to the method described in Chapter 1 and illustrated in
Figure 1.1. The Procrustean distance between the shapes of the landmarks
is computed according to formula (1.21) for every pair of brooches. This
gives us a 28 x 28 matrix of interpoint Procrustean distances for a set
of 28 points in I;~. The first two principal coordinates of the principal
coordinate analysis are shown in Figure 3.9. The first principal coordinate
is displayed horizontally, and in broad terms appears to be measuring the
degree of elongation of the brooch as seen through the lateral perspective.
The second principal coordinate, measured vertically, seems in rough terms
to measure the proportional size of the triangle made from the three left
most landmarks relative to the entire configuration of four landmarks. It
should also be noted that the centroid of the points has been fixed at the
origin as an artifact of the procedure. The positions of brooches 1, 2, and 3
in relation to each other, as determined in Chapter 1, has been reconfirmed
by this analysis. The reader can see, by inspection of Figures 3.8 and 3.9,

Proposition 3.4.1, because the interpoint geodesic distances on a manifold
satisfy different inequalities from those in Euclidean space. Nevertheless,
the matrix n can be calculated from the matrix (dj k ) , and its eigenvalues
can be checked. If the Procrustean distances dj k can be approximated by
Euclidean interpoint distances, then the largest eigenvalues of n will be
positive. So, for example, if the first two principal eigenvalues are positive,
then the 2 x n matrix of the first two rows in (3.37) can be constructed.
If we define Xj E R 2 to be the jth column of this 2 x n matrix for
j = 1, ... , n, then Xl, ... , Xn will be a two-dimensional configuration whose
interpoint distances approximate (dj k ) .

More generally, with k of the eigenvalues positive, we can construct
a set of points ii I, . '" xn in R k. (EoLgraphi<;al purposes, the first two
dimensions, called the first two principal coordinates, are the most impor
tant.) The degree to which all the eigenvalues of n are nonnegative can be
used as a diagnostic check on the ability to represent Procrustean distances
using Euclidean a.pproximations. This is because there exists a converse to
Proposition 3.4.1, which we have effectively proved: if all the eigenvalues of
n are positive, then the Procrustean interpoint distances can be displayed
in Euclidean space.
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where X and a are 2 x 1 column vectors and A is a 2 x 2 square matrix.
Henceforth, we shall restrict the analysis to the case where det(A) > O.
Figure 3.10 shows how an affine transformation affects the shape ofa two
dimensional figure. To measure the departure of h from the family of
similarity transformations, consider the ellipse that is the image of the unit
circle about the origin under the transformation h. We can write this
ellipse as

{Ax+a : x E R 2
, Ilxll = I} (3.49)

The affine transformation -maps a unit circle to an ellipse with semimajor
axis of length a and semiminor axis of length f3. The values a and f3
are the singular values of A, as defined in Section 2.1.5. The ratio a]f3
is called the anisotropy of A. It is a useful measure of shape variation
induced by h because h will be a similarity transformation if and only
if the anisotropy -is equal toone. Therefore, the logarithm logea](3) of
the anisotropy serves as a measure of departure of h from the family
of similarity transformations. Henceforth, we shall refer to this as the log
anisotropy. This measure is also invariant under composition of h with a
similarity transformation. See Figure 3.10.

(3.48)hex) = A X + a

3.6.1 Singular Values and the Poincare Plane

We shall begin by developing a geometric theory of triangle shapes due
to Bookstein [19]. In our discussion of shape differences up to this point
we have assumed that shape differences can be measured by calculating
the distances between points, or landmarks, that have been appropriately
centered, scaled, and matched as to orientation. A rather different view of
shape variation is obtained if we regard the landmarks as selected from
homologous positions on bodies whose shapes themselves differ. The dif
ferences in the shapes of landmark data or point sets are then seen to be
derived from the shape differences in the bodies from which they are cho
sen. In the biological sciences, this assumption is commonplace. Indeed, in
such applications, two different sets of landmarks, or points, may be the
corresponding points on a single organism differing in time. As we have
argued earlier, the growing organism can undergo a steady transformation
of shape that will transform landmarks through various shape changes as
the organism changes.

More generally, we might suppose that two sets of distinct landmarks
Xl, ... , X n and Yl, ... ,Yn in RP are related by a transformation h : RP-+
RP such that h(xj) = Yj for all j = 1, ... , n. The degree to which h de
parts from the family of similarity transformations can be used as a measure
of shape difference. Consider the case where h is an affine transformation
of the plane R 2 . In matrix form, we can write the transformation h as

94 3. Shape Spaces

first (66.92%) and second (18.86%) principal coordinates
0.15
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0.1 13 10

20 26

0.05 24
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12 18 19 25
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-0.05 21 6 174
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FIGURE 3.9. Principal coordinate analysis of Iron Age brooches

that there is a dependence between size and shape of the brooches. Those
brooches with a small value for the first principal coordinate are particu
larly elongated, and also tend to be larger in size.

It is of greater archeological interest to investigate the relationship be
tween the ages of the brooches and their shape. We divide the brooches
into five groups from the earliest (group 1) to the latest (group 5).

Group 1: brooches 4, 5, 6, 8, 27, and 28;
Group 2: brooches 15, 18, 22, 23, and 25;
Group 3: brooches 11, 13, 16, 17, 19,20, and 24;
Group 4: brooches 1, 3, 9, 10, 12, 14, and 26;
Group 5: brooches 2, 21, and 30.

Under these groupings a pattern becomes apparent. Most of the older
brooches are to the right-hand side of Figure 3.9, while the younger brooches
are to the left. The relationship is not a strict one, but the overall trend is
evident. We can summarize our conclusions by saying that with the passing
of time, the brooches at Miinsingen became larger and more elongated.

This principal coordinate analysis suffers from the defect that it uses only
a small part of the total information available from the images. In Chapter
6, we shall explore an automated homology routine that can establish a
more complete correspondence between the features.



FIGURE 3.10. Shape change induced by an affine transformation. In this picture,
we see the effect of a shear on the shape of a figure. To measure the distortion
in shape induced by an affine transformation x ---> xII.. + a we consider how A
transforms a circle to an ellipse. The lengths a and f3 of the semimajor and
semiminor axes, respectively, are the singular values of the matrix A. The ratio
of a and f3 or the logarithm of this ratio can be used to measure the shearing
effect of the affine transformation.
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(3.55)

(3.53)

(3.52)

(3.51)

(3.50)
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dA

A C~)

A(:1 ) (:1 )

A (::) (:)

det[AI - (1 + dll..T + dll..)] = 0

and

Thus we have

Now let us consider the form of II.. when w is an infinitesimal perturbation
of z. We can then write W = z + dz with coordinates WI = Zl + dZI

and W2 = Z2 + dz2 . See Figure 3.11. The matrix A can then be written
as 1 + dll.., where 1 is the 2 x 2 identity matrix, and

Let Xl, X2, and X3 be three planar landmarks that are not collinear.
For any other noncollinear landmarks YI, Y2, and Y3 there exists a unique
affine transformation h such that Yj = h(xj) for j = 1, 2, and 3. Let
us standardize the orientation of the triangles XIX2X3 and YIY2Y3 by
supposing that they are labeled in a counterclockwise direction. As we are
only interested in the difference in shape between XIX2X3 and YIY2Y3, we
can map both triangles by a similarity transformation that anchors Xl

and YI at the point -1 in the complex plane and similarly anchors X2

and Y2 at +1, as we did in Figure 3.1. The landmarks X3 and Y3

are then mapped to the respective Bookstein coordinates for the shapes of
the two triangles. Let z = (Zl, Z2) and W = (WI, W2) be the Bookstein
coordinates of XIX2X3 and YIY2Y3 respectively. As the labeling of the
triangles is counterclockwise, the Bookstein coordinates Z and W will lie
in the upper half plane. The affine transformation that maps -1, +1, and
Z to -1, +1, and w, respectively, is a linear transformation. It can be
represented by left multiplication of a 2 x 1 column vector by the upper
triangular matrix

To find the singular values of 11.., we first calculate the eigenvalues of
ATA. Because A is a perturbation of the identity matrix, we can write
ATA as

(1 + dAf (1 + dA) = 1 + (dAT + dA) (3.54)

The characteristic equation for the eigenvalues of AT II.. can be simplified
using equation (3.54) and written as

3. Shape Spaces96



FIGURE3.II. An infinitesimal change in the Bookstein coordinates of triangle
shape. As three landmarks Xl, X2, and X3 are perturbed to landmarks Xl +dXl,
X2 +dx2, and X3 +dx3 so the Bookstein coordinates Z = (Zl,Z2) are perturbed
to Z + dz = (Zl + dzl, Z2 + dz2). The matrix A is apertutbation of the identity
matrix I. Therefore we can write A = 1+ dA.

(3.60)
Jdz~ + dz~

Z2
ds

The matrix 3 x can be called the pre-size-and-shape matrix of the land
marks, for reasons that will be made clear below.

Next, we eliminate orientation information in the landmarks. Suppose
we let ~j be the n x 1 column vector consisting of the jth column of
3 x . A Gram-Schmidt orthogonalization of the vectors 6, ...,~n produces
a set of orthonormal vectors ~~, ... , ~~ with the property that ~j lies in

3.6 Hyperbolic Geometries for Shapes 99

3.6.2 A Generalization into Higher Dimensions

It is possible to generalize the shape manifold HS2 of triangle shapes to
a family of manifolds of shapes of n + 1 landmarks in n dimensions,
provided the n + 1 landmarks are in general position in R". This is
equivalent to requiring that the simplex that has these landmarks as its
vertices has positive n-dimensional volume.

Let X = (Xl, ... , Xn+l) be any set of n+ 1 landmarks in R" in general
position. The coordinates of the jth landmark Xj shall be denoted as,
(Xjl"'" Xjn)' We begin by arranging the coordinates of these landmarks
into il.n n x (n + 1) matrix whose jth column is the vector of coordinates
of the jth landmark. We can eliminate the information about location
in the landmarks by subtracting off the first column from all the others,
yielding the n x n matrix

This can be recognized as the distance formula for the Poincare Plane,
as given in formula (2.101). With this measure of infinitesimal distance,
the upper half plane of Bookstein coordinates becomes the Poincare Plane
HS2

•

It should be noted in passing that the infinitesimal distance ds is not
dependent upon which two of the three landmarks are mapped to ±l. It
is only necessary that homologous landmarks Xj and us be mapped
correspondingly.

Proposition 3.6.1. The infinitesimal distance from Bookstein coordinates
z to z + dz is given by

(3.56)

X21 - Xu X31 - Xu X(n+l)l - Xu

(3.57)
X22 - Xl2 X32 - Xl2 X(n+I)2 - X12

~x (3.61)

(3.58)
X2n -Xln X3n -Xln X(n+l)n - Xl n

(3.59)

+1

1
dA2+2

z

-1
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This is a quadratic equation in A. The eigenvalues of ATA are the two
roots of this equation, and can be seen to be perturbations of unity. So we
can write these eigenvalues as Al = 1 + dAI and A2 = 1 + dA2. The roots
of the quadratic equation in (3.55) can be found using the time-honored
formula known to all high school students. We find that Al and A2 are

1 + dZ2 ± J dz~ + dz~
Z2

Let Al be the larger of these two eigenvalues and A2 the smaller. As we are
working in the upper half plane of Bookstein coordinates, the coordinate
Z2 is positive. So Al has the plus sign in (3.56) while A2 has the minus
sign.

The singular values of A are the square roots of the eigenvalues of ATA.
They are also perturbations of unity, and can be written as

and

So the log-anisotropy of A will be

log(o:/l3) = dAI _ dA2
2 2

Plugging (3.56) into (3.59) we obtain the log-anisotropy, and thereby the
infinitesimal distance between the shapes with Bookstein coordinates z
and z + dz. This gives us the following result:
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(3.67)

...------%-~

(1,0,0)(0,0,0)
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To construct a metric tensor on UT(11,) we need to find an appropriate

Definition 3.6.3. We define UT(n) to be the set of all upper triangular
n x n, matrices II = (II j k ) for which II ll = 1 and for which the diagonal
elements IIj j are all positive.

shall be called generalized Bookstein coordinates of Xl, ... , X n +1.

We shall call the matrix IIx of (3.62) the upper triangular shape repre
sentation of x = (Xl, ... ,Xn+t), or the UT-shape representation of X for
short.

It is easy to see that UT(n) is closed under matrix multiplication and
inversion. Moreover, since the identity matrix is in UT(n) it follows that
UT(n) is a group with matrix multiplication.

Our next task is to make UT(n) into a Riemannian manifold by con
structing a metric tensor on it. Let IIx be an element of UT(n). We
perturb II x to a neighboring matrix II x+dx' To introduce a metric tensor
on UT(n), we need to find the singular values of IIx+dxII;I. The extent
to which these singular values differ from each other is a measure of the
shape change induced by left multiplication by the matrix IIx+dxII;l. Let

See Figure 3.12. The reader should note that that these coordinates do not
generalize Bookstein coordinates in the strict sense because for the case
n = 2 the simplex with vertices at Zl, ... , zn+t has its first point anchored
at 0 rather than at -1, as was the case in the previous section.

FIGURE 3.12. Generalized Bookstein coordinates for a simplex in three dimen
sions. The simplex is mapped by a similarity transformation so that the landmarks
Xl and X2 are mapped to (0,0,0) and (1,0,0) respectively. The simplex is
rotated about the axis through (0,0,0) and (1,0,0) until the third landmark
is of the form (Z31,Z32,0) with Z32 > 0. If the coordinate Z43 is negative,
the fourth landmark is reflected through the plane of the other three landmarks to
make this coordinate positive. Compare this figure with Figure 3.1.

(3.65)

(3.66)

(3.63)

(3.64)

(3.62)Z(n+1)3

Z(n+1)2

o 0 Z43

Z1 = (0, 0, 0, , 0)

Z2 = (+1, 0, 0, , 0)
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and for 3::; j ::; 11,+ 1,

o 0 0 0 Z(n+1)n

which is the matrix representation of the shape of the landmarks.
The reduction to shape coordinates has proceeded via a series of reduc

tions. First, we reduced to the pre-size-and-shape matrix 3 x , then to the
size-and-shape matrix Wx, and finally, after standardization, to the shape
matrix IIx •

The reason for the rather strange labeling of the elements of IIx is the
following. Suppose we define

Definition 3.6.2. The coordinates

Then the simplex: with vertices Xl, X2, , Xn+l (or its mirror image)
and the simplex with vertices Zl, Z2, , Zn+t have the same shape.
The coordinates defined by (3.63)-(3.65) encode the information about the
shape of the landmarks Xl, ... , Xn+l' Thus we have the following definition.

100

the subspace generated by e~, ...,ej and such that < ej,ej > is positive.
Let 0 be the orthogonal n x n matrix whose jth column is the vector
ej. Then Wx = 0-13x can be shown to be an upper triangular matrix
with positive entries down the main diagonal. For the proof of this result,
see Problem 7. The matrix n- 1 produces an orthogonal transformation
of the column vectors of 3", that standardizes the orientation information
in 3 x . For this reason, we can call W'" the size-and shape matrix of the
landmarks.

Next, we eliminate scale information in Wx by dividing every element
of this n x n matrix by the element.In the upper left corner. We need
have no fear that this element of the rr\atrix is zero because the elements
on the main diagonal of Wx are all pos\tive. Upon dividing every element
of Wx by the upper leftmost element, wlj are left with the upper triangular
matrix I

1 Z31 Z41 I.·· Z(n+l)1

!
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(3.77)

(3.75)

(3.74)

(3.73)
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n

al = L(1 + 2dAjj)
j=l

L [(1+ 2dA j j) (1+ 2dAkk) - dA~k]
l=5j<k=5n

which is the trace of 1+ dAT + dA. The second coefficient is a sum over
determinants of 2 x 2 minors of 1+ dAT + dA, namely

,-
Note' that dAn = 0 because An = 1. When we plug (3.73) and (3.74)
into (3.72), the terms of order 1 and of order dA cancel, and we are
left with a quadratic form in the differentials dA j k. The coefficients of the
quadratic form are the metric tensor. Our formula for ds 2 becomes

Proof. It suffices to show that Pn preserves the metric tensor. Let x =
(Xl,""Xn) and

x' = (Xj(l) , ... , Xj(n+l») (3.76)

In addition, let A be that element of UT(n) such that x + dx = Ax.
Similarly, let x' +dx' = Ax'. We can write A and A' as perturbations of
the identity matrix. Thus we have A = 1+ dA and A' = 1+ dA'. Suppose
that

Proposition 3.6.4. The shape metric ds2 on UT(n) given by formula
(3.72) is invariant under permutations. That is, let j(I), ...,j(n + 1) be
a permutation of the integers 1,2, ... , n + 1. We define a mapping Pn :
UT(n) -+ UT(n) taking the UT-shape representation of Xl, ... ,xn+l E
R" to the UT-shape representation of Xj(l), ... ,Xj(n+l)' Then Pn is an
isometry of UT(n).

As a check on this formula, we can plug in the 2 x 2 matrix dA given
in formula (3.53). The expression in' (3.75) can then be seen to reduce to
formula (3.60).

At this stage, it is appropriate to ask how the metric tensor on UT(n)
changes if we label the points Xl, X2, ... , xn+l in a different order. In
the case of Kendall's Procrustean geometry, we found that a relabeling (or
permutation) ofthe points induced an isometry on the shape manifold 2:2'.
Similarly, this is the case here.

dAjk of the matrix dA. To do this, we return 'to-the characteristic equation
given in (3.68) and evaluate the coefficients explicitly. We obtain

(3.72)

(3.71)

(3.69)

(3.70)

(3.68)

o

ds2 = Lf=l(Aj - ,X)2 = (n -1)ar _ 2a2
n n 2 n

3. Shape Spaces

det[>.I - ATA] = det[>.I - (I + dAT + dA)] = 0

we recall that

and

Definition 3.6.3. Let IIx and IIx+dx be the UT-shape representations
of x and x + dx and let A = IIx+dxII;l. We define the infinitesimal
distance ds from llx to llx+dx to be given by the formula

In particular, formula (3.60) is a special case offormula (3.72) where n = 2.
This metric is related to a theory of norms on upper triangular matrices due
to Frobenius and von Neumann. See [79]. The infinitesimal distance mea
sure ds can be interpreted as the evaluation of a von Neumann seminorm
on the upper triangular matrix leading to the infinitesimal shape change.

In order to evaluate the components of the metric tensor on UT(n) we
need to write out the coefficients 121 and a2 in terms of the elements

where AI,..., An are the eigenvalues of ATA. Also, >. = n-l Lj Aj, and

al and a2 are the coefficients of the characteristic polynomial of ATA
given by equations (3.70) and (3.71).

a2 = L AjAk
l=5j<k=5n

from which the first and second moments of the eigenvalues can be com
puted.We shall define the metric tensor on the space of simplex shapes
so that ds2 is the variance of the eigenvalues of ATA. In terms of the
coefficients of the characteristic polynomial, this gives us the following def
inition:

Writing this in the form

quadratic form on the coordinates of dA. There are n eigenvalues of the
matrix ATA , and these eigenvalues, as perturbed values of unity, can be
written as Aj = 1 + dAj for j = 1, ..., n. Unlike the case for n = 2,
these eigenvalues cannot generally be found with simple algebraic expres
sions. Fortunately this is unnecessary, as the first and second moments of
the eigenvalues can be computed from the coefficients of the characteristic
polynomial
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o

1 (-2
0
Z

42

3Z32Z~3

gl

where

From formula (3.75) we can write ds2 as

ds2
= dzI gl dZ3 + 2 dzI 92 dZ4 + dzf g3 dZ4

3.6.4 The Geometry of Tetrahedral Shapes

Let us now consider the detailed geometry of UT(3), the space of tetra
hedral shapes in three dimensions. Let x be a vector of four landmarks
in R 3 and let x be perturbed to x + dx. The infinitesimal distance ds
between TIx and TIx+dx will be the standard deviation of the eigenvalues
of A = 1+ dA, where TIx+dx = ATIx •

Let

where a ~ fJ. This linear transformation maps the Bookstein coordinates
(0,1) to (0, a]fJ). We can find the geodesic distance from I to A in
UT(2) directly from Proposition 3.6.1. Setting dZ1 = 0 and integrating
along the vertical axis from Z2 = 1 to Z2 = a] fJ we find the geodesic
distance to be

/

"'/ {3 1
- dZ2 = log(al{3) (3.81)

1 Z2

Compare this formula with formula (2.105). Not surprisingly, we return to
our original log-anisotropy, and now are able to interpret it as a geodesic dis
tance between Bookstein coordinates or upper triangular matrices. Hence
forth, we shall call (3.81) the anisotropy metric on the half space of Book
stein coordinates. See the notes at the end of the chapter for the general
ization of this metric to UT(n).

be the generalized Bookstein coordinates of x. Similarly, let Zjk + dZjk
be the (j, k)th generalized Bookstein coordinate of x + dx. It is straight
forward to check that

(3.80)

(3.79)

(3.78)
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The metric tensor of Definition 3.6.3 can be used to measure the geodesic
distance of any A E UT(n) from the identity matrix I. For example,
let us consider the geodesic distance from I to any A in UT(2). This
geodesic distance will be a function of the singular values a and fJ
of the matrix A. The orientation of the axes is quite incidental to the
calculation. Therefore, we can choose the axis to be along the direction of
the eigenvectors of AT A. Thus we can reduce, without loss of generality,
to the case where A is of the form

A ~ Ca~p)

3.6.3 Geodesic Distance in UT(2)

Proposition 3.6.5. The family of tmnsformations UT(n) -+ UT(n) of
right matrix muliiplicatiotie TI -+ TIA for each A E UT(n) is a group of
isometries on UT(n).

Proof. It is sufficient to prove that the metric tensor on UTen) is invariant
under right multiplication. This follows fairly easily from the construction
of the metric, and is left to Problem 5. Q.E.D.

Matrix multiplication on the right in UT(n) can be shown to be a family of
isometries of this Riemannian manifold, as the following proposition states.

from which the result follows. Q.E.D.

Problem 6 asks the reader to show that left matrix multiplications are not
isometries of UT(2).

1 + dA'1 ~ 1 + dA~ ~ ... ~ 1 + dA~

are the eigenvalues of (N)T N.
It is not hard to see that the eigenvalues of ATA and (N? A' are scaled

versions of each other. So there exists a positive constant c such that
1 + dA} = c(l + dAj) for all j = 1,2, ..., n. The constant c can be written
as c = 1+de, which means that we can write 1+dAj = 1+dAj +de. So the
effect of the permutation j(l), ...,j(n + 1) is to shift these eigenvalues by
an amount de. However, the variance of the eigenvalues is invariant under
shifts of location, which implies that

t (A} - ;\1)2 =

j=l n

are the eigenvalues of AT A = 1+ dAT + dA arranged in decreasing order.
In a similar vein, suppose
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(3.93)

(3.92).

3.7 Local Analysis of Shape Variation

FIGURE 3.13. A plot of the junction 'Y in formula (3.92).

{(r,8,8(r,s)) E R 3 : r,s E R}

J(r, 8) = _(r2 + 8
2) log(r2 + 8

2)

The function "( is plotted in Figure 3.13.
Thin-plate splines can be visually interpreted as the surfaces

are too simplistic to account for the detailed shape variation among im
ages such as the skulls. Alternatively, we can construct a set of homologous
landmarks on corresponding images and then extend the homology to the
entire image bya spatial interpolation routine. Let Xl, ... , X n and YI,···, Yn

be two sets of planar landmarks drawn from homologous images. We shall
suppose that Xj and Yj are situated at homologous positions on the cor
responding images. A spatial interpolation routine is one that constructs a
function h: R 2 -+ R 2 subject to the constraint that h(xj) = Yj for all
j = 1, ... ,n.

Bookstein [19], [23] has proposed a family of thin-plate splines that uses
the landmarks Xl, ... , X n as the knots of the spline.

To define the family of thin-plate splines, we first define a function J:
R 2 -+ R by

(3.91)

(3.88)

(3.87)93

3. Shape Spaces

and

and where

This is isometric to HS3 except for a scale factor.

3.7 Local Analysis of Shape Variation

(3.90)

Then the coordinates Z41, Z42, z43 can be seen to form a three-dimensional
half space with metric

dZ4 = (dz41 , dZ42, dZ43Y (3.89)

Unlike the metric tensor for UT(2), which was isometric to the Poincare
Plane HS2

, the space UT(3) has off-diagonal elements in its metric
tensor. Note, however, that 93 is diagonal in form. Suppose that we set
dZ31 = 0 and dZ32 = 0 in the formula for ds2. This is equivalent to
fixing the shape of the triangular base of a tetrahedron made up of the first
three points. In addition, suppose that we transform the coordinate Z43

by setting

and

3.7.1 Thin- Plate Splines

In the previous section, we considered shape differences due to the rather
restrictive class of affine transformations of R", and the Euclidean plane
in particular. However, in practice, much more general transformations are
necessary to explain shape differences. Let us revisit Figure 1.7 and the
four skulls in profile. How can we quantify the variation in shape that is
evident from the curvilinear coordinates?

The first problem we encounter is that of constructing transformations
that correspond to the pictures constructed by Thompson's method of co
ordinates. Thompson [172] suggested a number of simple classes of transfor
mations of biological interest, including the simple affine transformations
of the previous section. As is evident from Figure 1.7, such transformations
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1093.7 Local Analysis of Shape Variation

FIGURE 3.14. Thin-plate splines. In the top figure we see an example of the
function {j as defined in (3.94) using four landmarks Xl, ... , X4 at the vertices
of a square. The coefficients aj have been set to zero. The bottom figure illustrates
how a thin-plate spline h., as defined in (3.97), can warp a cartesian coordinate
system in the plane.(3.98)

(3.97)

(3.96)

(3.95)

(3.94)

n n n

Lbj = LbjXjl = Lbjxj2 = 0
j=l j=1 j=l

n

(ao+alr+a2 s)+ L bj/(r-Xjl,S-Xj2)
j=l

3. Shape Spaces

o(r,s)

such that h(xj) =, Yj for all j = l, ...,n. The thin-plate spline interpolant
will be of the form

where ol(r, s) and 82(r ,s)are of the form (3.94). The constants Uk
and bj for each of 01 and 02 are chosen to satisfy the constraint that
h(xj) = Yj, for all j. See Figure 3.14 for two examples of such thin-plate
splines.

These constants can be calculated as follows: Let P = (Pj k ) be the
n x n matrix whose diagonal elements Pjj are all zero, and whose off
diagonal elements are

We should note that this class of thin-plate splines contains the class of
affine transformations as a special case where bl = ... = b.; = O.

The family of surfaces defined by (3.93) is the mathematical solution to
a problem in physics. If a thin metal plate is constrained to pass through
a set of points that are almost coplanar, then the plate will take a shape
that minimizes the bending energy required to deform its shape from a
flat surface. The mathematical solution to the problem of minimizing the
bending energy is the family of surfaces defined by (3.93).

The class of thin-plate splines of (3.93) can be used to build interpo
lating functions. Suppose Xl, ... , X n are n landmarks in R 2 , possibly
standardized with respect to location, scale, and orientation. Let Yl,"" Yn
be another set of landmarks in R 2 such that Xj is homologous to Yj
for j = 1, ... ,n. The thin-plate splines in (3.94) provide us with a tool for
finding an interpolating spline

where Xj = (Xjl' a:j2) are landmarks in R 2
. The constants ak are arbitrary

real values. However, the constants bj are not completely arbitrary, but
are constrained to satisfy

corresponding to functions of the form
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3.7 Local Analysis of Shape Variation 111

Now suppose that M 2(r, s) = 0 for all (r, s). Then the matrix A(r, s)
is a scalar multiple ofan orthogonal matrix for all (r, s). Moreover, because
his restricted in our discussion to those transformations that preserve the
orientation of the plane, it follows that A is a scalar multiple of a special
orthogonal matrix, which is a rotation of R 2 . This implies that

(3.102)

(3.103)

(3.101)
au/as )

av/as

au av
as = - or

M2(r,s) = 10g(a/{3)

(

au/or
A(r, s) =

av/ar

Let us restrict to the case where h preserves the orientation of the plane.
This is equivalent to requiring that the determinant of A(r,s) be positive
for all (r, s).

Let a = a(r, s) and{3 = {3(r, s) be the two singular values of A, with
a .~ {3. To measure the local shape change caused by the stretching effect
of h at (r, s) we can use the anisotropy metric

between two images that are subsets of U and V respectively. In this sec
tion, we shall be interested in quantifying the differences in shape between
the two images by assessing the degree to which h varies from a similarity
transformation in Sim(2). However, we shall not assume that h comes
from a restricted class of functions such as the affine transformations of the
plane.

/Themethod that we shall.consider is based in part upon the geometry of
Section 3.6, and can be used to investigate the localshape variation caused
by h. Suppose h maps the point (r, s) E R 2 to the point (u, v). To first
order, the local properties of h around X E U can be determined by the
Jacobian matrix A(r, s). We have

These are seen to be the Cauchy-Riemann equations, used to verify that h
is a complex analytic function. So, the function M 2 provides a measure
of departure of h from the family of complex analytic functions. Complex
analytic functions are conformal, and we see that conformal mappings,
which preserve local angles, are local similarity transformations.

In a general number of dimensions, we can also extend the definition
of M 2 to functions h: R" ~ an using the Riemannian geometry
of UT(n). If A is the Jacobian matrix of h we can standardize it
via a similarity transformation of R" to be an element of UT(n). The
geodesic distance of this standardized matrix in UT(n) from the identity
matrix I is a measure of local shape change induced by the stretching
effect of A. The resulting function M n measures the degree of departure
of h from a conformal transformation of R n. For dimensions n ~ 3, the

p Q

Ynl Yn2 bn 1 bn 2 (3.100)

QT 0
0 0 aQl a02

0 0 au a12

0 0 a21 a22

3.7.2 Local Anisotropy of Nonlinear Transformations

Let h: U ~ V be a smooth transformation between two open subsets of
the plane R 2 . Let us suppose that the function h establishes a homology

The coefficients of 01 and 02 can be read from the first and second
columns respectively on the right-hand side of (3.100).

It is worth making a few comments about Bookstein's thin-plate splines.
First of all, we should note that the family of thin-plate splines in (3.97) is
not invariant under function inversion. In general, the function h-1 is not
a thin-plate spline when h is. This implies that the landmarks Xj and
Yj cannot be treated symmetrically. It is customary to consider the con
figuration of landmarks Xl, ... , X n as selected from a canonical (textbook)
image against which one or more other images are to be compared.

Secondly, the thin-plate spline h: R 2 ~ R 2 need not be 1-1. In other
words, h can fold. the plane so that two distinct points are mapped onto
the same point. In applications where a thin-plate spline produces a fold,
the researcher should consider whether this is physically meaningful.

Finally, the family of thin-plate splines in (3.97) is closed under similarity
transformations of the plane. That the family is closed under translation
and rotation of the domain or range is obvious. Also obvious is its closure
under scale changes to the range of the splines. So only the closure of the
family of thin-plate splines under scale changes in the domain needs to be
checked with any care. If her, s) is a thin-plate spline, it can be seen that
under rescaling by a factor a the function hear, as) is also a thin-plate
spline. This fact is partly a consequence of the linear constraints of (3.95).

The coefficients in (3.97) can then be determined by solving

-1 Yu Y12 bu b12

110 3. Shape Spaces

Next, we define the matrix

1 Xu X12

1 X21 X22

Q (3.99)

1 Xnl X n2



conformal transformations of Euclidean space R" are more restricted than
the conformal transformations of R 2 . It can be shown that any conformal
transformation of R", n ~ 3, is necessarily a Moebius transformation,
characterized in dimension n as a diffeomorphism that maps (n - 1)"
spheres to (n - I)-spheres. Although these transformations are restricted,
they can still change shapes, as they include inversion transformations.
Thus it is useful to try to supplement M n by a function that measures
shape variation a different way.

where V' is the gradient operator for real valued functions on R". The
transformation of the Jacobian by the logarithm ensures that the function
Nn is invariant under homogeneous scale changes of R ", measuring only
the heterogeneity in scale changes by h.

Earlier, we found that the transformations for which M n == 0 were the
conformal transformations of R". It is also useful to examine the class of
smooth transformations of R" for which N« == O. Any such transformation
h must have a constant Jacobian Jh. Integrating volume elements over
subsets of R", we find that h must be equivalent, except for an arbitrary
similarity transformation, to a volume-preserving transformation of R".

1133.7 Local Analysis of Shape Variation

Proposition 3.7.1. Suppose that h: R n --> R n is a diffeomorphism such
that M n == 0 and Nn == 0 throughout R". Then ti e Sim(n).

Another way of saying this is that h must preserve the ratios of volumes:
if A and B are subsets of R", then the ratio of the volume of A to
that of B is the same as the ratio of the volume of h(A) to the volume of
h(B). This property of h is reminiscent of certain aspects of the allometric
approach to shape analysis. The log-volumes of A and B can be regarded
as size variables in an image, and their difference as a shape variable. When
N.r/== 0, these allometric shape variables are left invariant by h.

/As we shall see in the following proposition, the functions M n and N
n

together describe the total variation in shape due to the transformation h.

Proof. As M n == 0 it follows that the Jacobian matrix of h is locally a
rescaling of an orthogonal matrix. That is, there exists a positive function
A : R n -4 R such that AA is an orthogonal matrix at all points in R ".
But because Nn == 0 we also observe that Jh is a constant function
throughout R". Moreover, Jh == A-n . Therefore, A is constant function
on R". Thus we can say that h = Aho, where A is a positive scalar,
and Ao, the Jacobian matrix of ho, is an orthogonal matrix at all points
in n-.

However, any function ho must be an isometry of R" if Ao is
everywhere an orthogonal matrix. To prove this, consider two points x, y E
Rn,andconsiderthelinesegment L with endpoints x and y.Let ho(L)
be that arc in Rn from ho(x) to ho(y) consisting of the image under
ho of all points on the line segment L. Because Ao is an orthogonal
matrix, it follows that ho is locally an isometry, so that the length of
the path ho(L) is equal to the length of the line segment L. But L
has length Ilx -- yll, and the length of ho(L) is greater than or equal
to Ilho(x) - ho(y)ll, the length of the arc being at least as great as the
distance between its endpoints. Therefore Ilx - yll ~ IIho(x) - ho(y)ll.
However, a similar argument using hOI rather than ho shows that
IIx - yll :s Ilho(x) - ho(y)ll· Thus Ilx - yll = IIho(x) - ho(y)ll, and ho
is an isometry of RP. From this fact, we conclude that h is a similarity
transformation of RP. Q.E.D.

We can see the effects of these two types of local shape variation by con
sidering the curvilinear coordinates of Figure 1.7. The coordinate system for
the modern human skull was chosen to be a standard Cartesian coordinate
system, with intersecting lines meeting at orthogonal and equally spaced
parallel lines in each direction. This divides the region into squares. In the
curvilinear coordinate systems below this, the images of the squares in the
first coordinate system are approximately parallelograms except for those
regions where shape variation is occurring too rapidly for the coarseness of

(3.105)

(3.104)

»: = IIV' log(Jh) II

{:r[IOg(Jh)]f + {:s[IOg(Jh)]f

3. Shape Spaces

In general dimensions, using more compact notation, we can define

3.7.3 Another Measure oj Local Shape Variation

While M n is a useful measure of local shape variation, it does not provide
a complete description of the changes in shape induced by a transformation
h. As we have seen, conformal transformations can be markedly different
from the similarity transformations that preserve shape, despite the fact
that they are locally similarity transformations themselves.

At this stage, it is helpful to appeal to the allometric model of Section 1.2,
in which biological shape changes are modeled as occurring when different
parts of an organism grow at different rates. This suggests that we look for
two components to shape change, measured by M n and a new measure
that we shall call Nn .

Conformal mappings (for which M n vanishes) have nonconstant Jaco
bians and therefore have heterogeneous scale changes at the local level. In
the case of similarity transformations, the Jacobian of the transformation
is a constant function equal to the nth power of the scale factor induced
by h. This suggests that we try to measure the variability of the Jacobian
as a measure of shape change. In dimension two, let us define
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3:8 Notes
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(3.107)

(3.108)

3.9 Problems

(
1 X+dX)
o y+dy

and

5. Prove Proposition 3.6.5.

under left multiplication by the matrix

3. Find all points on the sphere 82(1/2) ~ ~~ that correspond to right
triangles. What does this region look like?

4. Find all points on the sphere 82(1/2) ~ ~~ that correspond to isosceles
triangles. What does this region look like?

2. Show that the 1-1 correspondence between .~~ and 8 2(1/2) established
in formula (3.9) of Section 3.1 is a Riemannian isometry. More specifically,
show that formula (1.21) for the distance between shape points on the
sphere is equivalent to formula (3.9) for shape distance on ~~. Hint: as both
formulas are invariant under similarity transformations, it is sufficient to
cohsider two triangles, -1, +1, Zl and -1, +1, Z2, of complex landmarks
and to compute the distance between their shapes by the two methods.
First find the coordinates of their pre-shapes and plug into formula (1.21).
Then find the coordinates of shape on the sphere from formula (3.7) and
plug into formula (3.9). Do you get the same answer?

6. Show that left matrix multiplications in UT(2) are not isometries by
considering what happens to the matrices

the average Ofxlx2x3and YIY2Y3 is similar to these triangles. Does this
result hold if the triangles are not constrained to lie in the same plane?

In addition, confirm the results of Proposition 3.6.5 as applied to UT(2)
by 'performing the same calculation using right multiplication.

7. Let n ,be the orthogonal n x n matrix defined in Section 3.6.2. Let
~j be the jth column of 3 x .

(a) Using the fact that ~j lies in the subspace generated by ~~, ...,ej,
show that n-lej has only its first j elements nonzero. (Hint: what does
n-lej look like?) Conclude that Wx is an upper triangular matrix.

(b) Using the fact that < ~j, ~j > is positive, show that the entries
down the main diagonal of Wx = n-l 3 x are also positive.

8. At the end of Section 3.4, we noted in passing that it is possible to

(3.106)

3. Shape Spaces

t '('~l)n [U- 1) IOg(Aj/Ad-~IOg(Ak/Ad]2
j=2 J J k=l

where AI,..., An are the eigenvalues of ATA.

Proposition 3.8.1. Let llx and lly be the UT-shape representations
of x and y respectively. Let A = llyll;l. The square of the geodesic
distance from Ux to lly in UT(n) is given by

1. Consider two similar triangles XlX2X3 and YlY2Y3 in the plane. We
define the average of the two triangles to be ZlZ2Z3 where Zl, Z2, and
Z3 are the midpoints of XIYl, X2Y2, and X3Y3, respectively. Show that

Bookstein's approach to shape analysis leads to a manifold of constant neg
ative curvature for the representation of triangle shapes. In contrast to this,
Kendall's approach leads to a sphere, which is a manifold of constant posi
tive curvature. This discrepancy need not confuse us nor lead us to consider
one geometry superior to the other. In each case, the Riemannian geometry
of triangle shape. space is motivated by consideration of the mechanisms
that give rise to shape variation. Our generalization of Fred Bookstein's
triangle shape geometry to the family of shape spaces UT(n) provides an
alternative to the family of spaces ~~+l introduced by David Kendall.

Huiling Le has recently computed the anisotropy metric for UT(n).
This is the generalization of formula (3.81) from UT(2) to the higher
dimensional simplex shape spaces UT(n), where n > 2. The following
proposition can be compared with Proposition 3.6.4, which is a special
case for infinitesimal distances.

It can be checked that this reduces to formula (3.81) when n = 2 and to
formula (3.72) when y = x + dx.

For n > 2 the simplex shape.spaces are not spaces of constant curvature.
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the grid. The function M 2 measures those shape changes that stretch the
squares of the top grid into the parallelograms of the lower grids. Another
type of effect that we can observe is that while the squares in the top grid
are all of the same area, the parallelograms of the lower grids have varying
areas. This effect is measured by N2 •



4.1 Probability Theory on Manifolds

4
Some Stochastic Geometry

(4.1){s E S : s E Aj for some j}
00

4.1.1 Sample Spaces and Sigma-Fields

We begin with a review of some basic definitions and ideas from probability
theory. The reader wishing a more detailed description of the tools that will
be necessary can consult [43].

By a sample space we shall mean a set S whose elements s shall
be called outcomes or points. Within S we shall suppose that we have a
particular class F of subsets A c S that shall be called events. This
class has to be sufficiently rich to allow us to do probability calculations.
To do this we shall require that F be a sigma-field of subsets, which we
now define.

Definition 4.1.1. A class F of subsets of S is said to be a sigma-field
on S if the following three properties are satisfied.
1. S E :F.
2. If A E F then its complement N E F.
3. For any sequence AI, A2 , A3 , . .. of elements of F the union

is an element of F.

arrange a set of points on a Riemannian manifold so that their interpoint
geodesic distances do not match the interpoint Euclidean distances of any
configuration of points in any dimension. In this problem we shall verify
this. Let xl> j == 1, ... ,4, be four points spaced at equal intervals around
the unit circle S 1.

(a) Find the 6 x 6 matrix of interpoint geodesic distances between the
points Xj using arc length to measure distance.

(b) Show that this 6 x 6 matrix cannot be an interpoint Euclidean
distance matrix for any set of four points in any Euclidean space R".

116 3. Shape Spaces



Definition 4.1.2. By a probability, we mean a function

119

(4.9)

(4.8)

(4.7)

4.1 Probability Theory on Manifolds

{s E S : X(s) E B}

X-I(B) = {s E S : X(s) E B}

So we shall typically write P(X E B) for the probability in equation (4.8).
Other notations are similar. For example, if MP = R , we write (X::; t)
for the set (X E (-00, t]), etc. Another abbreviation is to use a comma to

It can be checked that PX-I satisfies the properties of a probability on
MP given in Definition 4.1.2 above. In much of probability theory, the fact
that statistics are functions on sample spaces tends to be suppressed in the
notation. Thus we shall henceforth write X-1(B) as (X E B), both being
equivalent to the event

is an event in S. That is, if B is a Borel set then X-I(B) E F. This
property indicates the importance of Borel sets in MP. They form a natural
class of subsets B for which we can assign a probability that a statistic
X lies in B.

4.1.4 Induced Distributions on Manifplds

Because the class of Borel sets B is a sigma-field, we can regard the
manifold MP as a sample space in its own right, with B as its class of
events. A statistic X then induces a probability on B in the same way
that the original probability P -is defined on :F. We can define the induced
probability distribution P X-Ion the Borel sets of MP to be

Definition 4.1.4. The class B ofBorel subsets of MP is defined as the
signlta-field of subsets of MP generated by the class U of open subsets of
MP(

\
ThJs all the open sets of MP are Borel sets including MP itself. In
addi\ion, the countable intersection of open subsets of MP is also Borel,
although it is, in general, not open. Closed subsets are also Borel, because
they are the complements of open sets in MP. The possible types of Borel
sets are not exhausted by this list as the possible types of sets generated
by countably taking intersections, unions, and complements in any order
is very rich indeed.

For any Borel set B c MP and for all statistics X S -. MP, the set

In the special case where MP = R we also refer to a statistic X on R
as a random variable. More generally, a statistic on RP is called a random
vector.

We can also define a class B of subsets on MP called the Borel subsets.

(4.6)

(4.5)

(4.4)

(4.2)

(4.3)

4. Some Stochastic Geometry

X : S -. MP

with the property that

and

P(S) 1

X-I(U) = {s E S : X(s) E U}

such that 0::; P(A) ::; 1 for all A E F satisfying the properties

is an event (i.e., an element of F) for every open set U G: MP.

Definition 4.1.3. Let MP be a differential manifold. By a statistic X
on MP we shall mean a function

4.1.3 Statistics on Manifolds

Of particular interest are functions from a sample space into a manifold
called statistics.

whenever A j n Ak = 0 for all j =1= k. The set S when endowed with a
sigma-field F of events and with a probability P is said to be a probability
space.

If g is any class of subsets of a set S we can also define the sigma-field
generated by g. This is the intersection of all sigma-fields g' such that
g c g'. It is clearly the smallest sigma-field containing the subsets A E g.

4.1.2 Probabilities

We can now define a probability on a sample space.

Henceforth, we shall assume that the class F of events is a sigma-field.
From Definition 4.1.1, it is possible to show that any subset of S con
structed as a countable Boolean combination of events in F is itself an
event in F.
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(4.17)

(4.16)

(4.15)

(4.14)
n

IIP(Xj E Bj )

j=l

4.2 The Geometric Measure

1
+ 00

£(X) = -00 x dF(x)

£(X) = [£(Xd, 00', £(Xn ) ]

P(X I E B) = P(X2 E B) = 00. = P(Xn E B)

for those random variables for which the integral is finite. The expected
value of a random vector X = (Xl,oo.,Xn ) we shall define as the vector
of expected values

In a similar way, the expected value of a matrix can be defined as the
matrix of expected values of its elements.

We cannot do justice in this brief survey to the full range of defini
tions and results on expectation, independence, conditional probability,
and marginalization of distributions. The reader is referred to standard
sources for the .results needed throughout the remainder of this book.

4.1. 7 Mathematical Expectation

4.2 The Geometric Measure

We now seek to generalize the concept of a p-dimensional content, or vol
ume, in RP to a Riemannian manifold. We have already seen that the
metric tensor is instrumental in defining the lengths of paths in a Rieman
nian manifold. One would naturally expect the metric tensor to be essential

If X is a random variable with distribution function F, then we can
define the mathematical expectation, also known as the mean or expected
value of X, to be

for all Borel B C MP then we shall say that Xl,. 00' X n are identically
distributed. The condition that random variables are both independent and
identically distributed is often abbreviated by saying that they are IID.

If the induced distributions Px;' on MP are equal in the sense that

4.1.6 Stochastic Independence

We now briefly review some basic definitions and properties related to
stochastic independence. Let Xl, X 2 , 00" Xn be statistics taking values in a
differential manifold MP. These statistics are said to be mutually stochasti
cally independent, or simply independent, if for all Borel sets B I, B2 , •.. , Bn c
MP we have

(4.13)

(4.12)

(4.11)

(4.10)

h(X) : S ---> N?

P(X E U) = 1 f(x) dx
xEU

4. Some Stochastic Geometry

It is important and nontrivial to show that the induced distribution PX-I
on the Borel sets of RP is determined by its joint distribution function
Fx. We say that It random variable X is absolutely continuous, or simply
continuous, if there exists a nonnegative function f : R ---> R such that

to stand for (Xl E B I ) n (X2 E B2)'
We can make new statistics out of old. One way to do this is through the

use of Cartesian products. For example, if Xl is a statistic on MP and
X2 is a statistic on Nq then X = (Xl, X2) is a statistic on MP x N".
Correspondingly, any statistic X on MP x N? defines Xl and X2

uniquely on MP and N? respectively. Another way to build new statistics
out of old ones is through composition of functions. For example, if X is
a statistic on MP and h : MP ---> N? is continuous, then

is a statistic on N". This follows from the fact that the continuous pre
image h-l(B) of a Borel set Be N" is a Borel set of MP.

Suppose X is a random vector taking values in Euclidean space RP. If
we write X in terms of its coordinates Xl,oo.,Xp then Xl,oo.,Xp are
random variables. We define the distribution function of X to be a real
valued function Fg : RP ---> R such that

for all open sets U C R. Equation (4.13) holds true if U is replaced
by any Borel subset of R. A random vector X taking values in RP is
said to be absolutely continuous if the higher-dimensional analog of (4.13)
holds for some nonnegative function f: RP ---> R and all open U C
RP. Many probability distributions can be constructed on RP that are
not continuous, although many of the models in this book will be of the
continuous type. Another important class of probability distributions are
the discrete probability distributions, which assign unit probability to some
countable set.

4.1.5 Random Vectors and Distribution Functions

stand for the logical operation "and" and the corresponding set operation
of intersection. Thus we shall write
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(4.30)

(4.29)

(4.28)

(4.27)

(4.26)

4.2 The Geometric Measure

P(X E U) = r f(x) dVp(x)
}XEU

as is well known.

This formula is quite commonly derived from heuristics in multivariate
calculus courses. Thus the surface area of the sphere is

Consider the hyperbolic half spaces of Section 2.2.17. For these spaces

Close to the horizon at infinity where x p = 0, when measured in Euclidean
coordinates the volume element dVpgoes to infinity. Unlike their positive
curvature counterparts, the spheres SP, the hyperbolic half spaces HSP
have infinite volume.

In this case, we say that X is uniformly distributed on the manifold, or
that the induced distribution on MP is uniform. Note that the density
can never be constant on a manifold for which Vp(MP) = 00.

4.2.2 Example: Volume in Hyperbolic Half Spaces

4.2.1 Example: Surface Area on Spheres

To illustrate the idea of volume and content, consider the 2-sphere S2(r)
of radius r from the example in Section 2.2.14. Let Ih be the longitude
and (}2 the colatitude of that example as defined in formula (2.63). Then
applying formula (4.24) above, we see that

The volume function Vp , when extended to the Borel sets of the manifold,
is called the geometric measure.

Now suppose S is a probability space endowed with a probability P,
andsuppose X : S -+ MP is a statistic on the Riemannian manifold. The
statistic X will be said to be absolutely continuous, or simply continuous,
provided that there exists a nonnegative function f: MP -+ R such that

for all open sets U on the manifold. If this is the case, we shall call
f the density function of X. An important special case occurs when
Vp(MP) < 00 and

(4.21)

(4.23)

(4.20)

(4.22)

(4.18)

(

.

X ll X12

X21 X22

Xpl Xp2
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{y = (Yl' Y2, ...,Yp) E MP Xj:S Yj :S Xj + dXj for all j}

to be

Now, Problem 4 asks the reader to show that

Vp(U) = 1 dVp(x) (4.25)
xEU

P

gjk = < Xj,Xk > = EXjlXkl
1=1

is the metric tensor for RP endowed with a coordinate system based on
Xl, X2, ..., xp rather than the usual orthonormal set of vectors. Formula
(4.21) tells us that p-dimensional volume is characterized by the metric
tensor.

To calculatep-dimensional volume on a general Riemannian manifold
we use an approach that is similar to the calculation of arc length using the
metric tensor. The metric tensor on a Riemannian manifold MP permits
us to define the volume of a parallelepiped in Tx(MP), the tangent space
at X E MP. From this we define the volume dVp(x) of a small region
whose coordinates are

where

{
t aj Xj : O:S aj:S 1 for all j} (4.19)
3=1

A standard result in linear algebra tells us that the volume, or content, of
this parallelepiped is the absolute value of the determinant of the matrix

dVp(x) = jdet(gjk dXjdxk) (4.24)

The volume of an open set U in the manifold is then found to be

for j = 1,2, ...,p be a set of p linearly independent vectors in RP. The
basis vectors Xl, X2, ..., xp define the edges of a parallelepiped in RP
given by

to the definition of content as well. We begin by considering the relationship
between the metric tensor and p-dimensional content in RP. Let
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(4.41)

(4.40)

(4.39)

(4.36)

4.4 Invariance and Isometries

Vp [h(B)] = Vp(B)

P[X E h(B)] = P(X E B)

for all Borel sets B and for all h E Iso(MP). Similarly, if X has a
uniform distribution on MP then the probability distribution is invariant
under the group in the sense that

4.4 Invariance and Isometries

In order to prove that a particular induced distribution on MP is uniform,
it is possible to check directly that its density is constant. Often, however,
there is another way based upon the concept of invariance. Suppose that
for any two points x, y E MP there is a geodesic from x to y. Then
there is a well defined concept of geodesic distance between points. For
such manifolds, we can use Iso(MP), the group of isometries on MP, to
investigate whether a statistic has a uniform distribution on MP. Now the
volume measure on MP is invariant under isometries in the sense that

This invariance property of (4.41) is illustrated in Figure 4.1. We shall be
concerned with the converse of this result. Namely, if a continuous statistic
X has this invariance property with respect to Iso(MP) does it follow
that X is uniformly distributed on MP? The answer, in general, is no.

Y1 = hi (X) = (Y, Y') (4.38)

can be calculated from formula (4.34) above. We then find the marginal
density of Y = heX) by integrating this density over its second variable,
leading to the formula

(h, h') : MP -t N? X NP-q (4.37)

is a diffeomorphism. Let hi = (h, h') and Y' h'(X). The density
function of

such that

using formula (4.24). In measure-theoretic language, we can also call the
ratio of differentials a Radon-Nikodym derivative.

An extension of (4.34) allows us to calculate the distribution of Y =

heX) for transformations h : MP -t N? where q < p. Suppose we can
find a manifold NP-q and a transformation

(4.35)

(4.34)

(4.33)

(4.32)

(4.31)

det gM[h-i(y)]
- detgN~

(:Jh)x = det (A)

4. Some Stochastic Geometry

Moreover, both quantities will be bounded away from zero and infinity. If
h is a local diffeomorphism, the identity (4.33) remains true because of the
Jacobian's local nature. But in this case, the inverse transformation has to
be interpreted locally.

4.3.2 Change of Variables Formulas

where the ratio of differentials of the geometric measure is a coordinate-free
notation for the expression

Note that the Jacobian is dependent on the particular coordinate system
used on each manifold. That is, the Jacobian is extrinsic to the manifolds.
However, it appears in calculations to compensate for changes of coor
dinates, and therefore can be used to build intrinsic quantities that are
independent of the coordinate system. If h is a diffeomorphism between
manifolds then

Now suppose X is a statistic on MP with density function f and
suppose that h : MP -t NP is a diffeomorphism. We define the statistic
Y = heX), and consider the problem of calculating the density function
of Y on NP. Let gM be the metric tensor on MP, and let gN be the
metric tensor on NP. Then it can be shown that the density function of
Y on NP can be written in terms of the Jacobian :Jh- i and the metric
tensors as

Then the Jacobian matrix of h can be defined in terms of these coordinates
as the matrix of partial derivatives A = (8Yjj8xk) as in formula (2.9).
Similarly, we can define the Jacobian of h to be

4.3 Transformations of Statistics

4.3.1 Jacobians of Diffeomorphisms

Consider two manifolds MP and NP of the same dimension, and let
h : MP -t NP be a differentiable function. Suppose MP and NP have
coordinate systems x = (Xi""'Xp) and Y = (Yi, ... ,Yp) respectively.
Then we can express h in terms of these coordinates as a function
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(4.44)

(4.43)

(4.42)

4:4, Invarianceand Isometries

4.4.2 Example: Isometries of Real Projective Spaces

Let

denote the covering mapping taking each x E SP to the pair of antipodal
points {x, -x} E RpP. Suppose X is a statistic that is uniformly dis
tributed on SP. As A is continuous, it follows that A(X) is a statistic
on RpP. As will be seen, A(X) is uniformly distributed on RpP.

The fact that this is true can be shown by calculating the density function
of A(X) directly. If X has density function f on the sphere SP, then
it can be shown that the density function of A(X) at the point A(x)
is f(x) + f( -x). The constancy of f on SP implies the constancy of
f(x) + f( -x), and thereby the uniformity of the distribution of A(X).

4.4.1 Example: Isometries of Spheres

In 4.2.1 we wrote the differential dV2 of surface area in terms of the
coordinate system. We now characterize surface area through invariance.
Both O(p) and U(p) are isometry groups on RP and CP respectively.
Now O(p) maps the unit sphere Sp-l to itself, and is therefore an
isometry group for Sp-l. It is a simple exercise to show that this group
acts transitively on Sp-l. See Problem 6 at the end of the chapter. The
uniform distribution is the unique distribution on S2 that is invariant
under the action of 0(3). More generally, the uniform distribution on
Sp-l is the unique invariant distribution under the action of O(p).

Now, the unitary group U(q) is identifiable as a subgroup of O(2q).
Thus U(q) is a group of isometries of S2q-l. With a bit of work, we can
also show that U(q) acts transitively on S2q-l. See Problem 7. Thus
the uniform distribution on S2q-l Is also characterized as the unique
distribution that is invariant under U(q).

for all y. An Immediate consequence of this is that f must be a constant
function when Iso(MP) is transitive. Thus X must have a uniform
distribution. Q.E.D.

Furthermore, because X has a distribution that is invariant for all h E
Iso(MP), the statistics X and heX) have the same distribution and the
same density functions. Thereforeformula (4.34) gives us

h is an isometry, it follows that the Jacobian matrices of hand h- 1 will
be orthogonal at the points x and y respectively. Therefore,

.~
~y

4. Some Stochastic Geometry

Using the concept of transitivity of the group action on MP, we can obtain
our converse.

FIGURE 4.1. Invariance of the uniform distribution with respect to isometries.o]
the manifold. A Borel set B is shifted by an isometry h. of the manifold to a
set h(B). If X is a uniformly distributed statistic on the manifold, then X
will lie with equal probability in Band h(B).

Proposition 4.4.2. Let X be a continuous statistic on the manifold MP,
with density function f(x). Suppose that H is any transitive subgroup
of Iso(MP), and that the distribution of X is invariant under H in
the sense of equation (4.41) above. Then f is a constant density on MP.
That is, X is uniformly distributed on MP.

However, for an important special case, the converse is true. The following
definition provides the necessary class of isometries for which a converse
can be obtained.

Definition 4.4.1. Let H be any group of transformations on MP. Then
H is said to be transitive if for every x and y in MP, there is an
hE H such that hex) = y.

Proof. This result follows from a special case of formula (4.34), in which
MP = NP and gM =gN' To prove that X is uniform, we must show
that f(x) = fey) for all x,y E MP. As H is a transitive group, it follows
that there exists an hE H such that hex) = y. We can set up coordinate
systems around x and y so that aM (x) and gN(y) are the identity
matrices. (This can be achieved at specific' points in a manifold, but will
only hold over an open set when the manifold is flaton that set.) Because
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(4.54)

(4.53)

4.4 Invariance and Isometries

4.4.3 Example: Isometrics of Complex Projective Spaces

Our next example is an extension of the previous case to include the class of
complex projective spaces. Suppose that Z is a statistic that is uniformly
distributed on the sphere S2q+l , this time understood as the unit sphere
about the origin in C q+1

. Let

be the mapping taking each point z of the sphere S2q+l into its orbit
O(z), as in Section 2.2.16. We claim that O(Z) is uniformly distributed on
cPq. The proof of this result parallels the case for RpP above, with the
exception that thegroup U (q+ 1) must be used to provide the invariance
rather than O(2q + 2). The proof goes through in a similar way to that of
Section 4.4.2, above. In this case, our commutative diagram becomes

The transformations on cPq induced by U(q + 1) are isometries, the
group as a whole acting transitively on cPq. As above, this follows easily
from the fact that U(q + 1) acts transitively on S2q+l. See Problem 7.

The reader should note that as in the previous example, the group U(q+
1) is bigger than the group of isometries it induces on cPq. A subgroup of
U(q + 1) determined as its center maps orbits O(z) back to themselves.
Such transformations induce the identity transformation on cPq, and
together form a group that is isomorphic to U(l). In a manner similar to
the previous example, in group-theoretic terms we can write the group of
isometries induced on cPq as the factor group U(q + l)/U(l).

the first equality following from the invariance of the uniform distribution
on the sphere SP. This demonstrates the invariance. So A(X) is uniformly
distributed on RpP.

The reader should note that the group O(p + 1) is a little bigger than
the group of isometries it induces on RpP. The transformation x -t -x
is an element of O(p + 1) that maps {x, -x} back onto itself. Thus it
induces the identity transformation on RpP. This transformation, together
with the identity transformation, forms a subgroup of O(p + 1) that is
the center of O(p+ 1). It is isomorphic to the group 0(1). Thus in group
theoretic terms we can write the group of isometries induced on RpP as
the factor group O(p + 1)/0(1).

(4.52)

(4.51)

(4.50)

(4.49)

(4.48)

(4.47)

(4.46)

P [X E A-1(B)]

P[A(X) E B]

P {X E A-l[h(B)]}

P {X E h[A-1(B)]}

A[h(x)] = h[A(x)]

{x, -x} -t {h(x), -h(x)}

P [A(X) E h(B)]

4. Some Stochastic Geometry

for every hE O(p + 1) and every x ESP. More compactly, we can write
A 0 h = h 0 A. Equivalently, the functions A and h can be said to
commute. The diagram of this looks as follows:

The second equality follows from the fact that h and A commute.
However,

Now O(p + 1) can be checked to be a group of isometries of RpP,
because the mapping

preserves geodesic distance in RpP. That O(p + 1) acts transitively
on RpP follows easily from the fact that it acts transitively on SP.
See Problem 6 at the end of the chapter. In addition, for any Borel set
Be RpP,

as well as

letting the context decide the transformation under consideration. With
this understanding, we can show that

h(-x) = -h(x) (4.45)

for all transformations hE O(p+ 1). This means that the group O(p+ 1)
acts on RpP as well, the element h E O(p+1) taking any pair of antipodal
points {x, -x} to another pair of antipodal points {h(x), -h(x)}. At the
risk of some confusion, we write

However, an alternative proof using invariance is useful. To prove the re
sult, we first note that an orthogonal transformation of the sphere preserves
the property that points are antipodal. That is,
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4.5 Normal Statistics on Manifolds

4. 5.1 Multivariate Normal Distributions
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(4.56)

(4.57)

o

X

IIXII

4.5 Normal Statistics on Manifolds

B(X)

1/..;4 1/..;4 1/..;4

1/..;2 -1/..;2 0

1/-/6 1/-/6 -2/-/6 0

1/V'12 1/V'12 1/V'12 -3/V'12

4·5.3 Projected Normal Statistics on Spheres

As we saw in Chapter 1, projection onto a sphere arises in shape analysis
from the removalof scale variables in the reduction to the pre-shape of the
data.

Definition 4.5.2. Suppose that X E R" has a spherical normal distri
bution with mean vector J.L. With probability one, X will be nonzero. Let
IIXII be the norm of X. The scaled vector

is a point on the unit sphere sn-l centered about the origin. Thus B(X)
is the projection of a normally distributed vector onto sn-l and is said
to have a projected normal distribution.

first j -1 entriesequal 1/)j(j -1), the jthentry being -)(j -1)/j,
and whose remaining n-j entries are zero. Thus, for example, the Helmert
matrix of order 4 is

The Helmert matrices can be shown to be orthogonal. Now suppose that
X I, ... , X n are independent identically distributed random variables. Then
X = (Xl, ..., Xn)T has a spherical normal distribution. Suppose also that
A is a Helmert matrix of order n. As A is orthogonal, it follows that
Y = AX is also spherical normal. This implies that YI , Y2 , ... , Yn are
independent normal random variables with common variance. With the
exception of YI , which generally has nozero mean, the other random vari
ables Y2, ... , Yn have zero mean, and are therefore identically distributed.
The random vector (1'2, ...,yn)T can be placed in one-to-one correspon
dence with the vector of residuals (Xl - X, ... ,X n - X) used to eliminate
location information from landmarks in Chapter 1. The former vector can
be regarded as an orthogonalized form of the latter, which has a linear
constraint on its components.

(4.55)

4. Some Stochastic Geometry

Definition 4.5.1. Let X = (XI,X2, ... ,Xn )T be a column vector of ran
dom variables. Then the random vector X is said to have a multivariate
normal distribution if it has a density function of the form

4.5.2 Helmert Transformations

The following class of orthogonal transformations and their matrix repre
sentations will be of interest for shape theory. By a Helsnert matrix of order
n we shall understand an n x n matrix whose first row is a row vector of
entries equal to 1/;n. For j = 2, ..., n, the jth row is a row vector whose

where J.L = (J.LlJ J.L2, ... , J.Ln)T is a column vector, called the mean vector, and
r is an (n x n)-dimensional positive definite symmetric matrix,called the
covariance matrix. In the special case where n = 1, we simply say that X
has a normal distribution with mean parameter J.L and variance parameter
r > 0, understanding X, J.L, and r to be scalars.

In this section, we give a brief summary of some definitions and results
from multivariate normal theory for Euclidean spaces and spheres that we
shall need for shape modeling. In keeping with the spirit of Section 4.4, we
shall consider these models from the perspective of invariance.

In fact, J.L = £(X) and r = £(XXT ). The entries X j of a multivari
ate normal vector X can be shown to be normally distributed random
variables.

Suppose that X -> AX +a is an affine transformation of full rank, where
a is an n x 1 column vector. Then it can be shown that Y = AX + a
also has a multivariate normal distribution, with mean vector AJ.L + a and
covariance matrix ArAT.

Of particular interest to us here will be the special case where r = cI. In
this case, we say that X has a spherical normal distribution. The random
vector X can be shown to have a spherical normal distribution if and only
if the random variables Xl, X2, ... , X n are independent normal random
variables with common variance parameter. The spherical normal density
function is preserved under similarity transformations of R". Suppose X
is spherical normal and Y = bAX + a, where A is an n x n orthogonal
matrix, a is an n x 1 column vector, and b is a positive scalar. Then
Y is also spherical normal.

130



133

(4.70)

(4.69)

(4.68)

(4.67)

(4.66)

E snp-p-l

4.5 Normal Statistics on Manifolds

Y
T = IIYII

be the pre-shape of X. Then T is seen to have a projected normal
distribution on snp-p-l.

The reader should note that although for the case p = 2 the coordi
nate representation of pre-shape information given here differs from the
representation of Chapter 1, the two representations are isometric. In the
earlier chapters, the sphere s;n-3 was embedded as the unit sphere in a
(2n - 2)-dimensional subspace of R 2n . However, here we use the sphere
s2n-3, which is the unit sphere in R 2n - 2 . The reader can demonstrate

has a spherical normal distribution in RP(n-l). The columns of the matrix
Yare independent and identically distributed normal random variables
containing the information from X with location information removed.
We find the pre-shape of X by rescaling Y so that the sum of squares of
its p(n - 1) components equals one. This is equivalent to projecting Y
as a vector in RP(n-l) onto the unit sphere snp-p-1 around the origin
in RP(n-1). Let

We construct a p x n matrix X whose jth column is X j . The matrix
X can also be regarded as a vector in Rpn whose components are the
entries X j k. Let A be the (n - 1) x n matrix made by deleting the first
row of the Helmert matrix of order n. Then the p x (n - 1) matrix

each of which has a spherical normal distribution. Suppose also that the
random vectors have common pxp covariance matrix el, say, but possibly
different mean vectors

where if> is the density function for a standard normal random variable
and ~ is the distribution function of a standard normal random variable.
For a more general sequence {L = (/kl,/k2, ... ,/kn)T we replace B1 in
formula (4.60) by the angle made between the vector B and the vector ts,
Problem 9 asks the reader to investigate the density function when v = 0
and u -> 00. It can be seen that when v = 0, the distribution on sn-l

reduces to the uniform distribution, the density having a value that is the
reciprocal of the volume of the sphere.

To see the relevance of this distribution to shape analysis, and the dis
tribution of pre-shape statistics in particular, consider a set of independent
random vectors

and

(4.64)

(4.65)

(4.62)

(4.63)

(4.60)

(4.59)

To(u) = ~(u)!¢(u)

Ll(U) = 1 + 'U~(u)!¢(u)

4. Some Stochastic Geometry

Tk(u) = LX) r k exp ( -~;) «» dr

for k = 0, 1,2, .... Then the density function can be written as

Following the notation of [70], we define

(4.58)

For simplicity, let us assume a coordinate system where the components of
the mean vector of X have the form /kl = v and /k2 = .., = /kn = O.
Then the density function reduces to

The special functions can be computed recursively using the formulas

Thus the density function of B with respect to the volume element
dVn - 1 ((;I) has integral representation

Without loss of generality, we consider the standardized case where the
covariance matrix of X is the identity. If this is not the case, then X
can be rescaled before projection onto sn-1. Let Bj be the angle between
B and the xj-axis. So Xj = r cos(Bj ) . Then the density function with
respect to the element dVn-l (B) dr is

To compute the density function for the projected normal distribution
on sn-1, we transform variables, writing any nonzero point x E R" in
polar form as (r,B), where r = Ilxll and B = x/llxll. The pair (r,B)
naturally lies in the product manifold R+ X sn-1. Under the identification
of x with (r, B), the volume element on R" decomposes as
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(4.77)

(4.76)

(4.78)

(4.75)

4.6 Binomial and Poisson Processes

(r, 0) ----> (r, 0 + <!»

(r, B) ----> (r+s, 0)

peN = k) = (n) [Vp(Bo)] k [1- Vp(Bo)]n-k
k Vp(B).· Vp(B)

and

where angle addition is performed modulo 27f. So any measure on the space
R x Sl of directed lines that is invariant under the Euclidean motions of
R 2 will be invariant under the translations (4.76) and (4.77) in particular.
Now

4.6.3 Example: Binomial Processes of Lines

Line processes provide a mathematical model for the random scattering of
straight lines. Examples include the cracking of surfaces and the tracks left
by small particles scattered randomly and homogeneously through a region
with random orientations to their velocities.

Suppose X is a line in the plane that passes through a bounded convex
set A C R 2 . Let us suppose that X is directed. We can think of this as
providing a rule as to which is the left side of the line. The rule is arbitrary
but must be consistently imposed all the way along the line. The set of all
directed lines in the plane can be placed in a natural 1-1 correspondence
with the points of the cylinder R x 8 1 , as shown in Figure 4.2.

The group Euc(2) of Euc!idean motions of R 2 maps lines to lines. Thus
Euc(2) can be said to act upon the manifold R x s-. A Euclidean motion
takes a line with coordinates (r,O) to its image with coordinates (r', 0').
Among these transformations are the translations on R x s' mapping

For this reason, an indepedent and uniform scattering of a fixed number
of statistics over an open set B is often called a binomial process. For
a binomial process, the random set of points in MP so generated is the
principal object of interest, the ordering of the points being of secondary
interest.

n

N = L lcxjEBo) (4.74)
j=l

The random variable N is well known to have a binomial distribution,
with the property that

Let B be an open subset of a Riemannian manifold MP such that
Vp(B) < 00. Now, suppose that Bo is an open subset of B. Let Xl, X 2 , ••• ,

X n be n independent statistics in MP that are uniformly distributed over
the open set B. We define the nonnegative integer-valued random variable
N to be

(4.72)

(4.71)

(4.73)

xEB

xtf-B
{

VPCB.. )f(x) =
o

4. .Some Stochastic.Geometry

4.6.1 Uniform Distributions on Open Sets

We have noted that if MP has infinite volume, then no uniform distribution
exists for it. However, it is possible to impose a uniform distribution on
regions of the manifold and to associate with these uniform distributions
a limited form of invariance. Let B be an open set of MP for which
Vp(B) < 00. A continuous statistic X E MP is said to be uniformly
distributed on B if its density function has the form

4.6.2 Binomial Processes

For any event A the indicator random variable

We now turn to some examples of point processes that will be important
for our development of the statistics of shape.

4.6 Binomial and Poisson Processes

A particular case of interest to us will be thatfor which MP = RP and
B is a convex subset of RP. We shall explore this in greater detail in
the next chapter, where the formulas of integral geometry will be directly
applicable to the shapes of points uniformly and independently generated
in convex sets.

the isometry by checking that the formulas for geodesic distances between
pre-shapes are identical for the two representations.

To go from pre-shape statistics to shape statistics involves one additional
integration. In view of the complexity of the projected normal density func
tion, it might be questioned as to whether the associated shape density can
be written in manageable form. It was the conclusion of Mardia and Dry
den [116] that for p = 2, this distribution is not only simple in form but
can be written in terms of the geodesic distance between shapes on the
shape manifolds ~~ ~ Cpn-2. We will consider this in detail in the next
chapter.
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FIGURE 4.2. A directed line X in the plane represented as a point on a cylinder.
The angle () is defined so that ()+ tc is the counterclockwise angle from the
horizontal axis to the line X. The real number r is defined as the signed distance
from the origin to X 1 the sign being chosen so that T > 0 when the origin is
on the side of the line as shown and r < 0 when the origin is on the other side.
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(4.79)

4.6 Binomial and Poisson Processes

4.6.4 Poisson Processes

Let us return to the general binomial process in some open set B c MP.
Suppose that Vp(MP) = 00. A limiting case is obtained when B expands
to encompass all of MP. As noted earlier, there is no uniform distribution
on all MP in this case. However, there is a nondegenerate limiting form
for the binomial process. Consider a nested sequence of open sets

is invariant under these translations. Moreover, the group of translations
generated by (4.76) and (4.77) acts transitively on R x s-. Therefore,
we can show in a manner similar to Proposition 4.4.2 that the measure in
(4.78) is the unique invariant measure up to an arbitrary scalar multiple.
See, for example, Santalo [147, pp. 27-30] for the details of this.

Using dV2(r,l1) we can construct a binomial process of directed lines
passing through A. Let B be the set of all (r,l1) such that the line with
coordinates (r,l1) passes through A. As V2(B) < 00, we can construct
a collection of independent random lines Xl,. '" X n that are uniformly
distributed in B. Having constructed such a binomial process of lines, we
can make the lines undirected by erasing the arrows.

We can also consider the shape of any configuration of lines generated by
a binomial process. Like Euc(2), the group Sim(2) maps lines to lines,
and therefore can be regarded as acting upon the manifold R X 8 1 . The
shape of any configuration of lines can be defined as the total information
in the set Xl, "., X n that is invariant under the action of this group. The
situation is analogous to our definition of the shape of a set of landmarks
in Chapter 1. However, instead of the direct action of 8im(2) on R 2 ,

the action of Sim(2) on the space of lines is induced from the action on
the Euclidean space in which the lines reside. In this and other contexts,
the study of the shapes of configurations of geometric objects becomes the
study of invariants of configurations of points in manifolds. See Carne [38].

The assignment of directions to lines is a mathematical convenience that
allows us to put a simple coordinate system on the space of lines. Undi
rected lines are more physically natural for the purposes of modeling many
physical processes involving line data. We obtain an undirected line by
throwing away the direction, so to speak. More formally, we can define an
undirected line as a pair of directed lines having coordinates of the form
{(r, B), (-r, O+7l')}. The manifold of undirected lines in the plane is thereby
seen to be the space of such pairs of points in the manifold R x 8 1 . Wilfrid
Kendall has noted, in a private communication, that the space of undi
rected lines is homeomorphic to the Moebius strip defined in Problem 3
of Chapter 2. Problem 11 at the end of this chapter sketches the steps
necessary to prove this fact.

R

x

r X

e
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so that MP = U~lB.j' Suppose that as B j /' RP we select a sequence
of positive integers

Definition 4.6.2. A point process is said to be volume-preserving if the
N(B l ) and N(B2 ) are identically distributed whenever Vp(B l ) = Vp(B2 ) .
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(4.83)P[N(B) > 1] -> 0
P[N(B) = 1]

4.7 Poisson Processes in Euclidean'Spaces

Postulate 3. As Vp(B) -+ 0 we have

A number of geometric properties of the particles of a Poisson process
(PP) hold with probability one. For example, a nearest neighbor of a point
x E RP is a particle X of the PP that has minimum distance from x
among all such particles of the PP. It can be seen that with probability
one every particle of the PP has a unique nearest neighbor. This can be
generalized to the second nearest neighbor, and so on. In general, the kth
nearest neighbor of a point x is a particle X such that there are exactly
k - 1 particles of the PP strictly closer to x than X. Again, with

In this section, we will summarize some of the properties of Poisson pro
cesses in p-dimensional Euclidean space.

The strong invariance properties of the Poisson process make it a par
ticularly useful model for generating random shapes. The invariance of
shape statistics under Euclidean motions is compatible with the motion
invariance of the Poisson process, making probability calculations easier.
Although the assumptions of the Poisson process will not typically be re
alized in their exact form in applications, the model has been found to be
useful for simulating a variety of phenomena involving random scatterings
of particles.

4.7 Poisson Processes in Euclidean Spaces

Postulate 1. If 0 < Vp(B) < 00 then 0 < P[N(B) = 0] < 1. Moreover,
as Vp(B) -+ 0 we have P[N(B) = 0] -> 1.

4.7.1 Nearest Neighbors in a Poisson Process

For a Poisson process (i.e., a point process satisfying the above), it can be
shown that there exists a unique intensity parameter p > 0 such that
for every open set B c MP the random variable N(B) has a Poisson
distribution with parameter pVp(B) as given in formula (4.82) above.

Postulate 2. If the sets B l , B 2 , ••. , Bm , m 2: 2, are disjoint subsets of
RP then N(Bd, N(B2 ) , .•. , N(Bm ) are independent.

Definition 4.6.3. A VOlume-preserving point process on MP is said to be
a homogeneous Poisson process if it satisfies the following postulates.

:.j-
"

.J

(4.80)
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Henceforth, we shall assume that all point processes under consideration are
locally finite. For any bounded Borel subset B, let N(B) be the cardinality
of the set B nC. Among the class oflocally finite point processes are those
satisfying certain uniformity conditions as given in the next definition.

Definition 4.6.1. We define a point process on MP to be a random count
able set of particles C c MP. A point process that has finite intersection
with any bounded subset of MP is said to be locally finite.

Among the class of volume-preserving point processes are the Poisson point
processes that we described above as the limit of binomial point processes.
We have the following definition:

n·
Vp(~j) -> p> 0 (4.81)

as j -+ 00. For each j we construct a binomial process of nj points in
Bj , and for each we let Nj be the number of such points falling into Bo.
Then

PEN. = k) -+ [pVp(BO)]k exp[-pVp(Bo)] (4.82)
J k!

for k = 0,1,2, ... , which is the well known formula for the Poisson, dis
tribution. The limiting form of the binomial process is called the Poisson
process ojintensity p.

See Problem 10 for the derivation of the Poisson formula. We can think
of the Poisson process intuitively as a uniform scattering of infinitely many
points throughout the entire space, so that on average, p points fall into
a region of unit volume.

We shall need to refer to given points of MP that are distinct from the
random set of points of the Poisson process. Someterminology helps to keep
these distinct. We shall henceforth refer to the random points of a point
process as particles and shall reserve the term points for given elements of
MP that have a fixed location. However, following traditional terminology
we shall continue to refer to a random scattering of particles as a point
process.

The following definition helps to formalize the construction ofthe Poisson
process by characterizing it in terms of its properties.

such that
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(4.84)

4.7 Poisson Processes in Euclidean Spaces

We state the following proposition without proof. The reader who is inter
ested in the details of the proof should consult [128].

In fact, a stronger statement can be made about the tessellation. Any
two Delaunay simplexes with nonempty intersection will share a face in

Definition 4.7.2. A collection {~j} of countably many p-dimensional
simplexes in RP is said to be a tessellation if Uj ~j = RP and if in
addition, the interiors of the sets ~j and ~k have empty intersection
whenever j f= k.

Proposition 4.7.3. With probability one the Delaunay simplexes of a PP
in RP form a tessellation.

be the p-dimensional simplex whose vertices are these p+ 1 particles. We
say that ~ is a Delaunay simplex of the PP provided that the (p - 1)
dimensional sphere passing through X1,X2 , ""XP+l encloses no particle
of the process within its interior.

For the planar case the simplexes are triangles, and so we speak of the
Delaunay triangles. Figure 4.4 shows the Delaunay triangles associated with
a particular arrangement of particles in R 2 .

We now have the following:

There are many mechanisms for selecting finitely many points from a Pois
son process for the purpose of generating shape distributions. One of the
most important is the Delaunay tessellation, which decomposes RP into
p-dimensional simplexes (i.e., triangles, tetrahedra, etc.) that are nonover
lapping in the sense that any two simplexes can share at most a common
(p - 1)-dimensional face. The vertices of these simplexes are the points of
the Poisson process itself.

To construct the Delaunay tessellation, we take advantage of the non
sphericity property of the Poisson process. We have the following definition:

Definition 4.7.1. Let Xl, ... , Xp+1 be a set of p+ 1 particles from some
PP in RP. Let

4.7.3 The Delaunay Tessellation

sphericity property of the PP in RP states that with probability one such
a sphere passing through p + 1 particles will meet no other particles of
the PP. Particles may be found in the p-dimensional ball bounded by the
sphere, but not on the spherical boundary itself.
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FIGURE 4.3. The nearest neighbors in a point process. Given any fixed point x,
with probability one no two particles of a Poisson process will be at the same
distance from x. The closest particle to x, labeled Xl in the diagram, is called
the nearest neighbor of x, and is on a sphere centered about x that has no
particles in its interior. In general, the kth nearest neighbor of x, labeled Xk,
is on a sphere centered about x with k - 1 particles in its interior. This fact
implies that the distance to the kth nearest neighbor of x will be greater than
s > 0 if and only if there are k - 1 or fewer particles in the interior of the
sphere of radius s centered at x. This property can be used to calculate the
distribution function of the distance to the kth nearest neighbor of z ,

4.7.2 The Nonsphericity Property of the PP

A set of p + 1 particles of a PP in RP are said to be in general position if
the convex hull of the particles has an nonempty interior (or equivalently,
contains an open subset of RP). Thus three particles are in general position
in R 2 provided they are not collinear. Four particles are in general position
in R 3 provided no three are collinear and the four particles are not co
planar, etc. It can be shown that with probability one for a PP in RP, all
sets of p + 1 particles of the PP are simultaneously in general position.

A property related to this is the nonsphericity property. Through any
set of p + 1 particles, which with probability one are in general position,
a unique (p - I)-dimensional sphere may be drawn, for p 2: 2. The non-
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. probability one the kth nearest neighbor is unique. Note that the point x
can itself be a particle of the PP if desired, with the understanding that it
is not its own nearest neighbor. See Figure 4.3.



FIGURE 4.4. Delaunay triangles in the plane. With probability one the particles
of a PP satisfy the nonsphericity property. Therefore the circumcircle through
any three particles will meet no other particle of the PP. However, many such
circumcircles will have particles in their interiors. Those triangles whose cir
cumcirclesdo not have any particles within their interiors are called Delaunay
triangles. If the PP is generated to fill the plane, then the Delaunay triangles form
a tessellation of the plane.

143

(4.87)

(4.86)

(4.85)

[n - (p + 1)] P(X E ~O)

[n - (p + 1)] r P K:p/Vp(A)

4.7 Poisson Processes in Euclidean Spaces

c(N)

[- <' (N )] _ {_In- (p+1)] r P K:p}
exp G - exp Vl'(A)

where X is any of the particles X p+1 , ... , X n and K:p is the volume of
the unit ball in Rp. Given ti, the number of particles Xl'+2, ..., X n that
fall inside this circumsphere has a binomial distribution. So the Poisson
approximation for the probability that no particles among X p+1 , ... , X n

fall inside the circumsphere is

be the radius of the circumsphere through X}, ...,Xp+l' For large n, the
case of particular importance here, the volume enclosed by the circum
sphere will be small compared to the volume of A, because for other cases
a particle will lie with high probability in the ball enclosed by the cir
cumsphere. It follows from this that in the conditional case that ti is
a Delaunay simplex, with high probability as n --. 00 the circumsphere
will lie entirely within A. For the probability calculations that follow we
shall restrict to those cases where the circumsphere lies entirely within the
interior of A. Given ti, the expected number N of particles among
X p+l , ... , X n that fall into the interior of the circumsphere through ~ is

4.7.4 Pre-Size-and-Shape Distribution of Delaunay Simplexes

Consider a binomial process of n 2:: p+l independent particles Xl, ..., Xn

that are uniformly distributed in an open convex subset A of RP. Given
that the simplex ~ with vertices Xl, ..., Xp+l, say, forms a Delaunay
simplex, what is the distribution of the joint geometric characteristics of
the simplex? For ti to be a Delaunay simplex, we require that none of the
points X p+2 , ... , Xn fall inside the circumsphere through Xl, ..., X p+1'

Let

common, the face being itself a simplex, of dimension p - 1.
The Delaunay tessellation of a PP provides a stochastic mechanism for

generating simplex shapes. We shall consider this shape distribution in the
next chapter. At this stage, we consider the distribution of the geometric
characteristics of a typical random Delaunay simplex. The precise nature of
this distribution depends of course on what is meant by a typical simplex.
Along with the randomness of the PP that generates the tessellation, the
idea of a random Delaunay simplex presupposes a stochastic mechanism
for selecting a cell from the tessellation.
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(4.96)

(4.98)

(4.97)

(4.99)

(4.100)

4.8 Notes

Notes

This density can be seen to factorize in its limiting form into two compo
nents, th.e first being the density for X p+! and the second a fortiori being
the density for Y1 , Y2 , ... , Yp . Thus the marginal density of YI , Y

2
, ... , Y

p
has the form

In the limit, as A expands to encompass RP, the effect of the boundary
from the indicator functions

We sh~ll e.xamine this distribution in greater detail in the next chapter,
where It Will be seen to factorize into scale, orientation, and shape compo
nents.

becomes negligible except when X p+l is close to the boundary of A, an
event of small probability. Thus we obtain the limiting form for the density
of the pre-size-and-shape coordinates of b.. to be

proportional to the number of particles in A, which in turn is proportional
to pVp(A). However, the total number of subsets of p + 1 particles is
proportional to [pVp(A)]P+!. Therefore, the probability that b.. is a De
launay simplex is proportional to the ratio of these, which is [pVp(A)J-p.
In tur~, cP will be proportional to the reciprocal of this quantity. So we
can wnte

Note that the radius of the circumcircle through b.. is not a function of
the location of b... Therefore, we can write

~or background and details on measure-theoretic probability, the reader
IS referred to the book by Chung [43] and particularly to the first three
chapte~s: Many of the basic methods of multivariable calculus applied to
probability theory can be found in the standard textbook treatments. See
[82], for example.

The theory of invariance can be developed in terms of invariant mea
sures on compact groups. When the group of isometries on a manifold is

4.8(4.95)

(4.94)

(4.92)

(4.91)

(4.89)

(4.88)
p Gam(pJ2)

K p =

[~ (VXPp+( 'AE)A ) ] [V (A)] P IT
P

x l' - 1(Yj+xp+1EA)

j=1
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[V (A)] - P [l(xP+IEA)] [ 1'] ITP 1cp l' x Vp(A) x exp -p K,p r (Yj+x p+1EA)

j=1

where

1'+1

[Vp(A)]-(p+l) IT l(xjEA)
j=1

Let us introduce a transformation of variables

Yj = X j - X p+1 (4.93)

Using transformation of variables techniques, we find the density function
of Y1 , .•• , Yp , Xp+l to be

n
Vp(A) --4 P

we obtain the limiting form of this probability for the PP of intensity p,
namely

P(N = 0) --4 exp [-p Kp rp(x l ' X2, ••. , X p+l )] (4.90)

Now, the density function for Xl, ... , Xl'+! uniformly distributed in A
is given by

the Jacobian being one. Multiplying formula (4.87) and formula (4.94)
yields an expression proportional to the density function for the vertices,
conditionally on b.. being a Delaunay simplex. So the joint density of the
coordinates Yl, ...,Yp and X p+l , given that b.. is a Delaunay simplex, is

where cp is the constant of proportionality.
The constant of proportionality can be found by integrating this ex

pression over all its variables. If Cp is omitted, (4.95) integrates to the
unconditional probability that Xl, X 2 , ..:, X p+! form a Delaunay simplex.
Thus to make this expression into a density function in its variables, we
must divide by this probability. It is not hard to see that in the limit as n
and Vp(A) go to infinity, the number of Delaunay simplexes in A will be

where Gam(.) is the usual Gamma function. Letting nand Vp(A) go
to infinity, so that

The volume K p evaluates by integration to

2 Jrp/2
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compact, as will typically be the case for the examples underconsidera
tion, the left and right invariant measures on the group will coincide. If
an invariant measure can be normalized to a probability measure, the ac
tion of the group can be interpreted as inducing random isometries on the
manifold. For more on the theory of probability on groups, see the books
by Parthasarathy [132] and Heyer [80]. Invariance also plays an important
role in geometric probability and stochastic geometry. See [147] for results
in this area, including some stochastic geometry on manifolds of constant
curvature. The theory of geometric measures on manifolds and minimal
surfaces has an extensive literature as well. An excellent introduction to
this subject is the book by Morgan [121].

For more on the theory and applications of directional statistics, see
[55], [56], and [113]. Directional data commonly arise inapplications in the
geosciences and meteorology, to name two areas. The real projective plane
can be considered the natural space for axial data, that is, data in which an
individual observation consists of an axis, or line, through the origin in R 3 .

Data of this kind arise in astronomy, for example, where the orientation of
orbital planes of comets or other bodies can be represented by axes normal
to the plane.

The Delaunay tessellation has its origins in the work of Voronoi and
Delone. See [119] and [128]. The Delaunay tessellation can be regarded as
the dual concept to the VOTonoi tessellation. Suppose we divide up space as
follows: Given the positions of particles of a point process, we assign each
point in space to the nearest particle. This tessellates space into polytopes
called the cells of the Voronoi tessellation.

The Delaunay tessellation bears the following relation to the Voronoi
tessellation: Two particles of the point process are vertices of a common
Delaunay simplex if and only if their corresponding Voronoi cells share
a common face. The Delaunay simplexes can then be put into one-to
one correspondence with the points that are vertices of a Voronoi cell,
Voronoi tessellations and the dual Delaunay tessellations have been applied
in a number of fields including crystallography (using lattices of particles)
and geology, where Voronoi cells are interpreted as area of influence poly
gons. For mathematical purposes, these methods have also provided tools
for spatial interpolation of real valued functions defined on some general
dimensional Euclidean space. For more on these and other applications, see
the references in [128].

The Poisson model for Delaunay simplexes is a simple stochastic model
for the haphazard simplicial decomposition of space. By contrast, particles
that lie, or tend to lie, on a lattice will form more regular simplexes, with
less variation in their internal angles. Thus the statistics of the geometric
characteristics of Delaunay simplexes can be used as test statistics for point
process hypotheses. An example of this is the central place hypothesis in
geography, for which see [118].

4. Verify formula (4.21) from Section 4.2.
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(4.101)

4.9 Problems

4.9 Problems

3. Let X I,X2"",Xn be independent continuous random variables with
density. functions h, 12, ..., In and distribution functions FI> F2 , ... , Fn,
respectively, Let Y = max(XI , ... ,Xn ) . Find the density function of Y in
terms of h, 12, ... ,In, F I , F2 , ..• , Fn· Hint: find the distribution function of
Y first.

2. Let 9 be the class of all subsets of R of the form (-00, x] where
x E R. Show that the sigma-field generated by 9 is the Borel sigma-field
of R. Hint: to prove this, show that every set of the form (-00, x] is a
Borel set and that every open set of R is in the sigma-field generated by
g. From this the result follows. Why?

wherever this limit exists. Let F be the set of all A c 8 such that P(A)
exists. Is (8, F, P) a probability space? Justify your answer.

1. Let 8 be the set of natural numbers. For any subset A c 8 and for
any n E 8 we define a function Nn(A) to be the number of elements of
A that are ::; n. Then define

5. Using polar coordinates T, e for the plane, find the formula for the
metric tensor g assuming the usual inner product between vectors. Use
this formula for g to show that in terms of polar coordinates we can write
dV2 = r dr de.

7. Prove that U(m) acts transitively on the sphere s2m-I.

6. Prove .that O(n) acts transitively on the sphere sn-l. Hint: Suppose
x and yare elements of sn-l and we wish to find an orthogonal
transformation mapping x to y. Let x = Xl, and find points X2, ... , X n
such that the matrix (Xjk) whose jth row is Xj is an orthogonal matrix.
This can be accomplished by choosing Xl, "',Xn to be orthogonal vectors
of unit length, which is equivalent to lying on sn-I. Let (y Ok) be a
similar orthogonal matrix for y = YI. Construct the required o~thogonal
transformation from (Xjk) and (Yjk).

8. Find the formula for the geometric measure dV2 for the Poincare Disk
of Section 2.2.17 in terms of polar coordinates. Justify your answer.

4. SOI!).e Stochastic Geometry146
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10. Let 0 < a < 1 and let n be a positive integer. Show that as a ---> 0
and n ---> 00 such that na ---> p, the binomial probability

9. Prove that the formula for the density of the projected normal distri
bution reduces to the uniform density when v = O. Evaluate this density.
What happens when v ---> 00.

Distributions of Random Shapes

5

(4.103)

(4.102)(:) aX (1- at-X

converges to the Poisson probability

p,x exp( _ p,)

x!

which is homeomorphic to R x S1. In terms of these three-dimensional
coordinates, plot the points

11. In Section 4.6.3, we noted that the space of undirected lines in the plane
is homeomorphic to the Moebius strip. In this problem, we shall go through
the steps to prove this fact.

(a) Any undirected line can be directed in two possible ways. I~ one of
those directed lines has coordinates (r,O), show that the other hne has
coordinates (-r, 0 + 'If), where summation of angles is performed modulo
2'1f.

(b) We can embed the cylinder of directed lines in R 3 as

(5.1)

Proposition 5.1.1. Let X 1,X2 , ••• ,Xn , n ~ 3, be independent and iden
tically distributed spherical normal variables in R 2 • Let

We are now in a position to state and prove a central result, due to Kendall
[90], for the induced distribution of the shapes of planar landmarks gener
ated by an lID spherical normal model.

5.1 Landmarks from the Spherical Normal: lID
Case

be the shape representation of the points as an element of E~ ~ cpn-2.

Then a has a uniform distribution on E~.

As a special case, we note that the shape of a random triangle of spherical

Proof. This result now follows directly from two results in Chapter 4.
From the remarks at the end of Section 4.5.3, we note that the pre-shape
T E s2n-3 has a projected normal distribution. The density function for
this distribution in given in formula (4.63) with v = O. From Problem 9
of Chapter 4, we conclude that this distribution is uniform on s2n-3. The
result then follows immediately by applying Section 4.4.3 using q = n - 2.
Q.E.D.

(4.105)

(4.104){(x,y,z): y2 + z2 = I}

{(r, cos(O), sin(O)), (-r, cos(O + 'If),sin(O + 'If))}

and note that the line in R 3 that passes through these two points passes
through the origin.

(c) Argue that the space of undirected lines in the plane is homeomorphic
to the space of lines constructed in part (b). This space is not the projective
plane Rp2 because there is a line through the origin missing. Which one
is it?

(d) From part (c) above, we conclude that the space of undirected lines is
homeomorphic to the projective plane Rp2 with one point removed. Use
Problem 4 from Chapter 2 to argue that such a space is homeomorphic to
the Moebius strip. (Hint: removing a point from a manifold is topologically
equivalent to removing a closed disk. Why is this?)
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(5.9)

(5.7)

(5.10)

(5.11)

(5.13)

(5.12)

(5.14)

n-2
4 Iv12n

-
4 f(u - v)f(u + v) II feu +VZj)

j=l

5.1 Landmarks from the Spherical-Normal: IID Case

Let f~ be the density of "Zl' ...,Zn-2 in formula (5.8). Then

tt _ 4 en - 2)!
f (Zl' ... , Zn-2) - n-2 JCn-l( )

n tt ZlJ ... , Zn-2

n-2
4 fc fc Iv1 2n

-
4

feu - v)f(u + v) ]1 feu + VZj) dV2(u ) dV2(V) (5.8)

where

We can also write

Proof. Without loss of generality, we can scale the distribution of the
landmarks so that the covariance matrix of all Xj's is the identity matrix.
Plugging the normal density into formula (5.8) we obtain

Next, we integrate over the variables u and v to get the density function
for the Bookstein coordinates. This has general representation as

When the density under consideration is spherical normal, then this it
erated integral can be computed exactly as follows:

Proposition 5.1.3. Let f be the density function for a spherical normal
distribution in the complex plane C centered at the origin. We define

Some simplification is obtained by expanding the absolute values in formula
(5.12) using

So the joint density of U, V, Zl, ..., Zn-2 with respect to the volume element
dV2(u)dV2(v) fI;,:-i dV2(Zj) is

(5.6)

(5.5)
n

II [J(Xj) dV2(Xj)]
j=l

n-2
41v1 2n

-
4 dV2(u) dV2(V) II dV2(Zj)

j=l

n

5. Distributions of Random Shapes

(Xl, X 2, ... , X n) ~ (U, V, ZlJ ... , Zn-2) (5.2)

where

U
Xl + X2 (5.3)

2

V =
X2 Xl

(5.4)
2

and Zl, ..., Zn-2 are the Bookstein coordinates of the shape of Xl, ..., X n.
Let us suppose for the moment that the landmarks Xl, ..., Xn are inde
pendent, and have absolutely continuous distributions in the complex plane
C with common density f(x). The joint density of Xl, ..., Xn is

As complex projective spaces are hard to visualize, it is useful to write
out the density function in terms of Bookstein coordinates. Once again,
the arithmetic of the complex plane is useful. Let n;:::: 3. We introduce a
transformation of complex variables

Under the change of variables in (5.2), the volume elements transform as

Proof. Let us use the representation of 82(1/2) in R 3 given in formula
(3.6). We begin by calculating the probability that the angle at vertex X3

is greater that 7f/2. This corresponds to the region on the sphere where
WI > 1/4. However, from Problem 8 at the end of this chapter, we note
that the surface area of a sphere cut off by parallel planes is proportional to
the distance between the planes. Now, since the sphere 82(1/2) has unit
diameter, it follows that the probability that the angle at X3 is greater
than 7f/2 is 1/4. Similar results hold for Xl and X2 by symmetry. As
a triangle can have at most one internal angle greater than 7f/2 it follows
that XlX2X3 is obtuse with probability 3/4. The result then follows
immediately. Q.E.D.

Corollary 5.1.2. Under the conditions ofProposition 5.1.1 above, for' n ';=
3 the probability that XlX2X3 forms an acute triangle is 1/4.

normal variables is uniformly distributed on the sphere 82(1/2). A simple
geometric application is the following:

150



153

(5.27)

(5.22)

(5.21)

(5.20)

5.2 Shape Densities under Affine Transformations

412100LIh(V)1 2n-4f(u-V)f(u+V)}1f {u + h-1[zjh(v)]} dV2(u) pdpda

(5.26)
Suppose we now define

where u' = h-1(u), v' = h-l(v), and (VZj)' = h-l(vzj). For convenience,
we recycle notation a bit, replacing u' by u and v' by v. Note that h
has unit Jacobian. So the integral reduces to

n-2
4JJIh(v)1 2n-4f(u - v)f(u + v) IT f {u + h-l[zjh(v)]} dV2(u) dV2(v)

J=l

(5.25)
Now let us write v in polar coordinates as (p, a). Writing the area element
dV2 (v) as p dpda the integral expression becomes

n-2
4JJivI2n-4f[u' - v']j[u' + v'] II flu' + (VZj)'] dV2(u) dV2(v) (5.24)

J=l

f"(Zl' Z2, ... , Zn-2)

and those of WI, ...,Wn - 2 by

(f 0 h-1)"(W1' W2, ...,Wn-2) (5.23)

In this section, we consider how the shape densities f" and (f 0 h- l)"

are related.
Replacing f by f 0 h- l in formula (5.8), we see that (f 0 h- 1 ) " has

integral formula

for j = 1,2, ... ,n. A simple transformation of variables argument shows
that the density of Yj is foh-l.Let Zl"",Zn-2 be the Bookstein coor
dinates for the shape of the landmarks Xl, ... , X n , and let WI, ..., Wn - 2

be the Bookstein coordinates for the shape of the transformed variables
Y1 , ... , Yn. We will represent the density of Zl, ..., Zn-2 by

be lID and continuous with density f.
Now suppose that we let the landmarks Xl, ... , X n be jointly trans

formed by the common linear transformation h. Define

is a linear transformation of the plane that is area preserving, so that
.Jh ~ L For n ~ 3, let

'1
1

(5.19)

(5.18)

(5.17)

(5.16)

5. Distributions of Random Shapes

3
fi (z) = 7f(3 + Iz1 2) 2

When n = 4 the density of (Zl' Z2) reduces to

Next, we change v to polar coordinates to compute the outer integral.
After a routine integration over the two polar coordinates of v we obtain
the formula given in (5.10). Q.E.D.

5.2 Shape Densities under Affine Transformations

5.2.1 Introduction

In this section we shall use formula (5.8) to study the transformation of
shape densities when landmark variables are themselves transformed by an
affine transformation of the plane. As shape distributions are unaffected by
translations and scale changes, it is sufficient to study the effect on shape
distributions of linear transformations of the plane that preserve area. We
follow the development given in Small [155].

Suppose

Formula (5.10) is a special case of the shape density derived by Mardia
and Dryden [116], in which their parameter T (not to be confused with
our notation for pre-shape) goes to infinity.

For n = 3 we obtain the density for the Bookstein coordinate Z = Zl
to be

_4_ r IvI2n-4exp(_KlvI2) reXP(-~lu- Vl::>jI2) dV2(U)dV2(V)
(27f)n lc 2 lc 2 n

(5.15)
The inner integral can be computed by changing variables, expressing u
v'L ZjIn in polar coordinates (p, B). In polar coordinates, we can express
the volume element as dV2(u) = p dp dB. Computing the inner integral,
we find that (5.H» reduces to

Next, we complete the square in the exponent with respect to the variable
u. After some reorganization, we find that (5.11) becomes
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where Zj", is as defined in formula (5.27).

Then our integral becomes

155
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21..
5

-1

FIGURE 5.1. The shape density for the elliptical normal. The shape density has
been plotted in Bookstein coordinates for graphical convenience. The density dis
played, however, is relative to the uniform probability distribution on the sphere
of shapes E~.

(5.29)
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1 ~
27rf (Zl'" , Z2"" ..., Z(n-2)"')

Thus we obtain the following proposition:

It should be noted that formula (5.30) makes no reference to the evaluation
of densities in the original space of landmarks en. So under the symmetry
assumption, (foh-l)u can be computed directly from f~ without reference
to f.

jlh(';')I'n-' {4JjP>n- ' f(u - v)f(u + v) II f(u +vz;.ldV,(u)dp} da
(5.28)

Let us now restrict the class of densities f under consideration to those
that are circularly symmetric about the origin in e. By this we mean that
the level curves of the density f are circles centered about the origin, or
equivalently, that the distribution is invariant under rotations of the plane
about the origin. Then exploiting this symmetry, we see that the expression
{-} in (5.28) is equal to

Proposition 5.2.1. Let f be circularly symmetric about the origin in C.
Then

(f 0 h- l )U(Zl ' ..., Zn-2) = 2~12

11" jh(ei "')12n - 4 f U(Zl"" ..., Z(n-2)",) da

(5.30)
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The density function f 0 h will be that of an elliptical normal distribution
with covariance matrix r, where r ll = s-l, r 22 = 8, and r 12 = r 21 = o.

5.2.2 Shape Density for the Elliptical Normal Distribution

To illustrate Proposition 5.2.1, consider the case where f is spherical
normal and n =3. Suppose we,consider a linear transformation

W3 = constant (5.35)

As the spherical normal induces a uniform distribution on 82(1/2) it
follows that these curves are the level curves of the induced density from the

Plugging formula (5.17) into (5.30) and grinding out the integral, we get

(foh-l)tt(z) = 3(8 + S-l) (5.34)
27r (3 + Iz1 2 ) 2 {1 + 3[(8 - s-1)~(z)/(3 + IzI2 ) j2 } 3/ 2

Figure 5.1 shows a contour plot of the ratio (f a h-1)U/fU, using the
stretch factor 8 = 2. The function is symmetrical about the real axis, is
maximized on the axis, and is minimized above and below at Bookstein
coordinates corresponding to equilateral triangles. The level curves are cir
cles. These circles become a little easier to understand if plotted on the
shape sphere 8 2(1/2). Using the coordinates offormula (3.6), we see that
the level curves on the sphere are of the form

(5.31)

(5.33)

(5.32)1

~(Z) + i~(z) -+ 8-1/2~(z)+ i81/2~(z)

that stretches the plane, taking the circle

into the ellipse
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(5.44)

(5.43)

(5.41)

1
27f

o a(a)b(a) da

t: (S+S-l) = 3s
2+2+3s-2

2 2 . 8

5.2 Shape Densities under Affine Transformations

1 127f . n-2 n-2
27f Ih(e,cr)1 2n

-
4 da + L C1j cos(2ja) + L C2j sin(2ja)

o j=l j=l

Of course, in the limiting form as n --> 00 this is simply the circular
symmetry assumed earlier. However, for n = 3 the assumption is only
that f is invariant under rotations by 7f/2, a much weaker assumption.

From the rotational symmetry, we see that a(a) has a trigonometric
series for which the coefficients of cos(2ja) and sin(2ja) are zero for
j = 1,2, ..., n - 2. The result then follows from the orthogonality of the
trigonometric terms. All terms in the integrated product

vanish with the exception of the products of the leading constant terms in
the series. Q.E.D.

Proof. To prove this, we return to formula (5.28), and let a(a) be the
expression {-}. Furthermore, let b(a) = Ih(eicr)1 2n - 4 . Let us write out
a(a) and b(a) in trigonometric series in the variable a. The function
b(a) is a trigonometric polynomial of the form

Proposition 5.2.2. Let m be the least common multiple of the integers
2k - 4, with k = 3,4, ... ,n. Let f be a density for planar distributions that
is invariant with respect to rotations by 7f/ m about the origin. Suppose
h is an area-preserving linear transformation of the plane. Then on the
collinearity set where Zl, Z2, ... , Zn-2 are real, we have

(joh- 1)P(Zl,,,,,Zn_2)
= [2~127f

Ih(eicr
) \2n - 4 - jP(ZI, ... ,Zn-2)

(5.42)

The circular symmetry used to obtain formula (5.37) is stronger than
necessary. The following proposition weakens the symmetry assumption
used to derive the Broadbent factor.

where 12m is the mth order Legendre polynomial. In particular, the first
order Legendre polynomial is the identity function. Thus when n = 3,
formula (5.37) reduces to (5.36) for all densities f that satisfy the circular
symmetry condition of Proposition 5.2.1. In addition, we have

(5.40)

(5.39)

(5.36)
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h : m(z) + iS3(z) --> s-'1/2m(z) + is1/2S3(z)

as in (5.31). The corresponding Broadbent factor reduces to

2~12

" Ih(eicr
W n - 4 da = Ln - 2 (S\S-I)

~12

" \h(ei crW n - 4 da (5.38)
27f 0

is known as the Broadbent factor, named after Simon Broadbent, who pro
posed its use and calculated some approximate values in [33]. The interpre
tation of these factors is straightforward. If we suppose that landmarks are
initially generated by some circularly symmetric distribution, then, broadly
speaking, shapes of landmarks will also tend to be rounded. If the distri
bution is then stretched by a linear transformation, much as a circle is
stretched into an ellipse, then we naturally expect shapes of landmarks to
be correspondingly elongated. This means that the shape density on the
region corresponding to aligned landmarks undergoes an increase by the
Broadbent factor. It can easily be checked that the Broadbent factor is
always greater than or equal to one.

For example, consider again the linear transformation

5.2.3 Broadbent Factors and Collinear Shapes

The simplification in (5.36) for aligned landmarks is not unique to the
normal distribution nor to the case n = 3. Let us return to the general case
of formula (5.30). A general simplification in formula (5.30) is introduced
if we restrict attention to those shapes that correspond to aligned sets of
landmarks. These are shapes whose Bookstein coordinates (Zl' Z2, ... , Zn-2)
are real, so that S3(Zj) = O. When Zj is real, then Zjcr = Zj for all
a :s; a < 27f. Thus our formula (5.30) reduces to

(joh- 1)P(ZI, ... ,Zn_2) = [2~12

" Ih(eicrWn-4 da] f P(zl"",Zn-2)

elliptical normal distribution. The interpretation is then clear: the density
induced by the elliptical normal is uniformly squashed towards the great
circle of collinearities corresponding to W3 = O. The density is maximized
on the great circle W3 = 0 and minimized at W3 == ±1/2.

The reader should note that formula (5.34) becomes very simple if we re
strict ourselves to evaluating the shape density for aligned sets of triangles.
These are those for which S3(z) = O. In such cases, the formula becomes

(j 0 h-1)P(z) = (s \S-l) f"(z)
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5.3 Tools for the Ley Hunter

To illustrate the methods developed in the last two sections, let us consider
a statistical problem that provided some of the impetus for the development
of the Kendall school of shape analysis.

In 1925, Alfred Watkins published The Old Straight Track [177], which
proposed the imaginative hypothesis that a variety of megalithic sites in
Britain were, in fact, curiously aligned along tracks he called leys. Watkins
was an amateur archeologist with a fascination for folklore and mysticism,
and his writings drew deeply upon the latter. In addition to sites marked by
standing stones and burial chambers, Watkins also included the locations
of churches, river fords, and certain place names, on the assumption that
although the present-day marker is relatively recent, the site was chosen
for its importance as part of the system of ley lines. Watkins' hypothesis is
not to be confused with the alignment hypotheses of Alexander Thorn and
his investigation of megalithic sites as ancient observatories.

The ley hypothesis is unlikely to be settled by statistical argument, be
cause the validity of folklore is not subject to direct statistical analysis.
Those who find the arguments from folklore convincing may consider the
statistical arguments irrelevant. On the other hand, the hardened empiricist
may dismiss the issue out of hand.

However, statistical problems of this nature are commonplace in arche
ology and deserve consideration as a family of similar questions. In many
cases, the presence of patterns in such data can be interpreted as the conse
quenceeither of design or of chance, the latter interpretation usually based

"upon the large number of combinatorial possibilities that the data provide.
The ley line hypothesis is a case in point. For example, consider the co

ordinates of the 52 megalithic monuments in Cornwall, England known as
the Old Stones of Land's End. These coordinates are displayed in Figure
5.2. While there are indeed many megalithic sites that can be connected by
straight lines to a high degree of precision, we would normally expect a rea
sonable number of nearly perfect alignments by chance among such a large
number. For example, among 52 landmarks, there are 22,100 triangles that
can be formed with vertices among the landmarks, and 270,725 quadri
laterals of landmarks. In standard stochastic models, the probability that
three or four landmarks are approximately collinear is small. Nevertheless,
balancing this is the large number of subsets of triangles and quadrilater
als that can be formed. So we would expect a reasonable number of such
collinearities purely by chance.

Among the megalithic data sets, the Old Stones of Land's End have re
ceived considerable attention. Broadbent [33] proposed a statistical study
of the alignments among these 52 sites, which are plotted in Figure 5.2.
The reader can find the data set in [33]. The 52 sites are scattered irregu
larly across Land's End. Alignments of the sites can be drawn through the
points. However, it is difficult to tell a priori whether these alignments are

FIGURE 5.2. The Old Stones ofLand's End in Cornwall, England. The 52 plotted
points are based upon measurements by John Michell, Chris Hutton-Squire, and
Pat Gadsby. The horizontal axis marks the coordinates of thestones in an east
west direction and the vertical axis the coordinates from north to south.
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When Xj, j = 1,2,3, are IID elliptical normal with stretch factor s,
the shape density for the triangle will be as given by formula (5.34). In
particular, we are interested in this shape density close to the set of aligned
triangles. Thus we may assume that

Definition 5.3.1. Three landmarks X1,X2,X3 will be said to be aligned
to within tolerance f if the maximum internal angle of the triangle with
vertices at X1X2X3 is ~ 7r - f radians. We shall also say that the
triangle X1X2X3 is e-blunt when this condition is satisfied.

(5.49)

(5.48)

+1
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3(S+S-1)

21f[3 + ~2(z)]2

(s+ s-l) (9 -1fV3)f
2 31f

-1

Applying these approximations in (5.34), we obtain

Note that this formula clearly breaks down when s is large, because the
approximation to the probability becomes greater than one. As s --> 00, the
shape distribution becomes squashed down onto the real axis in Bookstein
coordinates, and the density is no longer approximately constant over the
lens in the imaginary coordinate.

Fitting an elliptical normal distribution to the scatterplot in Figure 5.2
gives an estimate of s = 1.6612, Thus we would expect on average 164.8
triangles that are blunt to within a tolerance E of one degree. In fact, there
are 142 such triangles in the data set, which is within chance variation. Sil
verman and Brown [153] have shown that under the null hypothesis that
the points are lID and continuously distributed in the plane, the distribu
tion of the number of e-blunt triangles is approximately Poisson for small
values of E. Thus the number observed is about 1.77 standard deviations
below the estimated mean under the null hypothesis model.

This analysis is preliminary at best. Several questions remain. Has the
value of E been chosen appropriately? Does the normal model represent

as the approximate shape density close to alignment. Integrating (5.48)
over the region between the parabolas in (5.45) gives the probability that
X IX2X3 is e-blunt at the vertex X3. This must be multiplied by three
to allow for blunt angles at the other two vertices. So the probability that
X 1X2X3 is e-blunt is approximately

FIGURE 5.3. Lens of blunt triangles in Booksieiti coordinates. In Bookstein co
ordinates, the region of c-blunt triangle shapes is the union of three sets, each
set corresponding to a vertex at which the internal angle is :::: 1f - E. The set
corresponding to e-bluni: angles at X a is the lens-shaped region in the middle
of the figure. The wedge-shaped region on the left of the lens corresponds to tri
angles where the Xl is E-blunt. Similarly, the wedge-shaped region on the right
corresponds to an c-blunt angle at X 2 • If these three sets are plotted on the
sphere of triangle shapes, they are seen to be congruent to each other and of equal
probability under an IID model for X IX2Xa.

(5.46)

(5.47)

(5.45)1~(z)1 :::; 1

~(z) ~ 0

Izl ~ ~(z)

~(z) = ± f[1 - ~2(Z)] ,

and

As there are 52 such sites or landmarks, in a random scattering of 52 points
in the plane the expected number of such e-blunt triangles will be 22,100
times the probability that any given triangle X j X k X, is e-blunt.

For the purposes of the analysis that follows, we shall assume that e is
sufficiently small that the approximations that follow are reasonable. This
will involve discarding higher-order terms in E, which is acceptable provided
f is about one degree and certainly less than 5 degrees. Such values would
be realistic given the technology available to megalithic architects.

Suppose we model the landmarks as having an elliptical normal distri
bution in the plane. Let Xl, X 2 , and X 3 be lID elliptical normal random
vectors in C. We shall assume that the eccentricity of the distribution is
governed by the stretch factor s as in Section 5.2.2. For E < 1f/2 the
probability that X1X2X3 is e-blunt is three times the probability that
the internal angle at X3 is greater than tt - E. In Bookstein coordinates,
the region of shapes where the triangle X1X2X3 is e-blunt at X3 is
a lens bounded by the circular arcs that meet the real axis at ±1 mak
ing an angle E. See Figure 5.3. For small f, these circular arcs can be
approximated by the parabolas

coincidental.
The first requirement is a definition of approximate alignment of sites or

landmarks. A variety of definitions are possible. These are summarized in
[33] and examined for their strengths and weaknesses in testing the ley line
hypothesis. Overall, the angular criterion, used in [33] and [95], provides
the best guarantee of accepting configurations of landmarks that might be
intentionally aligned. Following [33] and [95], we adopt such an angular
criterion.
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5.4 Independent Uniformly Distributed Landmarks

(5.56)

(5.55)

(5.54)

1 (2n)
22n-31rn-2(n- 1)(2n - 1) n

.cn - 2 [(s + s-1)/2] (2n)
22n-31rn-2(n - 1)(2n - 1) n

which provides the corresponding density for an ellipse with stretch factor
s. See Problems 2 and 3 for an application to the collinearity calculation
of the Old Stones of Land's End.

For values of the shape density off the aligned region in Bookstein co
ordinates, the integral is harder to evaluate. The function fn is typically
complicated but can be found in closed form. See Le [101, 102] for some
excellent work on this difficult problem.

from which the value of fn can be evaluated when ~(Zj) = o and
-1 $ iR(Zj) $ +1 for i > 1,2, ... , n - 2. Multiplying by a Broadbent
factor gives us

5.5 Landmarks from the Spherical Normal: Non-Ilff Case 163

The main intention of this section is to prove a beautiful result due to
Mardia [114] based on the work of Mardia and Dryden [116, 117], that the
density function for the shape of non-lID spherical normal landmarks in

5.5 Landmarks from the Spherical Normal:
Non-lID Case

These Bookstein coordinates correspond to aligned sets of landmarks with
X 3 , ... , X n falling on the line segment from Xl to X 2 • Under a permu
tation of the labels of the landmarks, any aligned set of landmarks can be
written in this form. Thus it is possible to find the density function for
shape of any aligned set or the approximate probability of an approximate
alignment of landmarks. It is the latter that was useful in studying the
Land's End data of the previous section. Thus the uniform model provides
an alternative to the normal model used earlier. Problems 2 and 3 invite the
reader to analyze the Land's End data using the uniform model of points
scattered in an ellipse or rectangle.

The integral in (5.54) is closely related to the well-known Blaschke con
stants of the convex set A. See [147, pp. 46-49]. For example, for a circular
disk A of unit radius, we find that (5.54) becomes

is a convex combination of Xl and X2 and lies on the line segment from
Xl to X2. As A is assumed to be a convex set, this convex combination
will then lie in A, and the indicator function will equalone. If this is true
for all j = 1,2, ... , n - 2, then the shape density fn reduces to

(5.50)

dV2(Xl ) dV2(X2)

(5.51)

xEA

{

1/V2(A)
f(x) =

o
For this case, we can rewrite formula (5.8) for fn as

n ..) 1 J' r I 1
2n

-
4

f (Zl, ... , Zn-2 = 22n-4[V2(A)]n ) B X2 - Xl

Another model for lID landmarks that has attracted some attention is that
for which the landmarks are uniformly distributed in some bounded convex
region of the plane. Let A be such a bounded convex region in the plane
with positive area, and suppose that Xl, X2, ..., X n are lID uniform in
A with n ~ 3. Then

where

B = {(Xl,X2) E A2 : xl(l- zj)/2 +x2(1 + zj)/2 E A for all j} (5.52)

Note that when ~(Zj) = 0 and -1 $ iR(Zj) $ +1 then

xl(1-zj)/2 +x2(1+zj)/2 (5.53)

a valid null hypothesis? Should we be looking at alignments of more than
three points? Finally, is the criterion of e-bluntness an appropriate one for
searching for leys? We cannot take the time to give satisfactory answers
here. However, each of these problems can be dealt with briefly.

1. The value of E can be treated as a nuisance parameter of the problem.
This analysis leads to the pontogram technique of Kendall and Kendall [95].

2. The normal model is not the only mechanism that can serve as a null
hypothesis of random alignment. Uniform scatterings in rectangles have
been investigated in [33] and. [95]. Uniform scatterings in ellipses have been
investigated in [95], [154], and [155]. The expected number of alignments in
the uniform elliptical model is less than the elliptical normal model. How
ever the observed number of alignments is still not statistically significant.

3.' Alignments of four points can be investigated. However, the evidence
for ley lines does not appear to be much more convincing in this case either.
See [33] for some simulations. There are so few alignments of five or more
points that it is difficult to draw conclusions of any statistical significance.

4. The use of the maximum angle of the triangle as a measure of align
ment is only one of several ways of defining approximate alignment of
points. An alternative definition is the strip definition, under which a set of
points is aligned if it falls entirely within a strip of given width, the width
defining the tolerance much as E did for the angular criterion. Again, we
refer the reader to [33].
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(5.64)

(5.63)
Y

IIVII
T =

where uJL is the shape of the triangle J.L1J-L2J-L3 and ,6 = I: IIJ.Lj - ,u112,
with ,u = (1/3) I: J-Lj'

where J.Ly is the mean vector of Y. It is straightforward to check that
,6= IIJ-LyI12.

The orbits of 8 3 are the equivalence classes of pre-shapes that share a
common shape, and the decomposition of 8 3 into its orbits is a decompo
sition of the sphere into congruent circles, all equivalent to 8 1

. To calculate
the shape density, we need to integrate out one additional dimension by
constructing a coordinate within the orbits of 8 3 and integrating over it.
Suppose () E 8 1 is a coordinatization of the points in the orbits. That is,
any pre-shape T can be completely specified by the pair (u, B), where 0'

is the shape of the configuration and B is its orientation. In more technical

is the pre-shape of the landmarks. As we observed in Section 4.5.3, T has
a projected normal distribution on 8 3 C R 4 with density function
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Proof of Proposition 5.5.2. Let X be the 2 x 3 matrix of the coordi
nates of Xl, X 2 , and X 3 , such that the jth column is Xj' As in equation
(4.69), let Y be the 2 x 2 matrix of coordinates of the centered landmarks
found by right multiplying X by AT, where A is the 2 x 3 row-deleted
Helmert matrix of order 3. Then we can regard Y as a spherical normal
random vector in R 4 , so that

The inner product used in this density formula is that of R3 with the
sphere 8 2(1/ 2) embedded in R 3 as a sphere of radius 1/2 centered at
the origin. Note that this formula differs slightly from that given in [70]. We
have chosen to construct the density function on the shape space 8 2(1/2)

rather than to renormalize the radius of the sphere to one. The result is
that our ,6 is four times the concentration parameter used in [70].

Before we derive this formula, some observations need to be made. This
density function is unimodal, with maximum value at U JL and minimum
value at the antipodal point -uI-" If we think of 0' JL as a north pole then the
density function is seen to be constant along lines of latitude on the sphere.
The constant ,6 acts as a measure of concentration of the density about
U I-" High values of ,6 produce distributions that are closely concentrated
about U JL while low values produce distributions that are more diffuse
on the sphere. In fact, as J-Ll' J-L2, J.L3 converge to some common point in
R 2 the constant ,6 goes to zero and the density function converges to
1f- l = 1/V2[8

2(1/2)]. This is the uniform distribution on 8 2 (1/ 2) and is
seen to be in agreement with the result in Section 5.1.

(5.60)

(5.57)r2rr

10 'I3 [t cos(B)] dB

12rr
cos3(B) exp[e cos2(B)/2]<I>[tcos(B)] dB

= v'27f t-3 [1 - t2 / 2+ t2 exp(t2/2) - exp(e /2)]

Using formulas (4.64-4.66) we see that

'I3 (t ) = (2 + t2
) + 'l/J(t)(3t + t3

) (5.61)

where 'l/J(t) = if?(t)/1>(t). Plugging (5.61) into the left-hand side of (5.57),
we can expand the integral into four terms. Applying the identities in (5.60)
and (5.61) gives the required result. Q.E.D.

Proposition 5.5.2. The density of 0' with respect to the area element
dV2 (0') is given by

1f-l(l+,6 < O'+O'JL'O'JL »exp(,6 <O'--O'JL'O'JL » (5.62)

Now, suppose Xl, X 2 , X3 are independent landmarks, with Xj having a
normal distribution centered at mean point J.Lj E R 2

. Suppose also that the
three landmarks have a common covariance matrix, which is some multiple
of the identity matrix. Without loss of generality, we can scale the problem
so that this covariance matrix is the identity. Let 0' E 8 2(1/2) be the
shape of the random triangle X 1X2X3 as expressed in Kendall's shape
space E~ ~ 8 2(1/2). Then we have the following proposition:

12rr
exp( _t2 /2) 'I1[t cos(B)] = 21f (5.58)

because the density in (4.63) must integrate to one. Rearranging (5.58) we

get

i" 2 2 )] v'27f[exp(t
2/2)

- 1] (5.59)10 cos(B) exp[t cos (B)/2]<I>[tcos(B dB t

Differentiating both sides with respect to t we obtain

Proof. Returning to formula (4.63), and setting v == t and n = 2, we see

that

Lemma 5.5.1. Let 'I3 be the function defined by equation (4.62) with

k == 2. Then

the plane has a particularly elegant form. We follow the derivation given
by Goodall and Mardia [70].

First of all, we will need a lemma.
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(5.74)

(5.75)

(5.76)

(5.77)
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IFI{2 - n; I; -(3n-2[1 + cos(2a)]} exp[(3n-2 cos(2a) - (3n-2]

COS-I(< Tp.(o-), Tp. » = ~ cos"! (4 < o-p.,o- »

Taking the cosine of both sides, we obtain

1 (2 12 < Tp. o-),Tp. > = < O-p.,o- > + 4:

Plugging (5.75) into (5.73), and using the fact that

1
<0-1-" O-p. > = 4

gives us the required result. Q.E.D.

The evaluation of the shape density for more than three non-IID normal
landmarks is more complicated but can be obtained in terms of confluent
hypergeometric functions. See [53], [116], and [117]. The general form of
the density function on ~~ is

The next step is to express the inner product between the pre-shapes in
terms of the inner product between the shapes. First note that Tp.(o-) has
been chosen to have minimum geodesic distance from T among all pre
shapes in O(~). So the geodesic distance in 8 3 from T: to Tp.(o-) is the
Procrustean distance from o-p. to 0-. But this is a geodesic distance on the
sphere 82(1/ 2). Identifying these two representations of the Procrustean
distance we get

where (3n-2 = IIJ.LYI12/4 is a concentration parameter, IFI is the confluent
hypergeometric function, and 0:::; a < IT /2 is the geodesic distance from
o-p. to 0- on ~~. The computation of IF1 is straightforward here, because
its representation with these values is as a finite series. In particular, we
note that

k (k) j
I FI (- k; l j - x ) = L . ~I

j=O J J.

To find the analogous density for Bookstein coordinates, we multiply (5.76)
by (5.10).

5.6 The Poisson-Delaunay Shape Distribution

In Section 4.7.4 we obtained the pre-size-and-shape distribution of a ran
dom Delaunay simplex that is generated from a Poisson process. In this
section, we shall consider a result due to Kendall [93] that extends a for
mula for the distribution of shape of a Delaunay triangle due to Miles [119].

(5.72)

(5.73)

(5.71)

(5.69)

(5.67)

(5.68)

(5.66)

(5.65)

Tp. =

dV3(T) = dV1(B) dV2(0- )
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cos(B) < Tp.(o-), Tp. > -sin(B) ~. « Tp.(o-), Tp. »
(5.70)

As < ei8Tp.(0-), Tp. > is maximized at B= 0 it follows that

using the identification that R4 ~ C 2.
Now, we can write

Using Lemma 5.5.1 we can evaluate the integral. The density in formula
(5.72) becomes

Let

Thus our expression (4.37) for the density becomes

A formula for the shape density we seek is found by integrating formula
(5.64) with respect to the geometric measure on B. This yields the integral

be the pre-shape of the figuration of landmark means J.Ll, J.L2, J.L3. For any
pre-shape T we can draw a horizontal geodesic from Tp. to a pre-shape
in OCT). We define B to be the angle this pre-shape Tp.(o-) makes with
T. Then we find that the integral formula in (5.67) can be rewritten as

although the fiber bundle is not a Cartesian product of 82(1/ 2) and 8 1 .

Nevertheless, we do have the factorization

language, we can say that 83 is a fiber bundle with fibers congruent to
8 1 and base space 82(1/ 2). The geometric measure on 8 3 decomposes
as the product
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(5.84)

(5.83)

(5.82)

is proportional to

Next, we rewrite (5.79) as r = xt. From this we see that

To eliminate scale, we integrate, yielding

Under this change of variables, we get a typical formula for the volume
element in RP2, namely,

Let 6 be a random Delaunay p-simplex from a Poisson process of
intensity p in BP, as was obtained in Section 4.7.4. There are a variety
of ways that a random Delaunay simplex can be chosen from a Poisson
process. For example, we could pick a particle of the process at random
from among those that fall into a bounded region. There will be a number
of simplexes of the Delaunay tessellation that have this particle as one of
their vertices. Among these simplexes, we could choose one at random and
call it 6. We label the vertices of b.. as Xl, ... , X p+l .

Suppose that we represent shapes in generalized Bookstein coordinates.
Let ff,orm be the shape density when Xl, X 2 , ... , Xp+l are lID spher
ical normal landmarks in RP, and let f~el be the shape density when
Xl, X2, ..., Xp+l are the vertices of a Poisson-Delaunay random simplex
with distribution as in formula (4.100). We define

168 5. Distributions of Random Shapes

Proposition 5.6.1. Let Xl, ... , Xp+l be the vertices of a Delaunay simplex
b.. chosen at random from the Delaunay tessellation of RP generated by
a Poisson process. Then the shape density of Xl, ..., Xp+l has the form

where as usual X = (p + 1)-1 L:Xj . Define r to be the circumradius
of the (p - I)-dimensional sphere through Xl, X 2 , ... , Xp+l' We note that
the quantity

dt (p - I)!
-t = p 2 dVp 2_1(r )

p K,p xP

(5.85)
So, I/X

P2
is proportional to the density function of the pre-shape of a

Poisson-Delaunay simplex.
However, the pre-shape r' of a simplex generated by lID spherical

normal landmarks X~, ...,X~ has a uniform distribution on the pre-shape
2

sphere S~ -1. Thus the ratio of the two densities is proportional to 1/Xp2

as well. This looks very much like the result we need, with the exception
that it applies to pre-shapes instead of shapes. To obtain the same ratio
for shapes, we note that both the Poisson-Delaunay pre-shape density and
the normal pre-shape density functions are uniform over orbits of Sp2- 1

that correspond to rotations in RP. Thus when we integrate across these
orbits, the same ratio is preserved. Q.E.D.

(5.79)

(5.78)
p+l

LllXj -X11 2

j=l

v

r
X =-

.JV
is a shape statistic. Then we have the following elegant result of Kendall
[93].

where a(p) is a constant of integration depending only upon the dimension
p.

Kendall [93] has computed the value of the coefficient a(p) in formula
(5.80) to be

~ _ () _p2 U
f del - a p X fnorm (5.80)

a( ) = (p + I)P/2{Gam[(p + 1)/2]}P
P 2P7f(p- l)/ 2Gam[(p2 + 1)/2] (5.86)

Proof. Let us return to the setting of Section 4.7.4 and in particular for
mula (4.100). The first step in the proof is to calculate the Delaunay-Poisson
pre-shape density by integrating over a scale variable in formula (4.100).
vVe change coordinates, transforming from Yl, Y2, ... , Yp to rand t, where

r E 8(-1 is the pre-shape of the simplex and t =.JV is a scale variable;
The pair of variables

In the case p = 2, we have an explicit formula for f~el from formula
(5.17). Combining this with Proposition 5.6.1 and using a(2) = 1/4 from
(5.86) we can obtain the following:

Corollary 5.6.2. In terms of the Bookstein coordinate z for a Poisson
Delaunay triangle X 1X2X3 the shape density has the form

can be regarded as polar coordinates for the vector of centered vertices
(Xl - X, ..., Xp+l -. x), which is in 1-1 correspondence with (Yl' ...,Yp).

(t, r ) E R+ x 8~2-1 (5.81)
ftl(Z) = ~ {I + [IZI

2
- 1J2}-2

37f 2~(z)
(5.87)
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(5.89)
'Tr/8

'Tr/3 - v'3/4

3. Compute the approximate probability that X1X2 X3 is e-blunt to

2. Let Xl, X 2 , X3 be IID uniformly distributed in an elliptical region
with stretch factor s as in 4.4.2. Find the approximate probability that
the triangle having Xl, X 2 , and X3 as vertices is e-blunt to within a
tolerance € of one degree. This can be derived following the pattern of
Section 5.3, applying formula (5.56) for the elliptical uniform shape density
close to alignment instead of the elliptical normal shape density.

which is taken as the required probability.
(a) Comment on this solution, discussing its assumptions and its validity.
(b) Compare the solution with Corollary 5.1.2. Which is more convinc

ing?
(c) Find the probability of an obtuse angle for three independent points

that are uniformly distributed on the boundary of a circle.
For further reading on this interesting problem, see [39] and [135J.

5.8 Problems

1. In [39], Lewis Carroll (Charles Dodgson) proposed a number of mathe
matical "pillow problems" that Carroll claimed to have solved in bed. On
the evening of January 20, 1884, he stayed up late to solve the following,
which became number 58 on his list of pillow problems. Find the probabil
ity that three points chosen at random in the plane have an obtuse angle.
The solution given proceeds thus: Let XIX2X3 be such a triangle. With
out loss of generality, we can assume that X I X 2 is the longest side. Then
X3 lies in the lune that is the intersection of the two circular disks having
centers at Xl and X2 respectively, and common radius IXI - X2 1. The
triangle will have an obtuse angle if and only if X 3 lies in the circular disk
with center at the midpoint of X IX2 and radius IXI - X2 1. The ratio of
the area of this circular disk to the area of the lune is

shape variables under such circumstances can be approximately normal is
reassuring, because there is a large literature on multivariate statistical
analysis that can be tapped. Such models correspond to the circumstance
in Proposition 5.5.2 where the concentration parameter (3 is large.

The idea of using statistical techniques on shape variables that are com
monly associated with multivariate normal theory also arises in allometry,
where the logarithms of size variables are jointly plotted and analyzed for
collinearities whose presence supports the growth allometry model of for
mulas (1.1) and (1.2).

The development of this chapter roughly follows the historical order in
which the distribution theory for shapes was developed. The earliest work
by David Kendall, Wilfrid Kendall, and Simon Broadbent concentrated on
the IID uniform and normal models with a possible eccentricity parame
ter. The calculation of collinearity probabilities and Broadbent factors was
developed by Small [154, 155]. The earliest reference on the uniformity of
shape distributions under a spherical normal model would appear to be by
Kendall [87], where the model under consideration was that of the shape
distribution of a set of points in the plane that diffuse independently from
a common starting point as Brownian motions. Applications of the distri
bution theory were typically archeometric in nature. The value of general
shape distributions for biometric and morphometric applications was de
veloped by Fred Bookstein, Kanti Mardia, Ian Dryden, Colin Goodall, and
others. Bookstein proposed a landmark model with normally distributed
landmarks in which the landmark variability about their respective means is
small compared to the distances between landmark means. This leads to the
so-called "tangent approximation" (to use David Kendall's terminology) in
which the shape statistics, when expressed in Bookstein coordinates, have
approximately a normal distribution. This follows from a Taylor expansion
of the formula for Bookstein coordinates, in which the dominant term is a
linear transformation of the original normal variables. The discovery that

Corollary 5.6.2 is essentially the same as the shape density for Delaunay
triangles (in terms of interior angles of the triangles) due to Miles [119].

Although Proposition 5.6.1 does not give us an immediate formula for
the shape density of Poisson-Delaunay simplexes in dimensions p > 2, it
nevertheless provides an excellent mechanism for the simulation of such
simplexes without resort to generating a Poisson process. As spherical nor
mal landmarks are easy to simulate, an acceptance method can be used
that first siTulates a n~rmal simplex and accepts this simplex with prob
ability X-P Imax(x-P ). This will generate realizations of the shapes of
Poisson-Delaunay simplexes. It can be demonstrated that X is minimized
when X = 11y'p + 1. See Problem 7. For further analysis and comments
on this simulation technique, see [93].

9{4[~(z)F + (lzl 2 - 1)2J2

Plugging (5.88), (5.86) with p = 2, and (5.17) into formula (5.80) gives us
the result. Q.E.D.

5.7 Notes

Proof. We can write out the formula for X-4 in terms of the Bookstein
coordinate z as

170 5. Distributions of Random Shapes
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6. From Problem 5 above. Suppose that one of these three angles is chosen
at random. Show that the distribution of this angle B has density

within a tolerance of one degree as in Problem 2 above using a rectangle
instead of an ellipse. Assume the sides of the rectangle are in proportion
s: 1. How does this compare with Problem 2?

6
Some Examples of Shape Analysis

(5.90)~[(7r - B)cos(B) +sin(B)]sin(B)
37r

5. For a triangle in the plane with vertices X 1,X2,X3 find the Bookstein
coordinate Z in terms of the three internal angles of the triangle. Use this
to find the joint shape density for the internal angles of a Poisson-Delaunay
triangle using Corollary 5.6.2.

4. Find the density function for the distribution of shape in Bookstein
coordinates for a triangle of three independent points uniformly distributed
on the circle x~ + x~ = 1.

7. From Section 5.6, prove that X of formula (5.80) is minimized when
X = 1/';p+ 1.

6.1 Introduction

8. Find a formula for the surface area of a sphere bounded between two
parallel planes intersecting the sphere. Using the fact that this surface area
is proportional to the distance between the planes, fill in the details of
Corollary 5.1.2.

In this chapter, we shall consider in greater detail some examples that were
first mentioned in Chapter 1. While the Land's End data of Chapter 5 were
accessible to analysis largely by shape theory alone, most spatial data sets
contain scale and orientation information that should not be ignored. In
many cases, a shape analysis is performed in order to find the relationship
between size and shape. This is of interest in growth allometry, as was
mentioned in Chapter 1. However 1 the relationship between size and shape
is of interest more generally, as is evident in the dinosaur footprints example
described in Section 6.2 below.

6.2 Mt. Tom Dinosaur Trackways

In this section, we continue the investigation through a size, orientation,
and shape analysis of the dinosaur trackways of Section 1.4.2. See Figure
1.4.

The collection of footprints at this site has undergone considerable dete
rioration due to weathering and vandalism, making precise statistics on the
distribution of footprint dimensions impossible to collect, as Ostrom noted.
However, it was possible to classify the footprints into three groups, with
the larg~st being tentatively identified as Eubronies giganteus, the inter-
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mediate size prints being also tentatively identified either as Anchisauripus
sillimani or as immature Eubrontes prints (the former being favored), and
the smallest prints as Grallator cuneatus. The dinosaur Eubrontes was an
early, medium-sized, tridactylic bipedal therapod, believed to be preda
tory in nature. On the other hand, Grallator was a small dinosaur of the
same period that was bipedal and tridactylic, either a predatory therapod
or a herbiverous ornithischian. It was found that Eubrontes prints varied
in length from roughly 28 to 35 em., with the caveat that erosion makes
precise determination of dimensions impossible. The Anchisauripus prints
varied in length from 15 to 20 em. approximately, and the Grallator prints
varied from 9 to 12 em. in length.

The data set was recorded on 20 x 20 graph paper at a scale of 10 ft.
to the inch, the site being divided into five-foot squares for the purpose.
Upon examination, the footprints were grouped into trackways, with some
element of uncertainty in a number of cases, particularly where trackways
cross. Uncertainty also arises in deciding whether two trackways along a
common line were made by a single dinosaur or by two. For example, it
is unclear whether footprint D should be grouped with trackway 15 or
separately. Similarly, prints A, B, and C could be grouped with trackways
7, 9, and 11 respectively. For statistical purposes, it seems appropriate to
analyze within and between trackway variation in size, orientation, and
shape only on that subset of footprints that can be clearly classified. The
loss of information by so doing is less problematic that the difficulty of

. outlier contamination by including all prints. Thus trackways 5, 6, and 7
are somewhat confounded with each other. For the purposes of statistical
analysis, we take the first three prints of trackway 5, the first four prints
of trackway 6, and the first two prints of trackway 7.

When grouped according to species, trackway 7 (counting footprint A :;IS

a continuation of trackway 7), trackway 27, and trackway 28 were classified
by Ostrom as belonging to Anchisauripus. Trackway 14 and trackway 18
were Classified as Grallator. All the rest were classified as trackways made
by Eubrontes. The greatest uncertainty in this three-fold classification is in
trackway 13, consisting of a single isolated print, and trackway 7, consisting
of two prints.

6.2.1 Orientation Analysis

We have already considered in broad terms some of the orientation informa
tion in the trackways and its relationship to possible gregarious behavior of
Eubrontes. There are two types of orientation information within a track
way: the orientation of the footprint and the direction of the. trackway.
Footprint orientation is typically compatible with the orientation of the
trackway, and should be considered of importance in an orientation analy
sis in providing an ordering to the prints along a trackway. However, there
is considerable damage to the footprints, making orientation ora footprint
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FIGURE 6.1. Distribution of trackway orientations. The Mt. Tom dinosaur track
ways can be individually oriented by taking a unit vector pointing in the direction
from the first observable footprint in the trackway to the last observable footprint.
Such a unit vector can be regarded as a point on the unit circle centered about the
origin in the plane. Figure 6.1 shows the histogram ofthe scattering of trackway
orientations as they are seen in Figure 1.4. It is evident that the vast majority
of the tracks point in a westerly direction. These tracks are largely Eubrontes
footprints.

difficult to determine in isolation from other footprints in the same track
way. Thus the trackway orientation would seem to be of greater importance
in the analysis. The trackways are fairly straight, with the exception of
number 17, which shows a slight but systematic curvature.

We can encode the directions of the trackways by taking a vector from the
initial footprint to the final footprint of the trackway and standardizing the
vector to have length one. The exception to this definition is trackway 13,
which contains only one footprint. The orientation of this trackway must
be established roughly from the orientation of the footprint. The result is
a directional data set that can be plotted on the unit circle. A histogram
of the orientations can be seen in Figure 6.1.

To estimate the overall direction of dinosaurs crossing the area, the di
rectional median seems appropriate as it is less sensitive to large devia
tions in direction away from the overall trend, in this case to the west.
If (h, O2 , ... , On, 0 ~ OJ < 27f, are the angles of a set of n direc
tional vectors, then the median of the angles is that value 0 rninimiz-
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FIGURE 6.2. Boxplots of stride lengths for dinosaur trackways. Distances are
shown in meters. The trackways are ordered along the horizontal axis from 1 to
28. Each trackway has its stride length distribution displayed by a vertical boxplot
that is constructed as follows: Each box appears as a thin dark rectangle with
endpoints at the upper and lower quartiles of the distribution. The white horizontal
strip inside each box marks the location of the median of the distribution. At each
end of the box, dotted lines are drawn to the most extreme data value that lies
within a distance of 1.5 times the interquartile range. Short braces mark the ends
of these dotted lines.
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6.2.2 Scale Analysis

There are two measures of size within a trackway that are relevant to the
analysis of dinosaur locomotion. These are the footprint length and the
stride length, the latter usually defined as the distance between successive
footprints. Figure 6.2 shows a set of 28 boxplots of the sample distributions
of stride lengths along the 28 trackways. The variation in stride lengths
between trackways is most evident between trackways 14 and 18, classified
as Grallator, and those trackways classified as Eubrontes, a much larger
dinosaur. (The reader who wishes to see a comparison of Grallator and
Eubrontes footprints is referred to page 128 of [133].) The differences in
stride lengths can be interpreted as due to two factors, the first being the
length of the dinosaur's legs from hip to foot and the second being the
speed of the dinosaur. Footprint dimensions give us some indication of the
size of the dinosaur, from which it is possible to estimate the speed that
the dinosaur had when crossing the site. We noted the footprint dimensions
above. These values are variable, even within a trackway, and so it seems
safest to use species averages alone in the formulas.

Alexander [I, 2] has proposed a formula for dinosaur speed based upon
footprint length and stride length using Froude numbers. Froude num
bers and the associated theory proposed by Alexander suggests that if
two bipedal animals of similar shape have a size ratio of a: b in linear
dimensions then their speeds will be in the ratio va:..jij. This suggests
that the appropriate formula linking dinosaur speed to stride length and
footprint length is of the form

ing the sum of geodesic distances Lj d(8, 8j) around the circle, where
d(8, 8j ) = min(18 -- 8j \, 211" -18 - Ojl). For our data set, the directional me
dian is achieved on an interval of angles intermediate between trackway 4,
where 84 = 3.1363, and trackway 5, where 85 = 3.146. (The fact that
these trackways are also consecutive appears to be a coincidence of Os
trom's numbering system.) Averaging the angles over this interval provides
a convenient summary of the median direction. The median works out to
be 8:::0' 3.14, which is very close to due west, placing due north on the
vertical axis of the coordinate system. (Considerable continental drift has
occurred since the period when the trackways were formed. Therefore due
west at present does not correspond to due west during the period when
the footprints were preserved.) A total of 20 out of 28 trackways fall within
a narrow 300 interval about the median direction.
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speed = c x (stride length)" x (footprint length)-p+o.5 (6.1)

for appropriate constants c and p. A regression can be performed on
modern bipedal species to fit the constants c and p. From this fit we can
tentatively estimate dinosaur speed. Using Alexander's empirical fit to a
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FIGURE 6.3. Plot of geodesic distance versus stride length for Eubrontes trian
gles. Along each trackway, three successive footprints form a triangle. Some of the
size and shape characteristics of these triangles are plotted above. Horizontally,
a shape statistic is plotted that computes how close the triangle is to collinear
ity. This is measured as the geodesic distance in the sphere 82(1/2) oftrianqle
shapes from the great circle of collinear triangles to each shape point. Thus points
plotted on the left-hand side of the figure represent nearly collinear triangles. On
the vertical axis, the mean stride length of the three successive footprints is plot
ted in meters. The mean stride length can be defined as the average of two stride
lengths: that from the first to second footprint, and that from the second to the
third.

different trackways having different scale factors. However, in actuality, a
dinosaur would have had considerable variation in speed much as modern
animals do. This extra variation in speed beyond scaling effects for di
nosaur size would be expected to appear as a "stretching" effect along the
trackway direction. Thus if we consider the shape of the triangle formed by
three successive footprints, the effect of increased speed along the trackway
would be to stretch the triangle closer toward the great circle of collinear
triangles in shape space 8 2 (1/ 2).

Figure 6.3 illustrates this idea. The plotted points are statistics drawn
from all triangles formed by taking three successive prints along Eubrontes
trackways. On the horizontal axis is plotted the geodesic distance from
the triangle shape to the great circle of collinearities (proportional to the
absolute "latitude" taking the great circle of collinearities as the equator).
On the vertical axis is the average of the two stride lengths of the footprint
triangle, from first to second print and from second to third. As can be seen,
the triangles at greater geodesic distances, which are closer to equilateral
in shape, have smaller stride lengths. As the stride length is proportional

speed = 0.49 x (stride length)1.67 x (footprint length)-1.l7 (6.2)

6.2.3 Shape Analysis

If all size variables were to scale in a similar manner, then we might expect
two dinosaurs whose stride lengths were in the ratio a: b to have a
similar ratio in leg length, footprint length, and speed. However, this is
not the case for modern species and was almost certainly not the case for.
dinosaurs. Differences in scaling will normally be reflected in differences
in shape. So it is shape variation, and in particular the relation of size to
shape, that becomes of interest.

As mentioned in the scale analysis, two factors that influence stride
length along a trackway are the size of the dinosaur and its speed. If we
compare dinosaurs with similar Froude numbers, we find that the speeds
of the individuals will be proportional to the square root of the size of the
individual, assuming that Alexander's model for dinosaur speed is correct.
This can noted from the exponents of formula (6.1). Thus, if we could group
individuals with common Froude numbers together, a size variable such as
leg length, for example, would be a scale variable for trackway dimensions.
Within such groups, trackway shape distributions would be common, with

where stride length and footprint length are in meters and the speed is in
meters per second. The reader should note that we follow the majority here
in defining stride length to be the distance between successive footprints.
Alexander's definition is the distance between successive footprints of the
same leg. The formula has been adjusted accordingly.

Inserting mean stride lengths and mean footprint lengths for the three
species, we estimate that Eubrontes was crossing the site at a speed of
about 8.1 kilometers per hour, which is a reasonable jogging pace. On the
other hand, Grallator is estimated to have been traveling at a speed of 7.1
kilometers per hour, which is not much slower, despite the difference in
sizes of the dinosaurs. The intermediate-sized Anchisauripus is estimated
to have been the fastest of the three. Estimates for its speed are unreli
able here because the paucity of tracks is compounded with uncertainty of
identification of track 7 as Anchisauripus. However, the large estimate for
the speed of Anchisauripus is due in great part to the large stride length
of trackway 28 passing though the site in a northeasterly direction. Based
upon equation (6.2) we can estimate the speed of this individual to be
about 35 kilometers per hour. With such estimates, it would be very useful
to be able to provide an error analysis. However, there are far too many
systematic errors to regard these values as anything more than a rough
indication. Not the least of the systematic errors is the necessity of using
(6.2), which is based upon modern species, to describe dinosaurs.

variety of modern species, we estimate the speed to be
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to estimated speed in our model, this means that triangles for which the
estimated speed is greater tend to be flatter, as one would expect.

1816.2 Mt. Tom Dinosaur Trackways

Triangle Pattern Wi W2 W3

1 RLR 0.48647 0.02354 -0.11310

2 LRL 0.48641 0.00490 0.11569

3 RLR 0.49371 -0.00500 -0.07889

4 LRL 0.49909 0.03003 0.00316

5 RLR 0.49672 -0.03147 -0.04777

6 LRL 0.46722 0.02082 0.17684

7 RLR 0.47245 0.03951 -0.15882

8 LRL 0.48762 -0.07167 0.08422

9 RLR 0.49811 -0.03717 -0.02256

parameter analogous to 0,.. and have level curves for the density that are
circles of points that are equidistant from the location parameter. They
also include a concentration parameter that is analogous to [J.

For the dinosaur trackways, there are two shape distributions associated
with sets of three successive footprints, namely those with two left prints
and one right, and those with two right prints and one left. For the mod
eling of triangles of successive footprints, we can pool the information by
assuming bilateral symmetry and reflecting alternate triangle shapes along
a trackway. This reflection is equivalent to multiplying W3 by -1 in the
coordinate system of formula (3.6). For many trackways, the confounding
of prints with other trackways and the difficulty of distinguishing right and
left prints still makes the task of pooling information from the two types
of triangles problematic. However, for some trackways such as trackway 1,
clear information seems to be available. In such cases, we can take triangles
formed by two left prints and one right print as canonical, and reflect the
shape distribution for every second triangle of three successive prints.

To encode the shapes of triangles, we take the first and third prints
of any sequence of successive footprints as the base of the triangle for
Bookstein coordinates. Thus in the notation of formulas (3.1) and (3.2), the
point X3 is in fact our middle footprint of the three. From the Bookstein
coordinates we can encode the shape 0 of each triangle using the spherical
representation (Wl,W2,W3) offormula (3.6). For trackway 1, the tabulated
shape data are as follows:

(6.6)

(6.5)

(6.4)

(6.3)

11£(0)11 = Iliill

1 m
ii = - L:Oj

m j=l

6. Some Examples of Shape Analysis

211iill
lies once again on the sphere 8 2 (1/ 2) and can be interpreted as the
mean shape of the data. This mean shape plays much the same role for the
data that the shape 0,.. plays in the Mardia-Dryden density of formula
(5.62). Correspondingly, the quantity lliill provides a measure of how
concentrated the data are about the mean shape. Its analog is not [J of
formula (5.62) as such, but rather

which will lie within the interior of the sphere 8 2 (1/ 2). The vector

The method of moments fit of the Mardia-Dryden density to a sample of
triangle shapes is found by solving the equations

in the unknowns [J and 0,...
This fitting technique is closely related to the fitting of spherical data by

the Fisher distribution using maximum likelihood estimation. As Mardia
and others have noted, the Mardia-Dryden density is one of a variety of
densities on the sphere, including the Fisher density, the projected normal
density, and the Brownian motion density, which while functionally dif
ferent, form flexible families of densities that are very close to each other
in shape. Like the Mardia-Dryden density, these families have a location

6.2.4 Fitting the Mardia-Dryden Density

To study the shape distribution in greater detail, we can fit a distribution
such as the Mardia-Dryden density of formula (5.62) to the triangle shape
data. One way to fit such a density to the data is by matching the centroid,
or center of mass, of the Mardia-Dryden distribution to the centroid of the
data. We recall that the shape space 8 2 (1/ 2) is naturally embedded in R 3

as a sphere of radius 1/2 centered at the origin. See formula (3.6). Thus
the shapes of triangles of three successive footprints can be represented as
points in R 3 . If 01, 02, ... , Om are a set of triangle shapes represented as
points in R 3 , then the centroid of these points will be
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FIGURE 6.4. Post mold arrangement at Thorny Doum, Wiltshire. Thorny Down
has achieved a certain amount of notoriety among archeologists for the ambiguity
of its post mold pattern. In this picture, a large number of features, such as pits
and cooking holes, have been eliminated so that the reader can judge the post mold
evidence by itself It has been claimed that there were nine roundhouses on the
site. One is clearly evident [romthe picture. This figure has been redrawn from
[165].

(6.7){3 = 452.5D"p. = (0.49186,0.00297, 0.08980)

6.3.1 A Few General Remarks

In this section, we apply some methods of shape analysis to the post mold
data that we first considered in Section 1.4.3. In particular, we shall ex
amine statistically the interpreted roundhouses of Aldermaston Wharf and
South Lodge Camp as shown in Figures 1.5 and 1.6 respectively.

In 1973, an exhibition at the Institute of Contemporary Arts in London
was entitled "Illusion in Art and Nature." It is interesting to note that one
of the exhibits was a plan of an excavated Bronze Age settlement from
Thorny Down in Wiltshire, England. The exhibit challenged people to in
terpret the configuration of post molds found at the site and to group them
into recognizable patterns that would correspond to the original buildings
on the site. See Gregory and Gombrich [76] for a discussion of the ambiguity
of interpretation of this site in the context of the exhibit.

The reader is invited to examine Figure 6.4, which.shows the layout of ac
cepted post molds based upon J.F.S. Stone's excavation from 1937 to 1939.
This figure should be studied in the light, say, of R. Wainwright's comment
in A Guide to the Prehistoric Remains in Britain [175, p. 199] that the
site contained the remains of nine circular houses called roundhouses. One
strong indication of a roundhouse is in evidence. In other places, rough
circles can be seen. However, these can equally well be interpreted as parts
of structures that could conceivably have been rectangular rather than cir
cular. The interpretation of nine buildings on the site follows directly from
Stone's original report, which grouped the post molds into nine clusters.
Stone found other evidence at the site such as the location of cooking holes
and some pottery. Nevertheless, the post mold configuration provides most
of the evidence for the number, location, and shape of the buildings.

The archeological interpretation of such sites is assisted by a certain
amount of background knowledge of the cultures that were present. Thus
Thorny Down has been interpreted in the light of prior knowledge that

6.3 Shape Analysis of Post Mold Data

The high value of {3 is indicative of the regularity of the footprint pattern,
and supports the interpretation of Figure 6.2 that the Eubrotiies of track
way 1 was moving at a fairly constant speed. The estimated mean shape
D"p. can be interpreted by noting its proximity and relationship to the shape
(0.5,0,0), which marks a triangle of three equally spaced collinear points.

It can be seen that the sign of W3 alternates in the table. So, we reflect
the triangles of the RLR type. Fitting this to the Mardia-Dryden density
gives us an estimate for D"p. and for{3, namely
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Proof. For convenience in this proof, we shall assume that w(x) is the
diameter of z: We perform a transformation of variables from

(6.12)

(6.10)c(N) = c(() p" (wi n-2 - w~n-2) V2(A)

if boundary effects are ignored.

where w = w(x)j the angle () E S is the direction of the vector X2 - Xl,

defined except when Xl = X2; and a E ~2 is the shape of Xl, ... , X n .

Then we can factorize the geometric measure on x as

Proposition 6.3.1. There exists a constant c() depending upon the
choice of shape function ( such that the expected value of the count statistic
N is

The function w is typically a measure of the size of the configuration. As
with the function (, we shall suppose that w is a symmetric function of
its arguments.

Now suppose we observe a Poisson process in the plane throughout some
planar region A, and decide to count the number of configurations X of n
particles for which ((X) = 1 and Wo ~ w(X) ~ WI. Some configurations
that satisfy these conditions will lie entirely within the region A and
will be observed, while other configurations outside the window will not be
observed. Configurations that overlap, having some points within and some
without, will not be observed. Let N be the number of configurations X
of n particles observed within A such that ((X) = 1. We shall be
interested in finding the approximate distribution of N and making a
comparison of this distribution with an actual count of configurations in a
post mold pattern.

Let aA denote the boundary of A. The exclusion of configurations that
overlap 8A is understood as a boundary effect which is vanishingly small
as A expands to fill the entire plane. Suppose the Poisson process has
intensity p. Then N has expectation of the form given by the following
proposition:

(6.8)

6.3.2 The Number of Patterns in a Poisson Process

Suppose the researcher observes a point process, such as a post mold pat
tern, within a two-dimensional region. After studying the configuration of
points, the researcher comes to believe that rather than being random,
the particles of the process exhibit geometric regularity that cannot be ex
plained by chance. For example, the particles could be arranged roughly
in rectangles or circles, or perhaps have an approximate lattice structure.
A null hypothesis that no structure exists, so that the perceived configura
tions arise by chance, could be modeled by a Poisson process or any other
standard model for particles in the plane. Then the number of patterned
configurations observed in the data can be compared with the expected
number obtained by chance under the null hypothesis. We have already
encountered one such example based upon configurations of straight lines
when we studied the hypothesis of ley lines in the Land's End data. We
now broaden the question to include the kinds of configurations that can
appear in post mold interpretations.

Suppose that X I,X2 , ... ,Xn are n random planar points for n ~ 3.
For convenience, let us write X = (Xl, ... , X n). Similarly, we will write
x = (Xl, ... ,xn ) for any realization of X. Let ((X) be a function of
these points taking values in the set {0,1}. We can think of ((X) as
an acceptance function, which notes that X has a certain property by
assigning the value ((X) = 1 when X has the property and ((X) = 0
when it does not. Now let us further suppose that ((X) is a function of
these points only through their shape so that

Late Bronze Age peoples of Britain typically built roundhouses with posts
that were spaced 1.6-2.2 meters apart. However, such knowledge, while of
great assistance, can be misleading. For example, in the case of the post
mold evidence at Thorny Down, such background knowledge can lead the
researcher to interpret circular buildings in cases where the interpretation
is weak. The eye is very good at interpreting patterns in chaotic pictures
but is not always reliable in its interpretations.

for any complex numbers a, b with a oF O. As we are not particularly
interested in the labels of the points, but rather in their geometrical char
acteristics as a point set, we shall also suppose that ( is a symmetric
function of its arguments.

Next, we suppose that w(X) is a nonnegative real valued function that
is invariant under translations and rotations, and homogeneous under scale
changes of the points. That is, w has the property that

(6.13)

w(aX I + b, ... , aXn + b) = lal w(XI , ... , X n) (6.9)

For the general theory of such factorizations, the reader is referred to [4, 5J.
When Xl, ... , X n are IID uniform in A then X is uniformly distributed
in An = A X ... X A. Let W = w(X). Then

c[((X)I(wo:sw,,;wdJ = [V2(~)]n in ((x)l(wo~w:swd dV2n(x)

Applying the factorization of formula (6.12), integrating over the variables
W, (), and Xl, and ignoring the boundary effects of configurations X that



We get the required formula by setting
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The second comment to be made on this result is the presence of some
potentially high exponents in-formula (6.10). When modeling particle scat
terings as Poisson processes, we typically have to estimate the intensity p.
Now, if we were investigating the presence of roundhouses of eight posts,
say, and were to underestimate the intensity of the scattering by twenty
percent, then we would underestimate the expected number of circular con
figurations that could be explained as chance by a factor about 0.168. One
way to underestimate the value of p is to assume that the region A is the
region of excavation as marked by the bold line in Figure 6.4. The natural
estimate for .p is then the average number of post molds per square meter
across the region of excavation. An examination of Figure 6.4 shows that
the post molds are not homogeneously scattered across the region of ex
cavation. An improvement on this assumption is to suppose that the post
molds are homogeneously scattered across some subregion of the region of
excavation that we can call the region of post mold activity. This may ex
plain why simulation studies such as those described in [44] have found a
larger number of circles at Thorny Down than can be expected from a Pois
son scatter over the region of excavation. Unlike the region of excavation,
the region of post mold activity is unknown. Therefore we cannot directly
find its area as a way of estimating p. Fortunately, other techniques are
available to estimate p, One method is to fit the theoretical distribution
of distance from a typical post mold to its nearest neighbor.

(6.15)

(6.16)

We take a Poisson limit by letting m -. 00 and letting A expand to fill the
plane so that m/V2(A) -. p and VI.(8A)/V2(A) -. O. Then the expected
number of configurations of nparticles is seen to be asymptotically

We shall continue to ignore boundary effects in subsequent formulas. Now
suppose that m > n particles are uniformly and independently scattered
throughout A. Then the expected number of configurations X of n
particles among the m that satisfy the shape condition ((X) = 1 and
size condition wo:::; w(X) :::; WI. is

lie within a distance of WI. from 8A, we see that the expectation becomes

186 6. Some Examples of Shape Analysis

(6.17)

which completes the proof. Q.E.D.

We usually wish to know more than simply the expected value of N. The
Poisson approximations of Silverman and Brown [153] are useful to deter
mine this. They show that under certain asymptotic conditions described
in [153] the distribution of N is from the Poisson family. As the expected
value can be approximated by Proposition 6.3.1 above, the approximate
distribution of N can be specified. These asymptotics appear to be quite
reasonable for post mold investigations.

Two comments on Proposition 6.3.1 should be made. As mentioned
'above, formula (6.12) is a special case of a factorization calculus in which
geometric measures can be shown to factorize in location, scale, orienta
tion, and shape components. See [3,4, 5] for work by Ambartzumian and
colleagues on these factorizations. Note that we can pull out a shape mea
sure from the factorization. This corresponds to our function f in (6.12)
above. The resulting shape measure might be thought of as canonical. How
ever, upon closer examination, it is seen to depend upon the choice of size
function. As we have observed on previous occasions, shape constructions
cannot be fully separated from the definitions of size variables that are used
in the standardization of data sets.

6.3.3 An Annular Coverage Criterion for Post Molds

An acceptance criterion that has been popular among archeologists study
ing and simulating post mold patterns is the coverage criterion. For exam
ple, Cogbill [44] and Litton and Restorick[109] have searched for patterns
in post mold data by moving a set across the region of excavation. Cogbill
searched for roundhouses by running an annulus, or circular ring, with fixed
inner and outer radius over the post mold points. Annuli consisting of all
points y E R 2 such that

(6.18)

were used, where € > a and w > a are constants controlling the thickness
and inner radius of the annulus, respectively. The constant a E R 2 controls
the location of the annulus, and was allowed to vary as the annulus was
shifted over the region of post molds. Any set of n post molds that
could be covered by an annulus for some choice of a would be declared
an acceptable configuration and considered as a potential roundhouse. See
Figure 6.5.

In view of Proposition 6.3.1 we naturally seek an approximation to the
distribution of the number of sets of n post molds that satisfy the annular
criterion of Cogbill under the hypothesis that the post molds are scattered
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(6.22)

(6.21)
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[
2]n-l

Qn(n) ~ n [E + (n - 1)] (27r)n-1 V~A)

for small E> O. Of course Ql(1) = 1. Solving for bl byevaluating Q2(2)
in formula (6.13) we obtain

evaluated by calculating Q2(2), ..., Qp(p) directly.
For our particular application, we have p = 2 and a family of annuli

given by formula (6.18). It is easy to check that

4 7r w 2

Q2(2) ~ V2(A)
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for some choice of the constants bl , b2 , ... , bp - l . These constants can be

FIGURE 6.5. The annular criterion for accepting a configuration of post molds.
Cogbill (44J and others have proposed the detection of circular post mold config
urations by running an annulus across the region where post molds occur. If a
sufficiently large number of post molds can be covered in a given position of the
annulus, these post molds are accepted as a possible roundhouse.

as a Poisson process. We need only find the expected number of circular
configurations under the annular criterion and then apply the Poisson limit
theorem of Silverman and Brown.

Suppose C is some subset of the plane R 2 . We represent the translates
of C as

(6.24)

(6.23)

£(N) ~ (21r)n-l pn W 2n-2 En-2 V
2(A)(n - 2)!

to lowest order approximation in E> O.

Formula (6.23) can be seen to agree with (6.22) for n = 3 to first order
in E> O.

We are now in a position to write out the formula for circles in a Poisson
process.

Proof. This is a straightforward consequence of (6.15), taking a Poisson
limit as A expands to fill the plane and the number of particles m goes
to infinity so that m/V2(A) -+ p. Q.E.D.

Proposition 6.3.2. In a Poisson process of intensity p within a window
A the expected number E:(N) of circular arrangements of n 2: 2 particles
under an annular coverage criterion with annuli of the form given in (6.18)
is

The similarity between the formulas of Propositions 6.3.1 and 6.3.2 can
be seen. For small E > 0, the annular coverage criterion factorizes into
shape and size criteria that relate Proposition 6.3.2 to 6.3.1. Note also that
the Poisson limiting distribution for N holds here as well.

again for small E > O. We can check this formula by calculating Q3(3)
directly without appeal to formula (6.22). Using the transformations of
Section 1.2.3 of [147, pp. 16-17] and integrating over formula (2.18) of [147]
we can show that the probability the radius of the circumcircle through
XI,X2,X3 is less than or equal to some value w is 67r2W4/[V2(A )]2
for large regions A, ignoring the boundary effects. For small E > 0, our
probability Q3(3) is approximately the probability that the radius of this
circumcircle is between wand w(l + E). This reduces to

24 7r2 w4 E

Q3(3) ~ V
2
(A )2

(6.20)

(6.19)

••

C(a) = {y + a : y E C}

[

p-l ] [V (C)] n-l
Qn(n) = n 1 + I)j(n - 1)(n - 2) ... (n - j) -p_(-

j=l Vp A)

•
----_ ...

for each a E R2. Let X I,X2,,,,,Xn be IID uniformly distributed in the
region A. What is the probability that there exists a translate C(a) such
that X j E C(a) simultaneously for all j = 1, ... , n? That is, what is the
probability that C can be translated to completely cover all the points
Xl, ..., X n ? The solution to this problem will allow us to find the analogous
expectation for Poisson processes.

Mack [111] has solved this problem, not only for subsets of the plane, but
also for the general-dimensional problem. Using the terminology of [111] we
let Qn(n) be the probability that n independent uniformly distributed
particles in A c RP can be covered by a translate of a given subset
C c RP. We assume that Vp(C)« Vp(A) and that boundary effects of
A are ignored. Then Qn (n) has the general form



6.4.1 Scale Analysis

6.4 Case Studies: Aldermaston Wharf and South
Lodge Camp

We are now in a position to try such methods on post mold data sets.
While the post molds at Thorny Down represent one of the most famous
examples of ambiguous interpretations, the simplicity of the configurations
at Aldermaston Wharf in Figure 1.5 and South Lodge Camp in Figure 1.6
of Section 1.4.3 make them better starting points for analysis.

1916.4 Case Studies: Aldermaston Wharf and South Lodge Camp

6.4.2 Shape Analysis

The report on Aldermaston Wharf by Bradley and Fulford [30] interpreted
two roundhouses, which are labeled I and II in Figure 1.4. Of the two
interpreted structures, the second has the stronger visual evidence of a
circular configuration. A total of 6 to 8 post molds can be interpreted as
possible locations for posts of a roundhouse wall. There is some evidence
that on the east side of Structure II a post mold could be missing because
of the presence of later features. If this is the case, an interpretation with 6
posts as in Figure 6.6 would be appropriate. We assess the fit to a circle by
choosing annuli that cover the configurations having the smallest possible
area. Structure II can be covered by an annulus whose inner radius is 3.66
meters and whose outer radius is 3.95 meters. According to formula (6.24)
the expected number of configurations of six particles in a Poisson process
of intensity p = 0.076 throughout an area of 803 square meters is 1.07.
Thus such a circular configuration can be considered plausible on chance
considerations alone. Structure I is cruder than Structure II with an even
higher value for e. The six post molds of Structure I shown in Figure 17 can
be covered by an annulus with inner radius 3.15 meters and outer radius
3.62 meters. The expected number of such configurations over 803 meters
for an equivalent Poisson process is 3.03.

At South Lodge Camp, Cluster D contains a circle of eight post molds as
in Figure 6.6, and can be covered by an annulus of inner radius 3.95 meters
and outer radius 4.21 meters. In a Poisson process of intensity p = 0.112
the number of circular configurations of eight particles that can be covered
by such an annulus within a region of area 634 square meters is 0.15.
Thus the circular configuration of Cluster D is more unlikely than either
Structure I or Structure II at Aldermaston Wharf. Cluster C also contains
a circle of seven post molds. This can be fit by an annulus with inner
radius of 2.13 meters and an outer radius of 2.36 meters. The expected
number of such configurations is 0.00096. The reader may find it a bit

the shape analysis.
At South Lodge Camp, a total of m = 71 post molds were recorded

across the area of excavation, and the median nearest neighbor distance
was found to be 1.4 meters. Using the same procedure for estimating p
as was used for Aldermaston Wharf, we obtain an estimate p = 0.112
post molds per square meter for a Poisson process with the same median
nearest neighbor distance. In turn, this allows us to estimate the area of the
region of post mold activity to be mjp= 634 square meters. Again, this
is considerably less than the area of excavation, which is about 1600 square
meters. Linking post molds that are within three meters of each other we
see that interpreted structures B, C, and D become clearly defined, with
circles evident in D and C. Structure A is less clearly defined by this linking
method.

6. SomeExamples of Shape Analysis

Before it was discovered, Aldermaston Wharf was heavily plowed. Thus it
can be reasonably assumed that some of the post mold evidence was de
stroyed by plowing. As the evidence is quite fragmentary, it is necessary to
assess the strength of the interpreted roundhouses as carefully as possible.
See Figure 1.4. The shaded regions are features of the site that are later
than the time of the Late Bronze Age settlement..The irregular unshaded
regions represent pits at the site. The archeological report on Aldermaston
Wharf can be found in Bradley and Fulford [30].

The site at South Lodge Camp, shown in Figure 1.5, was re-excavated,
and reported by Barrett et al. [9]. A number of buildings were identified
and labeled A through D, with varying degrees of geometric regularity in
the post mold evidence.

For a Poisson process of intensity p, the median distance from any particle
to its nearest neighbor is J(ln 2)j(rrp). This suggests that we estimate
p at Aldermaston Wharf by computing the median nearest neighbor dis
tance and solving for p. The median distance from any post mold to its
nearest neighbor is 1.7 meters. So the intensity of the post mold scatter
ing at Aldermaston Wharfis estimated to be P.= 0.076 post molds per
square meter. A total of m = 61 post molds are scattered throughout the
region, suggesting an area of post mold activity of mjP= 802.6 square
meters. This is considerably less than the area of excavation, which was ap
proximately 2000 square meters. From observations at other sites, roughly
contemporary with Aldermaston Wharf and South Lodge Camp, we would
expect neighboring posts of buildings to be within 1.6 to 2.2 meters of each
other. Counting replacement posts and the exceptional larger distance, we
would expect posts belonging to a common building to be less than three
meters apart. Figure 1.4 shows all post molds that satisfy this joined by
a link. Neither interpreted building I nor interpreted building II is clearly
defined by this linkage method. However, rough circles can be made out
for both I and II, with the strength of the circular interpretation being
somewhat vague. We shall examine these circles more carefully below in
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unusual that configurations with the fit of Cluster C are much more rare
than those of Cluster D in a Poisson process, as the eye suggests otherwise.
The eye also picks up the symmetry of spacing of the post molds in Cluster
D as a component of the regularity. The main difference that explains the
calculations is that Cluster C has a circle of smaller radius. An examination
of formulas (6.10) and (6.24) shows that small configurations are much
rarer than large ones for a Poisson process. A hint of a circle can be seen in
Cluster A of South Lodge Camp. However, the configuration is very weak.

6.4.3 Conclusions

FIGURE 6.6. Roundhouse Interpretations at South Lodge Camp and Aldermas
ton Wharf

o In this section, we shall describe an automated homology routine developed
by Michael Lewis as part of his Ph.D. work at the University of Waterloo.
Up until this point we have represented various shapes by assuming that
they are naturally homologous or that homologous landmarks can be se
lected from the data, as in the case of the brooch images of Chapter 1.
However, in many image data sets there are no obvious features that stand
out from the rest of the image to the extent that we would wish to label
them as landmarks. We would rather seek to find a mapping from each
image to any other that maps each point on the image to its homologous
point on the other image.

The problem of constructing a homology between images is closedly con
nected to the correspondence problem in computer vision, in which one has
two images, each in two dimensions, of a three-dimensional object seen from
two angles. Ifit is known which points in the two images are different views

6.5.1 Introduction

6.5 Automated Homology

The case studies and formulas have not provided a clear decision procedure
that would allow as to accept or reject an interpretation of a roundhouse
in a post mold data set. However, they do provide us with a quantitative
tool for assessing the strength of a circular configuration relative to other
configurations at the same site and relative to configurations at other sites.
It is perhaps the latter that is more important. The interpretation at some
famous sites such as Thorny Down is problematic, whereas the interpre
tation at sites such as South Lodge Camp is much more straightforward.
Archeologists who can supplement their post mold analysis by comparing
it quantitatively with other sites can evaluate the strength of their conclu
sions in the context of what is known about Late Bronze Age sites. For
example, we can conclude that the interpretation at Aldermaston Wharf is
tentative at best, with an interpretation that is weaker than that for South
Lodge Camp.

o
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6.5.2 Automated Block Homology

To describe automated homology, let us consider two images. Suppose that
we wish to establish a homology from one to the other. This should be a
function defined on all the pixel locations of one image and mapping to
the pixel locations of the other. However, in practice we could choose a
smaller set of locations by superimposing a rectangular lattice of points
over each image. Equivalently, we can partition the images into blocks
and suppose that these lattice points are the centers of the blocks. Our
task is then to construct a correspondence between the lattice points that
most nearly corresponds to the homology between the images. Consider a
function h = (hlrh2 ) that maps a point at the jth row andkth column

of the same point in three dimensions" the images are said to be registered.
If there is no aspect of the object that.is visible in one image but not in
the other, then the points in the images are homologous, withcorrespond
ing points between images being homologous if they are projections of the
same point of the three-dimensional object. The images will differ in shape
slightly because of the two aspects from which the object is viewed. The
main difference between the correspondence problem of computer vision
and the automated homology problem of shape analysis is that the shape
differences of the latter are assumed to be completely general in nature,
and not necessarily produced by transformations such as projectivities be
tween images. See Besl and McKay [11] for some work on the problem of
registering images based upon three-dimensional shapes.

Closer to the automated homology that we seek are the algorithms of
Grenander and Miller [77]. The approach of Grenander and Miller is part
of a larger program of interpretation and representation of complex images
using the Pattern Theory pioneered by Ulf Grenander, and briefly surveyed
in that paper. We shall examine the similarities and differences between the
methods later.

For shape analysis, suppose that we have a collection of images of differ
ent objects, say images of brooches or perhaps images of faces, that vary
slightly but not excessively in shape. Let us assume that in all images we
are looking at essentially the same type of object, so that between any two
images an approximate homology can in principle be established. For the
purposes of analysis, we perform a rough standardization on the images so
that all images have the same dimensions in pixel units, and so that each
object within the image is centered and standardized in terms of orienta
tion and scale. This last requirement is not required to be accomplished
with careful Procrustean matching. Rather we will assume that homolo
gous points between images are separated by small distances compared to
the dimensions of the images. To simplify further, we also suppose that the
images are grayscale or dithered black and white pictures such as can be
produced by many image viewers.

FIGURE 6.7. Block assignment for automated homology. In order to construct
an automated homology between images, the images are transformed to matrices
and then divided into blocks. A first step in the construction of the homology is
to find a mapping between the blocks in the first image and those in the second
so that a measure of discrepancy W is minimized.
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LLW[j,k; h1(j,k),h2(j,k)]

j k
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over all functions h. We do not require that h be a 1-1 function, as this
is much too restrictive for our purpose.

The next step that needs to be considered is the construction of the
mismatch function W[j, k; l, m]. To construct such a function, the images
must be placed into an environment in which they can be quantitatively
compared. A variety of packages are available at the time of writing to
assist in the analysis. The description that follows represents an approach
found useful in the analysis of the Iron Age brooches of Figures 1.1 and
3.7.

The images are first transformed to matrices of real numbers byconver
sion to ASCII format. For a grayscale image, the entries in the matrix will
denote the degree of darkness at a particular pixel location. For a dithered
image, the matrix will consist of entries of zeros and ones corresponding
to black and white pixel values. A standard tool for conversion of an im
age to a matrix is the XV viewer available on X-windows terminals and
the UNIX operating system. The matrices can then read into MATLAB,
which provides special tools for the manipulation of matrices. Each matrix
representing an image can then be subdivided into blocks of size p x p,
say. We can think of the lattice points (j, k) as being centered in the
middle of these blocks so that the mismatch W[j, k; l, m] between lattice
point (j, k) in the first image and (l, m) in the second is interpreted as

of one image to the h1(j, k)th row and h2(j, k)th column of the other as
in Figure 6.7. Let W[j, k; l, m] be a measure of mismatch of the homology
between location (j, k) of the first image and location (l, m) of the second
image. To construct the best homology from the lattice on one image to
the lattice of the other we can minimize
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for appropriate weights Al ::::: 0 and A2::::: 0, and suitable nondecreasing
functions 'Tj: R + -+ R +. The functions 'h and T2 can be chosen to
be the identity functions. However, in many cases it seems reasonable to
rule out transformations h that will effect too radical a distortion of the
image. This can be accomplished by making 'h and T2 increase faster
than linearly. To restrict the search to transformations that perturb points
to a maximum distance of f > 0, say, a reasonable choice for T2 would
be one for which ~12(x) = 00 when x > f. If A2 is large compared to Al
then the optimal homology found will be inelastic because transformations
close to the identity transformation will be favored. On the other hand,
when Al is large compared to A2 the algorithm will allow more drastic
transformations to match features in the images.

Having established a preliminary correspondence between blocks in two
images, we still have to construct a full homology between the images by
smoothly extending from the correspondence between the centers of the
blocks to the rest of the image. We begin by assigning a vector Vjk to
the center Xjk of each block A j k pointing from Xjk to the center of
the corresponding block Eh(j,k) in the second image. Thus Vjk can be
regarded as a vector field on the lattice of centers Xjk of blocks. The
vector field is smoothed across the entire image by assigning a vector to

a measure of mismatch between their corresponding blocks. Thus we shall
seek a function that measures the mismatch between block (j, k) in the
first matrix and block (l, m) in the second. Suppose the matrix of the
first image is divided up into blocks (Aj k) where each A j k is itself a
p x p matrix. Similarly, let us suppose that the matrix from the second
image is divided up in blocks (Elm) that are also of the same dimension.
Now, a function h mapping block Aj k to block Elm is a candidate for
a homology between the images. To measure the discrepancy between the
images, we can find some measure of distance between the matrices Aj k

and Elm. If the entries of these matrices are zeros and ones a suitable mea
sure of mismatch could be obtained by counting the number IIAjk - Elmll
of discordant entries between them. More generally, since Aj k and Elm
are each p x p matrices, we can regard them as vectors in RPxP. The
distance IIAj k - Blmll can then be taken as Euclidean distance between
these vectors.

An optimization algorithm can then be run using this choice of W.
However, it should be noted that such an automated homology algorithm
has no respect for the natural topology of the image. Points that are the
centers of neighboring blocks in the first image could be mapped by the
optimal h to opposite sides of the second image. To counter this trend we
can introduce another term to the formula for W[j, k; l, m] that measures
the distance between the coordinates. Thus our formula for W[j, k; l, m]
becomes

1976.5 Automated Homology

6.5.3 An Application to Three Brooches

Michael Lewis has developed and implemented these techniques for an au
tomated block homology routine. In Figure 6.8 we see an automated ho
mology between the three brooches of Figure 1.1. There are a number of
weighting factors and choices to be made by the researcher, such as the
choice of Al and A2 above. A certain amount of standardization of the
images must be done in advance. This need not be very precise, and can
be incorporated into the automatic search procedure. However, it is ad
visable to have the researcher interacting with the procedure at this level
as well, as the fitting is accomplished with any computer interpretation of
the images as a whole. Thus the algorithm is a compromise between the
expert selection and spline interpolation methods of Bookstein and a fully
automated procedure that would be expected in computer vision. The lat
ter is typically context sensitive. Perhaps a more precise description of the
method would be to call it computer assisted homology.

each point x in the first image whose value is a weighted average of
neighboring lattice vectors Vjk. This smoothing can be performed using a
Gaussian kernel. Many other choices are also reasonable. Associated with
the vector field v(x) on the first image is a transformation h' from the
first image to the second that has this vector field as its field of difference
vectors. So, we can write h'(x) = x + v(x).

We could stop at this point and let this transformation h' be the re
quired homology. However, this construction, while transforming the shape
of the first image closer towards the second, still tends to be too rough an
approximation to the desired homology to be suitable for shape analysis.
This would appear to be due to the coarseness of the block size p x p, which
has to be sufficiently large to allow the discrimination of salient features in
the images. To compensate for this, we can allow the features of the first im
age to undergo a small displacement in the direction of the initial homology
h'. This is achieved by shrinking the displacement vector so that a point
x is mapped to the new point x + cv(x) for f > O. The choice of e = 1
represents the full transformation by h'. However, this transformation is
too drastic in some cases. For these cases, a more modest perturbation is
preferred with some E < 1. The perturbed image then replaces the orig
inal first Jmage and is partitioned into blocks. A homology hI/ is then
constructed in a similar fashion between the perturbed first image and the
second image. This procedure continues with hili, hI/II, '" until a satis
factory transformation (the composition of the small perturbations) from
the original first image to the second image has been achieved.(6.26)
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This chapter has considered a few examples of the application of shape
analysis. While the theme of shape is common to all examples, the method
ologies used are quite diverse. This is even more the case for the entire range
of applications in the literature. For this reason, a single chapter of appli
cations cannot do justice to the variety of techniques and examples. The
reader who is interested in particular applications will find, grouped by
topic below, some references that can serve as a starting point for the ex
ploration of the literature. I have taken the liberty of including examples in
which shape plays an important role without necessarily being the primary
topic of concern. Such applications leave room for future work involving
the theory of shape.

6.6.1 Anthropology, Archeology, and Paleontology

II], [2], [7], [9], [10], [25J,[26]' [30], [31], [32J, [33], [44J, [45J, [58J, [59], [95],
[106J, [107J, [109J, [110], [129], [130], [131], [133J, [155], [165], [175J, [177J.

6.6.2 Biology and Medical Sciences

For a more complete list of biomedical applications, the reader is referred
to the references given in [24J.

FIGURE 6.8. Automated homology for three Iron Age brooches. The images of the
three brooches can be seen along the diagonal of the 3 x 3 matrix of diagrams. Off
the main diagonal, in the (j, k)th position, is a quiver diagram for the vector field
of displacements for the homology that attempts to transform the jth brooch into
the kth brooch. The vectors displayed are not the displacement vectors described
above, but father rescaled versions of these, shrunk for convenience of graphical
presentation. The 3 x 3 matrix of images has a natural antisymmetry properly:
the sum of the vector fields in the (j, k) th and (k, j) th positions is zero. Blocks
of size p x p = 16 x 16 were used in the partition of the images.

[10], [13], [14J, [15], [16], [17]' [18], [19], [20], [21], [24), [25), [26], [27], [45),
[48J, [49], [50], [62], [63], [68J, [69J, [85], [106], [107J, [108],[126], [131J, [142],
[143], [145], [152]' [169], [170], [172], [176J, [181], [182J.

6.6.3 Earth and Space Sciences

[28]' [29] ,[37], [42], [110], [118], [130], [173], [185].

6.6.4 Geometric Probability and Stochastic Geometry

[3], [4], [5], [6], [29], [30], [33], [46], [47], [89J, [91], [93], [95], [96J, [97], [100],
[101], [102], [103], [111]' [112]' [118], [119], [128], [135], {141], {147]' [148],
[153], [154], [155], [157], [159], [160J, [161], [166], [167], [171], [178], [179],
[183].

6.6.5 Industrial Statistics

[11]' [40], [54], [84].
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6.6.6 Mathematical Statistics and Multivariate Analysis

[S], [35], [3S], [52], [53], [55], [56], [57], [60], [66], [67], [70], [71], [72], [74],
[75], [SO], [81], [86], [88], [89], [90], [91], [92], [93], [94], [95], [98], [99], [101],
[102], [103], [104], [105], [Ill], [112], [113], [114], [116], [117], [123], [124],
[134], [139], [140], [144], [150], [151], [153], [154], [159], [166], [168].

6.6. 'l Pattern Recognition, Computer Vision, and Image
Processing

[11], [36], [41], [77], [83], [148].

6.6.8 Stereo logy and Microscopy

[47], [48], [49], [50], [62], [147], [160], [161], [180], [181], [182].

6.6.9 Topics on Groups and Invariance

[12], [36], [120], [127], [132], [136], [137], [138], [156], [162], [184].
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Acceptance function, 184
Acceptance method for simulation,

170
Acute triangle, 150
Affine connection, 50
Affine transformation, see

Transformations
Aligned landmarks, 58, 156, 161

see also Collinear points or
landmarks

Alignments of megalithic stones, 4,
158, 160

Allometry, 2, 4, 26, 113
growth allometry, 5, 112

Amphorae, 3
Angular criterion for alignment,

160
Anisotropy, 95

local anisotropy, 110-112
log-anisotropy, 95-96, 98, 105

Annulus, 23, 187-190
Anthropology, 199
Antipodal points on a sphere,

55-56, 58, 73-71, 76,
128-129

characterizing geodesics using
antipodal points, 77

Arc length in Riemannian manifold,
48-50, 52

Archeology, 1-2, 23, 94, 158, 199
ASCII format, 195
Astronomy, 2
Automated homology, see

Homology
Axial data, 146
Axis, used to define orientation, 10

Bending energy, 108
Bertrand's paradox, 4
Bilateral symmetry, 181
Binomial distribution, see

Distribution
Binomial process, see Point process
Biology, 2, 26-27, 95, 199
Blaschke constants, 163
Bookstein coordinates, see Shape

coordinates
Boolean combination of events, 118
Borel sets of a manifold, 119-i21,

128
Boundary effect, 185-186, 189
Boundary of a manifold, see

Manifold
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Boundary of a set, 145
Broadbent factor, 156, 163

see also Aligned landmarks
Brooches from Iron AgeMiinsingen,

6-7, 9, 13, 24, 92-94
application of principal

coordinate analysis to
brooch data, 92-94

size versus shape analysis, 94
Brownian motion, 1

Calculus of variations, 49
Cartesian coordinates, 24, 51, 113
Cartesian product of manifolds, see

Manifold, Cartesian product
Casson spheres, see Shape manifold
Cauchy-Riemann equations, 111
Centroid, 8-9, 77, 84, 180
Change of variables, see

Transformations of statistics
Characteristic equation for

eigenvalues, see Matrix,
eigenvalues

Circle at infinity, 64
Circle-preserving property

of Moebius transformation, 72
of stereographic projection, 72

Circularly symmetric density, 154,
156-157

Circumcircle, 142, 145, 189
Circumradius, 168
Circumsphere, 141, 143
Closed complex plane, see Complex

plane
Closed set, 29, 37, 119
Colatitude on a 2-sphere, 54, 123
Collinear points or landmarks,

156-157
collinear triangles, 74-75, 77, 97,

179
singularity sets and collinearities,

85
see also Alignments

Commutative diagram, 128
Compact set, 37-38

compactness of Kendall's shape
spaces, 80

Complex analytic function, see
Function

Complex dimensions versus real
dimensions, 59, 77

Complex lines through the origin,
59-60, 77-78

Complex plane, 12, 31, 69, 71, 77,
80,97

closed complex plane, 71-74
point at infinity in complex

plane, 71
Computer vision, 193-194, 200
Configuration of particles, 185-186

expected number of
configurations, 185-186

size of configuration, 185
Configuration of sample, 3
Confluent hypergeometric function,

167
Conformal transformation, see

Transformation
Congruence and congruent sets, 4,

27,35
Content of a set, see Volume
Convex hull, 29-30
Convex set, 29, 143, 163
Convexity, 27
Coplanar configurations of

landmarks in R 3
, 82

Countable intersection of open sets,
119

Covariance matrix, 130
Cranium-to-jaw ratio of skulls, 16,

26
Curvature of a surface or manifold,

38
Curvilinear coordinates, 24, 26,

106,113

Delaunay simplex, 141, 143-145,
168

pre-size-and-shape distribution,
143-145

shape distribution, see
Distribution, shape
distribution

Delaunay tessellation, 141-143,
146, 168

applied to central place theory,
146

applied to crystallography, 146
duality with Voronoi tessellation,

146
Delaunay triangle, 141-142
Density function, see Distribution
Differential geometry, v-vi, 16, 36,

47, 59, 66, 78
Differential manifold, see Manifold
Differential singularity, 85
Dimension reduction techniques,

88,91
Directed line, 135-137, 148
Directional cosine, 51
Directional data, 146, 175
Directional median, 175-176

see also Mt. Tom dinosaur tracks
Distance matrix, see Matrix
Distribution

absolutely continuous
distribution, see continuous
distribution

binomial distribution, 135, 143,
148

continuous distribution, 120, 123
density function, 123-127, 132,

147
discrete distribution, 120
distribution function, 120, 147
induced probability distribution,

119-121
invariant, 125-129
marginal density, 125
normal on Euclidean space, 4, 6,

26, 79, 130-131, 133
elliptical normal, 154-156,

160-161
spherical normal, 130-131,

149-151
normal on spheres

Brownian motion distribution,
180

Fisher, 180
offset normal, see projected

normal
projected normal, 131-134,

148-149, 180
Poisson distribution, 138, 148

shape distributions
concentration parameter for,

165
IID elliptical normal landmarks

in R 2
, 155-156

IID spherical normal planar
landmarks, 149-151

IID spherical normal planar
landmarks in Bookstein
coordinates, 151-152

Mardia-Dryden density, 134,
152, 163-167, 180

Miles' triangle density, 170,
172

Poisson-Delaunay, 167-170
uniform, 4, 23, 27, 123, 125,

133-134, 137, 148-149, 155,
162-163, 188

e-blunt triangle, 4, 160-161, 171
Earth science, 199
Eigenvalues and eigenvectors, see

Matrix '
Einstein summation convention, 47
Ellipse, 32, 171-172

anisotropy of an ellipse, see
Anisotropy

image of circle under affine
transformation, 95-96

semirnajor axis, 32, 95-96
semiminor axis, 32, 95-96
stretch factor, see Stretch factor

Ellipsoid, 32
principal axes, 32

Embedding, 38
Equilateral triangle, 74, 76, 155
Equivalence class

complex projective space as set
of e. classes, 59-60, 77

shapes as e. classes of pre-shapes,
11-12, 60, 77, 79-80

tangent vectors as e. classes,
42-46, 53, 67

Euclidean space, vi, 9, 16, 29,
38-39, 41, 43, 62, 88, 92,
112, 130, 139

Euler-Lagrange equations, 49, 51
Event, 117, 134
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Expected value, 23--24, 121
Exploratory analysis of shapes, 88
Exponential growth, 5

Factorization calculus, 186
Fractal,2
Frobenius norm, see Norm on the

space of upper triangular
matrices

F'roude numbers, 1'16
Fubini-Study metric, see Metric,

Fubini-Study
Function

complex analytic, 111
continuous, 36-37, 120
covering from sphere to real

projective space, 56-58,
127-129

derivative of, 36, 52-53, 57, 86
differentiable or smooth, 36, 41,

52-53, 57, 81, 83, 124
Hopf fibration, 78-79, 83
projection, 83, 131-132

as example of Riemannian
submersion, 78

onto subspace spanned by
eigenvectors, 91

Riemannian submersion as
local orthogonal p., 86

submersion, 81, 83-84, 86-87
Riemannian submersion, 78,

84, 86-87

Gamma function, 144
Gaussian curvature, see Manifold
General position of landmarks, 99,

140
Geodesic distance, 12, 14, 48, 50,

54-55, 57-58, 60, 63-64, 72,
78, 88, 91, 104-105, 114,
116, 125, 128, 134, 179

Geodesic path, see Path in a
manifold

Geometric measure, 121-124, 147,
166, 185

factorization of g. m., 185-186
Geometr!c probability, 3-4, 199

Gradient, 38, 42, 112
Gram-Schmidt orthogonalization,

99
Grayscale image, 195
Great circle distance, 12, 54, 76
Great circle of collinear triangle

shapes, see Shape manifold,
sphere of triangle shapes

Great circle of isosceles triangle
shapes, see Shape manifold,
sphere of triangle shapes

Great circle on a sphere, see Path
in a manifold

Group of transformations, vi,
33-35, 80, 128-129, 200

center, 33, 129
commutative or Abelian, 33-34
compact, 145
composition of transformations

within g., 33
examples, see Transformations
free action of g. and singularities,

83-85
homotopy g., 11
identity transformation, 34, 83
inverse transformation, 33
isometry g., 125-129
subgroup, 33-34, 80
transitive, 126, 129, 147
trivial,33

Hairy ball theorem, 66
Half circle, 64
Heine-Borel theorem, 37
Hermitian inner product, 32, 61
Heterogeneous scale changes, 112
High exponents, 187
Homogeneous function, 4
Homology, 24, 26, 95, 110

automated homology, 94,
193-198

application to Iron Age
brooches, 193, 197-198

automated block homology,
194-197

Grenander-Miller method, 194
mismatch function, 195

versus correspondence
problem, 193-194

versus Procrustean matching,
194

biological versus nonbiological,
24

eyes, as examples of, 24
homologous landmarks, 24, 107,

193
problem of homology, 24-26, 35
registration of images, 194
relation to method of coordinates,

24
Hopf fibration, see Function
Horizon at infinity, 64, 123
Horizontal geodesic, see Path in a

manifold
Horizontal tangent space, see

Tangent vector, tangent
space

Hyperbolic half space, see Manifold
Hyperplane, 34

Identically distributed statistics,
121

Image processing, 200
Imaginary part of a complex

number, 12, 31, 69-70, 72,
160

Independence, 121
Indicator random variable, 134
Induced probability distribution,

see Distribution
Industrial statistics, 199
Infinitesimal distance in UT(n),

102, 105
Inner product, 12, 32, 47-48, 55,

61, 90, 167
Intensity of scattering, 190-191
Interior of set, 29
Interpoint geodesic distance matrix,

see Matrix, distance matrix
Interpolation, 26, 107
Invariance, 200

invariance of landmarks under
rotations, 84

invariance of metric tensor, see
Metric tensor

invariance of uniform
distribution, 125-129

invariant function, 184
invariant measure, 137, 146
invariant statistic, 3

Iron Age brooches, see Brooches
from Iron Age

Isometries, see Transformations,
isometries

Isoperimetric inequality, 2
Isosceles triangle, 115

Jacobian, see Transformations
Jacobian matrix, see Matrix

Kendall school of shape analysis, v,
26-27

Labeled set or figure, 35
counterclockwise labeling of

planar triangles, 97
Land's End, Old Stones of 4,

158-163, 184
ley lines, 158, 184
scatterplot, 159
see also Alignments

Landmarks, 2, 7, 9, 11-14, 16,
26--27, 58, 69-70, 76-77

Late Bronze Age people, 184
Length of an infinitesimal

displacement, 43
Lens of e-blunt triangles, 161
Levi-Civita connection, 50
Ley lines, see Alignments of

megalithic stones
Linear fractional transformation,

see Transformations,
Moebius transformation

Linearly independent vectors, 122
Local anisotropy, see Anisotropy
Local isometry, 58, 113
Local shape variation, 111-113
Location information, 7-11, 84, 99,

133
Location parameters, 3
Log-anisotropy, see Anisotropy
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Logarithmic coord'inates, 5
Longitude on a 2-sphere, 54, 123
Lung tissue, 2

Manifold, vi, 1, 38~40
atlas on m., 38-41,51, 54-55, 83
boundary of m., 67, 81
Cartesian product of manifolds,

51-52, 55, 166
chart on m., 38-41, 44, 51, 54,

56, 59-60
complex coordinates on m., 59
complex projective space, 1, 12,

59-62, 77~79, 88, 129
constant curvature, 114, 146
coordinates on m., 41, 44-46,

52-54, 60
curvature of m., 5~51, 114
cylinder as m., 135-136, 148
differential m., 2, 37,39, 41-43,

45, 51-54, 56, 59, 118
extrinsic properties ofm., 41, 124
fiber bundle, 166
Gaussian curvature, 78
hyperbolic half space, 62-66, 123
intrinsic properties of m., 41, 46
Klein bottle, 67
m.of negative curvature, 2, 62,

65
m.of positive curvature, 1, 62
m. with boundary, see boundary

of a manifold
Moebius strip, 67, 137, 148
patching criterion for charts,

39-40
Poincare Disk, 64-65, 147
Poincare Plane, 63, 65, 95, 99
Poincare Trumpet, 65-66
pre-shape sphere, 9-10, 12, 14,

78-79, 84, 133, 165
real projective space, 55-59, 67,

76, 127-129
Riemannian m., 47-48, 50, 52,

60, 62, 78, 84, 88, 121
sphere as example of m., 38, 50,

54-59, 66, 76, J23, 127 -129,
131

sphere 'of pre-shapes, see
pre-shape .sphere

submanifold,52
tangent vector in a m., see

Tangent vector
topological m., 37, 39
torus as example. ofa m., 38, 55,

66
Mathematical statistics, 200
Matrix

association m., 89
block, 196, 198
characteristic equation, see

eigenvalue
columns of am., 90, 99
covariance m., 130, 132-133
determinant of m., 103, 122
diagonal m., 32
distance m., 88-89, 91, 116
eigenvalue of m., 31, 89-92,

102-104
characteristic equation for e.,

97-98, 102-103
e. as perturbation of unity, 102
moments of e., 102, 104-105

eigenvector of m., 89-90, 104
principal e., 92

Helmert m., 130-131, 133, 165
Jacobian m., 36, 37, 53, 111, 113,

124, 127
main diagonal of m., 100
minors of m., 103
nonnegative definite, 89, 91

see also positive definite
symmetric m.

orthogonal, 30-33, 100, 111, 113,
115, J27, 131

perturbation of identity m.,
97-99

pixel m., 195
positive definite symmetric m.,

47
see also nonnegative definite

pre-size-and-shape m., see
Pre-size-and-shape matrix

rank of m., 32
rows of m., .90
shape m., see Shape. matrix

singular value decomposition,
31~32, 95, 97-98, 101, 104

size-and-shape m., see
Size-and-shape matrix

special orthogonal, 30
special unitary, 31
symmetric, 88, 90
trace of m., 8, 14, 103
unitary, 30-31
upper triangular, 97, 100-101,

115
Maximum internal angle, 27, 162
Mean of a sample, see Centroid
Mean shape, 180
Mean vector, 130
Median direction, see Directional

median
see also Mt, Tom dinosaur tracks

Medical sciences, 2, 199
Megalithic sites, 158
Method of coordinates, 24, 26
Metric, 12, 28,60

Fubini-Study metric, 62
equivalent to .Procrustean

metric, 78
Metric space, 12, 34, 50
Metric tensor, 47-49, 51-52, 54,

57-58, 60, 62, 84, 86-87, 99,
102, 106, 124, 126, 147

and volume in manifolds, 122
invariance of m. t. under

relabeling, 103-104
invariance under right

multiplication, 104, 115
m. t. for upper triangular shape

representations, 101
as quadratic form on elements

of dA, 102-103
sundry examples, see Manifold

Microscopy, 200
Minimum variance equivariant

estimation, 3
Moebius transformation, see

Transformations
Mt. Tom dinosaur tracks, vi, 16-20,

173-182
bipedal, tridactylic species, 174
footprint classification, 19-20,

173-174

footprint condition, 173
species of dinosaurs, 19-20

Anchisauripus, 19, 174, 178
Eubronies, 19-20, 173-174,

178-179, 182
Grallator, 19, 174, 178

therapod, 174
trackway orientation, 19-20,

174-176
directional median, 175
histogram, 175

trackway scale analysis, 176-178
boxplot of stride lengths, 177
footprint length, 176, 178
Froude numbers, 176
speed formula, 176, 178
stride length, 20, 176-179

trackway shape analysis, 20,
178-182

geodesic distance versus stride
length, 179-180

Mardia-Dryden density,
18~182

mean shape, 180
stretching effect, 179

uncertainty in classification, 174
Multidimensional scaling, 88

metric scaling, 88
nonmetric scaling, 88
see also Principal coordinate

analysis
Multivariate morphometries, 2, 6
Multivariate normal distribution,

see Distribution, normal
Multivariate statistics, 79, 200

Nearest neighbor, 139-140, 190-191
kth nearest neighbor, 139-140

Nonsphericity property, 140, 142
. Norm on space of upper triangular

matrices, 102
Normal distribution, see

Distribution, normal

Obtuse angle in triangle, 171
Open set, 29, 37, 39, 52, 54, 56-57,

118-119
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Orbit, 10-12, 59, 62, 165
Orbit space, 11
Orientation function, 11
Orientation information, 7-11, 84,

100
Orthogonal matrix, see Matrix
Orthogonal transformation, see

Transformations
Orthogonality of vectors, 90
Orthonormal vectors, 99, 122

p'-dimensional volume, 30
Paleontology, 199
Parabolic approximation to circular

arc, 160
Parallelepiped, 122
Partial derivative, 36, 49, 51
Path in a manifold, 42-45, 48, 53

geodesic, 48-51, 57, 62-65
great circle in sphere, 54, 57-61
helix as geodesic in cylinder,

67
horizontal geodesic, 61-62, 87

tangent paths in m., 44-45, 53
Pathwise connected manifold, 50
Pattern, 184
Pattern recognition, 200
Permutation, 103-·104
Pillow problems of Lewis Carroll,

171
Pixel value, 195
Poincare Disk, see Manifold
Poincare Plane, see Manifold
Poincare Trumpet, see Manifold
Point at infinity, see Complex plane
Point processes in manifold,

134-145
binomial process, 134-138, 143

of lines, 135-137
locally finite, 138
Poisson process, 2, 134-145, 168,

184, 1P9
homogenoous, 139
intensity of P. p., 138-139
particles in P. p., 138

volume-preserving, 138-139
Poisson approximation, 143, 148,

186, 188-189

Poisson distribution, see
Distribution

Poisson process, see Point process
Pontogram, 162
Post molds from Late Bronze Age

England, 20-24, 182-184,
190-193

Aldermaston Wharf, 20, 182,
190-193

circle of post molds, 23-24,
182-184,191-192

annular criterion, 23, 187-190,
191-192

expected number, 187, 189,
191-192

radius, 23
clusters of post molds, 23, 182,

190-191
interpoint distances, 20, 190-191
post mold patterns, 20, 23

expected number, 185-186
region of post mold activity, 187,

190-191
roundhouses, 20, 23, 182-184,

187, 191-192
South Lodge Camp, 20, 23,

190-193
Thorny Down, 182-184, 187

Pre-shape sphere, see Manifold
Pre-shape statistic, 9-14, 16, 58,

76, 79, 133-134, 149
Pre-size-and-shape matrix, 99-100
Principal component analysis, 88,

91
Principal coordinate analysis, 87-94

application to Iron Age brooches,
see Brooches from Iron Age

Probability distribution, see
Distribution

Probability measure, 4, 118, 123,
146

Probability space, 118, 123
Probability theory, v, 27, 119
Procrustean distance or metric, 3,

13-14, 16, 28, 60, 72, 76,
91-92, 167

equivalent to Fubini-Study
metric, 78

matrix of interpoint Procrustean
distances, 88

on general shape spaces, 80
Procrustean school of shape, see

Kendall school of shape
Procrustes analysis, 3, 6
Procrustes distance or metric, see

Procrustean distance
Psychometrics, 3

Quadratic equation, 98
Quiver diagram, 198

Radon-Nikodym derivative, 125
ratio of volume elements, 124-125

Random quadrilateral, 27
Random set, 135
Random shape, 27, 139, 149
Random triangle, 4, 27
Random variable, see Statistic on a

manifold
Random vector, see Statistic on a

manifold
Real part of a complex number, 12,

31, 69-70, 72, 160
Rectangle, 172
Rectangular lattice, 195
Residuals about centroid, 8
Riemannian manifold, see Manifold
Riemannian metric, see Metric

tensor
Riemannian submersion, see

FUnction
Right triangle, 115
Rotation, see Transformations

Sample mean, see Centroid
Sample space, 117-118
Scale change, see Transformations
Scale information, 7-11, 100
Scale parameters, 3
Secant vector, 43
Shape coordinates, 11, 27, 69

Bookstein coordinates, 69-74, 77,
97-99, 105, 150-157

degeneracies when landmarks
coincide, 71

generalized Bookstein
coordinates, 100-101, 105

on the sphere, 73
upper triangular shape

representation, 101-102, 114
Shape difference or variation, 24,

26, 35
Shape manifold, vi, 1,4, 11-12, 14,

26, 28, 58-59, 69, 72
Casson spheres, 81

proof that C. s. is topological
sphere, 81

singularity set in C. s. and
other shape manifolds, 84-85

complex projective space of
planar shapes, 77-79, 88,
149-150

geometry of E~ versus E~,

81-82
hemisphere of triangle shapes in

R 3,82

Kendall's shape spaces for
landmarks in dimensions
three and higher, 79-87

Poincare half plane of triangle
shapes, 2, 95-99, 114

real projective space of shapes of
one-dimensional landmarks,
58

shape manifolds with boundary,
81

simplex shape spaces, 95-106,
111, 114

singularities in shape manifolds,
81, 83-84, 87

see also Shape manifold,
Casson spheres

sphere of triangle shapes, 1,
69-77,81, 114-115, 150, 165

great circle of collinear
triangles, 74, 77

great circles of isosceles
triangles, 74

Shape matrix, 100
Shape of line configuration, 137
Shape of triangles, 27, 69-77

shape of collinear t., 75-76
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Shape of triangles (cont.)
shape of equilateral t., 72-74, 76,

155
shape of isosceles t., 74

Sigma-field,117-119
sigma-field generated by class,

118,147
Similar sets, 35
Similar triangles, 6, 114-115
Simplex, 30, 99-101, 141
Simplex shape, 143
Simplex shape space, see Shape

manifolds
Singular value decomposition, see

Matrix
Singularities in shape manifolds,

see Shape manifolds
Size-and-shape matrix, 100
Size variable, 4-6, 27
Skull shapes and images, 14-17,24,

107,113
Spatial interpolation, see

Interpolation
Special orthogonal transformation,

see Transformations
Special unitary transformation, see

Transformations
Sphere, see Manifold and Shape

manifold
Sphere of pre-shapes, see Manifold
Spline, see Thin-plate spline
Standardization of data sets, 9
Statistic on a manifold, 118-121

random variable, 119-121, 130
random vector, 119-121

Stereographic 'projection, see
Transformations

Stereology, 200
Stochastic geometry, 3, 199
Stochastic independence, 121
Straight line as example of geodesic,

51
Stretch factor, 160, 171
Submersion, see Function
Subspace, 52, 77-78, 84, 100, 115
Surface area on 2-sphere, 123, 127
Symmetric function, 184

Tangent approximation to shape
variation, 16, 170-171

t. a. and concentration
parameter, 171

Tangent paths in a manifold, see
Path in a manifold

Tangent vector, 38, 42-48, 51, 62
basis vectors for the tangent

space, 46, 52-53, 57
length of tangent vector, 48, 50
orientation of tangent vector, 50
scalar multiplication of tangent

vectors, 45,67
sum of tangent vectors, 45, 67
tangent space, 42-43, 46, 51-53,

62,84
horizontal tangent space,

86-87
vertical tangent space, 86-87

tangent vector field, 46, 66, 197
transporting vectors using affine

connection, 50
Taylor approximation, 36
Tensor, see Metric tensor
Tessellation, 141

Delaunay, see Delaunay
tessellation

Tetrahedral shapes, 105-106
Thin-plate splines, 106-110

closed under similarity
transformations, 110

landmarks as knots of the spline,
107

metal plate interpretation, 108
not bijective, 110
not invariant under function

inversion, 110
see also Bending energy

Topological singularity, 85
Topological space, 37-39
Topology, 37, 39, 83

construction on general shape
spaces, 80

Transformations, 106, 125
affine t., 29-30, 64, 95-97, 106,

111, 130, 152-157
shearing effect of a. t., 96, 111

area-preserving, 157
conformal, 111-112

diffeomorphism, 37, 39, 41, 44,
55, 66-67, 113, 124-125

Euclidean motion, 4, 34-35, 135,
139

Helmert, 130
homeomorphism, 37, 39, 72
inversion, 112
isometries, 34, 57-58, 64, 104,

125, 134
isometries of complex

projective spaces, 129
isometries of p-spheres,

127-129
isometries of real projective

spaces, 127-129
isometries of the sphere of

pre-shapes, 80
isometries of the sphere of

triangle shapes, 73
isometry between 8 1 (1/2)

and nr-', 76
isometry between L;~ and

8 2 (1/ 2), 76, 115
isometry between L;2 and

cpn-2, 78

local isometry, 58, 113
see also linear isometry

isotropic rescaling or scale
.change, see scale
transformation

Jacobian of t., 37, 112, 124, 144
linear fractional t., see Moebius

transformation
linear isometry, 34, 57, 78, 86
linear t., 29-30, 32, 36, 53, 57,

105, 153-157
Moebius t., 72-73, 112
orientation-preserving t., 111
orthogonal t., 30-33, 59, 100,

127-129, 147
reflection, 31, 34, 58, 76, 81-82,

101
rescaling, see scale transformation
rotation, v, 3, 10, 30, 58, 70, 72,

77, 79,81-82, 84-85, 101,
157

scale t., v , 3, 9, 34-35, 70, 77, 113
shape-preserving t., see similarity

transformation
similarity t., 3, 34-35, 69, 77, 82,

95, 97, 101, 110-113, 115,
137

special orthogonal t., 30, 33-34,
79-80, 84

special unitary t., 31
stereographic projection, 71-74,

76-77
translation, v, 3, 34, 70, 137
unitary t., 30-33,59, 127, 129,

147
volume-preserving t., 112

Transformations of statistics,
124-125, 144, 150, 152-157

Translate of a set, 188
Translation, see Transformations
Triangle, 35
Triangle inequality, 60
Trigonometric series, 157
Undirected line, 137, 148
Unit circle, 10, 13, 16, 31, 55, 76
Unitary matrix, see Matrix
Unitary transformation, see

Transformations
Upper triangular matrix, see

Matrix
Upper triangular shape

representation, see Shape
coordinates

Vector of residuals, 131
Vector sum, see Tangent vector
Vertical tangent space, see Tangent

vector, tangent space
Volume element, dVp 122, 131
Volume in a manifold, 121-123
Von Neumann norm, see Norm on

the space of upper triangular
matrices

Voronoi tessellation, 146
duality with Delaunay

tessellation, 146
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