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An Alternative Estimate of Preferred Direction for Circular Data

Bennett Sango Otieno

ABSTRACT

Circular or angular data occur in many fields of applied statistics. A common problem of

interest in circular data is estimating a preferred direction and its corresponding distribution.

This problem is complicated by the so-called wrap-around effect, which exists because there

is no minimum or maximum on the circle. The usual statistics employed for linear data are

inappropriate for directional data, as they do not account for the circular nature of directional

data. Common choices for summarizing the preferred direction are the sample circular mean,

and sample circular median. A newly proposed circular analog of the Hodges-Lehmann

estimator is proposed, as an alternative estimate of preferred direction. The new measure

of preferred direction is a robust compromise between circular mean and circular median.

Theoretical results show that the new measure of preferred direction is asymptotically more

efficient than the circular median and that its asymptotic efficiency relative to the circular

mean is quite comparable. Descriptions of how to use the methods for constructing confidence

intervals and testing hypotheses are provided. Simulation results demonstrate the relative

strengths and weaknesses of the new approach for a variety of distributions.
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Chapter 1

Introduction

A common one-dimensional statistical problem is the estimation of a location parameter, and

its corresponding distribution. For directional data (random sample of measured directions

from a reference point), this problem involves identification of a preferred direction for a

random process generating circular or angular data, and is complicated by the wrap-around

nature of this type of data, with no maximum and minimum.

This dissertation develops an alternative estimate of preferred direction for circular data.

The motivation behind the new estimate is to balance robustness with using information

from all observations. This dissertation presents a method for estimating preferred direction

from pairwise circular means, that is analogous to the Hodges-Lehmann estimate of center

for linear data. The algorithm uses the definition of circular median as stated in Mardia

(1972, p. 28). Properties of this estimate are explored and compared to some of the existing

measures of preferred direction. S-Plus functions are provided in Appendix E to compute this

estimate, since solutions to many directional data problems are computationally intensive

and often not obtainable in simple closed analytical forms (Jammalamadaka & SenGupta,

2001).

1



B. Sango Otieno Chapter 1. Introduction 2

In the following sections of Chapter 1, a brief overview of circular data including the graphical

representation and fundamental quantities are presented. Some common distributions on

the circle are also discussed. Chapter 2 presents existing estimates of center, a discussion

of outliers, and some existing tests for the preferred direction for directional data. Also

included in this section are a brief description of the Hodges-Lehmann estimate of location

for linear data, and an outline of bootstrap methods. In Chapter 3, an alternative solution to

guarantee uniqueness of circular median is proposed, the new measure of preferred direction is

described for unimodal circular data, and influence functions (IF) of all measures of preferred

direction considered are given. The Asymptotic Relative Efficiencies (ARE) for the measures

of preferred direction are also obtained. Simulation studies to compare relative performance

of the new measure to the existing ones are presented in Chapter 4. Bootstrap confidence

interval and hypothesis testing using the new measure are discussed and compared to existing

methods in Chapter 5. Finally, future research topics are outlined in Chapter 6.

1.1 Circular Data

Statistical problems where the data are in the form of angular measurements giving orien-

tations or angles in the plane (circular data) or in space (spherical data) arise in diverse

scientific fields. Circular data is the simplest case of this category of data called directional

data, where the single response is not scalar, but angular or directional. The basic statistical

assumption is that the data are randomly sampled from a population of directions. Observa-

tions arise either from direct measurement of angles or they may arise from the measurement

of times reduced modulo some period and converted into angles according to the periodicity

of time, such as days or years. They are commonly summarized as locations on a unit circle

or as angles over a 3600 or 2π radians range, with the endpoints of each range corresponding

to the same location on the circle.
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A convenient sample frame for circular data is the circumference of a unit circle centered at

the origin with each point on the circumference representing a direction, or, a unit vector since

magnitude has no relevance. Figure 1.1a illustrates how unit lengths starting at the origin

and pointing in the direction of their angle are used to represent individual observations.

It is because of this representation that angular observations in two-dimensions are called

circular data. However, numerical representation as an angle is not necessarily unique since

the angular value depends on the choice of what is labeled as the zero-direction (true East

or true North (“azimuth”)) and the sense of rotation (counter-clockwise or clockwise). In

Figure 1.1b, the angle A is 300 if the zero direction is true North and the sense of rotation

is clockwise, however, if zero is taken to be true East and the sense of rotation is counter-

clockwise, then angle A is 600. Clearly 300 6= 600, hence it is important that any method

of estimation or hypothesis testing handles this consistently.

Figure 1.1: Representation of Circular Data

1.1a. Point on the circumference on a unit circle
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1.1b. Value depends on choice of origin and sense of rotation
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In addition there is no natural ordering or ranking of observations, since whether one direc-

tion is “larger” than the other depends on whether clockwise or counter-clockwise is treated

as being the positive direction as well as where the “zero” angle is located. This renders

rank-based methods used for linear data essentially inapplicable for circular data (Mardia,

1972 and Jammalamadaka & SenGupta, 2001). Therefore it is important to make sure that

our conclusions (i.e. data summaries, inferences etc) are a function of the given observations

and not dependent on the arbitrary values by which we refer to them.

The two main sources that give rise to circular data correspond to the two principal circular

measuring instruments, the compass and the clock. Examples of circular data measured by

the compass include the flight directions of birds, animal migration, paleomagnetic directions,

or the directions of wind.
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Example 1: (Fisher 1993, p. 243)

 

 

O
OO

O
O

OO

O

O

O

OO

OO
O

OOO OOOOO
OOOOOOO

OOOOO
O

O
O
O
O
OO
O
O
O
OO
O
O
O
O
OO

OO
OOO
OO
O

OOOOOOOOOOOOO

OOOOOOOO

OOOOO

OO

O

O

O

OO

O

OO

O

OO

Directions chosen by 100 ants in response to 

an evenly illuminated black target

-

|

|

-270

0

180 (target)

90

Most ants tend to find the target, however, several ants miss the target giving some obser-

vations around the entire possible range.

Example 2: (Fisher 1993, p. 254)
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The most common wind direction is between South and East.

Typical observations measured by the clock include arrival times (on a 24-hour clock) of

patients at a causality unit in a hospital. Similar type of data arise as times of day (or times

of year) of appropriate events, for example the times of day at which thunderstorms occur,

the times of the year at which heavy rain occurs and time of the day a major traffic accident

occurs, see Example 3. Notice that in each case, each subject has only one measurement but

there is a cyclic pattern in time. That is, the quantity of interest is a function of where in

the cycle the observation occurs.

Example 3: (Batschelet 1981, p.13)

Major traffic accidents in a city recorded during several days

00 : 56h 03 : 08 04 : 52

07 : 16 08 : 08 10 : 00

11 : 24 12 : 08 13 : 28

14 : 16 16 : 20 16 : 44

17 : 04 17 : 20 17 : 24

18 : 08 18 : 16 18 : 56

19 : 32 20 : 52 22 : 08
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Distribution of traffic accidents in a city
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-

Two major approaches to directional statistics, namely, the intrinsic approach (directions

are considered as points on the circle itself) and the embedding approach (directions are

considered as special points in the plane) are commonly used (Mardia & Jupp, 2000, p.

14). The embedding approach of regarding each point θ on the circle as the unit vector
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X = (cos θ, sin θ)T in the plane enables us to take expectations and thereby define

unbiasedness.

Figure 1.2: Relationship between rectangular and polar co-ordinates

 

 

 

 O
A

Cos A

Sin A

A single observation A = θ0 (0 < θ0 ≤ 3600) represents the angle made by the vector with

the positive x-axis (the point (1, 0) on the unit circle) in the counter-clockwise direction. The

Cartesian co-ordinates of the vector are (x, y) = (cosθ0, sinθ0) while the polar co-ordinates

are (r, A) = (1, θ0). See Figure 1.2.

The key characteristic that differentiates circular data from data measured on a linear scale

is its wrap-around nature with no maximum or minimum. That is, the “beginning” coincides

with the “end”, i.e., 0 = 2π and in general the measurement is periodic with θ being the
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same as θ + 2pπ for any integer p. Differences between the theories of statistics on the line

and on the circle can be attributed to the fact that the circle is a closed curve while the line

is not. Thus, distribution functions, characteristic functions and moments on the circle have

to be defined by taking into account the natural periodicity of the circle.

A circular distribution (CD) is one whose total probability is concentrated on the circum-

ference of a unit circle. A set of identically independent random variables from such a

distribution is referred to as a random sample from the CD. See Jammalamadaka & Sen-

Gupta (2001, p. 25-63) for a detailed discussion of circular probability distributions. Two

frequently used families of distributions for circular data include the von Mises and the

Uniform distribution.

The importance of the von Mises distribution is similar to the Normal distribution on the line

(Mardia, 1972). It was introduced by von Mises (1918) to study the deviations of measured

atomic weights from integral values. It is a symmetric unimodal distribution characterized

by a mean direction µ, and concentration parameter κ, with probability density function

f(θ) = [2πIo(κ)]−1 exp [κ cos(θ − µ)] 0 ≤ θ, µ < 2π, 0 ≤ κ < ∞, (1.1)

where

Io(κ) = (2π)−1
∫ 2π

0
exp [κ cos(φ)] dφ =

∞∑

j=0

− 1

(j)2
(
κ2

4
)j

is the modified Bessel function of order zero. See Fisher(1993, p.50) for a series expansion and

methods for evaluating Io(κ). κ is a concentration parameter, which quantifies the dispersion.

As κ increase from zero, f(θ) peaks higher about µ. See Figure 1.3a. Note, we say that the

circular random variable θ is symmetric about a given direction µ if its distribution has the

property f(µ + θ) = f(µ − θ), for all θ, where addition or subtraction is modulo (2π).

If κ is zero, then f(θ) = 1
2π

and the distribution is uniform with no preferred direction.
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The circular uniform distribution has the following density

f(θ) =
1

2π
, 0 ≤ ≤ 2π . (1.2)

All directions are equally likely, hence this is also known as the Isotropic distribution. This

distribution represents the state of no “preferred direction”, since the total probability is

spread out uniformly on the circumference of a circle. See Figure 1.3b. The uniform distri-

bution on the circle has the property that the sample mean direction and the sample length

of the resultant vector are independent. Similar property is held by the normal distribution

for linear data (Kent et al, 1979).

Figure 1.3: Common distributions

1.3a.Probability density functions of von

Mises Distribution for different values of the

concentration parameter (κ) and µ = π
2
.

 

 

 

 

 

 

 

 

 

 +

pi/2

K = 0.5
K = 1
K = 2
K = 4
K = 8
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Figure 1.3 shows the plot of Uniform distribution and von Mises distributions with µ = π
2

and different values of κ. Note that as κ → 0, the tail of the distribution becomes heavier,

and as κ →∞, the distribution tends to a single spike at µ = π
2
. Note that if a distribution

is symmetric about the direction θ = µ, it is also symmetric about θ = µ + π. When

κ ≥ 2, the von Mises distribution VM(µ, κ), can be approximated by the wrapped normal

distribution WN(µ, ρ), which is a symmetric unimodal distribution obtained by wrapping a

normal N(µ, σ2) distribution around the circle.

A circular r.v θ is said to have a WN distribution if its pdf is

fW (θ) = (2π)−1 + π−1
∞∑

p=1

ρp2

cos[p(θ − µ)], 0 ≤ µ, θ ≤ 2π, 0 ≤ ρ ≤ 1, (1.3)

where µ and ρ = exp(−1
2

σ2) are the mean direction and mean resultant length (see Section

1.2 for the definition) respectively. The value of ρ = 0 corresponds to the circular uniform

distribution, and as ρ increases to 1, the distribution concentrates increasingly around µ. The

wrapped normal was introduced by Zernike (1928) and later studied by Wintner (1933), Levy

(1939), and Gumbel et al. (1953). Stephens (1963) matched the first trigonometric moments

of the von Mises and wrapped normal distributions, with ρ = e
−1
2

σ2
= A(κ) = I1(κ)

I0(κ)

establishing that the two have a close relationship. The similarity of the two distributions

has also been noted and to some extent explained by Kendall (1974a, 1974b), Lewis (1974)

and Kent (1976). Based on the difficulty in distinguishing the two distributions, Collett and

Lewis (1981) conclude that decision on whether to use a von Mises model or a wrapped

normal model, depends on which of the two is most convenient.

Note, if Y is the random variable on the line, the random variable Xw = Y (mod 2π) has

the wrapped distribution whose distribution function is given by

Fw(θ) =
∞∑

k=−∞
[F (θ + 2πk) − F (2πk)], 0 < θ ≤ 2π. (1.4)



B. Sango Otieno Chapter 1. Introduction 11

The operation Xw = Y (mod 2π), corresponds to taking the real line and wrapping it

around the circle of unit radius, accumulating probability over all the overlapping points

x = θ, θ ± 2π, θ ± 4π, .... This is clearly a many-to-one mapping so that if g(θ) represents

the circular density and f(x) the density of the real-valued random variable, we have

g(θ) =
∞∑

m=−∞
f(θ + 2mπ), 0 ≤ θ < 2π.

Other models used to analyze symmetric unimodal circular data are the Cardiod distribution,

C(µ, ρ) and the Wrapped Cauchy distribution, WC(µ, ρ) (Mardia, 1972, p. 51, 56).

On the circle there is a limit to how far an observation may fall from the others, so one may

expect fewer problems due to outlier. However, circumstances which give rise to outliers on

the line, such as contaminated observations, misrecordings and values from a distribution

other than that of the main sample, also occur in the circle. Consider for example data

relating to the homing ability of Northern cricket frog, Acris crepitans, given by Ferguson

et. al. (1967). The dot plot of the data in Figure 1.4 indicates that one observation X = 3160

may be considered as an outlier relative to a basic von Mises model. S-Plus functions for

obtaining circular plots such as Figure 1.4 are given in Appendix E.

1.2 The Need for Appropriate Measures and Analysis

A large part of parametric statistical inference for circular data is derived based on one or

two models and there has not been enough discussion on model-robustness, i.e., to justify

their validity and use when the data is actually from another model (Jammalamadaka &

SenGupta, 2001). As a result, modeling asymmetric data sets, which frequently occur in

practice provides some challenges because of the lack of appropriate models.

Many applied scientists (biologists, geologists, social and behavioral scientists) dealing with
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Figure 1.4: Homing Directions of 14 Northern cricket frogs clockwise from North
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circular data have fallen into the trap of using the more common, but inappropriate linear

methods like ranking, for example Zar (1999). In addition one has to distinguish cases when

time is considered in the usual time-series analysis which is a linear variable, compared to

situations where one is considering timing only within a cycle, which is most usefully treated

as a circular variable. The key distinction between these two approaches is whether the

change across time or within cycle is of primary interest.
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1.3 Fundamental Characteristics of Directional Data

The inherent periodicity of circular data brings with it a peculiar nature that does not

occur elsewhere in statistics. Consider two angles which are 2 degrees apart. If the interval

[−1800, 1800] is chosen, the two angles would be -10 and 10. On the interval [00, 3600], the

angles will be 10 and 3590. If viewed graphically on the circle, no problem is apparent, but

numerically potential problems exist. For instance , consider estimating the mean direction of

the latter pair of angles. Clearly, these observations are centered about 00. However, using

naive linear methods, the sample mean and standard deviation of these two observations

would be 1800 and 2530 respectively. Had the pair of angles been 10&− 10, and we used the

naive linear methods, we would get more sensible values of 0 and
√

2 as the sample mean and

standard deviation, respectively. This illustrates the need for different measures of location

and scale when dealing with circular data. However, since the choice of a zero-direction and

the sense of rotation is arbitrary, one needs decision procedures, which are invariant under

such choices. A point estimate θ̃, is said to be location (translation) invariant if

θ̃[(θ1 + η), · · · , (θn + η)] = η + θ̃[θ1, · · · , θn], (1.5)

for every η and (θ1, · · · , θn). That is, if the data is shifted by a certain amount η, the value

of the point estimate also changes by the same amount.

Three common choices for summarizing the preferred direction are the mean direction, the

median direction and the modal direction. (Fisher, 1993, pp.1). The sample mean direction

is usually preferred for moderately large samples, because when combined with a measure

of sample dispersion, it acts as a summary of the data suitable for comparison and amal-

gamation with other such information. The sample median can be thought of as balancing

the number of observations on two halves of the circle and will be discussed in section 1.3.2.

The sample modal direction is the direction corresponding to the maximum concentration

of the data and is less useful because of difficulties in its calculation, in drawing inferences,

and in ascertaining its sampling error.
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All three measures of preferred direction are undefined if the sample data are equally spaced

around the circle. This is sensible because if the data are symmetric around the circle then

there is no preferred direction. In case of bimodal data, there are two preferred directions,

consequently the three measures are also not meaningful. We expect any new measures

to have these two properties as well. In this dissertation, we shall emphasize estimating

the preferred direction for unimodal circular data i.e., point or concentrate towards a single

direction.

1.3.1 The Mean Direction and the Resultant Length

An appropriate and meaningful measure of the mean direction for a set of directions which

are unimodal is obtained by treating the data as unit vectors and using the direction of their

resultant vector. For a set of angular measurements θ1, · · · , θn, we convert each observation

to its rectangular form (cos θi, sin θi), i = 1, · · · , n. We obtain the resultant vector of

these (e1, · · · , en) n unit vectors from the origin by summing them component-wise, to get

R = (
n∑

i=1

cos θi,
n∑

i

sin θi) = (Cn, Sn), say. (1.6)

Let |R| =
√

(C2
n + S2

n) > 0 represent the length of the resultant vector R. The direction

of this resultant vector R is known as the circular mean direction, and is denoted by θ̄. A

“quadrant-specific” inverse of the tangent definition of the circular mean direction is,

θ̄ =





arctan (Sn/Cn) , if Cn > 0

π
2

, if Cn = 0 and Sn > 0

−π
2

, if Cn = 0 and Sn < 0

π + arctan (Sn/Cn), otherwise.

(1.7)

Note, the inverse tangent function, tan−1 (or arctan), takes values in [−π
2

, π
2
]. This can be

computed using the program ave.ang() in Appendix E. The above definition, provides us the
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correct unique inverse on [0, 2π), which takes into account the signs of Cn and Sn (Mardia,

1972, p.22). Note that in the context of circular statistics, θ̄ does not denote the standard

linear average (θ1 + · · ·+ θn)/n.

Geometrically, the mean direction is equivalently obtained by forming the vector polygon as

shown in Figure 1.5.

Figure 1.5: Calculation of mean direction by forming a vector polygon
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mean vector

The resultant vector is the sum of the unit vectors, R =
∑n

i=1 ui. This is a vector with

length between 0 and n, and pointing in the mean direction of the sample θ̄. The sample

mean resultant length (standardized length) is given by R̄ = |E|
n

, with R̄ ε [0, 1]. If the data

are closely clustered around the mean, then R̄ is close to 1. However, if the data are evenly

spread around the circle, R̄ will be near zero. Hence R̄ is a natural measure of spread.

Thus, the resultant vector can be decomposed into two nonparametric components; the

mean direction θ̄ and the mean resultant length R̄, which form a useful starting point for

any analysis. Jammalamadaka & SenGupta (2001, p. 14), prove that θ̄ is location invariant,
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i.e., if the data is shifted by a certain amount, the value of θ̄ also changes by the same

amount.

Proposition 1.1: θ̄ is invariant with respect to changes in the sense of rotation, i.e., when

we switch from clockwise to counter-clockwise so that θ’s become (2π − θ)’s, then θ̄ becomes

(2π − θ̄).

Proof: Let (θ1, θ2, · · · , θn) have mean direction θ̄. We will show that

(2π − θ1, 2π − θ2, · · · , 2π − θn) have mean direction (2π − θ̄).

Suppose R∗ is the resultant vector of the new set of observations i.e., after the shift. Then

we have

R∗ =

(
n∑

i=1

cos(2π − θi),
n∑

i=1

sin(2π − θi)

)
= (C∗

n, S∗n) (say).

Then, C∗
n =

n∑

i=1

cos(2π − θi)

=
n∑

i=1

(cos θicos(2π) + sin θisin(2π))

= Cncos(2π) + Snsin(2π)

= Cn, since cos(2π) = 1 and sin(2π) = 0

= Rcos θ̄

= Rcos(2π)cos θ̄ + Rsin(2π)sin θ̄

= Rcos(2π − θ̄).

Similarly S∗n = Rsin(2π − θ̄). Now, R∗ = ||R∗|| =
√

(C∗2
n + S∗2n ) = R =

√
(C2

n + S2
n).

Hence, C∗n
R∗ = cos(2π − θ̄), S∗n

R∗ = sin(2π − θ̄).

Therefore, the point estimate does not depend on what direction is taken to be the positive

direction. Hence, any practitioner using this estimate need not be wary of the zero-direction.
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Any measure of preferred direction we develop should have such a property as well. See

Mardia (1972, p.45) for more properties of the mean direction.

1.3.2 The Median Direction

For the purposes of robust estimation, it is desirable to have a version of the sample median

for circular data. As a nonparametric and robust estimate for the preferred direction of a

distribution, it has a different character from the sample mean as illustrated by different

breakdown properties. The circular median was defined more formally by Fisher and Powell

(1989) as the angle about which the sum of absolute angular deviations is minimized. We

will return to this in Section 1.3.3.

According to Mardia (1972, p. 28, 31), the sample median direction θ̃ of angles θ1, ..., θn

is the point P on the circumference of the circle that satisfies the following two properties:

(a) The diameter PQ through P divides the circle into semi-circles, each with an equal

number of observed data points and, (b) the majority of the observed data is closer to P

than to the anti-median Q. Mardia (1972, p.46-47) proved that the circular median of a

unimodal distribution is unique. It is also rotationally invariant as shown by Ackermann

(1997). Wehrly and Shine (1981) obtained the influence function (IF), also called influence

curve (IC), for the circular median as well as the circular mean direction. They observe

that the circular median is sensitive to rounding or grouping of data. Mardia (1972, p.29)

recommends adopting the convention used for the linear median to obtain the circular median

for grouped data.

Like in the case of the median for linear data, circular median is defined separately for odd

and even number of observations.
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Figure 1.6: Circular median for even and odd number of observations

The median(P) is the midpoint of two

observations.
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The median(P) is one of the observations.
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When n is odd, the sample median is one of the data points. When n is even, the sample

median is taken to be the midpoint of two appropriate adjacent data points. Figure 1.6

depicts the circular median for even and odd sample sizes. Note the balance between the

number of points in both half circles. In both cases, the majority of sample points are closer

to P (median), than to Q (antimedian).

However, procedures that are based on ranking data for computing the median for linear

cannot be applied to circular data. For example, consider the following data set (in degrees)

43, 45, 52, 61, 75, 88, 88, 279, 357 (Ackermann, 1997), shown in Figure 1.7. If we treat these

data as linear measures, then the median is 750. However when considered as circular

variables, the median is 520. Clearly 520 6= 750, and in addition, a line through 750 will
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not lead to equal number of observations on each semi-circle.

Figure 1.7: P ∗: Linear Median of 750, P: Circular Median of 520 for Ackermann 1997 Data.
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Also, the mean and median directions typically yield different estimates of preferred direction.

Figure 1.8 shows an example in which the circular median (denoted by P) is one of the sample

values, while the circular mean (denoted by m) is not necessarily one of the sample values.
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Figure 1.8: Circular mean, m, median, P, and antimedian, Q, of a sample.
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The two can coincide if the underlying distribution is symmetric about the reference direc-

tion. Ease of computation and availability of relevant statistical theory (e.g., for calculating

confidence regions or pooling independent estimates of the same quantity) makes the mean

direction the most commonly used measure of preferred direction, particularly for moderate

to large samples (Fisher, 1993, p. 72). However, the median direction is preferred for small

samples which are clustered around a single value (Shepherd and Fisher, 1982). Robust

estimation of the preferred direction for the von Mises distribution has been based mainly

on the median direction approach.
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1.3.3 The Measures of Dispersion

The measures of spread associated with the circular mean and the circular median directions

are the circular variance and the circular mean deviation respectively (Mardia, 1972).

The circular variance S0, is a common dispersion statistic defined in terms of the length of

the standardized resultant vector using

S0 = 1 − R̄, (1.8)

where 0 ≤ S0 ≤ 1 since 0 ≤ R̄ ≤ 1. Minimum variation occurs when So = 0 (R̄ = 1),

and corresponds to all of the observations in a given sample occurring at precisely the same

location. A natural upper limit to the possible variation occurs for data uniformly distributed

around the circle, and corresponds to S0 = 1 (R̄ = 0). Calculation of R̄, and hence S0

is straightforward, and the interpretation of results does not depend on assumptions about

the original data (Anderson-Cook, 1996). See Mardia (1972, p.45) for additional properties

of the circular variance. Some authors including Batschelet (1981), refer to the quantity

2(1 − R̄) as the circular variance. We shall use the definition given in equation (1.8).

The distance between L and N in Figure 1.9 can be the length of the arc LMN or the arc

length LRN. But since the arc LMN is shorter, the circular distance between L and N is

defined to be the arc length LMN. Note the angular distance | L, N | = | L − N | is not

periodic and is therefore linear, not a circular variable. Consequently, only linear statistical

methods should be applied to angular distances, Batschelet (1981, p.4).
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Figure 1.9: Circular distance is the arc length LMN.
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The circular mean deviation is a measure of spread associated with any measure of the

preferred direction, θ̃. It is defined about θ̃ using

d(θ̃) = π − 1

n

n∑

1

| π− | θi − θ̃ ||, (1.9)

that is, the mean distance between the preferred direction and the data points. Mardia

(1972, p. 30-31) showed that it has a minimum when we use the sample median as the

measure of the preferred direction.

We define the circular median absolute deviation from θ̃ to be

median
(
| θ1 − θ̃ |, · · · , | θn − θ̃ |

)
, (1.10)

that is, the median absolute distance between the preferred direction and the data points,

where n is the sample size.

To evaluate our new measure of preferred direction, we shall use the three measures; circular

variance, circular mean deviation and circular median absolute deviation.



Chapter 2

Literature Review

2.1 Directional Data

Introduction

The standard texts on directional data are Mardia (1972) and Fisher (1993). Batschelet

(1981) gives a less mathematical account of applications of circular data to the analysis of

biological data. Fisher, et al. (1987) gives an account of methods for the analysis of spherical

data. Upton and Fingleton (1989), and Mardia & Jupp (2000) discuss both two and three

dimensional data. Most recently Jammalamadaka & SenGupta (2001) discuss circular data.

The commonly used parametric model, the von Mises distribution, for analyzing directional

data assumes unimodality and axial symmetry of a given data set. Since this is not always the

case, the search for robust methods leads naturally to techniques which are nonparametric

or are distribution free. In linear inference one can justify an assumption of normality [for

example, when one deals with averages of large samples], but there is no corresponding

rationale for invoking the von Mises distribution in directional inference. As a consequence,

23
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the need for distribution-free methods is highly desirable in directional data analysis (Rao,

1984).

Inappropriate applications of linear methods to circular data are in the book by Zar (1999,

p. 607, 624-625), who does not consider the fact that, the zero or positive direction in the

circle is arbitrary. Many of his proposed methods are not rotationally invariant.

2.1.1 Robust Estimation of Preferred Direction

The finiteness of the circle creates new challenges as readily as it solves others. While linear

approximations may solve ad hoc data analysis problems, they are not suitable for routine

data processing (Fisher, 1993). For example, the investigation of Wehrly and Shine (1981)

of the robustness properties of both the circular mean and median using influence curves,

revealed that the circular mean is quite robust, in contrast to the sample mean on the real

line. Watson (1983a, 1986) computed the influence functions of some classical estimators of

location and scale for circular distributions. Lenth (1981) defined a class of M-estimators for

the location of circular distributions. While Mardia (1972), Fisher (1985) and Durcharme

and Milasevic (1987a) generalized the median to the sphere. Durcharme and Milasevic

(1987b), derived the asymptotic distribution and the asymptotic relative efficiency for the

circular median for symmetric distributions on the circle. They show that in the presence of

outliers, the circular median is more efficient than both the mean direction and an estimator

proposed by Watson (1983a). A survey was provided by Jupp & Mardia (1989).

Other notable results involving the circular median are for example by Liu & Singh (1992)

and Purkayastha (1991, 1995a, 1995b). Liu & Singh (1992), call the Mardia’s (1972) median

for circular data the arc distance median for circular data. They obtain it by minimizing

the sum of geodesic distances of an arbitrary point on the circle given a set of observations

on the circle and by simultaneously searching for the point where this minimum is attained.
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Purkayastha(1991) introduced a rotationally symmetric model of the form

f(θ, µ, κ) = C(κ) exp[κ cos−1(θT µ)], (2.1)

where C(κ) is some function of κ, for which the sample circular median is the maximum

likelihood estimate of µ. Purkayastha (1995a), derives the asymptotic linear representation

Mardia’s (1972) median for circular data.

Batschelet (1981, p. 18-19) commented on the possibilities of obtaining several disjoint

ranges for the median given small samples and disperse data. He concluded that the median

has limited practical use unless data are clustered about a single mean. Anderson (1993, p.

106) observed that the non-uniqueness of the circular median is more pronounced for small

data sets with small concentration. The breakdown point and the M- and L-estimators

of the mean direction for the von Mises distribution have been studied by He and Simpson

(1992). They conclude that the directional median is the most standardized bias (SB)-robust

estimator for the circular mean. This result is analogous to the linear data case in which

where the median is also the most SB-robust estimator of the mean (its Kullback-Liebler

standardized breakdown slope is bounded away from 0 uniformly over the set of positive real

numbers). The notion of standardized bias robustness was introduced by Ko and Guttorp

(1988). They standardized the influence function with respect to the dispersion of the data

and showed the non-robustness of the classical (maximum likelihood) estimators for spherical

distributions. Some aspects of Bayesian inference for the von Mises-Fisher distribution are

provided by Mardia & El-Atoum (1976).
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2.1.2 Outliers in Circular Data

The outlier problem in directional data is somewhat different from that in the linear case.

An effort to understand outliers in directional data, has led many to question if indeed there

is an outlier problem for directional data, Small (1990). A detailed discussion of the outlier

problem in directional data can be found in Ko and Guttorp (1988).

How far an observation is from the “center” in the directional data setup should be judged

by using an appropriate “circular distance”. Jammalamadaka and SenGupta (2001), state

that unlike in the linear case, outliers in circular data need not be too large or too small,

but could be away from the “central” part of the data. Current research on dealing with

the handling of unusual observations (or outliers) in the circular/directional data can be

grouped into two major areas. The first area is robust statistical methods (whereby outlying

observations are automatically given less weight in estimation) and the second is for the

detection of outliers techniques (whereby outlying observations are deleted from the sample

using objective criteria). In this dissertation, we shall restrict ourselves to the area of robust

statistical methods.

When the data come from a disperse distribution on the circle, a small amount of contamina-

tion by outliers would not be noticed and would have little effect on estimates of location or

spread, (Lenth, 1981). We focus our attention on cases where the majority of the data come

from a fairly narrow distribution, but there is a possibility that a few spurious observations

may be present. For example consider data from a study of the flight patterns of birds,

in which most of the birds are migrating but a few are distracted. We shall use the word

“outlier” to refer to a surprising observation, which is suspiciously far from the main data

mass.

Misrecording of data, unwittingly sampling from a second population or vagaries of sampling
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resulting in the occasional isolated values are some of the ways in which outliers can occur in

circular data. Such an observation will have the largest angular deviation from the average

direction. Barnett and Lewis (1994) and Beckman and Cook (1983), include the results of

Collett (1980), who analyzed the performance of four statistics for the detection of a single

outlier. A Bayesian approach to outlier problem has been studied by Bagchi and Guttman

(1990).

2.2 Hodges-Lehmann Estimator for Linear Data

For linear data, the sample mean and median are estimates of the population mean and

median, respectively. The sample mean is highly sensitive to outliers and therefore non-

robust. However, Zielinski (1987) showed that under restrictions on outliers, the sample

mean may be more robust than the median. On the circle, observations have a limited range

(distributions on the circle are bounded) so the findings of Wehrly and Shine (1981), who

concluded that the circular mean is quite robust, are therefore not surprising.

The classical median and the Hodges-Lehmann estimate (defined as the median of pairwise

averages by Hodges and Lehmann (1963)) are well-known estimates of location in one-sample

univariate linear problems. The Hodges-Lehmann estimator is derived from the Wilcoxon

signed-rank test statistic. Sirvanci (1982) noted that the Hodges-Lehmann estimator is a

nonlinear estimator which is asymptotically best linear unbiased for the logistic distribution,

F (x) = [1 + exp(−x)]−1, x ≥ 0.

In this section, we shall give a brief review of the Hodges-Lehmann estimate. The motivation

for the Hodges-Lehmann estimator (due to Hodges and Lehmann (1963)) is as follows. Given

a random sample X1, · · · , Xn, let T (Xn) = T (X1, · · · , Xn) be a test statistic for some

hypothesis concerning a location parameter θ, say. Suppose that T (Xn − a1n) =
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T (X1 − a, · · · , Xn − a) is a monotone (decreasing) as a function of a, and that values of T

near T = 0 are in accordance with the null hypothesis. If T is a rank statistic, it is likely

to be a step-function (Fisher, 1982). Choose as the estimator of θ, the value of a for which

T is closest to 0.

For a random sample of size n denoted by X1, · · · , Xn, the procedure for calculating the

Hodges-Lehmann estimator of the population center and a (1 − α)100% confidence interval

for th population median is as follows:

1) Form the M = n(n + 1)/2 Walsh averages, Wij = Xi+Xj

2
, 1 ≤ i ≤ j ≤ n.

2) Arrange the Wij’s in order of magnitude from smallest to largest. Let W (1) ≤, · · · ,≤ W (M),

denote these ordered values.

3) The median of the Wij’s, given by

θ̃ =





W (k+1), if M = 2k + 1

W (k)+W (k+1)

2
, if M = 2k

, (2.2)

is the Hodges-Lehmann estimator of the population center.

Further, define

T+ = #
(

Xi + Xj

2
> 0

)
, i ≤ j. (2.3)

If P (T+ ≤ n∗) = α/2 = P (T+ ≥ (M−n∗)), then
[
W (n∗+1), W (M−n∗)

]
is the (1−α)100%

confidence interval for the population median based on T+, where

n∗ = n(n + 1)/4 − 0.5− Zα/2

√(
(n+1)(2n+1)

24

)
(Hettmansperger, 1984, p. 39).

Some properties of the Hodges-Lehmann estimator for location are stated without proof
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below:

Property 1: θ̃ is translation invariant (Fisher, 1982).

Property 2: θ̃ is unbiased for θ (Manoukian 1986, p. 190-191).

Property 3: θ̃ is median unbiased for θ, that is, Pθ(θ̃ ≤ θ) = 1/2, and θ is a median

for the distribution of θ̃. See Randles and Wolfe (1979, p.216). This concept is useful in

situations where a Hodges-Lehmann estimator is not symmetrically distributed (and thus

not necessarily median unbiased for θ). Thus the assumption of symmetry for the underlying

distribution can be dropped and still have median unbiasedness for certain Hodges-Lehmann

estimators under some regularity conditions.

Property 4: The distribution of (θ̃ − θ) is independent of θ (Lehmann and D’Abrera,

1998, p. 177).

Property 5: If the distribution of (X1, · · · , Xn) is symmetric about θ, the same is true for

the distribution of θ̃ (Lehmann and D’Abrera, 1998, p. 177).

Property 6: Suppose that the distribution L is continuous, then the distribution of θ̃ is also

continuous, so that P (θ̃ = d) = 0 for any given d. This property distinguishes θ̃ from the

discrete distribution of the associated Wilcoxon Statistics (Lehmann and D’Abrera, 1998, p.

178).

The main advantage of the Hodges-Lehmann estimator is that it is robust against outliers

in the one-sample problem through Hampel’s robustness measures, namely the breakdown
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point and the influence curve (more generally known as the influence function). The H-L

estimator has a breakdown point of 0.29, i.e. 29% is the least portion of data contam-

ination needed to drive the estimate beyond all bounds, (Hettmansperger and McKean,

1998). The asymptotic standard deviation (which depends on the underlying distribution)

and the asymptotic normality theory were first obtained by Hodges and Lehmann (1963).

Sheather (1987) described a method of estimating the asymptotic standard error of the

Hodges-Lehmann estimator based on generalized least squares. The efficiency of this es-

timator is discussed by among others, Hodges & Lehmann (1963), Bickel (1965), Hoyland

(1965), and Gastwirth & Rubin (1969).

Note, that the total number of Walsh averages is n2, but computation of the Hodges-Lehmann

estimate requires only n(n+1)/2. Huber (1981, p. 9, 63) observes that the Hodges-Lehmann

estimate is the median of all n2 pairwise averages, however, the more customary versions use

only n(n−1)/2 or n(n+1)/2 pairwise averages, since all three are asymptotically equivalent.

We shall develop new measures of preferred direction for circular data which are analogous

to the Hodges-Lehmann estimate of center for linear data described above. For one measure,

we use n(n− 1)/2 pairwise circular means excluding the data paired with itself. The other

new measure uses the n(n + 1)/2 pairwise circular means including the data paired with

itself. We shall also use all the n2 pairwise circular means to obtain a third measure. We

anticipate that the three new measures will be asymptotically equivalent and will in circular

data study their properties by simulation.

2.3 Influence Functions for Estimates of Location for

Linear Data

The influence function is an important concept in describing the robustness of estimators.

This concept is best understood by thinking of estimators and their corresponding parameters
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as functionals (“functions of functions”). In our case, functionals will be functions of the

cumulative density function (CDF) F or the empirical cumulative density function (ECDF)

Fn, where Fn = #(x(i)i ≤ x)
n

= i
n

at x = x(i). Functions of the CDF are the parameters of

interest and the functions of the ECDF are the estimators of these parameters. Note, since

the ECDF converges uniformly to the CDF as n goes to infinity (by the “Glivenko Cantelli

Lemma”), this implies that the estimators based on the empirical substitution principle

converge in probability, to the parameter, i.e., T (Fn)
Prob.−→ T (F ). Hence, studying certain

properties of estimator T (Fn), when based on large samples, can be used as approximations

of those properties of the parameter T (F ). Common examples of functionals include mean,

variance and median functionals. These are respectively,

T1(F ) =
∫

xdF (x) =





∫
xf(x)d(x), x continuous
∑

xif(xi), if x is discrete,
(2.4)

T2(F ) =
∫

(x − T1(F ))2 dF (x) =
∫

x2dF (x) − [
∫

xdF (x)]2, (2.5)

and T 1
2
(F ) = F−1(

1

2
) (2.6)

The corresponding functional estimators are

T1(Fn) =
∫

xdFn(x) =

∑n
i=1 xi

n
= x̄, (2.7)

T2(Fn) =
∫

(x − T1(Fn))2 dFn(x) =

∑n
i=1 (xi − x̄)2

n
= s2, (2.8)

and T 1
2
(Fn) =





F−1
n

(
n+1
2n

)
, n odd

1
2
F−1

n

(
1
2

)
+ 1

2
F−1

n

(
1
2

+ 1
n

)
, n even

(2.9)

(Birch, 2002, p. 167). For theoretical convenience,

T 1
2
(Fn) = F−1

n

(
1

2

)
, for large n. (2.10)

The behavior of functionals can be studied by examining the behavior of its derivative, just

like in the case of functions where examining its derivative enables one to learn about the
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function. The derivative of a functional is called the Influence Function. The influence

function is interpreted as the asymptotic bias of T(F) arising from a small contamination

of the distribution F(x) at x0. Simply, the influence function measures the “influence” of x0

on the parameter T(F). That is, it measures the change in F(x), in the limit, as the point

x0 is given special emphasis, through the weight ε. Therefore, a desirable property for an

estimator is a bounded influence function.

The influence function (IF) (Hampel, 1974) of an estimator T(F) at a distribution F is the

directional derivative from above

IF (x0; T, F ) = lim
ε → 0+

[T ((1− ε)F (x) + εδx0(x)) − T (F (x))]

ε
, 0 ≤ ε ≤ 1, (2.11)

where the estimator is regarded as a function of the empirical distribution Fn,

Tn(x1, · · · , xn) = T (Fn) and δx0(x) denotes the distribution that puts mass 1 at the point

x0, i.e,

δx0 =





0, x < x0

1, x ≥ x0

, (2.12)

and (1− ε)F (x) + εδx0(x) is an altered CDF which places special emphasis on the point x0.

The influence function can also be used to evaluate the asymptotic efficiency of an estimator,

since the asymptotic variance can be obtained by integrating the square of the influence

function. See for example Birch (2002, p. 175-179). Note for any asymptotically normal

estimator, i.e.
√

n(Tn − T (F )) → N(0, V (T, F )), (2.13)

the asymptotic variance V (T, F ) is given by V (T, F ) =
∫

IF 2(x; T, F )dF (x).

We shall use the influence function to study the robustness properties as well as to obtain

the asymptotic distribution of our new measures of preferred direction.
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2.4 Bootstrap Methods

2.4.1 Introduction

Bootstrap methods have found use in statistics in situations where distributional assumptions

are kept to a minimum or when distributional results for the quantity of interest do not

exist. The distribution of a statistic can be assessed by obtaining B resamples of the data by

sampling from a surrogate for the population distribution namely the data. The statistic of

interest is evaluated for each of the bootstrap samples and the variability of these B values is

taken as an estimate of the variability of the statistic over the population. The fundamental

assumption of bootstrapping is that the observed data are representative of the underlying

population. By resampling observations from the observed data, the process of sampling

observations from the population is mimicked. A general reference for bootstrap methods is

Efron & Tibshirani (1993).

Attention to the use of bootstrap methods for directional data has been made in part by

Watson (1983b) and Fisher et. al.(1987). Mardia & Jupp (2000, p. 277) advocate the use

of bootstrap methods for directional data since the distributions of the statistics commonly

used for inference are frequently intractable. Fisher and Hall (1992) applied the notions of

pivoting, percentile-t confidence region, the iterated bootstrap and the parametric bootstrap

to the problems of calculating a confidence region for a mean direction, finding an interval

estimate for the concentration parameter of the von Mises distribution and testing the close-

ness of several mean directions. In addition, bootstrap confidence regions based on pivotal

statistics have been noted to have smaller coverage error, or boundaries closer to those of

exact confidence regions than regions derived from nonpivotal statistics (Fisher and Hall,

1989).

Two gaps in bootstrap theory for directional data deal with non-i.i.d observations common
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in geology where observations are hardly ever randomly selected (Rao, 1975) and the lack

of a commercial computer package for the analysis of directional data (Jupp and Mardia,

1989). In the case of linear data, Liu (1988) and Liu and Singh (1995), have shown that use

of classical i.i.d bootstrap on data that is not i.i.d is frequently appropriate since it captures

the first order limit and also retains second order asymptotic properties in the case of the

sample mean.

In this dissertation, our new measures of center are derived from the pairwise circular means.

Mardia (1972, p.98) asserts that the marginal probability density function of the circular

mean cannot be simplified. The distribution of the circular mean direction is intractable,

hence bootstrap methods provide the only alternative for coming up with such a distribution,

particularly for small samples.

2.4.2 Confidence Intervals Involving Measures of Preferred Direc-

tion

Confidence intervals for the mean direction can be obtained either by obtaining the para-

metric standard error, Fisher (1993, p.88-89, p. 206) or by nonparametric bootstrap, Fisher

and Powell (1989) and Fisher (1993, p. 206). For n > 25, the estimate of the circular

standard error of θ̄ is given by σ̂V M = 1√
(nR̄κ̂)

, where θ̄ and κ̂ are the estimates of µ (given

by equation (1.6)). R̄ is the mean resultant length (see Section 1.3.1), and κ̂ (given below).

κ̂ =





2R̄ + R̄3 + 5R̄5

6
, R̄ < 0.53

−0.4 + 1.39R̄ + 0.43
(1 − R̄)

, 0.53 ≤ R̄ < 0.85 .

1
(R̄3 − 4R̄2 + 3R̄)

, R̄ ≥ 0.85

A 100(1 − α)% confidence interval for µ is given by θ̄ ± sin−1
(
z 1

2
ασ̂V M

)
, where z 1

2
α is

the upper 100(1
2
α) percentage point of the Normal N(0, 1) distribution. See Fisher (1993, p.

88) and Jammalamadaka & SenGupta (2001, p. 96). See also Fisher and Lewis (1983) and

Watson (1983a, Chapter 4).
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A general class of bootstrap confidence arcs exists, Fisher and Hall (1989, 1992). These

are the Symmetric arc, Equal-Tailed arc and the Likelihood-Based arc. The symmetric

intervals are often shorter than equal-tailed intervals and have better accuracy even in highly

asymmetric circumstances, Hall (1988a). Fisher and Hall (1989) show that the equal-tailed

and likelihood based have coverage error O(n−1) and the symmetric version has coverage

error O(n−2). These results are similar to those of Beran (1987) and Hall (1988a,b) obtained

for linear data.

The Equal-Tailed arc method uses the point estimate of the preferred direction as the middle

observation, then defines the endpoints of the confidence interval as the location, where (1−α)
2

of the bootstrap values θ̃∗ lie between the edge and the preferred direction. Fisher (1993, p.

206), refers to this procedure as the Basic Method. A (1 − α)100% confidence interval for

the population preferred direction is constructed as follows. Compute the difference between

the preferred direction of the original sample and that of the bth bootstrap sample

γb = θ̃∗b − θ̄, (−π ≤ γb < π), b = 1, · · · , B,

where θ̃∗b is the sample preferred direction for the bth bootstrap sample. Take this value to be

the middle observation. Define the endpoints of the confidence interval as the observation

where l is the largest integer less than or equal to (1
2
Bα + 1

2
)) position and mth( where B−l)

position. Thus a (1 − α)100% confidence interval for the population preferred direction is

(point estimate + observation at the lth position, point estimate + observation at the

mth position). Note, the Equal-Tailed arc procedure, is the analog of equal-tailed confi-

dence intervals, commonly used type of bootstrap confidence interval in linear data (Efron,

1981,1982, 1985).

The Symmetric-arc method selects the angle, ∆, such that (1 − α)B of the θ̃∗ values lie

within the interval. Note that, ∆ above and below the point estimate is the same. Fisher
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(1993, p.206), refers to this procedure as the Symmetric Distribution Method. A (1−α)100%

confidence interval for the population preferred direction is constructed as follows. Calculate

the absolute difference between the preferred direction of the original sample and that of the

bth bootstrap sample,

ψb = |θ̃∗b − θ̄|, b = 1, · · · , B,

where θ̃∗b is the sample preferred direction for the bth bootstrap sample. Note, these B values

can be treated as linear variables (Batschelet, 1981, p.4). Sort the B values into increasing

order to obtain ψ(1) · · · ψ(B) say. Let l = integer part of Bα + 1
2
, m = B − l. A

(1− α)100% confidence interval for µ is given by θ̄ ± ∆, where ∆ = ψ(m).

A third distinct procedure for constructing bootstrap confidence intervals is the Likelihood-

Based arc. This method, enables one to find the narrowest interval that satisfies the re-

quirement of the (1− α)100% confidence interval. The likelihood-based arc is chosen as the

shortest arc containing (1− α)B of the θ∗ values.

An alternative to the bootstrap for the circular median, with data that are not too dispersed

(that is, data concentrated on an arc substantially less than the whole circumference) can

be found by analogy with methods for linear data, Fisher (1993, pp. 72-73). The procedure

is as follows. For any integer m greater than zero, count off m θ-values to the left and to the

right of the sample median (obtained as in Section 1.4.2) (not counting the point estimate

itself) to get lower and upper data values θ(Lm) and θ(Um) respectively. Exact α-levels for

the confidence interval (θ(Lm), θ(Um)) are given in Appendix A6, Fisher (1993), for n < 16.

For n > 16, an approximate 100(1 − α)% confidence interval can be obtained by setting

m = 1 + integer part of
(

1
2

√
n

)
z 1

2
α, where z 1

2
α is the upper 100(1

2
α)% of the N(0 , 1)

distribution.

To determine relative performance of the mean, median and Hodges-Lehmann estimator,
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bootstrap confidence intervals (Symmetric-Arc, Equal-Tail and Likelihood-Based) for each

of the measures of preferred direction will be compared to the alternative confidence interval

for the median in Chapter 5.

In order to make inferences about a particular sample of circular random variables, we shall

use the fact that confidence intervals and tests of hypotheses are related in the following

way. Suppose we wish to test the null hypothesis that µ = µ0 versus the alternative that

µ differs from µ0 at the significance level α. If we have a (1 − α)100% confidence interval

for θ, we can construct an α-level hypothesis test by simply accepting the null hypothesis

that µ = µ0 if µ0 is contained in the (1 − α)100% confidence interval for µ and rejecting

the null hypothesis if µ is outside the interval. This is the format that we shall take in

this dissertation. In circular data, only two-sided alternative hypothesis are feasible since

one-sided tests only make sense if the data can be sensibly ordered, which is not the case for

circular data.



Chapter 3

New Measures of Preferred Direction

3.1 Introduction

This dissertation provides an alternative to the circular mean and median, for estimating the

preferred direction. An appropriate measure should be a compromise between the advantages

and disadvantages of the circular median and the circular mean. Methods that offer an

alternative to the lack of robustness of the sample mean are desired because outliers can

have a considerable effect on estimates. For example, Fisher & Lewis (1983), observe that

palaeocurrent data can sometimes have quite skewed distributions. Hence, the need for an

estimate of center that will be robust under general conditions. In Section 3.2, an alternative

unique solution to circular median is obtained. The new measure of preferred direction, the

circular analog to the Hodges-Lehmann estimate is presented in Section 3.4.

38
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3.2 Unique Solution to Circular Median

The procedure for computing the circular median proposed by Mardia (1972, p.28,31) oc-

casionally leads to a non-unique estimate of the circular median since there can sometimes

be two or more diameters that divide the data equally. Many authors, for example He and

Simpson (1992), advocate the use of circular median as an estimate of preferred direction es-

pecially in situations where the data are not von Mises distributed. Consequently, a strategy

is needed to deal with non-unique circular median estimates for small samples.

Figure 3.1: Non Uniqueness of Circular median

Both P1 & P2 satisfy the definition of 7 observations per semicircle
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As an illustration of the non-uniqueness of the circular median, consider the Frog data
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(Ferguson, et. al. (1967)) in Figure 3.1. Notice that the data points labeled P1 & P2 both

satisfy the definition of a circular median as defined by Mardia (1972, p. 28, 31) since the

diameter through each one of them leads to half the observations being on each half-circle.

The points Q1 & Q2 are the antimedians of P1 & P2 respectively.

In this section, we adapt the existing definition of circular median as defined by Mardia

(1972, p. 28, 31) and propose that the estimate of the population circular median be an

average of two or more values that would be considered as sample medians. The point P

in Figure 3.1 is the circular mean of the two sample medians (P1&P2). We conjecture that

P will be more robust to rounding and will be a unique estimate since it involves local

averaging, Cabrera et.al. (1994).

We propose the following algorithm for computing the circular median. See Appendix E for

an S-Plus function. Suppose θ1, · · · , θn is a random sample of circular data from a unimodal

distribution.

Step 1: Find all values (denoted by p in Figure 3.2) satisfying the definition of median. For

even samples, the candidate values are the midpoints of all neighboring observations. For

odd samples, the candidate values are the observations themselves.
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Figure 3.2: Original Observation o, Potential Medians p
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Step 2a: For the “Mardia Median”, compute the circular mean deviation for each angle

satisfying the median definition in Step 1. Select value(s) satisfying the definition of median

that has (have) the smallest circular mean deviation to be the estimate of the median (Fisher,

1993, pp. 35-36). In case of ties, take the circular mean of these angles as the unique estimate

of the median.

Step 2b: For the “New Median”, compute the circular mean for all angles satisfying the

definition of median obtained in Step 1. This gives a unique estimate of the median.
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Figure 3.3: Special features
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Both of the above procedures incorporate the two features shown in Figure 3.3. Observations

directly opposite each other do not contribute to the preferred direction, since in such a case

the observations balance each other for all possible choices of medians. Another important

feature is that of breaking ties, as these procedures have the flexibility of finding a balancing

point no matter how many observations are tied, by mimicking the midranking idea for linear

data.

3.3 Comparison of Mardia Median & New Median

To determine the relative performance of Mardia Median and the New Median, data was

simulated from a von Mises distribution. Without loss of generality, the center of all the

distributions considered was µ = 0. 10000 samples each of sizes between 5 & 20 from the

distributions with 4 dispersion values around the circle were obtained. For each sample, the

sample circular means, and circular medians (both Mardia Median and New Median) were
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computed. The results were summarized using the following measures: Circular mean of all

10000 samples given using equation (1.7), 95% Empirical Confidence Interval, that is, the

central 95% of the 10000 values, Circular Variance (CV) given by equation (1.8), Circular

Mean Deviation (CMD) given by equation (1.9), and Circular Median Absolute Deviation

(CMAD) given by equation (1.10).

Figure 3.4 illustrates the effect of sample size on the three measures for κ = 2. All

measures appear unbiased, and the confidence bands for the mean is narrowest compared to

the two medians (which are identical). The confidence bands become narrower as sample size

increases for all the three measures, see Figure 3.4(a). The mean has the smallest circular

variance, while the two medians have identical circular variances over the whole range of

sample sizes considered, see Figure 3.4(b). In terms of circular mean deviation (CMD),

the two medians have the smallest compared to the mean as expected, see Figure 3.4(c).

Similarly, the two medians have the smallest circular median absolute deviation (CMAD)

compared to the mean, see Figure 3.4(d). These results were similar for other concentration

parameters studied as well.

The effect of concentration parameter on the three measures of preferred direction is illus-

trated in Figure 3.5 for n = 20. All measures appear unbiased, and the confidence bands for

the mean is narrowest compared to the two medians (which are identical). The confidence

bands become narrower as the concentration parameter increases for all the three measures,

see Figure 3.5(a). The mean has the smallest circular variance, while the two medians have

identical circular variances over the whole range of concentration parameter considered, see

Figure 3.5(b). The circular mean deviation (CMD) for the three measures are nearly iden-

tical, with the two medians have the smallest compared to the mean, see Figure 3.5(c).

Similarly, the two medians have the smallest circular median absolute deviation (CMAD)

compared to the mean, see Figure 3.5(d). These results were similar for other sample sizes

studied as well.
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Figure 3.4: Mardia Median & New Median for VM(0, 2)
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(a) Plot of Preferred Direction vs. Sample Size 
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(b) Plot of Circular Variance vs. Sample Size 
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(c) Plot of CMD vs. Sample Size
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(d) Plot of CMAD vs. Sample Size
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Figure 3.5: Mardia median & New median for VM (0, κ), n = 20
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(b) Circular Variance vs. Conc. Parameter 
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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3.3.1 Discussions and Conclusions on Relative Performance of

Mardia Median and New Median

Different concentrations give similar results for von Mises data, see Appendix A. For a fixed

sample size, the Mardia Median and New Median are identical for all combinations of sample

sizes and concentrations studied, see Appendix A for n = 10. Most strikingly, the two

estimators, Mardia Median and New Median are approximately identical, this implies that

either of the two can be used as an estimate of preferred direction. We shall use Mardia

Median in this dissertation, since it is the better established of the two measures. However,

computationally, the new measure is easier and faster to work with. The two measures are

both meaningless for uniform and bimodal data since “preferred direction” is not sensible

here. Both Mardia Median and New Median are robust alternatives to the mean.

3.4 New Measures of Preferred Direction for Circular

Data

The motivation behind the new measures of preferred direction is two-fold. First we want a

compromise between circular mean (occasionally non-robust) and the robust circular median.

Second, we want an estimate of preferred direction that down weights outliers sparingly

and is more robust to rounding and grouping. The circular median down weights outliers

significantly but is sensitive to rounding and grouping (Wehrly and Shine, 1981).

As discussed in section 2.2, the Hodges-Lehmann estimate (Hodges-Lehmann, 1963) for

location for linear data is the “median” of all n2 pairwise “averages” (Walsh averages).

More customary versions use only n(n − 1)/2 (using all distinct pairs of observations) or

n(n + 1)/2 (using the observations plus all distinct pairs of observations) pairwise means,

since all three are asymptotically equivalent (Huber, 1981, p.63). In Figure 3.6, we consider
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a simple example with 4 linear observations denoted by circles on the top line. The mean and

median are denoted by m and d, respectively, on the top line. The HL1 estimate denoted

by D is the median of pairwise means excluding observation with itself, denoted by w on

top of the second line. The HL2 estimate denoted by h is the median of the pairwise means

used to obtain HL1 plus individual observations. While HL3 denoted by H is the median

of all possible pairwise means, that is observations used to obtain HL1 plus those used to

obtain HL2. The Hodges-Lehmann is most commonly taken to be HL2. It is an established

competitor to mean and median for the center of the distribution with excellent robustness

and efficiency properties (Hollander and Wolfe, 1999, pp. 54, 74). Notice there can be

different locations for some of the five measures of center for this data set, which is typical

for many samples.

We propose an adaptation of this well known robust estimate for preferred direction as an

alternative estimate of preferred direction for circular data. Our new measure eliminates

some of the small sample problems of the circular median as noted by Anderson (1993). It

is the “circular median” of all pairwise “circular means”.

Like in the linear case, we have three cases, namely, HL1, HL2 and HL3, shown in Figure

3.7. HL1 is the circular median obtained by using circular means (denoted by w) of all

pairs of observations, while HL2 is the circular median obtained by using pairwise circular

means including individual observations, i.e w’s and z’s. HL3 is the circular median of all

possible pairwise circular means. Notice how the circular Hodges-Lehmann estimates divide

the respective circular means evenly on the two semicircles. In this example, the three

measures give slightly different estimates for preferred direction.

The estimates of preferred direction obtained using these procedures, are location invariant,

since they satisfy the definition of circular median, which is location invariant. The approach

used is feasible regardless of sample size or the presence of ties. The S-Plus function for com-
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Figure 3.6: Hodges-Lehmann estimate for linear data
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puting these new measures of preferred direction is given in the Appendix E. The circular

Hodges-Lehmann estimates offer a competitive measures of preferred direction to the com-

monly used mean direction. Moreover, no ranking is used in computing our estimates, since

on the circle there is no minimum/maximum. This distinguishes our procedure from the one

suggested by Zar (1999), which is dependent on the chosen range.
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Figure 3.7: Hodges-Lehmann estimate for circular data
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3.5 Comparison of HL1, HL2 & HL3

3.5.1 Simulation to compare HL1, HL2, and HL3

To determine the relative performance of HL1, HL2 and HL3 as estimates of preferred

direction for circular data, data was generated from a von Mises distribution. Without loss
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of generality, µ = 0 was used as the center of all the distributions considered. 10000

samples of sizes between 5 & 20 from the distributions with 4 dispersions around the

circle were obtained. For each sample, the sample HL1, HL2 and HL3 were computed. The

results were summarized using the following measures: Circular mean of all 10000 samples

given by equation (1.7), 95% Empirical Confidence Interval, that is, the central 95% of the

10000 values, Circular Variance (CV ) given by equation (1.8), Circular Mean Deviation

(CMD) given by equation (1.9), and Circular Median Absolute Deviation (CMAD) given by

equation (1.10).

Figure 3.8 illustrates the effect of sample size on the three measures for κ = 2. All

measures appear unbiased, and the confidence bands are nearly identical. The confidence

bands become narrower as sample size increases for all the three measures, see Figure 3.8(a).

The three measures have nearly identical circular variances over the whole range of sample

sizes considered, see Figure 3.8(b). HL2 and HL3 have smaller circular mean deviation

(CMD), compared to HL1 over most of the range of sample sizes considered, see Figure

3.8(c). Similarly, HL2 and HL3 have smaller circular median absolute deviation (CMAD)

compared to HL1, see Figure 3.8(d). These results were similar for other concentration

parameters studied as well.

The effect of the concentration parameter on the three measures of preferred direction is

illustrated in Figure 3.9 for n = 20. Again all three measures perform nearly identically. All

measures appear unbiased with identical confidence bands. The confidence bands become

narrower as the concentration parameter increases for all the three measures, see Figure

3.9(a). The circular variances, the circular mean deviation (CMD) and the circular median

absolute deviation (CMAD) for the three measures are identical over the whole range of

concentration parameters considered. As the concentration parameter increases, the circular

variance, CMD and CMAD decreases for all the three measures, see Figures 3.9(b), 3.9(c)

and 3.9(d) respectively. These results were similar for other sample sizes studied as well.
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Figure 3.8: HL1, HL2 & HL3 for VM(0, 2)
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Figure 3.9: HL1, HL2 & HL3 for VM(0, κ), n = 20
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(b) Circular Variance vs. Conc. Parameter 
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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3.5.2 Discussions and Conclusions on Relative Performance of

HL1, HL2 and HL3

Different concentrations give similar results for von Mises data, see Appendix C, for k = 1, 4 & 8.

For a fixed sample size, the three measures are virtually identical, see Appendix C for n = 10.

More variability between measures is observed for smaller sample sizes. Overall, the three

measures HL1, HL2 and HL3 are approximately identical, as is the case for linear data (Hu-

ber, 1981). Thus any of the three measures can be used as an estimate of preferred direction.

In the remainder of this dissertation, we shall use HL2, matching the most common choice

for linear data.

3.6 Theoretical Results for a Limited Range of Con-

centrated Distributions

3.6.1 Introduction

The new measure of preferred direction, the circular Hodges-Lehmann estimate is the circular

median of the pairwise circular means. Problems of getting the distribution of circular mean

direction have been noted by Mardia (1972, p. 98) and Mardia & Jupp (2000, p.69). They

conclude that the marginal probability density function of the circular mean cannot be

simplified. The fact that the process of wrapping is not reversible (Mardia, 1972, p.54) is

also a major problem, since one cannot expect to uniquely unwrap a distribution from the

circle onto the line.

Also, ignoring the circular nature of the data and treating it as linear is in general not

well defined, hence one cannot sensibly obtain the Hodges-Lehmann estimator from pairwise

averages without restrictions on the range of the data. A further complication is the fact that



B. Sango Otieno Chapter 3. New Measures of Preferred Direction 54

convolutions under the most common model (the von Mises distribution) are not feasible

as shown by Mardia & Jupp (2000) and Jammalamadaka & SenGupta (2001). Under such

limitations, a general theory for the new measure is not easy, thus we shall restrict our

discussion to data which comes from a distribution whose range is quite concentrated around

a single mode. That is, data from concentrated distributions whose probability of a single

observation wrapping is essentially zero.

In general, we shall obtain the distributional properties of our new measures using parametric

and nonparametric bootstrap methods. See Chapter 5 for more details.

3.6.2 Approximations of von Mises distribution VM(µ, κ)

The Wrapped Normal distribution WN (µ, ρ) is obtained by wrapping the N(µ, σ2) distri-

bution onto the circle, where we select σ2 = −2 log ρ, which implies that, ρ = exp [− σ2

2
].

But for large κ, in particular κ ≥ 2 (Fisher, 1987),

VM(µ, κ) ∼̇ N(µ,
1

κ
) ∼̇ WN(µ, exp [− 1

2κ
]) (3.1)

This approximation is very accurate for κ > 10, Mardia & Jupp (2000, p. 41).

However, more generally, any von Mises distribution can be approximated by a Wrapped

Normal distribution. Kent (1978) showed that the following approximation holds to a higher

order in κ, that is,

fV M(θ; µ, κ) − fWN(θ; µ, A(κ)) = O(κ−
1
2 ) κ −→ ∞. (3.2)

where fV M(θ; µ, κ) and fWN(θ; µ, A(κ)) denote the densities of the von Mises distribution

VM(µ, κ) and the approximating Wrapped Normal distribution WN(µ, A(κ)), respectively.

Note A(κ) = I1(κ)
I0(κ)

, where I0(κ) & I1(κ) are Modified Bessel Functions of the first kind

of order zero and one respectively (Abramowitz and Stegun, 1965). Mardia & Jupp (2000,
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pp.37-38) derive this approximation as a first-order approximation for large κ by equating

their first trigonometric moments. Numerical studies by Stephens (1963) verified that the

approximation is quite satisfactory for intermediate values of κ.

Figure 3.10 shows the plots of the estimated variance against the concentration parameter, κ;

when a von Mises distribution is estimated by a Normal and a Wrapped Normal distribution

for a single observation. Note σ̂2 = − 2log A(κ) and σ̂2 = 1
κ

are the estimates of σ2

when VM (µ , κ) is approximated by WN (µ , ρ = A(κ)) and N (µ , 1
κ
) respectively. The

approximations are quite close for κ ≥ 10. Hence, either choice suffices.

Figure 3.10: Plot of σ̂2 = [−2logA[κ]] , and σ̂2 = 1
κ

vs. Concentration Parameter (κ)

for a single observation
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Theorem 3.6.1

For a sample from a von Mises distribution with κ ≥ 2, the circular Hodges-Lehmann

estimator θ̂c
HL = circular median

(
θ̄c
1,1, θ̄c

1,2, . . . , θ̄c
n−1,n, θ̄c

n,n

)
, where θ̄c

ij is the pairwise

circular mean of observations θi and θj defined as θ̄c
ij =

[
tan−1

(
sin θi + sin θj

cos θi + cos θj

)]
, i ≤ j ≤ n,

is approximately distributed as VM
(
θc
HL, 3nκ

π

)
. Figure 3.11 shows how the WN and N

approximations are related for various VM distributions.

Figure 3.11: Plot of σ̂2 =
[
−2logA[3κ

π
]
]
, and σ̂2 = π

3κ
vs. Concentration Parameter (κ)

for a pairwise circular mean.
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To prove this theorem requires the three lemmas in Section 3.6.4. To motivate the lemmas,

suppose that θ1, . . ., θn is an independent random sample from the von Mises distribution
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V M(µ, κ), with density given by equation (1.1). For κ ≥ 2, the V M(µ, κ) distribution is

effectively a N(µ, σ2) distribution with σ2 = 1
κ

(Fisher, 1987). See Mardia (1972, Section

3.9) for more details.

3.6.3 Probability of Wrapping

In order to avoid problems with the process of unwrapping not being reversible, consider

data from the von Mises where the equivalent WN distribution has virtually no probability

of containing values that will need to be wrapped from outside the original range. Suppose

that θ1, . . ., θn is an independent random sample from the von Mises distribution V M(µ, κ),

the probability of a single observation being wrapped from outside the original range is given

by

Prob[One Observation Being Wrapped]

= Prob [θ < µ − π] + Prob [θ > µ + π]

= 1 − [2 ∗ (F (π; µ, σ) − F (0; µ, σ))] . (3.3)

Figure 3.12 below, is the density function of von Mises with mean π
2
, and concentration

parameter κ = 2. Notice that the area under the curve beyond the two endpoints π
2
− π and

π
2

+ π, is close to zero. We shall limit our discussion in these sections to such distributions.
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Figure 3.12: Split circle: b = π
2

+ π, −b = π
2
− π
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pi/2

+

b-b

From Figure 3.12, we see that for symmetric unimodal distributions with high concentrations

about the mode, the probability of wrapping is very close to zero. Note the probability of n

independent observations being wrapped from outside the original range is

Prob[At least One Observation Being Wrapped]

= 1 − Prob[None Wrapped]

= 1 − [2 ∗ (F (π; µ, σ) − F (0; µ, σ))]n , where n is the sample size. (3.4)

Figure 3.13 is obtained by evaluating this probability for different values of n and various

dispersions. Note that probability of at least one observation being wrapped tends to zero

as κ increases, with probability being close to zero for κ ≥ 2. Thus for data from the von

Mises distribution, with observations limited to a smaller portion of the circle, we claim that

the probability of wrapping, as σ decreases or κ increases, will be sufficiently small allowing

some theoretical work to be done on the new measure.
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Figure 3.13: Plot of Probability of Wrapping vs. Sample size
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3.6.4 Circular and Linear point estimates for κ ≥ 2

Lemma 3.6.1

Consider a sample of size 2. Let θ1 and θ2 be the ordered observations. Without loss of

generality, we can describe θ1 and θ2 as θ and θ + φ respectively, where φ < π, see Figure

3.14. Then for an appropriately chosen range (where the endpoints do not lie in the arc

defined by φ), θ̄linear = θ̄circular, where

θ̄linear = θ +
1

2
φ and θ̄circular = tan−1

[
sinθ + sin(θ + φ)

cosθ + cos(θ + φ)

]
.
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Figure 3.14: Adjacent angles
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where b1 = θ, b2 = φ , A1 = (cos(θ), sin(θ)) & A2 = (cos(θ + φ), sin(θ + φ)),

in Cartesian coordinates.

Proof of Lemma 3.6.1

Recall the following trigonometric identities:

cos(θ + 1
2
φ) = cos(θ)cos(1

2
φ) − sin(θ)sin(1

2
φ)

sin(θ + 1
2
φ) = cos(θ)cos(1

2
φ) + sin(θ)sin(1

2
φ)

2cos2(1
2
φ) = (1 + cos(φ))

sin(φ) = 2sin(1
2
φ)cos(1

2
φ)

Now sin(θ + φ) + sin(θ)

= (sin(θ)cos(φ) + cos(θ)sin(φ)) + sin(θ)

= sin(θ)(1 + cos(φ)) + cos(θ)sin(φ)

= 2sin(θ)cos2(
1

2
φ) + 2cos(θ)sin(

1

2
φ)cos(

1

2
φ)
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= 2cos(
1

2
φ)

[
sin(θ)cos(

1

2
φ) + cos(θ)sin(

1

2
φ)

]

= 2cos(
1

2
φ)

[
sin(θ +

1

2
φ)

]

Next cos(θ + φ) + cos(θ)

= (cos(θ)cos(φ) − sin(θ)sin(φ)) + cos(θ)

= cos(θ)(1 + cos(φ)) − sin(θ)sin(φ)

= 2cos(θ)cos2(
1

2
φ) − 2sin(θ)sin(

1

2
φ)cos(

1

2
φ)

= 2cos(
1

2
φ)

[
cos(θ)cos(

1

2
φ) − sin(θ)sin(

1

2
φ)

]

= 2cos(
1

2
φ)

[
cos(θ +

1

2
φ)

]

Thus
sin(θ + φ) + sin(θ)

cos(θ + φ) + cos(θ)

=
2cos(1

2
φ)

[
sin(θ + 1

2
φ)

]

2cos(1
2
φ)

[
cos(θ + 1

2
φ)

]

=

[
sin(θ + 1

2
φ)

]
[
cos(θ + 1

2
φ)

]

= tan(θ +
1

2
φ)

Therefore, θ̄circular = tan−1
[
tan(θ +

1

2
φ)

]
= (θ +

1

2
φ) = θ̄linear.

Lemma 3.6.2

Suppose that θ1, · · · , θn is a set of concentrated observations. The circular Mardia median

matches the linear median for an appropriately selected range of angles, with the endpoints

of the range chosen to be at the antimedian.
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Proof of Lemma 3.6.2

If n is even, then by definition, the circular median (P) is the circular mean (which is

equivalent to the linear average by Lemma 3.6.1) of the two central observations such that

half of the observations (n
2
) lie on either side of the diameter (PQ) and more observations

are closer to P than to Q. See Figure 3.15a. If we select the range of our observations so

that the antimedian (Q) is the dividing point, we can assign ranks to these observations

starting from either side of Q. The linear median is the average of the observations whose

corresponding ranks are n
2

and n
2

+ 1. This is equivalent to the circular median (P), which

will have n
2

observations in each half circle.

Similarly, if n is odd, the circular median (P) is the central observation such that half of the

observations ( (n−1)
2

) lie on either side of the diameter (PQ) and more observations are closer

to P than to Q. See Figure 3.15b. Again if we cut the circle at the antimedian (Q), we

can assign ranks to these observations starting from either side of Q. The linear median is

the observation whose corresponding rank is (n+1)
2

. This is equivalent to the circular Mardia

median (P), which has equal numbers of observations in each half circle.

Note this result implies that the circular Mardia median is a linear median for the data from

an appropriately chosen interval. It does not imply that any linear median will satisfy the

definition of the circular median.
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Figure 3.15: Calculation of median direction
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Lemma 3.6.3

For a suitably chosen range of the observations, the circular median of the pairwise circular

means (θ̂c
HL) is equivalent to the linear Hodges-Lehmann estimate (θ̂l

HL), where

θ̂c
HL = circular median

(
θ̄c
1,1, θ̄c

1,2, · · · , θ̄c
n−1,n, θ̄c

n,n

)
,

with θ̄c
ij =

[
tan−1

(
sin θi + sin θj

cos θi + cos θj

)]

and θ̂l
HL = median

(
θ̄l
1,1, θ̄l

1,2, · · · , θ̄l
n−1,n, θ̄l

n,n

)
, with θ̄l

ij =

(
θi + θj

2

)
.

Proof of Lemma 3.6.3

Obtained by combining the results of Lemma 3.6.1 and Lemma 3.6.2.
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Proof of theorem 3.6.1

Suppose θ1, · · · , θn are i.i.d V M(µ, κ). θ̂c
HL is obtained as the circular median of the pairwise

circular means. By Lemma 3.6.3, θ̂c
HL = θ̂l

HL. Using Randles & Wolfe (1979, p. 224-226),

it can be shown that
(
θ̂l

HL − θl
HL

)
is distributed approximately as N

(
0, 1

12n[
∫

f2(x)dx]
2

)
,

where 12n [
∫

f 2(θ, µ, κ)dθ]
2

= 3κn
π

. To show this, recall (Section 3.6.2) that for large κ,

a von Mises distribution with mean µ and concentration parameter κ can be approximated

by a N(µ, 1
κ
) distribution, Mardia & Jupp(2000, p.41) The density function of N(µ, 1

κ
) is

given by

f(θ, µ, κ) =
1√
2π 1

κ

exp[
−(θ − µ)2

2
κ

].

Thus
∫

f 2(θ) dθ

=
∫ 1

2π
κ

exp[
−(θ − µ)2

1
κ

]dθ

=
1
√

2π
κ

∫ (
1
2κ

) 1
2

√
2π

(
1
2κ

) 1
2

exp

[
−(θ − µ)2

1
κ

]
dθ

=

(
1
2κ

) 1
2

√
2π
κ

=
1

2

[
κ

π

] 1
2

This implies that 12n
[∫

f 2(θ, µ, κ)dθ
]2

= 12n
1

4

κ

π
=

3nκ

π
.

Next, recall if X is a random variable on the line, the corresponding random variable of the

wrapped distribution is given by Xw = X(mod2π). Thus a Wrapped Normal variate with

mean µ and mean resultant length ρ = exp[−σ2

2
], is obtained by wrapping a Normal variate

with mean µ and variance σ2. Consequently, θ∗ =
(
θ̂l

HL − θl
HL

)
mod 2π, is approximately

distributed as Wrapped Normal with mean 0 and mean resultant length is ρ = exp
[
−π
6nκ

]
,
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since σ = 3nκ
π

, which can be approximated by von Mises with mean 0 and concentration

parameter

A−1
[

exp
( −π

6nκ

)]
' 3nκ

π
. Thus θ̂c

HL
.∼ V M

(
θc

HL, A−1
[
exp

[ −π

6nκ

]])
.

That is θ̂c
HL

.∼ V M
(
θc

HL,
3nκ

π

)
.

Figure 3.16: Distribution of Circular Hodges-Lehmann Estimator for κ = 2
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Note from Figure 3.16, that as the sample size increases, the distribution of the circular

Hodges-Lehmann estimator becomes more concentrated at the single mode.

3.7 Influence Functions for Measures of Preferred Di-

rection

The study of the stability of parameter estimates for directional data dates back at least to

Watson (1967). Wehrly & Shine (1981) and Watson (1986) evaluated the robustness of the

circular mean via an influence function introduced by Hampel (1968, 1974) and concluded

that the estimator is somewhat robust to fixed amounts of contamination and to local shifts,

since its influence function is bounded. On the other hand, the influence curve for the circular

median has a jump at the antimode. This implies that the circular median is sensitive to

rounding or grouping of data (Wehrly & Shine,1981). Ko and Guttorp (1988) introduced the

notion of scale-standardized-bias (or SB) robustness to adjust for the concentration of the

data on the sphere. They showed that the circular mean is not SB-robust with their scaling.

He and Simpson (1992) studied various measures of stability of estimates on the sphere.

Consider a circular distribution F which is unimodal and symmetric about the unknown

direction µ0. The influence functions of the circular mean and circular median are given

below in Theorems 3.7.1 and 3.7.2, respectively. These results are stated without proof in

Wehrly and Shine (1981), hence we provide their proofs in Appendix B.

Theorem 3.7.1:

The influence function (IF) for the circular mean direction is given by

IF (θ) =
sin(θ − µ0)

ρ
, (3.5)

where ρ is the mean resultant length. For any given value of ρ, this influence function and
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its derivative are bounded by ±ρ−1.

Theorem 3.7.2:

Without loss of generality for notational simplicity, assume that µ ε [0, π]. The influence

function for the circular median direction is given by

IF (θ) =
1
2
sgn(θ − µ0)

[f(µ0) − f(µ0 + π)]
, (µ0 − π < θ < µ0 + π), (3.6)

where sgn(x) = 1, 0, or −1 as x > 0, x = 0, or x < 0, respectively.

Remark: Both the influence functions of the circular mean and circular median are bounded,

this implies that observations with large circular distance from the “center” cannot have an

arbitrarily large effect on the estimates. However, unlike the influence function of the circular

mean which is continuous, the influence function of the circular median has jumps at the

antimode. The new measure, the circular Hodges-Lehmann estimate has a bounded influence

function, see Theorem 3.7.3.

Theorem 3.7.3

For a sample from a von Mises distribution with a limited range of concentrated parameter

values, κ ≥ 2, the influence function of the circular Hodges-Lehmann estimator (θ̂c
HL) is

given by

IF (θ) =
F (θ) − 1

2(
κ
4π

) 1
2

, (3.7)

where F(.) is the distribution of θi, i = 1, 2, · · · , n. Note that this influence function is a

centered and scaled cdf and is therefore bounded. Note that, it is also discontinuous at the

antimode, like the influence function of the circular median (see Theorem 3.7.2).

Proof of Theorem 3.7.3

Assume that θi and θj are iid, with distribution function F (θ). Let Φ = (θi + θj)

2
, i ≤ j.
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By Lemma 1, Φ is equivalent to the pairwise circular mean of θi and θj. The functional of

θ̂c
HL is the Pseudo-Median Locational functional F = F ∗−1(1

2
), where

F ∗(φ) = P (Φ ≤ φ) =
∫

F (2φ − θ)h(θ)dθ,

Hettmansperger & McKean (1998, p.3,10-11). Since by Lemma 3.5.3, θ̂c
HL = θ̂l

HL, it can

be shown that

IF (θ) =
F (θ) − 1

2∫
f 2(θ)dθ

,

(Hettmansperger & McKean,1998, p. 40-41). Thus, the influence function of the circular

Hodges-Lehmann estimator is obtained as

IF (θ) =
F (θ) − 1

2∫
f 2(θ)dθ

=
F (θ) − 1

2(
κ
4π

) 1
2

,

and for large κ, f(α) =

√√√√
(

1
2π
κ

)
exp

(−(α − µ)2

2
κ

)
so

∫
f 2(α) dα

=
∫ 1

2π
κ

exp[
−(α − µ)2

1
κ

]dα

=
1

2

[
κ

π

] 1
2

.

Figure 3.17 are plots of the influence functions of the circular mean, circular median and

the circular Hodges-Lehmann estimators for preferred direction for various concentration

parameters. Notice that all the estimators have curves which are bounded. Also, as the

concentration parameter (κ) increases, the influence function of the circular median stays

relatively unchanged followed by the circular Hodges-Lehmann estimator. This is similar to

the linear case.
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Figure 3.17: Influence Functions for 1 ≤ κ ≤ 8
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Also, as κ increases, the influence function for all the three measures decreases, however,

overally the influence function for the mean is largest for angles closest to π
2

radians from

the preferred direction. The maximum influence for the mean occurs at π
2

or −π
2

from the

mode for all κ, while for both the median and HL, the maximum occurs uniformly for a

range away from the preferred direction. Overally, HL seems like a compromise between the

mean and the median.

3.7.1 Position of an Outlier on the Influence curve of the mean,

median and HL2

Figure 3.18: Data with a Single Outlier
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Consider the following example of Frog migration taken from Collett (1980), shown in Figure

3.18a. For this data the circular mean is − 0.977(1240), R̄ is 0.725, thus κ̂ = 2.21 for

the best fitting von Mises. (Table A.3, Fisher, 1993, p. 224). The circular median is −
0.816(133.250) and circular Hodges-Lehmann is − 0.969(124.50). Using κ̂ = 2.21, Figure
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3.18b gives the influence curves of the mean, median and HL2. Note that the measure least

influenced by observation x is the circular mean, since x is nearer to the antimode. However,

the circular median is downweights by the observations nearer to the center of the data

followed by HL2. The influence of an outlier on the sample circular median is bounded at

either a constant positive or a constant negative value, regardless of how far the outlier is

from the center of the data. On the other hand, the HL2 estimator is influenced less by

observations near the center, and accounts for outlier. The influence curve for the circular

mean is similar to that of the redescending Φ function, See Andrews et. al. (1972) for details

regarding redescending functions.

3.8 Asymptotic Relative Efficiency

For a fixed underlying distribution, let θ̃ and θ̂ be two consistent estimators of the preferred

direction, then the relative efficiency (RE) θ̃ relative to θ̂ is

RE
(
θ̃; θ̂

)
= Variance of θ̂

Variance of θ̃
.

This is interpreted as, θ̂ needs RE times as many observations as θ̃ for approximately the

same precision. The asymptotic relative efficiency (ARE) is the limit of the RE as the sample

size n −→ ∞. More generally, the ARE of an estimator θ̃ relative to another estimator θ̂

is defined by

ARE
(
θ̃; θ̂

)
= Asymptotic Variance of θ̂

Asymptotic Variance of θ̃
.

This notion of efficiency is also known as Pitman efficiency, (Fisher, 1982).

We shall use the general definition of ARE to obtain the ARE for the measures of preferred

direction: circular mean, circular median and circular Hodges-Lehmann estimator.
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Theorem 3.8.1

The ARE of the circular median relative to the circular mean is 2
ρπ

[
1 − e−2κ

]2
for the

von Mises distribution.

Proof of Theorem 3.8.1

Recall for circular mean that ,

IF (θ) =
1

ρ
sin(θ − µ0). This implies IF 2(θ) =

1

ρ2
sin2(θ − µ0).

Therefore the Asymptotic Variance for the circular mean

E
[
IF 2(θ)

]

=
1

ρ2

∫
sin2(θ − µ0)dF (θ − µ0)

=
1

ρ2

A(κ)

κ
=

1

ρκ
,

since E [sin(θ − µ0)] = 0 & Var [sin(θ − µ0)] ' A(κ)
κ

, (Mardia & Jupp, 2000, p.84,

87) and ρ = A(κ).

Next, for the circular median

IF (θ) =
1
2
sgn(θ − µ0)

[f(µ0) − f(µ0 + π)]

=





− 1
2

[f(µ0) − f(µ0 + π)]
if (θ − µ0) < 0

1
2

[f(µ0) − f(µ0 + π)]
if (θ − µ0) > 0 .

Therefore, the Asymptotic variance of the circular median is

E
[
IF 2(θ)

]

=
1

2

[ −1

2 [f(µ0) − f(µ0 + π)]

]2

+
1

2

[
1

2 [f(µ0) − f(µ0 + π)]

]2

=
1

4 [f(µ0) − f(µ0 + π)]2
.

But f(µ0) = eκ

2πI0(κ)
, and f(µo + π) = e−κ

2πI0(κ)
, from Jammalamadaka & SenGupta (2001,

p.36). Therefore f(µo) − f(µ0 + π) = 1
2πI0(κ)

(eκ − e−κ) . This implies

4 [f(µ0) − f(µ0 + π)]2



B. Sango Otieno Chapter 3. New Measures of Preferred Direction 73

=
4

4π2I2
0 (κ)

(
eκ − e−κ

)2

=
1

π2

[
eκ√
(2πκ)

]2

(
eκ − e−κ

)2
, since I2

0 (κ) =


 eκ

√
(2πκ)




2

=
1

π2
[

e2κ

2πκ

]
(
eκ − e−κ

)2

=
2κ

π

(eκ − e−κ)
2

e2κ

=
2κ

π

(
1 − e−2κ

)2
.

Thus the Asymptotic variance of circular median is π
2κ

(1 − e−2κ)
−2

. Therefore

ARE
(
θ̃c

med ; θ̄c
mean

)

=
var(θ̄c

mean)

var(θ̃c
med)

=
1

ρκ

2κ

π

(
1 − e−2κ

)2

=
2

ρπ

(
1 − e−2κ

)2
.

Note that as κ −→ ∞, ARE
(
θ̃c

med; θ̄c
mean

)
−→ 2

π
, since ρ −→ 1 and e−2κ −→ 0.

This is equivalent to the linear case, where the Asymptotic Relative efficiency of the median

relative to the mean at the normal distribution is 0.637, Hollander & Wolfe (1999, p.105).

Theorem 3.8.2

The ARE of the circular Hodges-Lehmann estimator relative to the circular mean is 3
ρπ for

the von Mises distribution.

Proof of Theorem 3.8.2

From Theorem 3.8.1, the Asymptotic variance for the circular mean is 1
κρ

.

To obtain the Asymptotic variance for circular Hodges-Lehmann estimator we use

IF (θ) =
F (θ) − 1

2(
κ
4π

) 1
2

,
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to obtain

IF 2(θ) =

[
F (θ) − 1

2

]2

(
κ
4π

) .

Hence

Asymptotic Variance of HL2

= E
[
IF 2(θ)

]

=
4π

κ

∫ (
F (θ) − 1

2

)2

dF (θ)

=
4π

κ

1

12

=
π

3κ
,

using
∫ (

F (θ) − 1
2

)2
dF (θ) = 1

12
, (Hettmansperger, 1984, p. 46). Therefore

ARE
(
θ̃c

HL; θ̄c
mean

)

=
var(θ̄c

mean)

var(θ̃c
HL)

=
1

ρκ

3κ

π

=
3

ρπ
.

Note that as κ −→ ∞, ARE
(
θ̃c

HL; θ̄c
mean

)
−→ 3

π
, since ρ −→ 1. This is equivalent to

the linear case, where the Asymptotic Relative efficiency of the Hodges-Lehmann estimator

relative to the mean at the normal distribution is 0.955, Hollander & Wolfe (1999, p.104).
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Theorem 3.8.3

The ARE of the circular median relative to the circular Hodges-Lehmann estimator is

2
3

(
1 − e−2κ

)2
for the von Mises distribution.

Proof of Theorem 3.8.3

From Theorems 3.8.1 and 3.8.2, the asymptotic variance of the circular median and the

circular Hodges-Lehmann estimator are π
2κ

(1 − e−2κ)
−2

and π
3κ

respectively. Therefore

ARE
(
θ̃c

med; θ̃c
HL

)

=
var(θ̃c

HL)

var(θ̃c
med)

=
2κ

π

(
1 − e−2κ

)2
[

π

3κ

]

=
2

3

(
1 − e−2κ

)2
.

Note that as κ −→ ∞, ARE
(
θ̃c

HL; θ̃c
med

)
−→ 2

3
, since e−2κ −→ 0. This is equivalent to

the linear case, where the ARE for the median relative to HL at the normal distribution is

0.667, Manoukian (1986, p. 194-195).



Chapter 4

Simulation Study

4.1 Overview

The simulation study was designed to compare the three measures of preferred direction

for circular data; circular mean, circular median, and the circular Hodges-Lehmann estima-

tor (using n(n+1)
2

pairwise means), referred to from now on as the mean, median and HL

respectively.

10000 samples of sizes 5, 6, 7, 8, 9, 10, 11, 15, 18, 20 from the distributions with 4

dispersions around the circle were obtained. For each sample, the three measures were

computed. The results were summarized using the following measures: Circular mean of the

10000 samples given by equation (1.7), 95% Empirical Confidence Interval (the central 95%

of the 10000 values), Circular Variance (CV) given by equation (1.8), which is sample mean

resultant length, Circular Mean Deviation (CMD) given by equation (1.9), and Circular

Median Absolute Deviation (CMAD) given by equation (1.10). Three types of data sets

were considered and are illustrated by Figures 4.1 and 4.2.

76
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Figure 4.1: Uncontaminated von Mises, VM(µ,κ)
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Figure 4.1 is a plot of a von Mises density with mean µ and concentration parameter κ.

Data generated from such a distribution alone is called uncontaminated data in our study.

The value of µ was set equal to zero without loss of generality, while the values of κ in the

study were 1, 2, 4 & 8.

Two types of contaminated data, see Figure 4.2, were considered in the study. These result

from contamination in spread and contamination in location. For contamination in spread,

data were generated with probability (1 − ε) from a von Mises distribution and with

probability ε from Uniform (−π, π) distribution. In case of contamination in location, data

were generated with probability (1 − ε) from a von Mises distribution and with probability

ε from a von Mises distribution with mean µ∗, where µ∗takes values π
8
, π

4
& π

2
, and constant

concentration. The fractions of contamination, ε, considered were 0, 0.1, 0.2 & 0.3.
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Figure 4.2: Contaminated Data

(a): Contamination in spread: (1 − ε)V M & ε Uniform
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(b): Contamination in location: (1 − ε)V M(µ1, κ) & ε V M(µ2, κ)
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4.2 Uncontaminated Data

We now present the results for the uncontaminated data for which data was generated from

a von Mises distribution with mean zero and various concentration parameters.

4.2.1 Effect of Sample Size on the Mean, the Median and HL

The effect of sample size on the three measures of preferred direction: the mean, the median

and HL for data from an uncontaminated von Mises distribution is illustrated in Figure 4.3

for κ = 2. All measures appear unbiased. The mean has the narrowest confidence band,

followed closely by HL. The confidence bands for the median are widest over the whole range

of sample sizes considered as seen Figure 4.3(a). The confidence band for HL is sandwiched

between that of the mean and the median. In general, the confidence bands become narrower

as sample size increases for all the three measures.

In terms of circular variance, see Figure 4.3(b), the mean and HL compete favorably, on

the other hand, the median has the largest circular variance over the whole range of sample

sizes considered. Note that the circular variance of HL is sandwiched between the circular

variances of the mean and the median, but closer to that of the mean than to the median.

Circular variance decreases as the sample size increases for all measures.

Figure 4.3(c) shows that the median has the smallest circular mean deviation (CMD), this

is not surprising since CMD is designed to be smallest for the median. Note, however,

the CMD for the mean and HL are almost identical over the whole range of sample sizes

considered. Similarly, from Figure 4.3(d), we observe that the circular median absolute

deviation (CMAD) is smallest for the median and largest for the mean and HL over the

whole range of sample sizes considered. Similar results to Figure 4.3 were obtained for other

concentration parameters, See Appendix D, for the results of κ = 1, 4 & 8.
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Figure 4.3: Mean, Median and HL for VM(0,2)
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4.2.2 Effect of Concentration Parameter (κ) on the Mean, the

Median and HL

Effect of concentration parameter (κ) on the three measures of preferred direction: the

mean, the median and HL for data from uncontaminated von Mises is illustrated in Figure

4.4 for n = 20. All measures appear unbiased. The mean has the narrowest confidence

band, followed closely by HL. The confidence bands for the median are widest over the whole

range of κs considered, see Figure 4.4(a). The confidence band for HL is sandwiched between

that of the mean and the median. In general, the confidence bands become narrower as κ

increases for all the three measures.

In terms of circular variance, see Figure 4.4(b), the mean and HL compete favorably, on the

other hand, the median has the largest circular variance over the whole range of concentration

parameters considered. Note that the circular variance of HL is sandwiched between the

circular variances of the mean and the median, but closer to that of the mean than to

the median. Circular variance decreases as the concentration parameter increases for all

measures.

Figure 4.4(c) the three measures have circular mean deviation (CMD) that are almost iden-

tical over the whole range of concentration parameters considered. In the case of circular

median absolute deviation (CMAD), the median has the smallest CMAD followed closely by

the mean and HL (which are almost identical over the whole range of concentration param-

eters considered), see Figure 4.4 (d). Similar results to Figure 4.4 were obtained for other

sample sizes, See Appendix D, for the results of n = 10.
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Figure 4.4: Effect of κ on Mean, Median and HL for VM (0, κ), n = 20
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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4.3 Comparing Theoretical and Simulated Results for

HL

A sample from a von Mises distribution with mean µ and concentration parameter κ has a

mean resultant length ρ = A(κ) =
[

I1(κ)
I0(κ)

]
, Fisher (1993, p. 225). In Section 3.6, we

derived the distribution of HL, see Theorem 3.6.1.

θ̂c
HL ∼̇ VM

(
θc

HL,
3nκ

π

)

The concentration parameter is 3nκ
π

and the mean resultant length is ρ =
[

exp [ −π
6nκ

]
]
,

where n is the sample size.

Data was generated from von Mises distribution with mean zero and various concentra-

tion parameters, for various sample sizes. The concentration parameters considered were

κ = 2, 4 & 8 while the sample sizes were n = 5, 10 & 20. For each data set, we estimated

the mean resultant length from which we obtain an estimate of the concentration parameter

using Appendix A3 in Fisher (1993, p. 224).

Table 4.1 are the estimates (theoretical & observed from simulations) of the mean resultant

length and concentration parameters for the Hodges-Lehmann estimator. For example, the

entries in the first two rows of Table 4.1, are obtained as follows: theory mean resultant

length is equal to exp
[

−π
6(5)(2)

]
= 0.949 and theory concentration parameter is equal to

A−1
(

3(5)(2)
π

)
= 10.3. On the other hand observed mean resultant length is 0.923, then

using Appendix A3 in Fisher (1993, pp. 224), we obtain observed concentration parameter

as 6.95. For all the concentration parameters considered both the mean resultant length

and the concentration parameter for theory and observed match closely as the sample size

increases. In general, the approximations are better for large κ and large sample sizes.

Overall, the simulated results appear consistent with the theoretical results.
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Table 4.1: Theoretical and Simulated Mean Resultant Lengths and Concentration Parame-

ters for distribution of HL for various concentration parameters.

Sample Kappa Mean Resultant Concentration

Size (κ) Length Parameter

2 Theory∗ 0.949 10.3

Observed∗∗ 0.923 6.95

5 4 Theory 0.979 20.3

Observed 0.969 16.9

8 Theory 0.987 33.6

Observed 0.986 33.6

2 Theory 0.974 20.3

Observed 0.959 12.8

10 4 Theory 0.987 33.6

Observed 0.985 33.6

8 Theory 0.993 71.7

Observed 0.993 71.7

2 Theory 0.987 33.6

Observed 0.980 25.3

20 4 Theory 0.993 71.7

Observed 0.992 62.7

8 Theory 0.997 167

Observed 0.997 167

* Theory from Theorem 3.6.1

** Observed based on 10000 simulations
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4.4 Contamination in Spread

In the second type of data considered, data was generated with probability ε from the

Circular Uniform and with probability (1 − ε) from von Mises distribution with mean zero

and various concentration parameters. The proportion of contamination (ε) considered were

0, 0.1, 0.2 & 0.3.

4.4.1 Effect of Sample Size on the Mean, the Median and HL

The effect of sample size on the three measures of preferred direction: the mean, the

median and HL for data from contaminated von Mises is illustrated in Figure 4.5 for

κ = 2, & ε = 0.3. All measures appear unbiased. The mean has the narrowest con-

fidence band, followed closely by HL. The confidence bands for the median are widest over

the whole range of sample sizes considered, see Figure 4.5(a). The confidence band for HL

is generally sandwiched between that of the mean and the median. The confidence bands

become narrower as sample size increases for all the three measures, but are in general wider

than in the no contamination case in Figure 4.3(a).

In terms of circular variance, in Figure 4.5(b), the mean is the smallest followed by HL with

the median having the largest circular variance over the whole range of sample sizes consid-

ered. Note that the circular variance of HL is sandwiched between the circular variances of

the mean and the median. Circular variance decreases as the sample size increases for all

measures, but CV is much higher than in no the contamination case in Figure 4.3(b). Figure

4.5(c) shows that the median has the smallest circular mean deviation (CMD), followed by

the mean. HL has the largest CMD over most of the range of sample sizes considered. Simi-

larly, from Figure 4.5(d), we observe that the circular median absolute deviation (CMAD) is

smallest for the median and largest for the mean and HL. Similar results to Figure 4.5 were

obtained for other concentration parameters, See Appendix D, for the results of κ = 1, 4 & 8.



B. Sango Otieno Chapter 4. Simulation Study 86

Figure 4.5: Mean, Median and HL for 70%V M(0, 2) & 30% Uniform, ε = 0.3
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(c) Plot of CMD vs. Sample Size
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4.4.2 Effect of Concentration Parameter (κ) on the Mean, the

Median and HL

The effect of the concentration parameter (κ) on the three measures of preferred direction:

the mean, the median and HL for data from contaminated von Mises is illustrated in Figure

4.6 for ε = 0.3 & n = 20. All measures appear unbiased. The mean has the narrowest

confidence band, followed closely by HL. The confidence bands for the median are widest

over the whole range of κs considered, see Figure 4.6(a). The confidence band for HL is

sandwiched between that of the mean and the median. In general, the confidence bands

become narrower as κ increases for all the three measures.

In terms of circular variance, the mean and HL compete favorably (Figure 4.6(b)), while

the median has the largest circular variance over most of the range of concentration param-

eters considered. Note that the circular variance of HL is sandwiched between the circular

variances of the mean and the median. Circular variance decreases as the concentration

parameter increases for all measures.

Figure 4.6(c) shows the three measures have circular mean deviation (CMD) that are almost

identical over most of the range of concentration parameters considered. In the case of

circular median absolute deviation (CMAD), the median has the smallest CMAD followed

closely by the mean and HL (which are almost identical over the whole range of concentration

parameters considered), see Figure 4.6(d). Note that both the median and HL have smaller

CMD and CMAD for κ ≥ 6 compared to the mean. Similar results to Figure 4.6 were

obtained for other sample sizes, See Appendix D, for the results of n = 10.
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Figure 4.6: Mean, Median and HL for 70%VM (0, κ) & 30%Uniform, ε = 0.3 & n = 20
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(a) Point Estimate and 95% C.I. vs. Conc. Parameter
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(b) Circular Variance vs. Conc. Parameter 

 

 

2 4 6 8

0.
05

0.
10

0.
15

 

 

2 4 6 8

0.
05

0.
10

0.
15

HL
Median
Mean

Concentration Parameter

C
irc

ul
ar

 M
ea

n 
D

ev
ia

tio
n

2 4 6 8

0.
7

0.
8

0.
9

1.
0

1.
1

(c) Circular Mean Dev. vs. Conc. Parameter 

 

 

2 4 6 8

0.
7

0.
8

0.
9

1.
0

1.
1

 

 

2 4 6 8

0.
7

0.
8

0.
9

1.
0

1.
1

HL
Median
Mean

Concentration Parameter

C
irc

ul
ar

 M
ed

ia
n 

Ab
so

lu
te

 D
ev

ia
tio

n

2 4 6 8

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(d) Circular Median Absolute Dev. vs. Conc. Parameter
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4.4.3 Effect of increasing contamination in spread on the Mean,

the Median and HL

The effect of increasing contamination in spread on the three measures of preferred direction:

the mean, the median and HL for data from contaminated von Mises is illustrated in Figure

4.7 for κ = 2, & n = 20. All measures appear unbiased. The mean has the narrowest

confidence band, followed closely by HL. The confidence bands for the median are widest

over the whole range of sample sizes considered, see Figure 4.7(a). The confidence band

for HL is sandwiched between that of the mean and the median. In general, the confidence

bands become wider as the proportion of contamination increases for all the three measures.

In terms of circular variance, in Figure 4.7(b), the mean has the smallest followed by HL

with the median having the largest circular variance over the whole range of proportion

of contamination considered. Note that the circular variance of HL is sandwiched between

the circular variances of the mean and the median, but closer to that of the mean than to

the median. Circular variance increases as the amount of contamination increases for all

measures.

Figure 4.7(c) shows that the median has the smallest circular mean deviation (CMD), fol-

lowed by the mean and HL (which are almost identical) the whole range of amount of

contamination considered. Similarly, from Figure 4.7(d), we observe that the circular me-

dian absolute deviation (CMAD) is smallest for the median and largest for the mean and

HL over most of the range of amount of contamination considered. However, the CMAD

for the three measures is almost identical when the proportion of contamination greater or

equal 0.25. Note that in general, both CMD and CMAD increase as the proportion of con-

tamination increases for all the three measures. Similar results to Figure 4.7 were obtained

for other concentration parameters, See Appendix D, for the results of n = 10.
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Figure 4.7: Effect of increasing the spread on Mean, Median and HL, for κ = 2, & n = 20
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4.5 Contamination in Location

The final type of data was generated with probability (1 − ε) from von Mises distribution

with mean zero and with probability ε from von Mises distribution with mean µ∗, where

µ∗ take values π
8
, π

4
& π

2
, and various concentration parameters respectively. The proportions

of contamination considered were 0, 0.1, 0.2 & 0.3.

4.5.1 Effect of Sample Size on the Mean, the Median and HL

The effect of sample size on the three measures of preferred direction: the mean, the median

and HL for data from contaminated von Mises is illustrated in Figure 4.8 for κ = 2. Notice

that now since the data does not have mean 0, the estimates of preferred direction have

shifted to reflect this. The confidence bands becomes narrower as sample size increases for

all the three measures, with the mean having the narrowest followed closely by HL. The

median has the widest confidence band over the whole range of sample sizes considered, see

Figure 4.8(a).

In terms of circular variance, in Figure 4.8(b), the mean and HL have the smallest while,

the median has the largest circular variance over the whole range of sample sizes considered.

The mean and HL are virtually identical now for all samples. Circular variance decreases as

the sample size increases for all measures.

Figure 4.8(c) shows that the median has the smallest circular mean deviation (CMD), fol-

lowed by the mean and HL (which are almost identical) over most of the range of sample

sizes considered. Similarly, from Figure 4.8(d), we observe that the circular median absolute

deviation (CMAD) is smallest for the median and largest for the mean and HL over the

whole range of sample sizes considered. Similar results to Figure 4.8 were obtained for other

concentration parameters, See Appendix D for the results of κ = 1, 4 & 8.
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Figure 4.8: Mean, Median and HL for VM (0, 2) & VM(π
4
, 2), ε = 0.3
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(b) Plot of Circular Variance Vs. Sample Size
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4.5.2 Effect of Concentration Parameter (κ) on the Mean, the

Median and HL

The effect of concentration parameter (κ) on the three measures of preferred direction: the

mean, the median and HL for data from contaminated von Mises is illustrated in Figure

4.9 for ε = 0.3, & n = 20. All measures reflect the shift in preferred direction through

contamination. The mean has the narrowest confidence band, followed closely by HL. The

confidence bands for the median are widest over the whole range of κs considered, see Figure

4.9(a). The confidence band for HL is sandwiched between that of the mean and the median,

but very close to the mean. In general, the confidence bands become narrower as κ increases

for all the three measures.

In terms of circular variance, see Figure 4.9(b), the mean and HL compete favorably, while

the median has the largest circular variance over most of the range of concentration param-

eters considered. Note that the circular variance of HL is sandwiched between the circular

variances of the mean and the median, but closer to that of the mean than to the median.

Circular variance decreases as the concentration parameter increases for all measures.

Figure 4.9(c) the three measures have circular mean deviation (CMD) that are almost iden-

tical over most of the range of concentration parameters considered. In the case of circular

median absolute deviation (CMAD), the median has the smallest CMAD followed closely by

the mean and HL (which are almost identical over the whole range of concentration param-

eters considered), see Figure 4.9(d). Note that both the median and HL have smaller CMD

and CMAD for κ ≥ 4 compared to the mean. Similar results to Figure 4.9 were obtained

for other sample sizes, See Appendix D, for the results of n = 10.



B. Sango Otieno Chapter 4. Simulation Study 94

Figure 4.9: Mean, Median and HL for 70%VM(0, κ) & 30%VM(π
4
, κ), ε = 0.3, n = 20
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(a) Point Estimate and 95% C.I. vs. Conc. Parameter
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(b) Circular Variance vs. Conc. Parameter 
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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4.5.3 Effect of contamination level on Mean, Median and HL, n=20

The effect of increasing the contamination level on the three measures of preferred direction:

the mean, the median and HL for data from contaminated von Mises is illustrated in Figure

4.10 for κ = 2, & n = 20. Notice the shift in preferred direction as the proportion of

contamination increases. The mean has the narrowest confidence band, followed closely by

HL. The confidence bands for the median are widest over the whole range of sample sizes

considered, see Figure 4.10(a). The confidence band for HL is sandwiched between that of

the mean and the median. In general, the confidence bands become wider as the proportion

of contamination increases for all the three measures.

In terms of circular variance, in Figure 4.10(b), the mean and HL compete favorably, while

the median has the largest circular variance over the whole range of proportion of contam-

ination considered. The mean and HL seem comparable depending on the percentage of

contamination. Circular variance increases as the amount of contamination increases for all

measures.

Figure 4.10(c) shows that the median has the smallest circular mean deviation (CMD),

followed by the mean and HL (which are almost identical) the whole range of amount of

contamination considered. Similarly, from Figure 4.10(d), we observe that the circular me-

dian absolute deviation (CMAD) is smallest for the median and largest for the mean and

HL over most of the range of amount of contamination considered. Similar results to Figure

4.10 were obtained for other concentration parameters and sample sizes, See Appendix D,

for the results of κ = 1, 4 & 8.
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Figure 4.10: Effect of contamination level on Mean, Median and HL, n=20
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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4.5.4 Effect of increasing amount of shift of mean on Mean, Me-

dian and HL, n=20

The effect of increasing amount of rotation on the three measures of preferred direction: the

mean, the median and HL for data from contaminated von Mises is illustrated in Figure

4.11 for κ = 2 & n = 20. Notice the shift in preferred direction as the proportion of

contamination increases. The mean has the narrowest confidence band, followed closely by

HL. The confidence bands for the median are widest over the whole range of sample sizes

considered, see Figure 4.11(a). The confidence band for HL is sandwiched between that of

the mean and the median. In general, the confidence bands become wider as the proportion

of rotation increases for all the three measures.

In terms of circular variance, in Figure 4.11(b), the mean and HL are the smallest , the

median has the largest circular variance over the whole range of rotation of mean considered.

Circular variance increases as the amount of rotation of the mean increases for all measures.

Figure 4.11(c) shows that the median has the smallest circular mean deviation (CMD),

followed by the mean and HL (which are almost identical) the whole range of amount of

rotation of the mean considered. Similarly, from Figure 4.11(d), we observe that the circular

median absolute deviation (CMAD) is smallest for the median and largest for the mean and

HL over most of the range of amount of rotation of the mean considered. Note that in

general, both CMD and CMAD increase as the proportion of contamination increases for

all the three measures. Similar results to Figure 4.11 were obtained for other concentration

parameters and sample sizes, See Appendix D, for the results of κ = 1, 4 & 8.
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Figure 4.11: Effect of Shifting the mean direction from 0 to π
2

on Mean, Median and HL,

κ = 2 & n = 20
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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4.5.5 Discussions and Conclusions on Relative Performance of

Mean, Median and HL

Different concentrations give similar results for both uncontaminated and contaminated data.

The mean, unlike in the linear case, does not break down in case of contaminated data, and

most results stay relatively consistent even as amount of contamination increases. Under

contamination of spread, contamination in direction and larger sample sizes, the HL estimate

is consistently ranked second. However, for different measures, the mean or median fluctuate

between best and worst. This result shows the robust behavior of the HL measure over a

variety of measures of dispersion.

Overall, the new measure (HL) is a good compromise between circular mean and circular

median. Relative performance of the mean and HL estimates are consistent for both uncon-

taminated and contaminated data. HL is less robust to outliers compared to the median,

however it is an efficient alternative, since it has a smaller circular variance. HL also provides

a robust alternative to the mean especially in situations where the model of choice of circular

data (the von Mises distribution) is in doubt.



Chapter 5

Bootstrap: Confidence Interval and

Test of Hypothesis

5.1 Introduction

The statistic used to estimate the population preferred direction is the sample preferred

direction. Because of sampling error, one cannot expect the sample preferred direction to

be exactly equal to the population preferred direction. Thus, it is important to provide

information about the accuracy of the estimate in addition to just a single point estimate.

This leads to the discussion of confidence intervals, the main topic of this Chapter.

Recall that a point estimate for a parameter is the value of a statistic that is used to estimate

the parameter. On the other hand, a confidence interval estimate for a parameter consists

of an interval of numbers together with a percentage that specifies how confident we are

that the parameter lies in the interval. The confidence percentage is called the confidence

level. For a fixed sample size, the greater the confidence level, the greater the width of the

confidence interval.

100
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Given a sample of circular data, a common reason for obtaining the sampling distribution

is to test some hypothesis. A hypothesis of interest could be for example, to test whether a

sample could reasonably have arisen from a population in which the preferred direction was

µ = µ0, some particular value.

If the primary concern is deciding whether a population preferred direction (µ) is different

from a specified value (µ0), then the alternative hypothesis should be µ 6= µ0. Such a

hypothesis is called a two-tailed test. One-tailed tests would occur if the primary interest

is deciding whether a population preferred direction is less than or greater than a specified

value. However, such one-tailed tests are not sensible in circular data, since there is no

natural ordering of observations, given the wrap-around nature of the data. Thus we shall

only discuss two-tailed tests in this Chapter.

Two-tailed hypothesis tests and confidence intervals are closely related. In a two-tailed

hypothesis test for a population preferred direction at the significance level α, the null

hypothesis is rejected if and only if the value of the preferred direction in the null hypothesis

lies outside the (1 − α)-level confidence interval for the population preferred direction.

Conversely, the null hypothesis is not rejected if and only if the value of the population

preferred direction in the null hypothesis lies within the (1 − α)-level confidence interval

for the population preferred direction.

Bootstrap methods (useful especially in situations where distributional assumptions are kept

to a minimum or when the distributional results for the quantity of interest do not exist)

have found enormous use in directional data. For example, a general approach to calculating

bootstrap confidence arcs (symmetric, equal-tailed and likelihood-based arcs, see Section 2.4)

based on pivots is proposed by Fisher and Hall (1989), improving on the method proposed
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by Durchame et al (1985), which allows only symmetric confidence arcs. In this Chapter,

we will use Fisher and Hall’s approach to obtain the bootstrap confidence intervals for our

new measure of preferred direction; the circular Hodges-Lehmann estimator.

In Chapter 3, we proposed an adaptation of the Hodges-Lehmann estimator for linear data

as an alternative estimate of preferred direction for circular data. However, since no simple

form of the distribution of the pairwise circular means exists for all κ values for both von

Mises and non von Mises data, (Mardia, 1972, p. 97-98, 126 and Mardia & Jupp, 2000, p.

69), we shall present both nonparametric and parametric bootstrap methods to estimate the

bootstrap confidence intervals for HL and compare them to those for the circular mean and

circular median. We hope to identify that confidence interval method which is best.

5.2 Bootstrap method

The bootstrap is a computer intensive resampling technique (introduced by Efron, 1979),

for estimating the variance, confidence intervals and bias of an estimator and sampling

distribution of a given statistic, with little or no assumptions about the distribution of

the statistic. The bootstrap method involves empirically estimating the entire sampling

distribution of θ̂, by examining the variation of the statistic within the sample. Note the

sampling distribution of θ̂ can be thought of as the distribution of values of the statistic

calculated from an infinite number of random samples of size n from a given population

(Mooney & Duval, 1993).

Two commonly used bootstrap approaches are nonparametric bootstrap and parametric

bootstrap. In the following sections, we shall explain how both of these approaches are used

and when they are most appropriate.



B. Sango Otieno Chapter 5. Bootstrap: Confidence Interval and Test of Hypothesis 103

5.2.1 Nonparametric Bootstrap

In the nonparametric bootstrap approach, we do not assume that we know the population

probability distribution. Thus from the observed data, we not only obtain an estimate of

the parameter of interest, θ̃, but we also obtain an estimate of the entire distribution from

which it came. Application of the method requires generation of bootstrap samples: samples

of size n drawn at random with replacement from the empirical distribution function Fn. Fn

is the distribution which assigns probability 1
n

to each observation θi for i = 1, 2, · · · , n.

For each bootstrap sample, an estimator θ̃∗ is computed. Given B bootstrap samples, the

empirical distribution of the B values of θ̃∗’s can be used to estimate the characteristics

of θ̃ including the variability, the mean, and quantiles for θ̃. Typically, B should between

50 − 200 to estimate the standard error of θ̃, and at least 500 to estimate the confidence

intervals around θ̃ (Efron & Tibshirani, 1993, Sec. 9).

5.2.2 Parametric Bootstrap

The idea for the parametric bootstrap was derived from the situation which we have a good

idea about the underlying distribution of the population from which the original data is

drawn, but do not know how to translate this knowledge into distributional results for the

estimate of the parameter of interest. The parametric bootstrap works as follows for our

situation. Assume that data (Θ) comes from a von Mises with mean µ and concentration

parameter κ. From the data, calculate the parameter estimates µ̂ and κ̂. Sample Θ∗,n

observations from von Mises with mean µ̂ and concentration parameter κ̂. Compute the

estimator, θ̃∗. Repeat this process B times. Use the B estimators to get information about

the distribution of θ̃∗. This approach allows for a wide variety of values for the new sample

observations. It uses and incorporates all known information about the observations into

the estimation of the distribution of the estimated parameter of interest. In addition, the

parametric bootstrap method tends to give smoother estimates of the distribution for small

sample sizes and for parameters of interest that use the numerical values of only a small
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number of data values (e.g. median, min, max).

Note that, if we define Monte Carlo methods to include sampling from estimated distri-

butions, parametric bootstrap may be viewed as a form of Monte Carlo. If the bootstrap

estimate is the limit of this Monte Carlo estimate as the number of bootstrap samples tends

to infinity, then the bootstrap samples give a Monte Carlo approximation to the bootstrap

estimate.

5.3 Algorithm for Bootstrapping HL

For the nonparametric bootstrap, the following four stages are used.

Stage 1. Resampling. Draw a random sample of n values with replacement, from original

sample denoted by S. Denote the bootstrap resample by S∗. Note that some of the original

sample values may appear more than once, and others not at all.

Stage 2. Calculation of bootstrap estimate. Compute n(n+1)
2

pairwise circular means.

Obtain θ̃∗, the circular Hodges-Lehmann estimate from all n(n+1)
2

values, as described in

Chapter 3, Section 3.4. Note that to estimate the distribution of the circular mean or

circular median, these statistics would be calculated from the bootstrap sample.

Stage 3. Repetition. Repeat Stages 1 and 2 to obtain a total of B bootstrap estimates

θ̃∗1, θ̃∗2, · · ·,θ̃∗B. An alternate point estimate of the circular Hodges-Lehmann estimator is the

circular mean of these B θ̃∗’s, and the corresponding resultant length is the length of the

mean vector of these θ̃∗’s.

Stage 4 (a): Confidence Intervals. Confidence Intervals can be calculated for the B

bootstrap estimates in a number of different ways. Three approaches proposed by Fisher &

Hall (1989) are presented below for a (1− α)100% Confidence Interval.
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Figure 5.1: Symmetric Arc Confidence Interval
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Technique 1: Symmetric Arc

This method uses the point estimate,

PD, as the middle of the interval

and selects the angle D∗ such that

(1 − α)B of the θ̃∗ values lie within

the interval. This approach is de-

signed for measures with an assumed

symmetric distribution.

Figure 5.2: Equal-Tailed Confidence Interval
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Technique 2: Equal-Tailed Arc

This method uses the point estimate

of preferred direction, PD, as the

middle observation. It then defines

the endpoints of the confidence inter-

val as the location where (1 − α)
2

of

the bootstrap values θ̃∗ lie between

the edge of the interval and PD.

This approach is flexible enough to

deal with skewed distributions.
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Figure 5.3: Likelihood-Based Arc Confidence Interval
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Technique 3: Likelihood-Based Arc

This method chooses the shortest arc

containing (1−α)B of the θ∗ values,

where D∗∗ is the width of the confi-

dence interval. This is the most flex-

ible method.

Stage 4 (b): Hypothesis Testing. This approach relies on the connection between

confidence intervals and tests of hypotheses. If µ ε (1 − α)100% confidence interval, then

fail to reject the null hypothesis that µ = µ0, else reject the null hypothesis in favor of the

alternative hypothesis that µ 6= µ0, at level α.

The parametric bootstrap replaces Step 1 with sampling from the assumed distribution to

obtain a sample of size n.

An S-Plus program to implement these procedures (both nonparametric and parametric) for

our new measures is given in Appendix E.

Preliminary study of Bias-Corrected intervals based on the Symmetric Arc, Equal-Tailed

Arc and Likelihood-Based Arc, showed no improvements from the uncorrected intervals. A
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detailed simulation study needs to be carried out for a variety of data sets to establish if

these methods (uncorrected and bias-corrected) lead to similar intervals for circular data.

5.4 Examples

In this Section, we compare the results of three bootstrap procedures (Symmetric-Arc, Equal-

Tailed Arc and Likelihood-Based Arc) and the Median Theory procedure on two data sets,

the frog data of Ferguson et. al. (1967) and cross-bed azimuths of palaeocurrents of Fisher

and Powell (1989).

5.4.1 Example 1: Frog Data

The data in this example relates the homing ability of the Northern cricket frog, Acris

crepitans, as studied by Ferguson, et. al. (1967). For this data set, it is thought that the

preferred direction for the population is 1210 (where 00 is taken to be true North, and angles

are measured in a clockwise direction), (Collett, 1980). The sample appears to consist of

a single modal group, with one observation which can be classified as an outlier. We wish

to obtain the point estimate as well as the corresponding confidence interval using three

measures of preferred direction, namely: the mean, the median and the new measure, HL.
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Figure 5.4: 95% Bootstrap C.I for Circular Mean, n = 14, B = 1000
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Note that the three Confidence In-

tervals have similar widths., with

the Symmetric-Arc being slightly

shifted. The hypothesized popula-

tion preferred direction is denoted

by “PPD”. Using the connection be-

tween Confidence Intervals and Hy-

pothesis Testing, we can say that we

reject the hypothesis that the popu-

lation mean is 1210, since for all in-

tervals the “PPD” is outside the con-

fidence arc.

Figure 5.5: 95% Bootstrap C.I for Circular Median, n = 14, B = 1000
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Sample Median
O Original Obs The confidence interval based on the

Median Theory method of Fisher and

Powell (1989) has the widest width,

followed by the Symmetric-Arc. The

Equal-Tailed and Likelihood-Based

approaches yield identical results.

All the four procedures, lead us to

fail to reject the null hypothesis that

the population median is 1210.
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Figure 5.6: 95%Bootstrap C.I for HL, n = 14, B = 1000
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For the HL estimate of preferred di-

rection, the Symmetric-Arc, Equal-

Tailed and Likelihood-Based confi-

dence intervals all appear to have

similar widths although they are

shifted. The null hypothesis that the

population preferred direction based

on the Hodges Lehmann measure is

1210, is rejected using all the three

procedures.

Note that for this data set, the confidence intervals using the mean and HL as estimates of

preferred direction, lead to the rejection of the null hypothesis. Using the median as the

estimate of preferred direction leads us to fail to reject the null hypothesis.

5.4.2 Example 2: Cross-bed Azimuths of Palaeocurrents

The data in this example are 30 measurements of cross-bed azimuths of paleocurrents mea-

sured in the Belford Anticline in New South Wales (Fisher, 1993, p. 59). The sample

appear to consist of a single modal group, with one observation which can be classified as

an outlier. It is desired to summarise the data with the point estimate and corresponding

confidence interval, which can then be compared and possibly combined with corresponding

information from other samples in the region. It is thought from previous studies that the

population preferred direction (PPD) is 2390, where 00 is taken to be true North and angles

are measured in a clockwise direction.
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Figure 5.7: 95% Bootstrap C.I for Circular Mean, n = 30, B = 1000
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For the mean, all three confidence

intervals are identical in terms of

confidence width. The population

preferred direction, “PPD” lies

within all the intervals, hence we

conclude that the data are consistent

with a population with this “PPD”.

Figure 5.8: 95% Bootstrap C.I for Circular Median, n = 30, B = 1000
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O Original Obs The confidence interval based on

the Median Theory method has

the widest length, followed by the

Symmetric-Arc. The Equal-Tailed

and Likelihood-Based methods are

identical. All intervals include

“PPD”, hence we conclude that the

the data was drawn from a popula-

tion with this “PPD”.
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Figure 5.9: 95% Bootstrap C.I for HL, n = 30, B = 1000
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For the HL estimate of preferred di-

rection, all the three confidence inter-

vals have similar widths. Here, the

population preferred direction, lies

inside all the three intervals, imply-

ing that we should accept the null hy-

pothesis that this sample came from

a population with this “PPD”.

Note that for this data set, the confidence intervals using the three measures as estimates of

preferred direction, all lead us to fail to reject the null hypothesis.

5.5 Simulation Study

We conducted a study to compare the relative performance of the different nonparametric

confidence intervals for the mean, median and HL based on symmetric arc, equal-tailed arc

and likelihood-based arc. The parametric confidence intervals using the von Mises assump-

tion were not considered due to limitations of time. The data considered were values from

von Mises distribution with concentration parameters 2 and 10. Symmetric Arc (SYMA),

Equal-Tailed Arc (ETA), and Likelihood-Based Arc (LBA) were constructed as described in

Section 5.3. The theoretical confidence interval for the median (MT), given in Section 2.4.2,

was also constructed.
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The number of bootstrap samples in the study was 500, repeated 1000 times at α = 0.1

and α = 0.05 as in Fisher and Hall (1989) and Durchame et al (1985). For each confidence

interval a number of measures were obtained:

• the Nominal Coverage, which is the (1− α) assumed level.

• the Simulated Coverage, which calculates the number of observed confidence intervals

actually containing the true preferred direction.

• Interval Width, which is the average Width of the Interval from the 1000 simulations.

• Resultant Length, which is a circular measure of variability of the interval widths of

the 1000 simulation results.

Here, we report results of a small-sample simulation study on estimating preferred direction

for the von Mises distribution. Median Theory confidence intervals (see Section 2.4.2), and

the Symmetric-Arc (SYMA), Equal-Tailed Arc (ETA), and Likelihood-Based Arc (LBA)

bootstrap confidence intervals for each of the mean, median and HL, were constructed.

Results for a sample of size 10, for κ = 2 & κ = 10 are summarized in Tables 5.1 and 5.2,

respectively.
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Table 5.1: Bootstrap Confidence Intervals for n = 10, κ = 2,M = 1000, B = 500.

Nom.Cov. Measure Type Sim. Cov. Int. Width Res.Length

SYMA 0.902 1.038 0.944

0.950 Mean ETA 0.908 1.032 0.947

LBA 0.902 1.007 0.949

MT 0.977∗ 1.688 0.885

0.950 Median SYMA 0.922 1.310 0.879

ETA 0.879 1.211 0.919

LBA 0.879 1.093 0.928

SYMA 0.924 1.114 0.938

0.950 HL ETA 0.920 1.069 0.946

LBA 0.895 1.013 0.951

SYMA 0.850 0.871 0.960

0.900 Mean ETA 0.855 0.873 0.962

LBA 0.847 0.851 0.964

MT 0.884∗∗ 1.102 0.924

0.900 Median SYMA 0.863 1.111 0.901

ETA 0.833 0.983 0.931

LBA 0.831 0.907 0.939

SYMA 0.874 0.935 0.953

0.900 HL ETA 0.871 0.910 0.960

LBA 0.833 0.852 0.965

Median Theory (MT), Symmetric-Arc (SYMA), Equal-Tailed Arc (ETA) and Likelihood-Based Arc (LBA)

* True Nominal Coverage is 0.978, ** True Nominal Coverage is 0.893, Fisher (1993, p. 226).
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From Table 5.1 with the results of κ = 2, indicate that within each measure, all bootstrap

intervals have true coverage below nominal value and both the 95% & 90% confidence in-

tervals seem to miss nominal coverage by similar amounts. In terms of interval width and

coverage, the Likelihood-Based has the shortest, with Equal-Tailed, generally next shortest

followed by the Symmetric-Arc, for all the three measures. A similar ordering is observed

for the variability of the widths as well. That is, the Likelihood- Based has the largest Re-

sultant length (thus, the smallest circular variance), followed by the Equal-Tailed, and then

the Symmetric-Arc. The measures have the following ordering in terms of shortest interval

width and smallest variability of widths: the mean, then HL, the median. This ordering holds

for the Symmetric-Arc, Equal-Tailed and Likelihood-Based bootstrap confidence intervals.

These results match those obtained from the simulations in Chapter 4.

In general, the Median Theory, leads to intervals that have larger widths and larger variability

compared to the three bootstrap confidence intervals. However, this method is the only one

with observed coverage probability consistent with the Median Theory in Table A.6, in Fisher

(1993, p. 226).

The results for κ = 10 in Table 5.2, give similar results to those of κ = 2. However, the

interval widths are much shorter and the variability of the widths are much smaller compared

to those in Table 5.1. Note that, across all measures, the confidence intervals converge as

κ increases. Also, within each measure, the different types of confidence intervals become

more similar as κ increases.

Based on these results, the median theory is a good choice because of its appropriate size

given a specified Confidence level. Of the bootstrap methods, the Likelihood-Based seems

best, despite the fact that it does not use the point estimate. The Equal-Tailed confidence

interval also performs well. Comparing the mean, median and new estimate HL, the mean
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generally leads to the smallest intervals with similar true coverage probabilities. The HL

measure also performs quite well.

Table 5.2: Bootstrap Confidence Intervals for n = 10, κ = 10,M = 1000, B = 500.

Nom. Cov. Measure Type True Cov. Int. Width Res.Length

SYMA 0.907 0.372 0.996

0.950 Mean ETA 0.905 0.371 0.996

LBA 0.890 0.364 0.997

MT 0.977∗ 0.657 0.984

0.950 Median SYMA 0.929 0.518 0.985

ETA 0.886 0.467 0.980

LBA 0.886 0.425 0.992

SYMA 0.922 0.419 0.994

0.950 HL ETA 0.923 0.402 0.995

LBA 0.892 0.381 0.996

SYMA 0.855 0.315 0.997

0.900 Mean ETA 0.863 0.315 0.997

LBA 0.843 0.309 0.997

MT 0.880∗∗ 0.425 0.988

0.900 Median SYMA 0.881 0.419 0.988

ETA 0.845 0.378 0.991

LBA 0.845 0.350 0.993

SYMA 0.877 0.353 0.995

0.900 HL ETA 0.869 0.343 0.996

LBA 0.844 0.317 0.997

Median Theory (MT), Symmetric-Arc (SYMA), Equal-Tailed Arc (ETA) and Likelihood-Based Arc (LBA)

True Nominal Coverage is 0.978, ** True Nominal Coverage is 0.893, Fisher (1993, p. 226).



Chapter 6

Conlusions and Future Study

6.1 Conclusions

In conclusion, a new measure, the circular Hodges-Lehmann estimate has been proposed.

Three variations of this measure were given that all perform similarly, as with their coun-

terparts in the linear case. Theoretical results for the new measure were obtained for con-

centrated von Mises data for the distribution, influence function and asymptotic relative

efficiency relative to the circular mean and median. As the data become extremely concen-

trated the results become consistent with the linear case. The circular Hodges-Lehmann

estimator has comparable efficiency to mean and is superior to median. Most strikingly, it

consistently ranks second and is never worst for all considered measures of dispersion, for

both uncontaminated and contaminated data. A method for using the new measure for es-

timating confidence intervals and hypothesis testing for all concentrations is obtained using

extensions to the bootstrap confidence methodology. The new measure again leads to com-

parable results with the circular mean and shorter bootstrap confidence intervals compared

to the circular median. Overall, the circular Hodges-Lehmann estimate is a solid alternative

to the established circular mean and circular median with some of the desirable features of

each.
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6.2 Future Research

[1]. Durchame and Milasevic (1987b), obtain the Asymptotic Relative Efficiency for median

to mean for the contaminated von Mises distribution. They assume that F has density

(1 − ε)fκ(θ) + εfλκ(θ), where 0 ≤ ε ≤ 1, where fκ(θ) is the density of the von Mises

distribution. Their simulation study reveals that the circular median is more efficient than

the mean. It remains of interest to determine what happens to the efficiency of HL relative

to both the mean and the median under such contaminations.

[2]. For linear data, HL for the two sample problem is discussed in several texts for example

Hettmansperger (1984, p.139). We will extend the procedure developed in this dissertation

to the two sample problem in circular data (paired and non-paired) to compare preferred

directions.

[3]. HL for linear data is an optimal estimator for location for the logistic distribution

(Lehmann, 1953). We will determine if a similar distribution on the circle has the circular

HL as an optimal estimator of preferred direction.

[4]. Fisher (1993, p. 205-206) suggests fitting a nonparametric density to bootstrap esti-

mates of the population mean µ if for example the sample is believed to come from a von

Mises distribution with mean µ and concentration parameter κ. We will determine how a

nonparametric density fit from bootstrap estimates of the population HL compares with that

based on the mean.

[5]. The bias-corrected (BC) method for constructing bootstrap confidence intervals, as-

sumes that θ̃∗, θ̃ and θ are distributed around a constant, z0σ, where σ is the standard

deviation of the respective distribution, and z0 is a biasing constant. Details of how to
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implement the BC method can be found for example in Mooney and Duval (1993, p. 37-

43). Preliminary applications of the BC method to Symmetric Arc, Equal-Tailed Arc and

Likelihood-Based Arc had little effect on the confidence intervals constructed in Chapter 5.

An extensive simulation study to compare relative performance for the mean, the median and

HL based on the BC method needs to be carried out in order to arrive at general conclusions.



Bibliography

[1] Abramowitz, M. and Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover,

NY.

[2] Ackermann, H. (1997). A note on circular nonparametrical classification. Biometrical

Journal, 5, pp. 577-587.

[3] Anderson, C.M. (1993). Location and Dispersion Analysis of Factorial Experiments with

Directional Data. PhD Thesis, Dept. of Statistics and Actuarial Science, University of

Waterloo, Ontario, Canada.

[4] Anderson-Cook, C.M. (1996). Analysis of location and dispersion effects from factorial

experiments with a directional response. S. Ghosh and C.R. Rao eds. Handbook of

Statistics, vol. 13, pp. 241-259.

[5] Andrews, D.R., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H., and Tukey, J.W.

(1972). Robust Estimates of Location: Survey and Advances. Princeton Univ. Press.

New Jersey.

[6] Bagchi, P., and Guttman, I. (1990). Spuriosity and outliers in directional data. Journal

of Applied Statistics, 17, pp. 341-350.

[7] Barnett, V. and Lewis, T. (1994). Outliers in Statistical data, 3rd, ed. Wiley, Chichester.

[8] Batschelet, E. (1981). Circular Statistics in Biology. Academic Press. London.

119



B. Sango Otieno Bibliography 120

[9] Beran, R. (1987). Prepivoting to Reduce Level Error of Confidence Sets. Biometrika,

74, pp. 457-468.

[10] Beckman, R.J., and Cook, R.D. (1983). Outliers.......... Technometrics, 25, 2, pp. 119-

163.

[11] Bickel, P. J., and Hodges, J. L. Jr. (1967). The asymptotic theory of Galton’s test and

a related simple estimate of location. Ann. Math. Statist., 38, pp. 73-89.

[12] Birch, J.B. (2002). Contemporary Applied Statistics: An Exploratory and Robust Data

Analysis Approach. Lecture Notes. Virgina Polytechnic and State University.

[13] Cabrera, J., Maguluri, G. and Singh, K. (1994). An odd property of the sample median

Statistics & Probability Letters 19, pp. 349-354.

[14] Collett, D. (1980). Outliers in circular data. Appli. Statist., 29, pp. 50-57.

[15] Collett, D., and Lewis, T. (1981). Discriminating between the von Mises and wrapped

normal distributions. Australian Journal of Statistics, 23, 73-79.

[16] Durcharme, G.R., Jhun, M., Romano,J., and Truong, K.N.(1985). Bootstrap Confidence

Cones for Directional Data. Biometrika, 72, pp. 637-645.

[17] Durcharme, G.R., and Milasevic, P. (1987a). Spatial median and directional data.

Biometrika, 74, pp. 212-215.

[18] Durcharme, G.R., and Milasevic, P. (1987b). Some asymptotic properties of the circular

median. Communications in Statist. Theory and Methods, 16, pp. 163-169.

[19] Efron, B. (1979). Bootstrap Methods: Another look at the Jacknife. Ann. Statist., 7 pp.

1-26.

[20] Efron, B. (1981). Nonparametric Standard Errors and Confidence Intervals. (with dis-

cussion). The Canadian Journal of Statistics, 9, pp. 139-172.



B. Sango Otieno Bibliography 121

[21] Efron, B. (1982). The Jacknife, the Bootstrap and Other Resampling Plans. Society for

Industrial and Applied Mathematics. Philadelphia.

[22] Efron, B. (1985). Bootstrap Confidence Intervals for a Class of Parametric Problems.

Biometrika, 72, pp. 45-58.

[23] Efron, B., and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman

Hall. New York.

[24] Ferguson, D.E., Landreth, H.F., and McKeown, J.P. (1967). Sun compass orientation

of northern cricket frog, Acris crepitans. Anim. Behav., 15, pp. 45-53.

[25] Fisher, N.I. (1982). Non-Parametric Statistics. Math. Scientist, 7, pp. 25-47.

[26] Fisher, N.I. (1985). Spherical medians. Journal of the Royal Statistical Society, B47,

342-348.

[27] Fisher, N.I. (1987). Problems with the current definitions of the standard deviations of

wind direction.J. Clim. Appl. Meteorol. 26, pp. 1522-1529.

[28] Fisher, N.I. (1993). Statistical analysis of circular data. Cambridge University Press.

Cambridge.

[29] Fisher, N.I., and Lewis, T. (1983). Estimating the common mean direction of several

circular or spherical distributions with differing dispersions. Biometrika , 70, pp. 333-

341.

[30] Fisher, N.I., Lewis, T., and Embleton, B.J.J. (1987). Statistical Analysis of Spherical

data. Cambridge University Press. Cambridge.

[31] Fisher, N.I.,and Powell, C. McA. (1989). Statistical analysis of two-dimensional

palaeocurrent data :methods and examples Australian Journal of Earth Science, 36,

pp. 91-107.



B. Sango Otieno Bibliography 122

[32] Fisher, N.I., and Hall, P. (1989). Bootstrap Confidence Regions for directional data.

Journal of the American Statistical Association, 84, 408, pp. 996-1002.

[33] Fisher, N.I., and Hall, P. (1990). New Statistical methods for directional data-I. Boot-

strap comparison of mean directions and the fold test in palaeoma gnetism Geophys. J.

Int.,101, pp. 305-313.

[34] Fisher, N.I.,and Hall, P. (1992). Bootstrap methods for directional data. The Art of

statistical science, edited by K.V. Mardia. Wiley. NY.

[35] Gastwirth, J.L., and Rubin, H. (1969). The behavior of robust estimators on dependent

data Annals of Statistics, 3, pp. 1070-1100.

[36] Gumbel, E.J., Greenwood, J.A., and Durand, D. (1953). The circular normal distri-

bution. Theory and Tables. Journal of the American Statistical Association., 48, pp.

131-152.

[37] Hampel, F.R. (1968). Contributions to the theory of robust estimation. Ph.D. Thesis,

Univ. California, Berkeley.

[38] Hall, P. (1988a). On the Bootstrap and Symmetric Confidence Intervals. Journal of the

Royal Statistical Association. Ser. B, 50, pp. 35-45.

[39] Hall, P. (1988b). Theoretical Comparison of Bootstrap Confidence Intervals. The Annals

of Statistics, 16, pp. 927-985.

[40] Hampel, F.R. (1974). The influence curve and its role in robust estimation. Journal of

the American Statistical Association., 69, pp. 383-393.

[41] He, X., and Simpson, D.G. (1992). Robust direction estimation. Annals of Statistics,

20, 1, pp. 351-369.

[42] Hettmansperger, T.P. (1984). Statistical Inference Based on Ranks. Wiley, NY.



B. Sango Otieno Bibliography 123

[43] Hettmansperger, T.P., and McKean, J.W. (1998). Robust Nonparametric Statistical

methods. Wiley, NY.

[44] Hodges, J.L.Jr., and Lehmann, E.L. (1963). Estimates of location based on ranks tests.

Annals of Mathematical Statistics, 34, 2, pp. 598-611.

[45] Hollander, M., and Wolfe, D.A. (1999). Nonparametric Statistical Models. Wiley. NY.

[46] Hoyland, A. (1965). Robustness of the Hodges-Lehmann estimates for shift. Annals of

Mathematical Statistics, 36, pp. 174-197.

[47] Huber, P.J. (1981). Robust Statistics. Wiley & Sons, NY.

[48] Jammalamadaka, S. R., and SenGupta, A. (2001). Topics in Circular Statistics. World

Scientific. New Jersey.

[49] Jupp, P.E., and Mardia, K.V. (1989) . A unified view of the theory of directional

statistics 1975-1988. Internat. Stat. Rev., 57, pp. 261-294.

[50] Kendall, D.G. (1974a). Hunting quanta. Trans. R. Soc. Lond., A 276, pp. 231-266.

[51] Kendall, D.G. (1974b). Pole-seeking Brownian motion and bird navigation. J. R. Stat.

Soc. B, 36, pp. 365-417.

[52] Kent, J.T. (1976). Distributions, Processes and Statistics on Spheres. Ph.D Thesis.

University of Cambridge. Cambridge.

[53] Kent, J.T., Mardia, K.V., and Rao, J.S. (1979). A characterization of Uniform distri-

bution on the circle. Ann. Statist. , 7, pp. 197-209.

[54] Ko, D., and Guttorp, P. (1988). Robustness of estimators for directional data. Annals

of Statistics, 16, pp. 609-618.

[55] Lehmann, E.L. (1953). The power of rank tests. Ann. Math. Statist., 24, pp. 23-43.



B. Sango Otieno Bibliography 124

[56] Lehmann, E.L. and D’Abrera (1998). Nonparametrics: Statistical Methods Based on

Ranks. Prentice Hall, Upper Saddle River, New Jersey.

[57] Lenth, R.V. (1981). Robust measures of location for directional data. Technometrics,

23, pp. 77-81.

[58] Levy, P. (1939). L’addition des variable aleatoires defines sur une circonference. Bull.

Soc. Math. France, 67, pp. 1-41.

[59] Lewis, T. (1974). Discussion on ”Pole Seeking Brownian motion and bird navigation”

by Kendall, D. G. Journal of the Royal Statistical Society B 36, pp. 365-402.

[60] Liu, R. (1988) Bootstrap procedures under some non-i.i.d models. Annals of Statistics,

16, pp. 1696-1708.

[61] Liu, R., and Singh, K. (1992). Ordering directional data: concepts of data depth on

circles and spheres. Annals of Statistics, 20, pp. 1468-1484.

[62] Liu, R., and Singh, K. (1995). Using i.i.d bootstrap inference for general non - i.i.d

models. . Journal of Statistical Planning and Inference, 43, pp. 67-75.

[63] Manoukian, E.B. (1986). Mathematical Nonparametric Statistics. Gordon and Breach

Science Publishers, NY.

[64] Mardia, K.V. (1972). Statistics of Directional Data. London: Academic Press.

[65] Mardia, K.V. (1975). Statistics of directional data. (With Discussion.). J.R. Statist. Soc.

B, 37, pp. 349-393.

[66] Mardia, K.V., and El-Atoum (1976). Bayesian inference for the von Mises-Fisher dis-

tribution. Biometrika 63, 1, pp. 203-206.

[67] Mardia, K.V., and Jupp, P.E. (2000). Directional Statistics. Wiley. Chichester.



B. Sango Otieno Bibliography 125

[68] Mooney, C.Z., and Duval, R.D. (1993). Bootstrapping: A Nonparametric Approach to

Statistical Inference. Sage Publications, Newbury Park.

[69] Purkayastha, S. (1991). A rotationally symmetric directional distribution: obtained

through maximum likelihood characterization. Sankhya A, 53, pp. 70-83.

[70] Purkayastha, S. (1995a). An almost sure representation of sample circular median. Jour-

nal of Statistical Planning and Inference, 46, pp. 77-91.

[71] Purkayastha, S. (1995b). On the asymptotic efficiency of the sample circular median.

Statistics and Decisions, 13, pp. 243-252.

[72] Rao, C.R. (1975). Some problems of sample surveys. Suppl. Appl. Prob., 7, pp. 50-61.

[73] Rao, J.S. (1984). Nonparametric methods in directional data. Chapter 31 in Handbook

of Statistics, Vol. 4. Nonparametric statistics, editors P.R. Krishnaiah and P.K. Sen.

pp. 755-770. Elsevier Science Publishers. Amsterdam.

[74] Randles, R.H., and Wolfe, D.A. (1979). Introduction to the theory of Nonparametric

Statistics, Wiley, NY.

[75] Sirvanci, M. (1982). An estimator of location for dependent data. Biometrika, 69, 2. pp.

473-476.

[76] Sheather, S.J. (1987). A new method of estimating the asymptotic standard error of

the Hodges-Lehmann estimator based on generalized least squares. Australian Journal

of Statistics, 29, pp. 66-83.

[77] Shephard, J., and Fisher, N.I. (1982). Rapid method of mapping fracture trends in

collieries. Trans. Soc. Min. Eng. AIME 270, pp. 1931-1932.

[78] Small, C. G. (1990). A Survey of Multidimensional Medians. International Statistical

Review, 58, pp. 263-277.

[79] Stephens, M.A. (1963). Random walk on a circle. Biometrika,Vol. 50, pp. 385-390.



B. Sango Otieno Bibliography 126

[80] Upton, G.J.G., and Fingleton, B. (1989). Spatial Data Analysis by Example. Volume

2. Categorical and Directional Data. Wiley. NY.

[81] Von Mises, R. (1918). Uberdie Ganzzahligkeit der Atom gewicht und verwandte Frogren.

Physikal. z. 19, pp. 490-500.

[82] Watson, G.S. (1967). Some problems in the statistics of directions. Bull. 36th Session,

ISI. Sidney, Australia.

[83] Watson, G.S. (1983a). Statistics on spheres. Wiley. NY.

[84] Watson, G.S. (1983b). The computer simulation treatment of directional data. In Pro-

ceedings of the Geological conference, Kharagpur, India, Dec. 1983. Indian journal of

Earth Science, pp. 19-23.

[85] Watson, G.S. (1986). Some estimation theory on the sphere. Ann. Inst. Statist. Math.,

38, pp. 263-275.

[86] Wehrly, T., and Shine, E.P. (1981). Influence curves for directional data. Biometrika,

68, pp. 334-335.

[87] Wintner, A. (1933). On the stable distribution law. American Journal of Mathematics,

55, pp. 335-339.

[88] Zar, J.H. (1999). Biostatistical Analysis. 4th Edition. Prentice-Hall, Inc.

[89] Zernike, F. (1928). Wahrscheinlickkeitsrechnung und Mathematische Statistik. In Hand-

buch der Physik, 3, pp. 419-492. Springer Berlin.

[90] Zielinski, R. (1987). Robustness of sample mean and sample median under restrictions

on outliers. Zastosowania Matematyki Applicationes Mathematicae, XIX, 2, pp. 239-240.



B. Sango Otieno Appendix A - Mean, Mardia Median and New Median 127

Appendix A: Mean, Mardia Median and New Median

Mardia Median & New Median for VM(0, 1)
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(b) Plot of Circular Variance vs. Sample Size 
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(c) Plot of CMD vs. Sample Size
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(d) Plot of CMAD vs. Sample Size
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Mardia Median & New Median for VM(0, 4)
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(b) Plot of Circular Variance vs. Sample Size 
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(c) Plot of CMD vs. Sample Size
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(d) Plot of CMAD vs. Sample Size
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Mardia Median & New Median for VM(0, 8)
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(b) Plot of Circular Variance vs. Sample Size 
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(c) Plot of CMD vs. Sample Size
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Mardia median & New median for VM (0, κ), n = 10
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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Appendix B: Proofs of Theorems 3.7.1 and 3.7.2

B.1 Theorem 3.7.1:

The influence function (IF) for the circular mean direction is given by

IF (θ) =
sin(θ − µ0)

ρ
, (1)

where ρ is the mean resultant length. For any given value of ρ, this influence function and

its derivative are bounded by ±ρ−1.

Proof of Theorem 3.7.1

Recall
∫ du

u2 + a2
=

1

a
tan−1 u

a
+ C

The functional for the circular population mean is T (F ) = tan−1

[ ∫ 2π
0 sin θdF (θ)

∫ 2π
0 cos θdF (θ)

]

Let F̃ (θ) = (1 − ε)F (θ) + εδθ0(θ), then WLOG, the functional for the circular population

mean is

T (F̃ ) = tan−1

[ ∫ 2π
0 sin(θ − µ0)dF (θ − µ0)∫ 2π
0 cos(θ − µ0)dF (θ − µ0)

]

Now
∫ 2π

0
sin(θ − µ0)dF̃ (θ − µ0)

=
∫ 2π

0
sin(θ − µ0)d[(1− ε)F̃ (θ − µ0) + εδθ0(θ − µ0)]

= (1− ε)
∫ 2π

0
sin(θ − µ0)dF̃ (θ − µ0) + ε

∫ 2π

0
sin(θ − µ0)dδθ0(θ − µ0)

= (1 − ε)E [sin(θ − µ0)] + ε sin(θ − µ0)

= ε sin(θ − µ0), since E [sin(θ − µ0)] = 0, Mardia(1972, p. 45).

Next
∫ 2π

0
cos(θ − µ0)dF̃ (θ − µ0)
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=
∫ 2π

0
cos(θ − µ0)d[(1− ε)F̃ (θ − µ0) + εδθ0(θ − µ0)]

= (1− ε)
∫ 2π

0
cos(θ − µ0)dF̃ (θ − µ0) + ε

∫ 2π

0
cos(θ − µ0)dδθ0(θ − µ0)

= (1 − ε)E [cos(θ − µ0)] + ε cos(θ − µ0)

= (1 − ε)ρ + ε cos(θ − µ0), since E [cos(θ − µ0)] = ρ, Mardia(1972, p. 45).

Hence T (F̃ ) = tan−1

[
ε sin(θ − µ0)

(1 − ε)ρ + ε cos(θ − µ0)

]
.

Thus
T (F̃ )

dε
|ε = 0 =

−ρ sin(θ − µ0)[
ε sin(θ − µ0)

(1 − ε)ρ + ε cos(θ − µ0)

]2
+ [(1 − ε)ρ + ε cos(θ − µ0)]

2

Therefore
T (F̃ )

dε
|ε = 0 =

[
ρ sin(θ − µ0)

ρ2

]
=

sin(θ − µ0)

ρ
.

B.2 Theorem 3.7.2:

Without loss of generality for notational simplicity, assume that µ ε [0, π]. The influence

function for the circular median direction is given by

IF (θ) =
1
2
sgn(θ − µ0)

[f(µ0) − f(µ0 + π)]
, (µ0 − π < θ < µ0 + π), (2)

where sgn(x) = 1, 0, or −1 as x > 0, x = 0, or x < 0, respectively.

Proof of Theorem 3.7.2

Since T 1
2
(F ) = F−1(1

2
) = θ 1

2
, it follows that F

(
T 1

2
(F )

)
= F

(
F−1(1

2
)
)

= F
(
θ 1

2

)
= 1

2
.

Expressing the median of the altered cdf F̃ , we have

L = F̃
(
F̃ (

1

2
)
)

= F̃
(
θ 1

2

)

= (1 − ε)F
(
θ̃ 1

2

)
+ εδθ0

(
θ̃ 1

2

)
=

1

2
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Differentiating both sides of L above with respect to ε, we obtain

dL

dε
= (−1)F

(
θ̃ 1

2

)
+ (1− ε)

dθ̃ 1
2

dε
f(θ̃ 1

2
) + δθ0(θ̃ 1

2
) + ε

dδθ0(θ̃ 1
2
)

dε
= 0

Setting ε = 0, we obtain

d(θ̃ 1
2
)

dε
=

1
2
− δθ0(θ̃ 1

2
)

f(θ̃ 1
2
)

That is IF
(
θ0, θ 1

2

)
=

1
2
− δθ0(θ̃ 1

2
)

f(θ̃ 1
2
)

=





−1
2f(θ 1

2
)
, for θ0 ≤ θ 1

2

1
2f(θ 1

2
)
, for θ0 ≥ θ 1

2

since δθ0(θ 1
2
) =





0, θ 1
2

< θ0

1, θ 1
2
≥ θ0

.
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Appendix C : HL1, HL2 and HL3
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HL1, HL2 & HL3 for VM(0, 4)
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HL1, HL2 & HL3 for VM(0, 8)
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HL1, HL2 & HL3 for VM(0, κ), n = 10
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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Appendix D : Mean, Median and HL

Mean, Median and HL for VM(0,1)
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Mean, Median and HL for VM(0,4)
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Mean, Median and HL for VM(0,8)
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Mean, Median and HL for 70%V M(0, 1) & 30% Uniform
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Mean, Median and HL for 70%V M(0, 4) & 30% Uniform
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Mean, Median and HL for 70%V M(0, 8) & 30% Uniform
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Plot of CMD vs. Sample Size

 

 

5 10 15 20

0.
60

0.
62

0.
64

0.
66

 

 

5 10 15 20

0.
60

0.
62

0.
64

0.
66

HL2
Median
Mean

Sample Size

Ci
rc

ul
ar

 M
ed

ia
n 

Ab
so

lu
te

 D
ev

ia
tio

n 
(in

 ra
di

an
s)

5 10 15 20

0.
38

0.
40

0.
42

0.
44

Plot of CMAD vs. Sample Size

 

 

5 10 15 20

0.
38

0.
40

0.
42

0.
44

 

 

5 10 15 20

0.
38

0.
40

0.
42

0.
44

HL2
Median
Mean



B. Sango Otieno Appendix D - Mean, Median and HL 144

Mean, Median and HL for VM (0, 1), for ε = 0.3, µ1 = 0, µ2 = π
4
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(c) Plot of CMD vs. Sample Size
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(d) Plot of CMAD vs. Sample Size
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Mean, Median and HL for VM (0, 4), for ε = 0.3, µ1 = 0 , µ2 = π
4
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(a) Plot of Preferred Direction, and 95% C.I’s 
vs. Sample Size
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(c) Plot of CMD vs. Sample Size
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(d) Plot of CMAD vs. Sample Size
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Mean, Median and HL for VM (0, 8), for ε = 0.3, µ1 = 0 , µ2 = π
4
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(a) Plot of Preferred Direction, and 95% C.I’s 
vs. Sample Size
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(b) Plot of Circular Variance Vs. Sample Size

 

 

 

 

HL
Median
Mean

Sample Size

C
irc

ul
ar

 M
ea

n 
D

ev
ia

tio
n 

(in
 ra

di
an

s)

5 10 15 20

0.
34

0.
35

0.
36

0.
37

0.
38

0.
39

0.
40

(c) Plot of CMD vs. Sample Size
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Effect of κ on Mean, Median and HL for VM (0, κ), n = 10
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(a) Point Estimate and 95% C.I. vs. Conc. Parameter
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(b) Circular Variance vs. Conc. Parameter 
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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Mean, Median and HL for 70%VM (0, κ) & 30%Uniform, ε = 0.3, n = 10
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(a) Point Estimate and 95% C.I. vs. Conc. Parameter
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(b) Circular Variance vs. Conc. Parameter 
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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Mean, Median and HL for 70%VM(0, κ) & 30%VM(π
4
, κ), n = 10

Concentration Parameter

Pr
ef

er
re

d 
D

ire
ct

io
n 

(in
 ra

di
an

s)

2 4 6 8

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

(a) Point Estimate and 95% C.I. vs. Conc. Parameter
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(b) Circular Variance vs. Conc. Parameter 
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(c) Circular Mean Dev. vs. Conc. Parameter 
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(d) Circular Median Absolute Dev. vs. Conc. Parameter
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Effect of increasing the spread on Mean, Median and HL, for κ = 2, n = 10
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL, n=10
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of Rotating the mean direction from 0 to π
2

on Mean, Median and HL, n=10
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(a) Point Estimate and 95% C.I. vs. Rotation of Mean
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Effect of increasing the spread on Mean, Median and HL, for κ = 1, n = 10

Proportion of Contamination
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of increasing the spread on Mean, Median and HL, for κ = 1, n = 20
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL,κ = 1, n = 10
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL,κ = 1, n = 20
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of Rotating the mean direction from 0 to π
2

on Mean, Median and HL

κ = 1, ε = 0.3, n = 10
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Effect of Shifting the mean direction from 0 to π
2

on Mean, Median and HL

κ = 1, ε = 0.3, n = 20

Rotation of Mean
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Effect of increasing the spread on Mean, Median and HL, for κ = 4, n = 10

Proportion of Contamination
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination

 

 

0.0 0.05 0.10 0.15 0.20 0.25 0.30

0.
35

0.
40

0.
45

0.
50

 

 

0.0 0.05 0.10 0.15 0.20 0.25 0.30

0.
35

0.
40

0.
45

0.
50 HL

Median
Mean



B. Sango Otieno Appendix D - Mean, Median and HL 160

Effect of increasing the spread on Mean, Median and HL, for κ = 4, n = 20

Proportion of Contamination
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL,κ = 4, n = 10
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination

HL
Median
Mean

Proportion of Contamination

C
irc

ul
ar

 V
ar

ia
nc

e

0.0 0.05 0.10 0.15 0.20 0.25 0.30

0.
01

5
0.

02
0

0.
02

5
0.

03
0

(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL,κ = 4, n = 20
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of Shifting the mean direction from 0 to π
2

on Mean, Median and HL

κ = 4, ε = 0.3, n = 10

Rotation of Mean
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(a) Point Estimate and 95% C.I. vs. Rotation of Mean
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Effect of Shifting the mean direction from 0 to π
2

on Mean, Median and HL

κ = 4, ε = 0.3, n = 20

Rotation of Mean
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(a) Point Estimate and 95% C.I. vs. Rotation of Mean
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Effect of increasing the spread on Mean, Median and HL, for κ = 8, n = 10

Proportion of Contamination
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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Effect of increasing the spread on Mean, Median and HL, for κ = 8, n = 20
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL,κ = 8, n = 10
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination

HL
Median
Mean

Proportion of Contamination

C
irc

ul
ar

 V
ar

ia
nc

e

0.0 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

8
0.

01
0

0.
01

2
0.

01
4

0.
01

6
0.

01
8

(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of contamination level on Mean, Median and HL,κ = 8, n = 20
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(a) Point Estimate and 95% C.I. vs. Proportion 
of Contamination
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(b) Circular Variance vs. Proportion 
of Contamination 
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(c) Circular Mean Dev. vs. Proportion 
of Contamination 
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(d) Circular Median Absolute Dev. vs. Proportion 
of Contamination
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Effect of Shifting the mean direction from 0 to π
2

on Mean, Median and HL

κ = 8, ε = 0.3, n = 10

Rotation of Mean
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(a) Point Estimate and 95% C.I. vs. Rotation of Mean
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Effect of Shifting the mean direction from 0 to π
2

on Mean, Median and HL

κ = 8, ε = 0.3, n = 20

Rotation of Mean
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(a) Point Estimate and 95% C.I. vs. Rotation of Mean
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(b) Circular Variance vs. Rotation of Mean 
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(c) Circular Mean Dev. vs. Rotation of Mean 
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(d) Circular Median Absolute Dev. vs. Rotation of Mean
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Appendix E : S-Plus Programs

There are no standard software for analyzing circular data. Jammalamadaka & SenGupta

(2001), provide a 3.5M Floppy disk containing S-Plus functions for both Windows and Unix

with their text. However, these functions are only useful for the procedures that they discuss.

For this reason, ALL the code provided in this appendix was written specifically for the

analyses/methods discussed in this dissertation.

The programming language chosen was S-Plus. The reason for choosing S-Plus is because

it is very customizable. Its object-oriented design allows for creating one function to handle

many different data types. This makes code design more versatile in a variety of applications.

The single drawback for using S-Plus over a lower level programming languange such as C or

Fotran is its inefficiency during large simulations. For this reason, many of the simulations

provided in this dissertation took many hours to complete. Future simulation research in

this area would greatly benefit from code that is written in a more efficient language.

Below are the necessary S-Plus functions to perform all the analyses in this dissertation.

E.1 bofunc() & bofig()

E.2 vmplot()

E.3 ave.ang()

E.4 posmedf()

E.5 checkeven()

E.6 checkodd()

E.7 cmed()

E.8 meandev()
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E.9 cmedM()

E.10 sipfunc()

E.11 ppcircmed()

E.12 sipfunc2()

E.13 ppcircmed2()

E.14 sipfunc3()

E.15 ppcircmeda()

E.16 simumat()

E.17 simumat1()

E.18 simumat2()

E.19 simumat3()

E.20 rangeang()

E.21 meddev()

E.22 simuNWNVM1()

E.23 simuNWNVM2()

E.24 simuNWNVM3()

E.25 simuNWNVMa()

E.26a funcCI()

E.26b funcmn()

E.27 funcmed()

E.28 bootSACI()

E.29 bootETCI()

E.30 bootLBCI()

E.31 simul.bootF()

E.32 bootfunc2()
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E.1 bofunc() and bofig()

These functions draws a circular scatter diagram

bofunc ← function(x) {
lenx ← length(x)

resang ← rep(0, lenx)

reslen ← rep(0, lenx)

sinx ← sum(sin(x))

cosx ← sum(cos(x))

for(i in 1:lenx) {
# Computes circular mean and resultant length of two observations

resang[i] ← atan(sin(x[i]), cos(x[i]))

reslen[i] ← sqrt((sin(x[i]))2 + (cos(x[i]))2) }
# Plots circle

plot(cos(0:360/180 * pi), sin(0:360/180 * pi), xlim = c(-1.05,1.05), ylim = c(-1.05,1.05), xlab

= ” ”, ylab = ” ”, type = ”l”, axes= F)

new.ang ← ((2 * ceiling((90 * x)/pi) - 1) * pi)/180

s.ang ← sort(new.ang)

# Puts observation # 1 on circumference of circle

points(1.05 * cos(s.ang[1]), 1.05 * sin(s.ang[1]), pch = ”O”)

dist ← 1.05

for(i in 2:lenx) {
if(s.ang[i] == s.ang[i - 1]) {
dist ← dist + 0.05 }
else { dist ← 1.05 }
# Puts other observations on the circumference of circle

points(dist * cos(s.ang[i]), dist * sin(s.ang[i]), pch= ”O”) }
aang ← ave.ang(x)
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for(i in 1:length(resang)) {
lines(c(0, reslen[i] * cos(resang[i])), c(0, reslen[i] * sin(resang[i]))) }
aang2 ← ave.ang(resang)

return(list(resang, reslen, aang, aang2)) }

bofig ← function(x){
lenx ←length(x)

sx ← sort(sipfunc2(x))

# Plots circle

plot(cos(0:360/180 * pi), sin(0:360/180 * pi), xlim = c(-1.55,1.55),

ylim = c(-1.55,1.55), xlab = ” ”, ylab = ” ”, type = ”l”, axes= F)

new.ang ← ((2 * ceiling((90 * x)/pi) - 1) * pi)/180

s.ang ←sort(new.ang)

# Puts observation # 1 on circumference of the circle

points(1.05 * cos(s.ang[1]), 1.05 * sin(s.ang[1]), pch = ”O”)

dist ← 1.05

for(i in 2:lenx) {
# Plots identical observations stacked on each other

if(s.ang[i] == s.ang[i - 1]) {
dist ← dist + 0.10 }
else {
dist ← 1.05}
points(dist * cos(s.ang[i]), dist * sin(s.ang[i]), pch = ”O”)}
newsx ← ((2*ceiling((90*sx)/pi)-1)*pi)/180

nsx ← sort(newsx)

points(.95 * cos(nsx[1]), .95 * sin(nsx[1]), pch = ”X”)

for(i in 2:length(sx)) {
if(nsx[i]== nsx[i - 1]) { dist ← dist - 0.10}
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else {
dist ← .95 }
#Puts point estimates near the circumference of the circle

points(dist * cos(nsx[i]), dist * sin(nsx[i]), pch = ”X”)

points(1.15*cos(ppcircmed(x)),1.15*sin(ppcircmed(x)),pch=”D”)

points(1.15*cos(ppcircmed2(x)),1.15*sin(ppcircmed2(x)),pch=”h”)}

E.2 vmplot( )

This function plots von Mises Circular Density

vmplot ← function(kappa,mu,b,add= F){
angs ← 0:360/180 *pi

# Computes exponent part of the VM density

temp← exp(kappa*cos(angs-mu))

tempsum ← sum(temp)

# Scales exponent term in order for area under the curve (density) to add up to one

tempnew ← temp/tempsum *100

if (add==F){
# Draws circle

plot (cos(angs),sin(angs),xlim=c(-2.8,2.8),

ylim= c(-2.8,2.8),xlab =” ”, ylab =” ”,type = ”l”,lty= 1, axes= F)}
# Plots density

lines((1+tempnew)*cos(angs),(1+tempnew)*sin(angs), type= ”l”,lty= b+1)

return(NULL)

}

E.3 ave.ang()
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This function calculates circular mean direction

ave.ang ← function(a) {
y ← sum(sin(a))

x ← sum(cos(a))

ifelse(round(x, 10) == 0 and round(y, 10) == 0, 9999, atan(y, x)) }
# If both x and y are zero, then no circular mean exists, so assign it a large number (9999).

E.4 posmedf()

This function calculates all potential medians for even samples

posmedf ← function(x) {
lenx ← length(x)

sx ← sort(x)

sx2 ← sx[c(2:lenx,1)]

# Determines closest neighbors of a fixed observation

posmed ← c()

for(i in 1:lenx) {
posmed[i] ← ave.ang(c(sx[i],sx2[i])) }
# Computes circular mean of two adjacent observations

posmed ← posmed[posmed 6=9999]

posmed }

E.5 checkeven()

This function checks if the number of possible medians is even

checkeven←function(x){
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lenx ← length(x)

sx ←sort(x)

check←c()

# Computes possible medians

posmed←posmedf(x)

for(i in 1:length(posmed)){
#Takes posmed[i] as the center, i.e. draws diameter at posmed[i] and counts observations

on either side of the diameter

newx←sx-posmed[i]

check[i]←ifelse(sum(round(cos(newx),10)¿0)¡lenx/2, 9999,posmed[i])}
nposmed←check[check 6=9999]

nposmed}

E.6 checkodd()

This function checks if the number of possible medians is odd

checkodd ← function(x) {
lenx ← length(x)

sx ← sort(x)

check ← c()

posmed ← sx

# Each observation is a possible median

for (i in 1:length(posmed)) {
newx ← sx-posmed[i]

#Takes posmed[i] as the center, i.e. draws diameter at posmed[i] and counts observations

on either side of the diameter

check[i] ← ifelse(sum(cos(newx)> 0) > (lenx-1)/2, 9999,posmed[i]) }
nposmed ← check[check 6=9999]
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nposmed }

E.7 cmed()

This function calculates circular median “New Median”

cmed←function(x){
lenx ←length(x)

sx ← sort(x)

difsin ←c()

numties ←c()

if(lenx/2 == round(lenx/2)) {
# Checks if sample size is odd or even

# Computes median if sample size is even

posmed←checkeven(x)

for(i in 1:length(posmed)) {
newx ← sx - posmed[i]

difsin[i] ←sum(round(sin(newx),10)> 0) - sum(round(sin(newx),10) < 0)

numties[i] ← sum(round(newx, 10) == 0)}
}
else {
# Computes median if sample size is odd

posmed ← checkodd(x)

for(i in 1:length(posmed)) {
newx ← sx - posmed[i]

difsin[i] ← sum(round(sin(newx),10) > 0) - sum(round(sin(newx),10) < 0)

numties[i] ← sum(round(newx, 10) == 0)}
}
# Checks for ties
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cm ← c(posmed[round(difsin, 10) == 0 | abs(difsin) > numties])

circmed ← ave.ang(cm) }
#Takes into account if possible circmed are equidistant from mean direction circmed

E.8 meandev()

This function calculates circular mean deviation

meandev←function(x, teta) {
ifelse(teta == 9999, 9999, (pi - mean(round(abs(pi -

(abs(rangeang( x - teta)))), 10))))}

E.9 cmedM()

This function calculates circular median as defined in Mardia (1972, p. 28, 31)

cmedM ← function(x) {
lenx ← length(x)

sx ← sort(x)

sx2 ← c(sx[2:lenx], sx[1])

# Determines closest neighbors of a fixed observation

posmed ← rep(0, lenx)

difsin ← rep(0, lenx)

numties ← rep(0, lenx)

med ← c()

if(lenx/2 == round(lenx/2)) {
# Checks if sample is odd or even

posmed ← posmedf(x)

# Computes median if sample size is even
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for(i in 1:length(posmed)) {
newx ← sx - posmed[i]

difsin[i] ← sum(round(sin(newx),10) > 0) - sum(round(sin(newx),10) < 0)

numties[i] ← sum(round(newx, 10) == 0) } } else {
# Computes median if sample size is even

posmed ← checkodd(x)

for(i in 1:length(posmed)) { newx ← sx - posmed[i]

difsin[i] ← sum(round(sin(newx),10)> 0) - sum(round(sin(newx),10) < 0)

numties[i] ← sum(round(newx, 10) == 0) } }
# Checks for ties

cm ← c(posmed[round(difsin, 10) == 0 | round(abs(difsin),10) < numties])

for (i in 1:length(cm)) {
# Computes the circular mean deviation for candidate medians

med[i] ← meandev(x,cm[i]) }
circmed ← ave.ang(cm[round(med,10) == round(min(med),10)]) }
# Chooses the candidate medians with smallest circular mean deviations and takes circular

mean of them if more that one.

E.10 sipfunc()

This function calculates pairwise circular means for HL1

sipfunc ← function(x) {
lenx ← length(x)

pang ← matrix(9999, nrow = lenx, ncol = lenx)

for(i in 1:(lenx - 1)) { for(j in (i + 1):lenx) {
# Computes pairwise circular means excluding observation with itself

if((round(sin(x[i]) + sin(x[j]), 10) 6= 0) and (round( cos(x[i]) + cos(x[j]), 10) 6= 0)) {
pang[i, j] ← ave.ang1(c(x[i], x[j])) }}}
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$ Keeps only values that are not equal to 9999

ang ← pang[pang 6= 9999]

ang }

E.11 ppcircmed()

This function calculates HL1

ppcircmed ← function(x) {
# Obtains Mardia median of the pairwise circular means

cmedM(sipfunc(x))

}

E.12 sipfunc2()

This function calculates pairwise circular means for HL2

sipfunc2 ← function(x) {
lenx ← length(x)

pang ← matrix(9999, nrow = lenx, ncol = lenx)

for(i in 1:lenx) {
for(j in i:lenx) {
if(i == j) { # Computes pairwise circular means including observation with itself

pang[i, j] ← x[i] }
else if((round(sin(x[i]) + sin(x[j]), 10) 6= 0) and (round(cos(x[i]) + cos(x[j]), 10) 6= 0)) {
pang[i, j] ← ave.ang(c(x[i], x[j])) }}}
ang ← pang[pang 6= 9999]

ang }
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E.13 ppcircmed2()

This function calculates HL2

ppcircmed2 ← function(x) {
# Obtains Mardia median of the pairwise circular means

cmedM(sipfunc2(x))

}

E.14 sipfunc3()

This function calculates pairwise averages for HL3 for use in simuNWNVMa function

sipfunc3←function(x){
# Computes ALL pairwise circular means

c(sipfunc(x),sipfunc2(x))}

E.15 ppcircmeda()

This function calculates HL3

ppcircmeda←function(x){
#Computes Mardia median of the pairwise circular means

cmedM(sipfunc3(x)) }

E.16 simumat()

This function simulates data from (N(µ, σ)) mod(2*pi) ==WN(µ,A(κ)) == V M(µ, κ)

simumat ←function(n, mu, s, M) {
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res ← matrix(nrow = n, ncol = M)

res1 ← c()

for(i in 1:M) {
#Converts normal variates to wrapped normal variates

res1 ← rnorm(n, mu, s) % % (2 * pi)

res[, i] ← res1 }
res }

E.17 simumat1()

This function simulates data from contaminated [(N(µ, σ1)) mod(2∗π) == WN(µ,A(κ)) ==

V M(µ, κ)] with propability (1-p) and [(N(µ, σ2)) mod(2∗π) == WN(µ2, A(κ)) == V M(µ2, κ)]

with probability p

simumat1←function(n,mu,s1,s2,p,M){
res←matrix(nrow=n,ncol=M)

res1←c()

for(i in 1:M){
#Determines number of contaminated observations using binomial distribution

numcont←rbinom(1,n,p)

#Converts normal variates to wrapped normal variates

rVM←rnorm((n-numcont),mu,s1)%%(2*pi)

rVm←rnorm(numcont,mu,s2)%%(2*pi)

# Sample contains some outliers

res1←c(rVM, rVm)%%(2*pi)

res[,i]←sort(res1)}
res }



B. Sango Otieno Appendix E - S-Plus Programs 184

E.18 simumat2()

This function simulates data from uncontaminated VM with probability (1-p) and uniform

(-pi, pi) with probability p

simumat2←function(n,mu,s1,p,M){
res←matrix(nrow=n,ncol=M)

res1←c()

for(i in 1:M){
#Determines number of contaminated observations using binomial distribution

numcont←rbinom(1,n,p)

#Converts normal variates to wrapped normal variates

rVM←rnorm((n-numcont),mu,s1)%%(2*pi)

rUnif←runif(numcont,-pi,pi)# Sample contains some outliers

res1¡-c(rVM, rUnif)%%(2*pi)

res[,i]←sort(res1)}
res}

E.19 simumat2()

This function simulates data from contaminated [(N(µ1, σ)) mod(2∗π) == WN(µ1, A(κ)) ==

V M(µ1, κ)] with propability (1-p) and [(N(µ2, σ)) mod(2 ∗ π) == WN(µ2, A(κ)) ==

V M(µ2, κ)] with probability p

simumat3←function(n, mu1,mu2, s1, p, M){
res ←matrix(nrow = n, ncol = M)

res1 ← c()

for(i in 1:M) {
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#Determines number of contaminated observations using binomial distribution

numcont←rbinom(1,n,p)

#Converts normal variates to wrapped normal variates

rVM←rnorm((n-numcont),mu1,s1)%%(2*pi)

rVm←rnorm(numcont,mu2,s1)%%(2*pi)

# Sample contains some outliers

res1←c(rVM, rVm)%%(2*pi)

res[,i]←sort(res1)}
res}

E.20 rangeang()

This function guarantees that angles are in the right range for computation of confidence

intervals

rangeang ← function(x) {
# Converts observations to (−π, π) range

ang ← ifelse(x < - pi, x + 2 * pi, x)

ang2 ← ifelse(ang > pi, ang - 2 * pi, ang)

return(ang2) }

E.21 meddev()

This function calculates circular median absolute deviation

#Computes median deviation Hampel(1974) meddev← function(x,teta){
ifelse(teta==9999, 9999, pi-median(abs(pi-abs(rangeang(x-teta))))) }
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E.22 simuNWNVM1()

This function calculates circular mean direction, circular median, and their corresponding

resultant lengths, 95% empirical confidence intervals, and circular mean deviations

simuNWNVM1←function(M){
meanD ← c()

meanD1←c()

medD ← c()

medD1 ← c()

mmedD←c()

mmedD1←c()

res2 ← rep(0, M)

res3 ← rep(0, M)

res4 ← rep (0,M)

for(i in 1:M) {
res1 ← res[, i]

#Computes point estimates

res2[i]←ave.ang(res1)

res3[i] ←cmed(res1)

res4[i] ←cmedM1(res1)

#Computes circular mean dev. and circular median absolute dev.

meanD[i]←meandev1(res1,res2[i])

meanD1[i]←meddev(res1,res2[i])

medD[i]←meandev1(res1,res3[i])

medD1[i]←meddev(res1,res3[i])

mmedD[i]←meandev1(res1,res4[i])

mmedD1[i]←meddev(res1,res4[i])}
#Keeps all values except 9999
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nres2 ←res2[res2 6=9999]

nres3 ←res3[res3 6=9999]

nres4 ← res4[res4 6= 9999]

nres2←sort(nres2)

scmean ← ave.ang(nres2)

# Converts observations to (−π, π) range

newscmn ←rangeang(nres2)

#Computes 95% Empirical C.I.s, mean resultant lengths and point estimates

for the mean, Mardia median and New median

cicmean ←quantile(newscmn, c(0.025, 0.975)) + scmean

srcmean ←sqrt((((sum(round(sin(nres2), 10)))/length( nres2))2) +

(((sum(round(cos(nres2), 10)))/ length(nres2))2))

nres3←sort(nres3)

scmedian ← ave.ang(nres3)

nscmedian ← rangeang(nres3)

cicmedian ← quantile(nscmedian, c(0.025, 0.975)) + scmedian

srcmedian ← sqrt((((sum(round(sin(nres3), 10)))/length( nres3))2) +

(((sum(round(cos(nres3), 10)))/ length(nres3))2))

nres4←sort(nres4)

scmed ← ave.ang(nres4)

nscmed ←rangeang(nres4)

cicmed ←quantile(nscmed, c(0.025, 0.975)) + scmed

srcmed ← sqrt((((sum(round(sin(nres4), 10)))/length( nres4))2) +

(((sum(round(cos(nres4), 10)))/ length(nres4))2))

#Computes mean dev. and median absolute dev. fot the three measures

meanD ←meanD[meanD 6= 9999]

meanD←sort(meanD)

meand ←ave.ang(meanD)
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meanD1 ← meanD1[meanD1 6=9999]

meanD1 ←sort(meanD1)

meand1 ← ave.ang(meanD1)

medD ← medD[medD 6=9999]

medD←sort(medD)

medd ← ave.ang(medD)

medD1 ← medD1[medD1 6= 9999]

medD1←sort(medD1)

medd1← ave.ang(medD1)

mmedD ← mmedD[mmedD 6= 9999]

mmedD←sort(mmedD)

mmedd ←ave.ang(mmedD)

mmedD1 ← medD1[mmedD1 6= 9999]

mmedD1←sort(mmedD1)

mmedd1 ← ave.ang(mmedD1)

list(WNVM = res, cmean = res2, scmean = scmean, cicmean=cicmean,srcmean=srcmean,

meand = meand, meand1=meand1,cmedian= res3, scmedian = scmedian, cicmedian = ci-

cmedian, srcmedian = srcmedian,medd = medd, medd1=medd1,scmed= scmed, cicmed =

cicmed, srcmed = srcmed,mmedd = mmedd, mmedd1=mmedd1)}

E.23 simuNWNVM2()

This function calculates HL1 and corresponding resultant length, 95% empirical confidence

interval, and circular mean deviation

simuNWNVM2 ← function(M) {
res2 ← rep(0, M)

for(i in 1:M) {
res1 ← res[, i]
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# Computes point estimate

res2[i] ← ppcircmed(res1) }
nres2 ← res2[res2 6= 9999]

sMHL ← ave.ang(nres2)

# Converts observations to (−π, π) range

newsMHL ← rangeang(nres2 - sMHL[sMHL 6= 9999])

#Computes 95% Empirical Confidence Interval

ciMHL ← quantile(newsMHL, c(0.025, 0.975)) + sMHL[sMHL 6= 9999]

# Computes mean resultant length

srMHL ← sqrt((((sum(sin(nres2)))/M)2) + (((sum(cos(nres2)))/M)2))

#Computes circular mean deviation for HL1

MHLd ←meandev(nres2,sMHL)

list(WNVM =res, MHL = res2, sMHL = sMHL, ciMHL= ciMHL, srMHL =srMHL, MHLd=

MHLd)}

E.24 simuNWNVM3()

This function calculates HL2 and corresponding resultant length, 95% empirical confidence

interval, and circular mean deviation

simuNWNVM3 ← function(M) {
res2 ← rep(0, M)

for(i in 1:M) {
res1 ← res[, i]

# Computes point estimate

res2[i] ← ppcircmed2(res1) }
nres2 ← res2[res2 6= 9999]

sHL ← ave.ang(nres2)

# Converts observations to (−π, π) range
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newsHL ← rangeang(nres2 - sHL[sHL 6= 9999])

#Computes 95% Empirical Confidence Interval

ciHL ← quantile(newsHL, c(0.025, 0.975)) + sHL[sHL 6= 9999]

# Computes mean resultant length

srHL ← sqrt((((sum(sin(nres2)))/M)2) + (((sum(cos(nres2)))/M)2))

#Computes circular mean deviation

HLd ← meandev(nres2,sHL)

list(WNVM = res, HL = res2, sHL = sHL, ciHL =ciHL, srHL = srHL, HLd= HLd)}

E.25 simuNWNVMa()

This function calculates HL3 and corresponding resultant length, 95% empirical confidence

interval, and circular mean deviation

simuNWNVMa←function(M){
mmhld←c()

res2 ← rep(0, M)

for(i in 1:M) {
res1 ← res[, i]

# Computes point estimate

res2[i] ← ppcircmeda(res1)

#Computes circular mean deviation

mmhld[i]←meandev(res1,res2[i])}
nres2 ← res2[res2 6= 9999]

sMMHL ← ave.ang(nres2)

# Converts observations to (−π, π) range

newsMMHL ← rangeang(nres2 - sMMHL)

newsMMHL←newsMMHL[newsMMHL > -9990]

#Computes 95% Empirical Confidence Intervals for HL3
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ciMMHL ← quantile(newsMMHL, c(0.025, 0.975)) + sMMHL

# Computes mean resultant length

srMMHL← sqrt((((sum(round(sin(nres2),10)))/length(nres2))2) + (((sum(round(cos(nres2),10)))/length(nres2))2))

mmhld←mmhld[mmhld 6= 9999]

MMHLd←ave.ang(mmhld)

list(WNVM = res, MMHL = res2, sMMHL = sMMHL, ciMMHL = ciMMHL, srMMHL =

srMMHL, MMHLd= MMHLd)}

E.26a funCI()

This function calculates 95%Confidence Interval for the circular mean (Fisher 1993, p.88 and

Jamalamadaka & SenGupta (2001,p.96)

funcCI←function(x,func1){
n←length(x)

# Computes point estimate

pe1←func1(x)

#Computes mean resultant length, S.E and lower and upper confidence limits

rbar←sqrt((((sum(round(sin(x),10)))/n)2) + (((sum(round(cos(x),10)))/n)2))

kaph←akapinv(rbar)

serr←1/(sqrt(n*rbar*kaph))

l1←pe1-asin(1.96*serr)

u1←pe1+asin(1.96*serr)

return(pe1,rbar,kaph,serr,l1,u1)

where

# MLE of κ
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akappainv←function(x){
ifelse(x¿0.85, (−0.4 + 1.39 ∗ x + 0.43/(1− x)),(x3 − 4 ∗ x2 + 3 ∗ x)−1) }
akapinv←function(x){
ifelse(x¿0.53,(2 ∗ x + x3 + (5 ∗ x5)/6), akappainv(x))}

# Since akapinv is biased (Fisher, 1993, p.88), use

kaphat←function(x){
n←length(x)

x1←akapinv(x)

return(x2)}

E.26b funcmn()

This function calculates Bootstrap confidence intervals for mean direction Fisher & Mc

Powell (1989)

funcmn←function(data,func, B, alfa){
n ←length(data)

#Computes point estimate

pe ← func(data)

#Obtains boostrap samples

bootx ←bootsample(data,B)

peb ← c()

for(i in 1:B) {
#Computes point estimate from bootstrap sample

peb[i] ← func(bootx[, i])}
speb ← sort(peb)

#Position of lower limit
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L ← trunc(0.5 + (0.5 * B * alfa))

#position of upper limit

m ← B - L

nbootx1 ← sort(rangeang(speb - pe)) #Basic Method

l1 ← pe + nbootx1[L + 1] #Lower C.I.

u1 ← pe + nbootx1[m] #Upper C.I.

w1 ← abs(u1 - l1)

nbootx2 ←abs(sort(speb - pe)) #symmetric distribution

l2 ←pe - nbootx2[m] #Lower C.I.

u2 ← pe + nbootx2[m] #Upper C.I.

w2 ← abs(u2 - l2)

return(pe, l1,u1,w1,l2,u2,w2,L,m)}

where

#Generating Bootstrap Samples

bootsample←function(x,B){
n ←length(x)

bootsam←matrix(nrow= n,ncol= B)

bootx←c()

for(i in 1:B) {
#Sampling With Replacement

bootx ← sample(x, n, replace = T)

bootsam[, i]←bootx }
bootsam}

E.27 funcmed()
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This function calculates 95% Confidence Interval for the circular median for n >= 15&n > 15

(Fisher 1993, p.72-73)

funcmed←function(x,func){
n←length(x)

pe←func(x)

#Computes C.I.

m←(ifelse(n > 15, (1+trunc(0.5 ∗ n0.5 ∗ (1.96))), (1+trunc(0.5 ∗ n0.5 ∗ (1.96))− 2)))

newx←sort(rangeang(x-pe))

l1←newx[m]+pe # lower C.L.

u1←newx[(n-(m-1))]+pe # upper C.L.

w1←abs(u1-l1) # interval width

return(pe,l1,u1,w1,m)}

E. 28 bootSACI()

Symmetric Arc Bootstrap Confidence Interval

bootSACI←function(data,func1,func2,func3,B,alfa){
n←length(data)

datab1←c(1:B)

datab2←c(1:B)

datab3←c(1:B)

#Draws B samples and computes B bootstrap estimates

for (i in 1:B){
ndatab←sample(data,n, replace= T)

datab1[i]←func1(ndatab)

datab2[i]←func2(ndatab)
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datab3[i]←func3(ndatab)}
#mean resultant length, point estimate, lower and upper C.L. for mean

rL1 ←sqrt((((sum(round(sin(sort(datab1)),10)))/length(sort(datab1)))2) +

(((sum(round(cos(sort(datab1)),10)))/length(sort(datab1)))2))

pe1←func1(data)

sdatab1←sort(abs(rangeang(datab1-pe1)))

bound←quantile(sdatab1, (1-alfa))

l1←pe1-bound

u1←pe1+bound

#mean resultant length, point estimate, lower and upper C.L. for median

rL2 ←sqrt((((sum(round(sin(sort(datab2)),10)))/length(sort(datab2)))2) +

(((sum(round(cos(sort(datab2)),10)))/length(sort(datab2)))2))

pe2←func2(data)

sdatab2←sort(abs(rangeang(datab2-pe2)))

bound←quantile(sdatab2, (1-alfa))

l2←pe2-bound

u2←pe2+bound

#mean resultant length, point estimate, lower and upper C.L. for HL

pe3←func3(data)

rL3 ← sqrt((((sum(round(sin(sort(datab3)),10)))/length(sort(datab3)))2) +

(((sum(round(cos(sort(datab3)),10)))/length(sort(datab3)))2))

sdatab3←sort(abs(rangeang(datab3-pe3)))

bound←quantile(sdatab3, (1-alfa))

l3←pe3-bound

u3←pe3+bound

return(rL1,pe1,l1,u1,rL2,pe2,l2,u2,rL3,pe3,l3,u3)}
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E.29 bootETCI()

This function calculates Equal-Tailed Bootstrap Confidence Interval

bootETCI←function(data,func1,func2,func3,B,alfa){
n←length(data)

datab1←c(1:B)

datab2←c(1:B)

datab3←c(1:B)

#Draws B samples and computes B bootstrap estimates

for (i in 1:B){
ndatab←sample(data,n, replace= T)

datab1[i]←func1(ndatab)

datab2[i]←func2(ndatab)

datab3[i]←func3(ndatab)}
#mean resultant length, point estimate, lower and upper C.L. for mean

pe1←ave.ang(data)

rL1← sqrt((((sum(round(sin(sort(datab1)),10)))/length(sort(datab1)))2) +

(((sum(round(cos(sort(datab1)),10)))/length(sort(datab1)))2))

sdatab1←sort((rangeang(datab1-pe1)))

l1←pe1+quantile(sdatab1, alfa/2)

u1←pe1+quantile(sdatab1,(1-alfa/2))

#mean resultant length, point estimate, lower and upper C.L. for median

pe2←func2(data)

rL2←sqrt((((sum(round(sin(sort(datab2)),10)))/length(sort(datab2)))2) +

(((sum(round(cos(sort(datab2)),10)))/length(sort(datab2)))2))

sdatab2←sort((rangeang(datab2-pe2)))

l2←pe2+quantile(sdatab2, alfa/2)

u2←pe2+quantile(sdatab2,(1-alfa/2))
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#mean resultant length, point estimate, lower and upper C.L. for HL

pe3←func3(data)

rL3 ← sqrt((((sum(round(sin(sort(datab3)),10)))/length(sort(datab3)))2) +

(((sum(round(cos(sort(datab3)),10)))/length(sort(datab3)))2))

sdatab3←sort((rangeang(datab3-pe3)))

l3←pe3+quantile(sdatab3, alfa/2)

u3←pe3+quantile(sdatab3,(1-alfa/2))

return(rL1,pe1,l1,u1,rL2,pe2,l2,u2,rL3,pe3,l3,u3)}

E. 30 bootLBCI()

This function calculates Likelihood-Based Bootstrap Confidence Interval

bootLBCI←function(data,func1,func2,func3,B,alfa){
n←length(data)

datab1←c(1:B)

datab2←c(1:B)

datab3←c(1:B)

#Draws B samples and computes B bootstrap estimates

for (i in 1:B){
ndatab←sample(data,n, replace=T)

datab1[i]←func1(ndatab)

datab2[i]←func2(ndatab)

datab3[i]←func3(ndatab)}
#mean resultant length, point estimate, lower and upper C.L. for mean

pe1←func1(data)

rL1←sqrt((((sum(round(sin(sort(datab1)),10)))/length(sort(datab1)))2) +

(((sum(round(cos(sort(datab1)),10)))/length(sort(datab1)))2))
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sdatab1←sort(rangeang(datab1))

lenB←length(sdatab1)

minang←rep(0,lenB)

for (i in 1:lenB){
minang[i]←quantile((sdatab1-sdatab1[i])%%(2*pi),1-alfa)}
poslower←sdatab1[round(minang-min(minang),10)==0]

l1←pe1-sort(abs(rangeang(poslower-pe1)))[1]

u1←l1+min(minang)

#mean resultant length, point estimate, lower and upper C.L. for median

pe2←func2(data)

rL2←sqrt((((sum(round(sin(sort(datab2)),10)))/length(sort(datab2)))2) +

(((sum(round(cos(sort(datab2)),10)))/length(sort(datab2)))2))

sdatab2←sort(rangeang(datab2))

lenB←length(sdatab2)

minang←rep(0,lenB)

for (i in 1:lenB){
minang[i]←quantile((sdatab2-sdatab2[i])%%(2*pi),1-alfa)}
poslower←sdatab2[round(minang-min(minang),10)==0]

l2←pe2-sort(abs(rangeang(poslower-pe2)))[1]

u2←l2+min(minang)

#mean resultant length, point estimate, lower and upper C.L. for HL

pe3←unc3(data)

rL3 ←sqrt((((sum(round(sin(sort(datab3)),10)))/length(sort(datab3)))2) +

(((sum(round(cos(sort(datab3)),10)))/length(sort(datab3)))2))

sdatab3←sort(rangeang(datab3))

lenB←length(sdatab3)

minang←rep(0,lenB)

for (i in 1:lenB){
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minang[i]←quantile((sdatab3-sdatab3[i])%%(2*pi),1-alfa)}
poslower←sdatab3[round(minang-min(minang),10)==0]

l3←pe3-sort(abs(rangeang(poslower-pe3)))[1]

u3←l3+min(minang)

return(rL1,pe1,l1,u1,rL2,pe2,l2,u2,rL3,pe3,l3,u3)}

E.31 simul.bootF()

This function simulates the confidence intervals

simul.bootCI←function(n,mu,s,M,func1,func2,func3,B,alfa){
fish1←c()

wfish1←c()

fish2←c()

wfish2←c()

fish3←c()

wfish3←c()

SA1←c()

SA2←c()

SA3←c()

wSA1←c()

wSA2←c()

wSA3←c()

ET1←c()

ET2←c()

ET3←c()

wET1←c()

wET2←c()

wET3←c()
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LB1←c()

LB2←c()

LB3←c()

wLB1←c()

wLB2←c()

wLB3←c()

ciL ← matrix(nrow = M, ncol = 24)

#Generates M samples of size n from WN distribution

#Computes C.I.s based on the Basic Method, Symmetric Distr.

#Median Theory, Symmetric-Arc, Equal-Tailed and Likelihood-Based

for(i in 1:M) {
data←rnorm(n,mu,s)%%(2*pi)

bresmn←funcmn(data,func1,B,alfa)

bresmed←funcmed(data,func2)

bresSA←bootSA(data,func1,func2,func3,B,alfa)

bresET←bootET(data,func1,func2,func3,B,alfa)

bresLB←bootLB(data,func1,func2,func3,B,alfa)

#Basic Method

ciL[i,1]←bresmnl1

ciL[i,2]←bresmnu1

fish1[i]←ifelse((bresmnl1 < µ&µ <bresmnu1),1,0)

wfish1[i]←abs(bresmnu1-bresmnl1)

#Symmetric Distribution method

ciL[i,3]←bresmnl2

ciL[i,4]←bresmnu2

fish2[i]←ifelse((bresmnl2 < µ&µ < bresmnu2),1,0)

wfish2[i]←abs(bresmnu2-bresmnl2)

#Median Theory
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ciL[i,5]←bresmedl1

ciL[i,6]←bresmedu1

fish3[i]←ifelse((bresmedl1 < µ&µ < bresmedu1),1,0)

wfish3[i]←abs(bresmedu1-bresmedl1)

#Symmetric-Arc

ciL[i, 7]← bresSAl1

ciL[i, 8]← bresSAu1

SA1[i]←ifelse((bresSAl1 < µ&µ <bresSAu1),1,0)

wSA1[i]←abs(bresSAu1 -bresSAl1)

ciL[i, 9]← bresSAl2

ciL[i, 10]← bresSAu2

SA2[i]←ifelse((bresSAl2 < µ&µ < bresSAu2),1,0)

wSA2[i]←abs(bresSAu2 -bresSAl2)

ciL[i, 11]← bresSAl3

ciL[i, 12]← bresSAu3

SA3[i]←ifelse((bresSAl3 < µ&µ <bresSAu3),1,0)

wSA3[i]←abs(bresSAu3 -bresSAl3)

#Equal-Tailed Arc

ciL[i, 13]← bresETl1

ciL[i, 14]← bresETu1

ET1[i]←ifelse((bresETl1 < µ&µ < bresETu1),1,0)

wET1[i]←abs(bresETu1 -bresETl1)

ciL[i, 15]← bresETl2

ciL[i, 16]← bresETu2

ET2[i]←ifelse((bresETl2 < µ&µ < bresETu2),1,0)

wET2[i]←abs(bresETu2 -bresETl2)

ciL[i, 17]← bresETl3

ciL[i, 18]← bresETu3
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ET3[i]←ifelse((bresETl3 < µ&µ <bresETu3),1,0)

wET3[i]←abs(bresETu3 -bresETl3)

#Likelihood-Based Arc

ciL[i, 19]← bresLBl1

ciL[i, 20]←bresLBu1

LB1[i]←ifelse((bresLBl1 < µ&µ < bresLBu1),1,0)

wLB1[i]←abs(bresLBu1 -bresLBl1)

ciL[i, 21]← bresLBl2

ciL[i, 22]← bresLBu2

LB2[i]←ifelse((bresLBl2 < µ&µ < bresLBu2),1,0)

wLB2[i]←abs(bresLBu2 -bresLBl2)

ciL[i, 23]← bresLBl3

ciL[i, 24]← bresLBu3

LB3[i]←ifelse((bresLBl3 < µ&µ < bresLBu3),1,0)

wLB3[i]←abs(bresLBu3 -bresLBl3)}
ciL

#Basic Method

fish1←sum(fish1)

rLfish1←sqrt((((sum(round(sin(sort(wfish1)), 10)))/length(sort(wfish1)))2) +

( ((sum(round(cos(sort(wfish1)), 10)))/length(sort(wfish1)))2))

wfish1←func1(sort(wfish1))

#Symmetric Distribution

fish2←sum(fish2)

rLfish2←sqrt((((sum(round(sin(sort(wfish2)), 10)))/length(sort(wfish2)))2) +

( ((sum(round(cos(sort(wfish2)), 10)))/length(sort(wfish2)))2))

wfish2←func1(sort(wfish2))

# Median Theory

fish3←sum(fish3)
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rLfish3←sqrt((((sum(round(sin(sort(wfish3)), 10)))/length(sort(wfish3)))2) +

( ((sum(round(cos(sort(wfish3)), 10)))/length(sort(wfish3)))2))

wfish3←func1(sort(wfish3))

#Symmetric-Arc

SA1←sum(SA1)

rLSA1←sqrt((((sum(round(sin(sort(wSA1)), 10)))/length(sort(wSA1)))2) +

( ((sum(round(cos(sort(wSA1)), 10)))/length(sort(wSA1)))2))

wSA1←func1(sort(wSA1))

SA2←sum(sort(SA2))

rLSA2←sqrt((((sum(round(sin(sort(wSA2)), 10)))/length(sort(wSA2)))2) +

( ((sum(round(cos(sort(wSA2)), 10)))/length(sort(wSA2)))2))

wSA2←func1(sort(wSA2))

SA3←sum(sort(SA3))

rLSA3←sqrt((((sum(round(sin(sort(wSA3)), 10)))/length(sort(wSA3)))2) +

( ((sum(round(cos(sort(wSA3)), 10)))/length(sort(wSA3)))2))

wSA3←func1(sort(wSA3))

# Equal-Tailed Arc

ET1←sum(ET1)

rLET1←sqrt((((sum(round(sin(sort(wET1)), 10)))/length(sort(wET1)))2) +

( ((sum(round(cos(sort(wET1)), 10)))/length(sort(wET1)))2))

wET1←func1(sort(wET1))

ET2←sum(sort(LB2))

rLET2←sqrt((((sum(round(sin(sort(wET2)), 10)))/length(sort(wET2)))2) +

( ((sum(round(cos(sort(wET2)), 10)))/length(sort(wET2)))2))

wET2←func1(sort(wET2))

ET3←sum(sort(ET3))

rLET3←sqrt((((sum(round(sin(sort(wET3)), 10)))/length(sort(wET3)))2) +

( ((sum(round(cos(sort(wET3)), 10)))/length(sort(wET3)))2))
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wET3←func1(sort(wET3))

#Likelihood-Based Arc

LB1←sum(LB1)

rLLB1←sqrt((((sum(round(sin(sort(wLB1)), 10)))/length(sort(wLB1)))2) +

( ((sum(round(cos(sort(wLB1)), 10)))/length(sort(wLB1)))2))

wLB1←func1(sort(wLB1))

LB2←sum(sort(LB2))

rLLB2←sqrt((((sum(round(sin(sort(wLB2)), 10)))/length(sort(wLB2)))2) +

( ((sum(round(cos(sort(wLB2)), 10)))/length(sort(wLB2)))2))

wLB2←func1(sort(wLB2))

LB3←sum(sort(LB3))

rLLB3←sqrt((((sum(round(sin(sort(wLB3)), 10)))/length(sort(wLB3)))2) +

( ((sum(round(cos(sort(wLB3)), 10)))/length(sort(wLB3)))2))

wLB3←func1(sort(wLB3))

return(fish1,wfish1,rLfish1,fish2,wfish2,rLfish2,fish3,wfish3,rLfish3,

SA1,wSA1,rLSA1,SA2,wSA2,rLSA2,SA3, wSA3,rLSA3,

ET1,wET1,rLET1,ET2,wET2,rLET2,ET3,wET3,rLET3,

LB1,wLB1,rLLB1,LB2,wLB2,rLLB2,LB3,wLB3,rLLB3)}

E.32 bootfunc2()

This function plots the confidence intervals

bootfunc2←function(x){
lenx ← length(x)

#Draws circle

plot(cos(0:360/180 * pi), sin(0:360/180 * pi), xlim = c(-1.5,1.5), ylim = c(-1.5,1.5), xlab= ”

”, ylab = ” ”, type = ”l”, axes= F)

new.ang ← ((2 * ceiling((90 * x)/pi) - 1) * pi)/180
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s.ang ←sort(new.ang)

l ←length(x)

points(0.95 * cos(s.ang[1]), 0.95 * sin(s.ang[1]), pch = ”o”) dist ←0.95

for(i in 2:l) { if(s.ang[i] == s.ang[i - 1]) { dist←dist - 0.05}
else { dist ←0.95 }
points(dist * cos(s.ang[i]), dist * sin(s.ang[i]), pch = ”o”)}}

# Used with bootfunc2() to plot confidence bands

normalsize points(1.25 * cos(pe), 1.25 * sin(pe), pch = 2)

lowline ←seq(round(lower, 2), round(pe, 2), 0.01)

uppline ← seq(round(pe, 2), round(upper, 2), 0.01)

lines(1.25 * cos(lowline), 1.25 * sin(lowline), type = ”l”, lty = 1)

lines(1.25 * cos(uppline), 1.25 * sin(uppline), type = ”l”, lty = 1)
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