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Abstract

Over the past few years, the research area of bioinformétss been the subject
of increasing attention. At its core remains what is oftermed the “holy grail”

of structural biology: the prediction of a protein’s threeménsional structure from
its associated amino acid sequence. Bioinformatics is aerdisciplinary field

of research incorporating, among others, biochemiststisstaans and computer
scientists. The international collaboration involved xemplified by the Leeds Annual
Statistical Research (LASR) workshops (www.maths.leexsk/statistics/workshop),

yearly meetings of such researchers in which new ideas aregh

The research contained in this thesis focuses on the dewelayof circular multivariate
and time series models and their application to the threeedsional conformation of
proteins. The aims of the work presented herein are therdfeofold: we strive to
advance the scope of circular statistics both theoreyieadtl also in practice. In terms of
the former, a multivariate circular distribution is propdsand investigated and circular
time series models are developed and explored. With regpdee latter, all the models
considered are applied to the conformational angles oficodeit proteins, and their

suitability discussed in detail.

Although the thesis focuses primarily on circular data, dwuehe close relationship
between highly concentrated circular data and data on @ddine, aspects of the work
in this thesis inevitably concentrate on the latter as atimgicase of the former. In these
cases, the results obtained for the linear case are clefaryeoest in their own right, as

well as being important to the circular cases to which théstee
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Chapter 1

Introduction

1.1 Motivation and background

The research presented in this thesis is motivated by theasmgly popular area of
structural bioinformatics, and in particular by the chafle of understanding the three
dimensional structure of proteins. The so—called “profelding problem”, that of
predicting the three dimensional structure of a proteiregiits amino acid sequence,
is one of the most fundamental unsolved challenges in siraichiology. Also of great
interest in the study of proteins is the relationship betwiir structure and function.
The link between the amino acid sequence and the functionpobtain is therefore its
three dimensional structure, and it is a better understgraithis structure that motivates

the research presented herein.

The work is partitioned into two separate yet connectedssizdl methodologies. The
first, discussed in Part | of the thesis, is the formulatiod application of multivariate
circular models; the second, the focus of Part Il, is the graent and implementation
of time series models for circular data. The applicationaiteis to the conformational

angles of protein data. We therefore unify in the presenptgrahe topics that recur



2 Chapter 1

throughout the thesis. In particular, we give an introdutto protein structure in Section
1.2, outline certain aspects of univariate circular sti@gs(Section 1.3) and, in Section
1.4, give a summary of two bivariate circular distributidmown as the Sine model and
the Cosine model that will be revisited throughout the theSection 1.5 gives a more

detailed breakdown of the structure of the thesis.

1.2 Introduction to protein structure

We here give a brief outline of the fundamental aspects ofeprcstructure that will
be important in the application to protein data of the stiaa$é models formulated in
the thesis. There are a number of excellent texts giving cehgnsive introductions to

protein structure, just two of which are Branden and Too288) and Lesk (2000).

There are twenty commonly occurring amino acids, each witbrdral carbon aton((*)
and, attached to it, a hydrogen atom, an amine group of a@oepoxyl group of atoms
and a side chain. It is the latter that enables us to distaiigioétween amino acids. The
carboxyl group of one amino acid condenses with the aminepyod another, creating
a peptide bond between the two amino acids (see Figure 1Hiy pfocess continues,
giving a structural sequence called a polypeptide chaire @rmmore polypeptide chains
then bind together to form a protein. Two aspects of thisganowill be of particular
interest in the current research; the backbone of the prated the side chains of the

amino acids.

1.2.1 The protein backbone

The backbone of a polypeptide chain comprises a sequentem$a

N;—C¢—Cy—Ny—Cg—Cy— ... —N,—C2—C,,

p
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(a) Amino acid 1. (b) Amino acid 2.

(c) Amino acids 1 and 2 joined by a peptide bond.

Figure 1.1: The carboxyl groug’(O©OH) of amino acid 1 condenses with the amine group
(NHy) of amino acid 2, eliminatingl,O and forming a peptide bond between thatom

of amino acid 1 and th& atom of amino acid 2. The process continues to produce a

polypeptide.
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in which the lengths of the bonds between any two successo@saand the angle
between any three successive atoms are, to a good apprmaipwinstant (Lesk, 2000).
The degrees of freedom of the polypeptide therefore invalvgles within chains of 4
atoms. Since there are 3 different atoms in the backbdhne“(and C*), there are 3
angles to be considered. The situation is summarised inr&ig2. We label the atoms
A1, As, A3 and A, and the bond$,, by andbs. Looking atA, in such a way that\3
andb, are blocked from view byA,, andA; is directly belowA, (see Figure 1.2), the
dihedral angle in each case is that between bbndsdbs. A zero direction is observed
whenb; eclipseshs, whilst a counter clockwise direction is taken as posithAmrgles are

measured betweenr andr.

Table 1.1 defines the dihedral anglgs v, andw; in terms of the atomg; to A4. For
example, whem\; = C;_1, Ay = N;, A; = C¢ andA, = C; then the anglé depicted in
Figure 1.2 represents.

Figure 1.2: Dihedral anglé defined in terms of four atom&;, A,, A3 (directly behind
Aj) andA,. The anglg) is that between bonds andbs.

Note from the above that; andi, are undefined. The angleis restricted to be about

zero. Most combinations af and+ angles in proteins are not observed in practice as
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0 AL Ay Ay A,
¢ Ciy N, CooG
Y N, Co O Niy
w Co, C, N; (o

Table 1.1: Specification of the dihedral anglgs; andw; in terms of the anglé and
atomsA; to A, of Figure 1.2. AtomAs; is directly behindAs,.

they would result in steric collisions between backbonesidd chain atoms.

A Ramachandran plot (Ramachandran et al., 1963) is comnuslgt to plot) versusy

for amino acids or proteins, and can also be used to highlight andv> combinations
observable for the components of a protein called alphadé®khnd beta strands. Figure
1.3 shows a Ramachandran plot for the protein triosephts@amerase. As can be seen
from the plot, thep, ) pairs tend to separate into clusters. In general the pessihb
values forg strands, right—handed helices and left—handed helices for any protein
cluster around the regions on Figure 1.3 labelled.z anda;, respectively. The amino
acid glycine is an exception to the rule: its side chain is\glei hydrogen atom, meaning
that a wider range o, ¢ values are possible without causing steric collisions. tMos

proteins contain only small quantities of glycine.

Recent examples of the modeling of protein conformationgles include Singh et al.
(2002), who fit the bivariate von Mises model called the Sinedet to angles of the
amino acid proline, and Mardia et al. (2007b), who discussenbooadly the Cosine and
Sine models and model theand angles of the proteins malate dehydrogenase and

myoglobin using mixture models.
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Figure 1.3: Ramachandran plot for the protein triosephatgplisomerase. Regions
labelleds, oz anday, indicate those in which thegb, 1) angles of3 strands, right—-handed

« helices and left-handedhelices can be observed.

1.2.2 The protein side chain

The carbon atoms on the side chain of an amino acid are ldbstieording to the letters

of the Greek alphabet. The lettaris given to the central carbon atom of the amino
acid (C*). Each carbon atom on the side chain is then allocated a Ettpientially,
C8,C7, ..., and the dihedral angles involving these side chain carbmmsare denoted
X1, X2, - . . Each amino acid therefore has associated with it a certaitbeuofy values,
depending on the number of carbon atoms in its side chaifor example can be defined

in terms of Figure 1.2 by taking; = N, A, = C%, A; = CP andA, = C7. The angle

in the figure then represents. Two amino acids that each have a single side chain angle

X1 are serine and valine.
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There has been a vast amount of research investigatingldt®nship between the side
chainy angles and the and¢> angles of amino acids and proteins. Dunbrack and Cohen
(1997), for example, present a Bayesian analysis of side& dosmformations in order to

predicty values from the associatedand angles.

1.3 Univariate circular statistics and the von Mises

distribution

Circular statistics occur in very many and diverse settinggs nature, the homing or
migration direction of birds are but two examples. In mauécand biology, features that
occur periodically, such as month of onset of an illness,iaradian rhythms, can be
regarded as measurements on the circle. In psychology thepgi®n of direction and in
astronomy the relative orbit of planets are two further eplas. A contemporary example
that is of particular significance with the vast interestimitformatics, and that will play
a central role in this thesis, is the three—dimensionattire of proteins, defined in terms

of dihedral angles.

In order to both highlight some of the aspects of statistiwadieling of circular data and to
lay the foundation for the multivariate and time series ni®déscussed in the thesis, we
here give an introduction to univariate circular statst@nd the von Mises distribution.
For a more detailed outline than is given here and a more getiscussion of directional

statistics see, for example, Mardia and Jupp (1999).

1.3.1 Univariate circular statistics

Consider a circular data séf, 6,, ..., 0, wheref; € [—m,7),i = 1,2,...,n (in which

interval we shall take circular variables to be throughbatthesis). Each has associated
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with it a unit vectorx; = (cos 6;,sin6;),i = 1,...,n. The mean directio of 4y, ..., 6,

is defined as the direction of the resultant of the vectgrs. . , x,,. Defining

C= Z cos 0; and S = Z sin 6;

we see that the length of this resultant is
R=/(C*+ 5%
and tha® is the solution of the equations
C = Rcosé, S = Rsinf.
Taking® to be in the interval—x, 7), this solution is given (assuming # 0, C' # 0) by

the function

tan—1(S/C) if C>0

0 =tan"'(S,C) = :
tan~1(S/C) + wsgn(S) if C <0

wheresgn(+) is the sign function. I = 0, S # 0 thend = Zsgn(S) whilstif S =0, C #
0thend = Z[sgn(C) — 1]. We therefore see that the functiom=(a, b) € [, ) is the

angle between the positive-axis and the vectap, a).

The mean resultant length is given By= R/n, andR and@ are the polar coordinates of

the sample first trigonometric moment
m/1 —C +iS = Re? = pet,
whereC = C/n, S = S/n andp andy are the polar coordinates of the population first
trigonometric moment. The sampléh trigonometric moment is defined analogously as
m, = a, + ib, = R,e™, (1.1)

say, where

n

l & 1
a, =~ cospb;, by = > " sinpb;, (1.2)
=1

n < -
=1
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R, is the length of theth mean resultant and, is its direction. Clearly;; = C, b, = S,

R, = Randm, = 6. From (1.1) we have

a, = R, cosm,, b, = R,sinm,,. (1.3)

Thepth trigonometric moment about the sample mean directisdefined as
m,, = @, + ib,, (1.4)

where
R _ S 5
ap = " ;Cosp(@' —0), by = n ;smp(@- —0). (1.5)

Expanding the expressions in (1.5) and using the relatidr®y énd (1.3) fow, andb,
gives

a, = R, cos(m, — pd), b, = R,sin(m, — pf), (1.6)

so that, from (1.4),

_ D i(mp—ph)
my, = [2,e"""” .

We now consider the population equivalents of the sammeiometric moments. Unlike
distributions on the line, circular distributions are wnedy defined by their moments. In
particular, the characteristic functigrnevaluated at integeris also thepth trigonometric

momenty., of ¢:

’

Py = 0p = E(e?) = oy, + i3, = ppe', (1.7)
say, where

a, = E(cos ph), B, = E(sinpb).
Thepth central trigonometric moment is defined as
pp=E{ePmY =7, + 43,

Using (1.7) we have

Uy = ppei(up —pH1) 7
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giving

ay = ppcos(pp — ppi1), B, = ppsin(p, — pp1).

The most widely used circular distribution is the von Miséstribution, which enjoys a
similar status in circular statistics to that of the normistrbution for statistics on the
line. The connection between the two is one that is explditealighout the thesis, and is

worth highlighting in the simplest, univariate case.

Definition 1.3.1 The random anglé is said to follow a von Mises distribution with mean
directiony and “concentration”« > 0 if its density (with respect to the uniform measure
on the circle) is

f(0) = {2nIo(r)} ™" exp{r cos(0 — )}, (1.8)
wherel,(-) is the modified Bessel function of the first kind and ordemn this case we
write 0 ~ M (p, k).

Alternatively, we can define the von Mises distribution imts of the vectox:

Definition 1.3.2 The unit random vectat = (cos 6, sin §)7 has a von Mises distribution
with mean direction: and “concentration” = > 0 if its density (with respect to the

uniform measure on the circle) is
f(x) = [2rLo(k)] " exp(x’ @), (1.9)

where the concentration vectet = x(cosu,sinu)? has lengthx and angley, and

I,(-) is the modified Bessel function of the first kind and ondein this case we write
x ~ VM () (in order to distinguish between this definition and thategivn Definition

1.3.1).

From Equation (1.8) and sine#(y)/dy = I,(y) it is easily seen that the maximum

likelihood estimates of andx are given by

=0 and A(k) =R
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respectively, wherel, (-) = I, (-)/Io(+).

Under high concentration (ie. i is large), we havé — p ~ 0 so thatcos(d — ) ~
1 — (6 — p)?/2 using a second order Taylor series expansion. From Equéti8hwe

therefore have

f0) =~ [27Iy(rk)] " exp {k — k(0 — p)*/2}

o exp {—r(0 - p)?/2}.

which is proportional to the density of a normal distributiwith meanu and variance
1/k. In other words, i) ~ M(u, <) andx is large, therd ~ N(u, 1/x) approximately.
Figure 1.4 compares the probability density functions #é(u, ) and N (u, 1/x) for

@ = 0andx = 0.5,1,2 and4. As can be seen from the plots, the approximation of the
latter to the former improves asincreases, and fotr = 4 the approximation can be seen

to be reasonably good.

There has been much work on the possible extension of theaneii® von Mises
distribution to higher dimensions. In the next section w#ine some of these, focusing
on two bivariate von Mises distributions referred to as tieeSnodel and the Cosine

model, which will be central to much of the research in thesihe

1.4 Bivariate von Mises models

Mardia (1975) proposed a bivariate distribution for twauaiar variableg; andf, which,

with zero directional mean vector, has probability den&ityction proportional to
exp |k cos by + ko cos by + {cos by, sin by } A {cos by, sin HQ}T] (1.10)

whereA is a2 x 2 matrix. Rivest (1987) considered a submodel of (1.10), tresdy of

which is proportional to

exp [k cos by + Ko cos Oy + acos by cos Oy + (3 sin 0y sin bs)] . (1.11)
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von Mises and normal densities

f(8)

0.4

0.2

0.0

Figure 1.4: Comparison of von Mises densities (solid lireeg) normal densities (dashed
lines) fork = 0.5,1,2, 4.

Including mean direction parameters, this model has siarpaters. In order to obtain
a distribution that is approximately normal under high atcation, we require further

restrictions onv andg, since the bivariate normal distribution has five paranseter

With the further restrictiomr = 0 and with3 = X\ we have the so—called Sine model,
studied in detail by Singh et al. (2002) and Mardia et al. @9)0the density of which,

including mean directions, is given by

f5(01,05) = Csexp {/ﬁ cos(0; — p1) + Ko cos(Os — pg)+ (1.12)

Asin(fy — pqp) sin(fy — ,uz)},

for —m < 01,0, < w,wherek, ks > 0, —00 < A < 00, =7 < i1, fie < m and

- 2m )\2 m
-1 — 4 2 I [ |
Cs m n;) <m) (4/@11,4,2) m(Hl) m(/'iQ)
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Alternatively, takinga = (§ = —k3 gives the density of the so—called Cosine model,
studied in depth by Mardia et al. (2007b):

fe(61,05) = C.exp {/@1 cos(0; — p1) + Ko cos(fy — pig)— (1.13)

k3 cos [(01 — p1) — (02 — p2)] }

for —m < 0,,0, < m,wherex; > k3 > 0,k > k3 >0, —00 < A < 00, =7 < U1, fg <

7 and

Cot=4rn? {Io(nl)lo(ng)lo(ng) +2 Z Im(m)lm(/ig)[m(ng)} :

m=1
The joint distribution of9; andd, is approximately normal based on bathé,, 6,) and
fe(01, 6>) for highly concentrated data, so long as the joint circulstrihution in question
is unimodal, the conditions for which are discussed belowr the models given by
Equations (1.12) and (1.13), the parameteasndx; account for the circular dependency

betweer; andds.

The marginal and conditional densities of the Sine and @osmoedels are derived in
Singh et al. (2002) and Mardia et al. (2007b), and we heresgheise densities for future

reference. For the Sine model, the marginal densi#}; a$ given by
fs(61) = 27CIy(ay ) et cosOr1=r) (1.14)

wherea, = {2 + A?sin’(6;, — 111)}'/*. For the Cosine model, the corresponding resuit
5
fc(‘gl) = 277—00]0(%23)6’“ cos(01—p1)

whererZ, = k3 + k2 — 2kar3 cos(6 — ).

The conditional density of, given#, for the Sine model is

fo(6201) = [2mIo(ay)] e coslbzmpa=by) (1.15)

— [27T]0 (a/l )] -1 eHQ COS(@Q — 2 )—i—)\ sin(6‘1 —;Ll) Sin(@g —,U,Q)
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A

wheretan b, = = sin(f; — py). For the Cosine model, we have

fc(eg |01) = [27’([0(/‘3}23)]716&23 cos(02=pz—c1) (116)

_ [27’(’]0(/{23)] —lem cos(f2—p2)—k3 cos[(01—p1)—(02—p2)] (117)

wheretanc; = —kgsin(0; — py)/[ke — k3 cos(f; — u1)]. We therefore see that for both
the Sine model and the Cosine model, the conditional deosity givend, is univariate
von Mises. The same is true &f givend,, for which we have similar expressions to those

given above.

Singh et al. (2002) considered the shape of the marginaildison f(0,) for the Sine
model, whilst Mardia et al. (2007b) explored the shapes®htiarginal and joint densities
fe(61) and f.(6y, 0;) for the Cosine model, and the shape of the joint denfity, 6-)
for the Sine model. In fact all of these densities are symimatrd either unimodal or

bimodal. Table 1.2 gives the condition, for each, under wiie density is bimodal.

Sine model Cosine model

Joint Kika < A2 K3 > Ki1ke/ (K1 + Ko)

Marginal | Ay (k) > kika /A2 | Ai(|ry — kg|) > lm—ralrz

R1K3

Table 1.2: Necessary and sufficient conditions for bimagadf joint and marginal

densities for the Sine and Cosine models.

For the marginal densitie (0;) and f.(;), the uniqgue mode is at; if the density is
unimodal. If the density is bimodal, then the modes are &xtaitt;., + 67, whered; is

defined as follows. For the Sine modgl,is the solution of
cos(0; — i) A(ai) fay = i /N2, (1.18)
wherea; = {x3 + A\?sin*(0; — ul)}m. For the Cosine moded; is the solution to

kakzAi(Kd3) /Ky — k1 =0, (1.19)
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whererj, = {k3 + K2 — 2Kak3 cos(6} — Ml)}m-

When the joint densities are unimodal the Sine and Cosineetaazhn, under high
concentration, be approximated by normal distributionthwdiommon mean vector
(11, 12) @and inverse covariance matrices given respectively by

B K1 —A B K1 — K3 K3
»ol= and »ot=

s [
—A K9 K3 Ko — K3

The correlations betweefy, and 6, for the Sine and Cosine models based on these

approximations are

A and —R3
Ps = n Pe
VE1K2 V(K51 — k3) (ke — K3)

respectively. Mardia et al. (2007b) comparged and p. with the correlations of
(cos 01, cos B5) and(sin 6, sin 0) for various large values af, andx,, concluding that:;
appears to “track” the value @f well over the entire range-1, 1) of the latter, whereas

A sometimes only tracks; over the interval0,0.4). Their numerical comparisons of
moments also show the Cosine model to outperform the Sinehmoterms of the ability

to capture the correlation betweénandé,. On the other hand, the Sine model is easier
to extend to more dimensions, and it is this model that wilkkended in Chapter 2 to a
multivariate setting. Mardia et al. (2007b) also give atcmmparison of the conditional
densities of), givend,, and this comparison will be further explored in Chapter évidg
outlined the recurring topics of Part | and Part Il of the these next give a more detailed

breakdown of the thesis structure.

1.5 OQutline of thesis

As previously mentioned, the thesis is divided into two garin Part | (comprising

Chapters 2-4) we focus on a multivariate von Mises distidoutvith applications to
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protein data, whilst Part Il (Chapters 5—-6) considers t¢actime series models with
applications to protein data. A more detailed descriptibthe chapters in Parts | and Il

iS now given.

1.5.1 Outline of Part |

In Chapter 2 we introduce a multivariate von Mises distimut which is a natural

extension of the Sine model (Equation (1.12)). The modep@riies are discussed,
including the normal approximation under high concentratand derivation of the
conditional densities. Data simulation is also discussedlfe bivariate and trivariate

models, the former using a rejection algorithm and thedat@ibbs sampling approach.

Chapter 3 introduces a method of estimation called psekaliood estimation, which
provides an alternative to maximum likelihood estimatidmew the normalizing constant
of a density is unknown, as is the case for the multivariate Mises distribution of
dimension greater than two. A review of existing work on tlseydolikelihood is given,
and a method of obtaining its efficiency is presented. Twiedkht pseudolikelihoods are
defined in terms of products of conditional densities. THieiehcy of both is discussed,
in this chapter, with reference to the multivariate normsiribution, which approximates
the multivariate von Mises distribution under high concetion. The efficiency is shown
to be unity for all bivariate and trivariate situations calesed, except in the bivariate case

wheng; ando, are known.

In Chapter 4 we discuss parameter estimation and inferesrcéhé multivariate von
Mises distribution. In particular, the efficiency of the pdelikelihood is calculated
numerically for the bivariate case, and simulations supfize conclusions reached.
For the trivariate case, efficiency is explored through $athon of data and subsequent
parameter estimation. A trivariate von Mises distributisused to model two separate

protein data sets, and maximum likelihood estimation isgamd with pseudolikelihood
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estimation for these data. Inference is discussed in terfmiedinhood ratio testing
for both data sets, which testing includes the use of thedudielihood and normal

approximations.

1.5.2 Outline of Part Il

Chapter 5 gives a review of circular time series models. &gbbry analysis is discussed
in terms of thek—lag circular autocorrelation coefficient. A circular cgdogram is defined

and a method of assessing the significance of the coeffidegisen. Four approaches
to time series modeling of circular data are discussed, hatime von Mises AR process
(defined in terms of conditional von Mises densities), psses based on link functions,

wrapped AR processes and projected processes.

The use of conditional von Mises densities for the specificabf AR(1) models is
discussed in Chapters 6 and 7. In Chapter 6 the focus is onsthefuthe conditional
densities of the Sine and Cosine models discussed in Secdowhilst Chapter 7 adapts
a circular regression model due to Downs and Mardia (2002)time series setting, and
we will refer to the resulting model as the Mobius model. &cleof Chapters 6 and 7, the
discussion of models proceeds as follows. The determerastil random components of
the model are discussed, and the behaviour of simulateccdatadered in terms of the
observations made. The equilibrium distribution of thegesses is given explicitly for
the Cosine and Sine time series models, whilst that for tlobilve' model is considered
numerically. The likelihood function and parameter estioraare considered, and the
models are fitted to protein data. An analysis of goodness$itdbllows, including
the simulation of data based on maximum likelihood estisated comparison of the
resulting data with the original data. For each model, themal for further work and

ways in which the model can be extended are also discussed.

In Chapter 8 we summarize the conclusions of the thesis asebads achievements.



18

Chapter 1



Part |

Multivariate von Mises models with
application to protein conformational

angles

19






21

Chapter 2

A multivariate von Mises distribution

2.1 Introduction

In this chapter we present a multivariate circular disttiduthat is a natural extension of
the univariate von Mises distribution and which, for higlggncentrated data, follows
an approximate multivariate normal distribution. The modealso a multivariate

generalization of the Sine model outlined in Section 1.4isThapter focuses on model
properties and data simulation, whilst the ensuing two tgrap(Chapters 3 and 4)
consider parameter estimation and inference for the maedspéctively), both in terms

of simulated and actual protein data.

There are very few multivariate circular distributions inmetliterature. A wrapped
multivariate normal distribution was discussed by Baba8(19 The univariate and
bivariate marginals of this distribution are also wrappethmal, whereas the multivariate
von Mises distribution to be discussed does not have von dviisarginals. However,
maximum likelihood estimation is not computationally fiedes for the wrapped model.

A p—variate extension of the bivariate model of Equation (L1vl&s given by Mardia and
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Patrangenaru (2005) as

exp { Z as cos b + st sin 6y + Z ag cos 0, cos 0,

+ Z bs; cos O, sin 0, + Z Cgt SIN 0 sin Ht} (2.1)
wherea,, = bys = css = 0, by # by @ands,t = 1,...,p. In this chapter we present
an extension of the Sine model (1.12) gadimensions. The model is also a natural
extension of the univariate von Mises distribution incogimg circular dependency
between variables and approximates a multivariate normsélilclition when the range
of observations is small. The model is defined in Sectiondhd,its properties discussed
in Section 2.3, in which section conditional, joint and magd distributions are also
derived. Methods for simulating bivariate and trivariadé¢adfrom the model are presented

in Section 2.4, and can be extended to higher dimensions.

2.2 The model

We define the probability density function of the multivégiaon Mises distribution for
O = (01,0,,...,0,) as follows:

f(©) =C'(k, A)exp {F-',TC(O, w) + %S(O, )" A s(0, u)} : (2.2)
where—m < 0; <7, —m<p; <m Kk; >0, —00 < \;; <00,
(6, 1) = (cos(6h — i), cos(Bh — ), . o8By — 1))
s(0, )" = (sin(6y — ), sin(0y — pia), ..., sin(6, — 1)),
NT = (1, pay - - -5 i), k' = (K1, K2, Kp),
(Al = A= Nj, Ay =0,

ande—l(n, A) is anormalizing constant. We denote fhevariate von Mises distribution

by ©® ~ M,(p, &, A). Forp = 1, (2.2) reduces to the univariate von Mises distribution,
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and forp = 2 to the bivariate distribution studied by Singh et al. (2002Zhe general
p—variate model was proposed by Singh and Mardia (2004). Tdrk herein expands on

their preliminary work, and is summarised in Singh et al. 020

2.3 Model properties

In this section we derive certain properties of the muliatgrvon Mises distribution: it is
shown that when the circular variables are highly concésdirtney follow an approximate
multivariate normal distribution; the univariate condital distributions are shown to be
von Mises distributed, and the shape of univariate and iaiteamarginals for the trivariate
model are explored. Without loss of generality, it will beased throughout this section
thatp = 0.

When the fluctuations in the variablés, ©,, .. ., ©, are small, we have
cosf; = 1— 632-/2, sinf; ~0;; j=12,...,p.

If we substitute these expressions back into (2.2), thenptmt of the exponential
involving @ is

exp {—%OTKO + %OTAO} (2.3)
whereK = diag(k). (2.3) is proportional to the probability density functiof the
multivariate normal distribution with inverse covariangatrix X! = K — A, ie.
(=7

the multivariate von Mises distribution follows an approgte multivariate normal

i =K (371, = =X, j # 1. We therefore see that, under high concentration,

distribution.

We now derive the univariate conditional distributionscasated with (2.2).

Theorem 2.3.1Let ® have thep-variate von Mises distribution (2.2). Then the

conditional distribution oB,, givend,, . . ., 0,_; is univariate von Mises with parameters
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givenin (2.7).

Proof

Forp > 1 write (2.2) as

f(b1,...,0,) exp{Zfﬁjcosﬁ —1—2 Z Ajsin 0; sm@l} (2.4)

j=1l=j+1

Then the conditional density &, givend,,...,0,_; is proportional to the expression

obtained upon collecting the terms in the exponent of (2d)lving d,. Hence we have

p—1
F(0,01,...,0,1) < exp {Kp cosf, + Y Ajpsinf; sin ep} : (2.5)
j=1
Now definex, ., ,—1 andgu,.1,.,—1 (to emphasize conditioning ah, ..., 0,_,) by
Rp = Kp.1,..p—1COS Up.1,... p—1

Z)\Jpsmé’ _____ p—1 810 flp.1 po1 (2.6)
and substitute these expressions into (2.5). Then we have

f0,]61,...,0,21) o< exp{kpa, p-1][cosb,cosp,.1, p-1+sinb,sinp, 1 ,-1]}
= exp{Kp1,.p-1008 (0 = flp1,. p-1)}- (2.7)

(2.7) is proportional to the pdf of a univariate von Miseglsition with, from Equation

(2.6), mean direction and concentration parameter givepeively by the equations

Thus

f(gp‘ 61, ce ,Hp_1> = [271']0 (Iip.l ..... p_l)]i exp {lip 1,...,p—1 COS (6 — Mp-a,.., )} . (28)
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Corollary 2.3.2 The marginal pdffyae = f(61,...,0,-1) Of (01,0,,...,0,_4) is

given by
p—2 p—1
Jmarg = 27r0p_110 (Kpa,.., ) exp {Z Kjcost; + Z Z Ajisin 6; sin «91} (2.9)
J=0l=j+1
Proof
Equation (2.9) is given by the ratif(0y, ..., 6,)/f (6,61, ..., 0p—1). O
More generally, we can obtain the conditional distributioh©,,0,,...,0, given
0r11,0,42,...,0, using the same approach as in the proof of Theorem 2.3.1. feénob

fcond - f(@la .- '>@r|0r+1a .- '70p) as

feond mexp{ZnJ cos 0; —1—2 Z Ajisin6; 5111«91+ch sin 0; }

J=11l=j+1
wherec; is constant with respect @, ....6,, forj = 1,...,r. Writing x; = a; cosy;
and c¢; = a;sinv; gives that
T r—1 r
feond O< €XP {Z ajcos(f; —v;) + Z Z Ajisin 0; sin 91} )
j=1 Jj=11=j+1

Next writing ¢; = 0; — v;, so that; = ¢, + v;, gives

feond O €Xp {Z a; cos ¢ + Z Z Ajisin(g; + v;) sin(¢; + 1/1)}

Jj=11l=j+1

Expanding each sine term and their product gives, for cotsia, b;;, c;; andd,; ,

r r—1 r
feond X €Xp { Z a; cosp; + Z Z [y cos ¢ cos ¢+
j=1 j=11=j+1
+ bj;sin ¢ sin ¢ + ¢;; cos ¢; sin ¢ + d;j; sin ¢; cos ¢l] } ) (2.10)
Equation (2.10) is the density of Mardia and Patrangenad@%2— given by Equation
(2.1) —withb, = 0 for all s.
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We now consider the shapes of the univariate and bivariatgine distributions of the
trivariate von Mises distribution, ie. (2.2) with = 3. As discussed in Section 1.4,
Singh et al. (2002) showed that fpr= 2 the univariate marginals are symmetric and
unimodal or bimodal, and derived the conditions under wieiabh occur, whilst Mardia

et al. (2007b) did the same for the joint bivariate distritt

When © is distributed according to (2.2) it is clear th& and —© have the same
distribution. This implies that all marginal distributisare symmetric. For the trivariate
von Mises density, the bivariate marginal densitygfand©, is obtained by substituting
p = 3 into (2.9). It does not appear possible to obtain an anatression for the
univariate marginal o, from this bivariate density, since it involves the integoél
a Bessel function applied to a function éf and#,. In Figures 2.1 and 2.2 we plot
the univariate and bivariate marginal densities for theatrate von Mises distribution,
the former obtained by integrating the latter numericaltgl ahe normalizing constant
for the trivariate distribution obtained by numericallytegrating (2.2) withp = 3.
The plots correspond to the four parameter configurati@nsrxs, k3, A2, A3, Aaz) =

(2,3,1,2,2,2), (0.5,0.75,0.25,2, 3,4), (2,2, 2, 20,30,40) and(2, 2, 2,0.1,0.1,0.1).

We see from the marginal plots that the univariate and at@mensities are symmetric
and either unimodal or bimodal. For many other parametefocorations we observe
the same, and it appears that all univariate and bivariatgings associated with the

trivariate density have either a single or two modes andarereetric abouj = 0.

2.4 Simulating data

In this section we outline two possible methods for simatiata from the bivariate
and trivariate von Mises distributions. Simulation frore thivariate model was discussed
by Subramaniam (2005) and Mardia et al. (2007b). The firshotketo be considered

is the acceptance—rejection method and the second a Gibijgdesa For the former
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Figure 2.1: Univariate and bivariate marginals for triedei von Mises distribution with
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Figure 2.2: Univariate and bivariate marginals for trieéei von Mises distribution with

(K1, K2, K3, A\12, A13, A23) given above each plot.



28 Chapter 2

we describe the algorithm for the bivariate case. Denotea i, 6; k1, k2, A12) the
bivariate von Mises density and bfy(6;; <1, k2, A12) the marginal density 0B, in this
case, obtained by substitutipg= 2 into (2.4) and (2.9) respectively. Singh et al. (2002)
compared the marginal &, with a univariate von Mises distribution and showed that,
for an appropriately chosenin the latter, the two have asymptotically the same normal
density, and are therefore “similar”. As outlined in Seotio4, f,(01; k1, ko, A12) IS either
unimodal or bimodal. An appropriate candidate density framch to sample is therefore

a univariate von Mises distribution or a mixture of univégiaon Mises distributions,
depending on whethefii (6; k1, k2, A12) IS unimodal or bimodal. We therefore define the

candidate density by
1 - —v
g(01;k,v) = 3 271y (K)] ! {e”cos(gﬁ”) + efreost )} ,

wherev = 0 if f1(01; K1, ko, A12) IS unimodal and is given b§* from Equation (1.19)
if it is bimodal. Thenf;(0;; k1, k2, \12) < Mg(by; k,v) = h(0;; k,v) for some constant
M > 1and for all§; € [—=, 7). The algorithm for simulating a pair of variaté 6,)

proceeds as follows:

1. For givenxsy, ko and\;, minimise the function

{f1(91; K1, K2, )\12) }

g(‘gl;’ia 7/)

max
—r<01 <7

with respect to:. Take M to be this minimum (thus makingy/ as close to unity as
possible subject to the constraifit(6;; k1, 2, \12)/g(01; k,v) < M), and denote

by x* the value ofx giving this minimum.

2. Generate a random variaté from the candidate density(6;;x*,v) and a

uniformly distributed random variate € [0, 1].

3. IfuMg(07; k%, v) < fi1(07; k1, ke, A12) then accept; as a random variate from

f1(61; K1, K2, A12), €lse return to step 2.
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4. Generate a random varigtgeusing the conditional distribution &, given; = 67,

which is given by Equation (2.8) with = 2 and is univariate von Mises.

The minimisation in step 1 of the algorithm is performed gsineoptim function in
R. In principle, steps 1, 2 and 3 of the above algorithm couldabapted to simulate
random variates for the univariate marginals of tineariate von Mises distribution. In
practice, however, since we do not have an analytic exgmeser these densities, the

process would be computationally very expensive.

Figure 2.3 compares the target densfiy(0;; 1, ko, A12) With M multiplied by the
candidate density(6¢,, x*, ) for four parameter configurations. Also shown on the plots
is the efficiencyl /M of the simulation in each case. It can be seen from the plotsisa
observed more generally, that efficiency appears to be wepaiex increases and as,

decreases (in absolute value — efficiency is the samég fcaind—\;5).

An alternative approach to simulating variates from theabate and trivariate von
Mises distributions is to use the Gibbs sampling approadr. the trivariate case, this
appears to be the only feasible means of generating var@esto the computational
expense of the rejection sampling mentioned above. We fasémte a vector of,
values from a univariate von Mises distribution with cortcation parameter; and a
vector off, values from a univariate von Mises distribution with corication parameter
k9. Using the conditional distribution ab; given (6y, ;) we generate a vector @
values conditional on the other two vectors. We then cycdteuph thef,, 6, and s
vectors, replacing the values in the vector of interest eh estage with values generated
conditionally on the values in the other two vectors. If welaie each vectar times,
then the point at which we have a sample from the trivariateMses distribution clearly

depends om. An appropriate choice of is discussed further in Chapter 4.
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Figure 2.3: Target (black) and candidate (red) densitiefoiar parameter configurations,

and the efficiency of data simulation for the bivariate vors&4i distribution.

As an alternative initialization of thé; and ¢, vectors, we could use the rejection
simulation algorithm above to generate variates from linariate model, thereby

incorporating a\ parameter.

2.5 Conclusions

We have presented in this chapter a multivariate circulatribution that is a natural
extension of both the univariate von Mises distribution &heé bivariate distribution
known as the Sine model presented in Section 1.4. Many of ibygepties derived and
observed are themselves natural extensions of the prepeftihe bivariate model derived

by Singh et al. (2002) and Mardia et al. (2007Db).
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In discussion of the model properties it has been seen tleamtrginal distributions
associated with the multivariate von Mises distributioa aot themselves von Mises,

but that all univariate conditional densities do follow vdliises distributions.

For the trivariate von Mises distribution it has been obedrvfor all parameter
configurations considered, that all univariate and bitarinarginal densities are
symmetric and either unimodal or bimodal, and it is conjesdithat this is the case more

generally.

Under high concentration (which requires unimodality cé fhint density) it has been
shown that the multivariate von Mises distribution can bgrapimated by a multivariate

normal distribution, and the specific form of this normaldisition has been derived.

Two potential methods for data simulation have been presderfithe first, an acceptance—
rejection method, is suitable for the bivariate case (wh®m normalizing constant
is known); the second, a Gibbs sampling approach, is moreopppte for higher
dimensions, and will be used in subsequent chapters forlaiion from the trivariate

von Mises distribution.

Before considering parameter estimation for the multatarvon Mises distribution, we
outline in the next chapter a general method of estimati@iuisvhen the normalizing

constant is unknown, and discuss its efficiency for the wadiate normal distribution.
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Chapter 3

Efficiency of the pseudolikelihood for

multivariate normal distributions

3.1 Introduction

In certain circumstances, inference based on the liketiifanction can be hindered by,
for example, computational complexity or an unknown noreiad) constant. In such
cases it is necessary to seek an alternative method of ¢istmm@wo pseudolikelihoods,
each based on conditional distributions, are assessedms @& their efficiency relative
to the full likelihood for the multivariate normal distriban. By comparing information
matrices, it is shown that both the pseudolikelihoods dig &fficient for the multivariate
normal distribution with all variances equal #8 and all correlations equal ta Loss
of efficiency is shown for the estimator of equalin the case of knowrn?. Both
pseudolikelihoods are also shown to be fully efficient fa bivariate normal distribution
with parameters, o, andp. The derivation provides an outline of the procedure used to
show that both pseudolikelihoods are also efficient for thetiate normal distribution

(with known mean vector). For the latter, information magiements are given.
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An alternative approach to showing full efficiency is outéhfor the five-parameter
bivariate normal distribution, for which estimating eqoas for the full and

pseudolikelihood approaches are compared.

The results for the normal distribution are of interest imittown right, but also give
an insight into a limiting case of the multivariate von Migsgistribution which, in the
previous chapter, was shown to approximate a multivariatenal distribution when the

variables are highly concentrated.

The two pseudolikelihoods to be studied are defined as fslloor ap—dimensional
vector random variabl& = (Y1,Ys,...,Y,)" with joint probability density function
f(y;q), where q is an unknown parameter vector of length we define the full

pseudolikelihood (FPL), based on a random sampleabservations ot’, as

P n
FPL(Y;q) = HHgl i|rest; q) (3.1)

7j=11=1

where ¢;(Yj|rest;q) is the conditional distribution of Y; given

(Y1,....Y;21,Y41,...,Y,). The partial pseudolikelihood (PPL) is defined as

(2

P n
PPL(Y;q) = [[ [ [ 2(Viil Yess @)- (3.2)
Jj#k =1

Maximum pseudolikelihood estimates are then obtained byimiaing (3.1) and (3.2)

with respect to the parametersgn

Both pseudolikelihoods are consistent and asymptoticatlymal under the usual
regularity conditions, as discussed by Arnold and Strad€9X). Attention herein
therefore focuses solely on efficiency. Cox and Reid (2004russ a class of
pseudolikelihoods of which PPL is a special case. They dsconsistency of estimators
for a single parameter and for parameter vectors fprdamensional random variable
asn increases and for fixed asp increases. FPL is the pseudolikelihood studied
by Besag (1975, 1977). Arnold and Strauss (1991) discussergepseudolikelihood
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of which both FPL and PPL are special cases. They show thedpklkelihood

estimator to be consistent and asymptotically normal urttler standard regularity
conditions, and consider its efficiency in special casesxXponential and beta conditional
distributions, among others. They also briefly consideerattive specifications of
the pseudolikelihood with trivariate or higher dimensioArnold et al. (2001) give a
comprehensive review of the role of conditionally specifigstributions, including the

pseudolikelihood. Wood (1993) uses the same approach assevdere in order to
calculate the efficiency of a pseudolikelihood for the Biaghdistribution, in which ML

estimation is hindered by the normalizing constant. As wéddhe bivariate von Mises
distribution in the next chapter, he shows that efficiengydseto unity as parameters

approach certain limits.

In Section 3.2 we give an outline of how to obtain the efficieatthe pseudolikelihood.
Section 3.3 gives the derivation for the multivariate ndrozese with equal variances and
equal correlations, whilst Section 3.4 describes the losdficiency in the estimator for
p when the variances are known. Full efficiency is derived lierhivariate and trivariate
cases in Section 3.5 with the only restriction on paramdterag that the means are
assumed to be known. Finally, the alternative approachmpesing estimating equations
is outlined in Section 3.6, in which we show the pseudolh@idid to be fully efficient for

the five parameter bivariate normal distribution.

3.2 Efficiency of the pseudolikelihood

The efficiency of one estimation method relative to anothéte defined in terms of the
ratio of determinants of information matrices for the twothaels given the underlying
density f(y; g). We therefore first calculate the information matfiXor each method.
Following Kent (1982), define the score vector by(y;q) = dlog f(y;q)/0q. The
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Fisher information matrix can be defined equivalently as
I;(q) = /Uf(y; Q)U;(y;9)" f(y;q)dy  and
It(q) = —/3Uf(y;q)/3qTf(y;q)dy-

Now suppose we wish to calculate the information based omaityeg;(y; g), when the

underlying density i (y; q). To this end, define the squared score matrix by

Jy(q) :/Ug(y;q)Ug(y;q)Tf(y;q)dy,

and the expected score derivative matrix by

H,(q) = —/3Ug(y;q)/3qTf(y;q)dy.

The information matrix based gnwhen the underlying density i§ is then

I,(q) = Hg(q)Jg(q)_IHg(q), (3.3)
Note that, iff = g, we havel, = H, = J,,.

The efficiency of estimation based gnrelative to estimation based ghcan then be

obtained as (see, for example, Davison (2003, p. 113))

1L,(q)| "
{ [I(q)] } (3.4)

wherer is the dimension o§.

3.3 Multivariate normal with unknown o2 and p

We consider first the case in whidh = (Y}, Y,...,Y,)” follows a multivariate normal
distribution withvar(Y;) = o2, corr(Y;,Y;,) = po? andE(Y;) = 0,forall 1 < j # k < p.

In this case the vectay of unknown parameters ig= (o, p) andr = 2.
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3.3.1 Full pseudolikelihood

For FPL (Equation (3.1)) we have

.y p ~ | el =1
Vst Np<1+<p—2>p lzy yﬂ]’ : 1+<p—2>p]>’ (59

j=1,2,...,p. Denote bygrp;, the contribution to FPL (ignoring constant terms) from a

single observatiowy of Y. Based on (3.5) we have

p 2 (p 1)162

2
p p(XP_y yr—v;)
=1 |Yi T T2
. (3.6)

(p—1)p?
20° [1 o 1f(pfg)p]

Writing >"*_, y, = py, multiplying the numerator and denominator of the seconu ia
(3.6) bya?, wherea = [1 + (p — 2)p], and expanding the square, gives the numerator of

this second term as )
b° ) y? + plc® — 200)7, (3.7)

j=1
whereb = 1+ (p — 1)p ande = pp. Now write >~ y7 = > .(y; — 7)° + py* and define

SSw = >_,(y; —7)? andSSp = 7. Then (3.7) becomes
2SSy + p(1 — p)25Sg,

where the coefficient 0f'Sp is p(b* + ¢* — 2bc) = p(b — ¢)* = p(1 — p)?. log grpL IS

therefore

p > (p—1p? v?SSw +p(1 —p)2SSp
-3 log {J [1 - } } iy 02— (= 1)pPa} (3.8)

Due to the complicated nature of some of the expressiond, ondise derivatives in this

chapter are checked using Maple. Differentiating (3.8hwéspect tar gives

2 o 2
dlog gppr, :_£+bSSW +p(1—p) SSB’ (3.9)
do o o3{a®> - (p—1) p?a}
whilst the first derivative with respect focan be calculated as
dlog grpL _ po® [2p(p — L)a — p*(p = 1)(p — 2)] — 2[b(p — 1)SSw — p(1 — p)SS]
dp 20? [a® — (p — 1)pd]
L [PSSw+p(1—p)° SSp][2a(p—2) — (p— 1) p(3a — 1)
20°[a? — (p — 1) pa]” ‘

(3.10)
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The second derivatives of (3.8) can be found as follows:

d*loggepr,  p b2S Sy —|—p(1—p)2SSB'

002 T o2 3 o*{a®>— (p—1)p*a} ’ (3.11)
yk’%ﬁfm — ASSw + BSSp + C (3.12)
where
4 G220 +6(p—2)p+4—p
lp—1)p*—(p—3)p—1°
g Pl =12 —2)*(p" = 3p%) —6(p — 1)*(p = 2)p — (p — 1)(3p — 4)]
o*[(p—1)(p—2)p*+ (2p—3)p+ 1)’ ’
o= PP=D[p =1 -20" +4(p —1)(p —2)p" +2(p — 1)p* + 24]
2[(p—1)p* — (p—2)p — 1]°a? ‘
Finally,
Ploggre,  (p—2)(b+1)p+2 plp —1)[(p = 2)(p* = 2p) — 2]
pdo o031 — p)2a? SSw+ PEpTE SSp. (3.13)

In order to obtain theH,

9FPL

andJ

9FPL

matrices for FPL we require expressions for the
expectations o5 S, SSy and their product and squares. We first show thég and
SSy are independent, enabling us to calculate the expected wélineir product as the

product of their expected values.

Theorem 3.3.1Let Y have ap—variate normal distribution with all correlations equal
to p, all variances equal to? and all means equal to zero. Then the expressitsis =

>-,;(y; —7)* andSSp = 7, wherey = >°"_, y;/p, are independent.

Proof

SSgp andSSy are independent ify; — ) andy are independent for afl = 1,2, ..., p.
Now (y; —y) andy are independent {fov {(y; — 7),7} = 0, and since&&(y) E(y; —y) =
0 it suffices to show thal {(y; — 7)y} = 0, ie. thatE(y,;y) = FE(7?). Now

B = S0+ 0= DB ) _ o1
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k # j, whilst
o PEW) +p—1D)E(yy) o[+ (p—1)p]
E(y) = 3 = :
p p
ThusE(y,;y) = E(y*) andS Sy andSSg are independent. O

Remark: The independence ¢&fSy, and S S requires that all correlations are equal, all

variances are equal and all means are equal (but not neitegsan).

By collecting terms of the form,y; for 5SS andS.Sy,, and of the formy,y, .y, for their

squares, where any, all or noneiofj, &, [ could be equal, and by using Theorem 3.3.1,

we find that
’ . 4
E(558) = 6%5 E(SSw) = (p—b)o*;  E(SSpSSw)= w;
2 3b%0?t ) , »

By substituting the expressions from (3.14) into the seaterd/atives (3.11)—(3.13) and

the product and squares of the first derivatives (3.9) arkDj3ve obtain the symmetric

elements of the matricel ., andJ,,, :
[HQFPL]ll - % (315)
_ _plp=1(a+p
[HQFPL]12 - ab(l — p)a
H, _pp—D{p—-1)(p—2)(a+3)p’+2[a+ (p—1)p°}
s 2a22(1 — p)?
g, _p{l+(p-1p-2)]p+2(p—2)p+1}
Ty ] = ple=Dp{lp =2 {1+ (-1 —2)]p’ + (4a+3)p} + 4}
9grPLI112 agb(]_ — p)o-

plp—D{lp—D—2* {1+ (p—1)(p—2)]p° + (6a+11)p* + D}}

[JQFPL]QZ - 2&452(1 _ 0)202
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where

D=4(p—1)(p—2)(1+4p)p* +4(2a + p* — 1).

We can therefore calculate the information ma#jx,, = H,,.,. J '} H,., as defined

9FPL* grPL 9FPL

in Section 3.2. We obtain

2_129 _p(zz—l)r;
— o bo(1—p

Tover, = pp—1)p PE-D[1+@e-1)p*] |- (3.16)
" bo(1—p) 202(1—p)?2

The matrix in (3.16) can be compared with the Fisher Inforomamatrix based on the
full likelihood, the (7, j)th element of which can be written as (see, for example, Porat
and Friedlander (1986))

o -[22]

i,7=1,2,...,p, whereu andX are the mean vector and covariance matrix respectively.

au] 1 { 08, 0% }
+ —tr¢ X —>" 3.17
|iaq] aqz aq] ( )

In fact (3.16) and (3.17) are equal whgn= 0, all diagonal elements aft equalc?
and all other elements are equald®?, showing that the full pseudolikelihood is fully
efficient for the multivariate normal distribution with umégwn parameters ando. We

next consider the partial pseudolikelihood in the samemater setting.

3.3.2 Partial pseudolikelihood

For the partial pseudolikelihood (PPL) (Equation (3.2))vese
Yi|Ye ~ N (pyr, 0°[L = p*]), 1<j#k<p.

The contributionog gppy, t0 log PPL (ignoring constant terms) from a single observation

of Y is therefore

p(p B 1) lo (1_ 2) . ?:1 Z];ﬁk 1 (y pyk’)
2 T 207 (1 - 1?)

log gppr, = —p(p— 1)logo— . (3.18)
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By writing the numerator of the final term in (3.18) as
p p p 2 p
-V i+, -1 v~ 29[(2%) - Zy?]
J=1 j=1 j=1 j=1
p p 9
= (-1 A+p)+20] ) v} - 20(2%)
j=1 i=1

we can writelog gppr, @S

o 1) g - ) - L0 ) 20185, 2455,

(3.19)

—p(p—1)logo —

whereSS, = >7"_ y7 andSS, = (3-"_, y;)*. Differentiating (3.19) with respect to

gives
dloggepr. _ [(p—1) (1 +p*) +2p] SS1 —2pSSy  p(p—1)

oo a3 (1—p?) o

whilst the first derivative with respect jois

dlog gppL - (1+ 02) S8y —[2b— (1 — 02)] SS1+pp—1)p(1— 02) o’
p o? (1 - p?)* '

The second derivatives can be calculated as

Ologgep.  plp—1) 3{[(p—1)(1+p?) +2p] SS1 — 2pSS,}

do2 o2 ot (1 —p?) ’

9?loggepr,  2p(p* +3) 5SSy —{6bp+2(p — 1) +2p*} SS1 +p(p — 1) (1 — p*) 0

Op* o2 (1 - p2)°

and

0?loggepr _ 2{[2(p = 1)p+ (1 + p*)] SS1 — (1 + p*) S5}
0pdo o3 (1 — p2)2
Using the approach described in Section 3.3.1 we obtaindbected values oSy, S'S;

and their product and squares as
E(SS)) = po*; E(SSs) = bpa?; E(SS,585) = bp(2b + p)ot;

E(SST) =po [20°(p— 1) +2+p]; E(SS3) = 3b*p*ct
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whereb = 1 + (p — 1)p as in Section 3.3.1. The elements of the symmetric matrices

H, . andJ, canthen be calculated as:
[HQPPL]ll = M2_1)
2p(p —1)p
[HQPPL]12 T g (1 _ p2)
H, ] _plp—1) (149
gpPL122 (1 — 02)2
g = 2p(p =D {lp =D [p—Dp" =2(p=3)p* +2p + 1]+ (> = 5p +8) p°}
gppLI11 52 (1 n p)2
g, ], = 2= Deip = 1)p = 2)p" = 2" —3p = D]p" +(p = D~ 6)p — 2}
e o (L+p)*(1—p)
g, 1, = 2w =D =30 -1l =20 - 1)(p - 3)r" + F}
e (1+p)4(1 = p)? ’

whereE = (p> —3p+4) p* +2b — 1.

Calculating the information matrik,, ., = H,,., J. | H,,, Yields the same matrix as

in Equation (3.16) for FPL. We therefore conclude that PP&lss fully efficient for the

multivariate normal distribution being studied.

3.4 Loss of efficiency with known unit variances

We now consider the case in whidh follows a multivariate normal distribution with
(known) unit variances and unknown equal correlationSox and Reid (2004) calculate
the efficiency of the partial pseudolikelihood in this confeand their results will be
compared with the efficiency of the full pseudolikelihood.e\proceed as in the case
of unknowno. The terms of interedbg grp;, and its derivatives with respect g9 the
expected values of the sums of squares and the valyes and.J,,.., can all be obtained
by substitutinge? = 1 into the relevant expressions in Section 3.3.1. In pasicul

the information/ = H?  /J,.e. from a single observation in the current setting

gFPL JFPL
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is obtained by substituting® = 1 into [H,,,, |,,

from Equation (3.15) to obtaif/,

FPL'

and similarly for.J, The information/; based on the full likelihood is simply the

FPL "

second diagonal element of the matrix in Equation (3.16],tha efficiency of FPL is the

ratio of /

9FPL

tO]f.

Figure 3.1 shows the efficiency of both FPL and PPL (the latseobtained by Cox and
Reid (2004)) forp € [0, 1]. The efficiency of both is unity fop = 2 and for anyp if p is

0 or 1. Figure 3.1 displays the efficiency fpr= 3,5, 8 and10, increasing resulting in a
loss of efficiency. It can be seen that in general the effigierid=PL is greater than that

of PPL, although fop = 3 they are almost identical.

In the current context, the covariance matrix is positivénite forp € (—1/(p — 1),1).
Figure 3.2 shows the efficiency of each pseudolikelihoogfer(—1/(p — 1), 0) and for
the same values gf as before. In this interval it is clear that FPL outperfornid.PAs
can be seen from the plots, the efficiency whea —1/(p — 1) is unity for FPL and zero
for PPL. The exception is when= 2, in which case the two pseudolikelihoods are equal

with full efficiency for all p € [—1, 1].

3.5 Efficiency for the case of unequal variances and

correlations

In this section we consider the efficiency for the bivariated arivariate normal
distributions when the variances and correlations are esiticted to being equal. By
deriving the information matrices for the pseudolikelidamd full likelihood, we show
the former to be fully efficient for the bivariate case. Thensaapproach can be adopted
in order to show that both pseudolikelihoods are fully edintifor the trivariate normal
distribution. For this case, we give information matrixreknts and highlight symmetries

that could potentially be exploited in order to show the pletilkelihoods to be fully
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Figure 3.1: Efficiency of FPL and PPL for multivariate norrdatribution (with known

unit variances) as a function pfe [0, 1] and forp = 3,5, 8, 10 (top to bottom).
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Figure 3.2: Efficiency of FPL and PPL for multivariate norrdatribution (with known
unit variances) as a function pfe (—1/(p — 1),0) and forp = 3,5, 8, 10 (left to right).
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efficient for the genergd—variate normal distribution.

3.5.1 Efficiency for the bivariate normal distribution

We follow the approach outlined in Section 3.2 and applie®éctions 3.3 and 3.4 in
order to obtain the efficiency of the pseudolikelihood far Hivariate normal distribution

with parameters, o, andp.

The log density of the bivariate normal distribution withraemean vector is given

(ignoring constant terms) by

_ Yios + Y307 — 2py1y20109
20103 (1 = p?) '

1
log f(y1,92) = —log oy — log oy — 3 log(1 — p?)

For direct comparison the log product of conditional deesi{fomitting constant terms)

used for the pseudolikelihood is

B (yios +y307) (1 + p*) — 4pyr1y20109
20703(1 — p?) '

log g(y1,y2) = —log oy — log oz — log(1 — p?)

The information matrix based on maximum likelihood estiratis calculated from

Equation (3.17) as

2—p? —p2 _
o3(1=p?)  a102(1=p%) o1(1—p?)
= 7:02 27,02 —
Iy oa(1=p)  022(-p7)  oa(—p?) (3.20)
—p —p 1+4p?
o1(1—p?) o2(1—p?) (1—p2)2 |

We now derive the information matrix based on the pseudidti&ed approach. The
derivatives required can are calculated and simplified e the following expressions,

fori,j =1,2;i # 5:
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dlogg  yio;(1+ p*) — olo;(1 = p*) = 2pyy,0i

Chapter 3

, (3.21)

Jo; oroi(l —p?)
Ologg _ 2[y1y20105(1 + p*) + ofosp(1 — p*) — p(yio; + y301)] (3.22)
dp oios(1 - p?)? ’ '
Plogg _ ofo;(1 —p*) — 3yio;(1 + p?) + dpyiy;oi
SEA . , (3.23)
Jo; otoj(1—p?)
Flogg _ 2Rpyyenioalp” +3) + otos(1 = p) — (yios + ys01) (1 +30°)] 55
0p? oto3(1—p?)? S
?*log g 2pyiy;
_ 3.25
do;00;  ofoi(1—p?)’ (3.25)
821 2i[2pyio; — y;0:(1 + p
0gg _ 2y PYi0; yjoi1+p7)] (3.26)
Jo;0p olo;(1— p?)?

Taking expectations of the second derivatives, and expectof the products of the first

derivatives in Equations (3.21)—(3.26), enables us toutatle elements of thél»; and

Jpr, matrices needed to obtain the information matrix for theudséikelihood. Omitting

much algebra, we obtain

and

2 —2p? —2p
012(1—p2)  o102(1—p?)  o1(1—p?)
= 72,02 2 —2p
HPL o102(1—p?) 022(1—p2?) aa(1—p2) (327)
—2p —2p 2(1+p%)
a(=p?)  o2(=p)  (1-p?) |
[ 204 2P(7) g ]
a12(1-p?%) o1o2(1—p2)  o1(1—p2)
_ *2p2(1+p2> 2(14p2) _4p
Jpr, = c1o2(1=p2)  022(1—p?)  oa(ip®) |- (3.28)
—4p —4p 4(14p%)
o1(1—p?) o2 (1—p?) 1-p2)? |

We obtain the inverse ofp;, as
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J—i — poio2 (3+P4)

2(1+p2)

2(1-p?)

012(1+3p4) P201U2(3+P4) po1
2(14p2)%(1-p%)"  2(14+p2)%(1—-p?)*  2(1-p?)
2 4
o2?(1+3 ") po2
2(14p2)2(1-p2)%  2(14p2)%(1—p2)2  2(1—p?)
poi po2 14+p?

4
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(3.29)

Calculating the information matrik-;, based on the pseudolikelihood approach yields the
matrix in Equation (3.20), the information matrix obtaineing the maximum likelihood
approach. We therefore conclude that the pseudolikelineddlly efficient for the

bivariate normal distribution with parameters o, andp.

3.5.2 Efficiency for the trivariate normal distribution

Using the approach adopted throughout the current chapisrpossible to show that
both the full and partial pseudolikelihoods are fully effiet for the trivariate normal
distribution with known means and unknown parametr-,, o3, p12, p13 andpsz. The
calculations involved were done in Maple, and most of thenidee are too complicated
to include. We therefore include only the elements of thermiation matrixI obtained

from both the full likelihood and pseudolikelihood apprbes.

For conciseness, we shall introduce the notatidps= p12p13p03 aNdXp? = p2y + p2s +

2
P23

We have, foii, j, k = 1,2,3 andi # j # k,
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_2—p?k—2p2+2ﬂp

I,
T of(1 = Xp? 4 200p)
2
I Ip — p;
0i0; O_Zo_j(l_zp2+2ﬂp)
1+ p2 — p2 — p2 — 202 p2, — 211

7 _ Pij = Pik — Pik — 4PikPjk P

PijPij (1 _ ZpQ + QHP)Q
I  2pijpik — P?jpjk — Papir — pi(1l — pJQk)
PijPik — (1 — EpQ + 2Hp)2

I o PikPjik — Pij

7ipig o1(1 — Xp? + 2I0p)
1,,, =0

The expressions for thél and J matrices based on a pseudolikelihood approach are

more complicated, without being particularly enlightemiand are therefore not given.

3.6 Comparison of estimating equations

An alternative way of assessing the pseudolikelihood aggrcs to compare the estimates
themselves with those based on a full likelihood approactreHwe consider the five-
parameter bivariate normal distribution and, by compativgestimating equations for
the two approaches, show that the MLE’s are also solutiontiseestimating equations
for the pseudolikelihood approach. Since we are here coadewith the bivariate case,
the two pseudolikelihoods FPL and PPL are equivalent, attisrsection we will simply

use the notation ‘PL.

SupposeY; and Y; follow a (five-parameter) bivariate Normal distribution.hén the

conditional distributions o¥|Y; andY;|Y; are

o
(Vil¥a) ~ N (ul + 92 ), 301 - p2>)
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and
g
O ~ N (a4 9200 = ), 031~ 7))
respectively. Given a sample of sizethe maximum likelihood estimates based on the

full likelihood are

n _ - - An Yri — 1) (Y2i — K2
M1:y1zzy1i/n§ M2:Z/2:Z?J2i/n; 00102251222( it )

n

o1 =St = Z(?Ju —m)?/n; b3 = S = Z(ym — p2)* /. (3.30)

Consider now the pseudolikelihood
PL = H filyai) [ (yailyni) oc [U% (1 - PZ)TH/Q [03 (1 - pQ)Tn/Q exp{E} (3.31)
=1

where

1 — {(yu — 1) — PZ_;(?J% — Mg)}Q {(y% ~ ) — Pg_f(yu B M1)}2
> of (1= p?) " o3 (1— )

i=1

Taking the logarithm of (3.31) after rearranging its exparggves
S

20703 (1 — p?)

(3.32)

Pl =log(PL) = —g log o7 — glogag —nlog (1 _ p2) _
where
S = i {o5(y1s — m1)* (L +p°) + 07 (yoi — p2)* (1 + %) —
i=1
4po1oa(yr; — p)(Yai — N2)}‘

Writing

n n

Z(yu —m)? = Z (i = 71) + (@1 — )]

i=1 i=1
n

= > (i =5+ 0@, — m)?

i=1
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and similarly for" (y2; — p2)? and>_ (y1; — 1) (y2: — p2), We see that (3.32) is maximised

with respect tq:; andu, when

m =05 (14 p°) @ —m)>+o1 (1+ p*) Uy — p12)* —4po102(F, — 111) (Yo — p2) (3.33)

is minimised with respect to these two parameters. We:iget 7, and, = 7,, So that
the maximum pseudo likelihood estimates;qfand i, are equal to the full maximum

likelihood estimates.
Substituting the estimates pf andu, back into (3.32) gives

—g log o7 — glog o3 —nlog (1 — p2) —F (3.34)
whereS?, S3 andS,, are as defined in (3.30) and
n [0%522 (1 + p2) + U%S% (1 + p2) — 4p010'2512]
20103 (1 = p?) '
Differentiating (3.34) with respect to?, setting it equal to zero and multiplying

F=

throughout by—2/n gives

1
— + { {S% (1 —|—p2) — QpZ—jSlg [0102 (1 —p )} —

01

— o3 (1= p*)] [0755 (L4 p*) + 0357 (1 + p°) — 4po10251] }/0102 (1—p7).

Multiplying throughout byo$a2(1 — p?) and rearranging gives

o (1= %) 02 = (14 p%) Z—%Sf 200351 (3.35)
By symmetry, the corresponding equation #gris

o3 (1= ) o = (14 1) Z_isg 200151 (3.36)
Differentiating (3.34) with respect i@ setting the derivative equal to zero and multiplying
throughout byr?03(1 — p?)? gives

2p (1 — p2) olos =p [(1 + p2) (03522 + U%Sf) — 4p0102512] + (3.37)

(1 - ) (00152 + poy St — 20102512)
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Substituting the maximum likelihood estimaté$, 5 and p from (3.30) into (3.35),

(3.36) and (3.37) verifies that the maximum likelihood esties also give solutions to the
estimating equations for the pseudo likelihood, as thehiafid sides and right hand sides
are indeed equal upon making these substitutions. Thisates that the pseudolikelihood

estimates are fully efficient.

3.7 Conclusions

By considering multivariate normal distributions with mars restrictions on parameters,
we have shown in this chapter that (except for the case of knowboth the full and
partial pseudolikelihood are fully efficient when all varces are equal, all correlations

are equal and means are known.

More generally, as would be expected given the results ferbiliariate and trivariate
cases described in this chapter, it turns out that both digetihoods are fully efficient

for the generap—variate normal distribution (Mardia et al., 2007a).

The approach considered also provides an insight into fieesicy of pseudolikelihood

estimators for the multivariate von Mises distribution whie circular variables are
highly concentrated. In the next chapter, we will discusspeeter estimation for the
multivariate von Mises distribution, calculating the affiecy of estimators in the bivariate
case and comparing maximum likelihood estimates with psigdtedihood estimates in the

trivariate case, both in terms of accuracy and in terms ofprdational expense.
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Chapter 4

Parameter estimation and inference for

the multivariate von Mises distribution

4.1 Introduction

In this chapter we discuss parameter estimation and inferér the multivariate von
Mises distribution introduced in Chapter 2. This builds ¢ tpreliminary results
of Singh and Mardia (2004). We discuss the full pseudolii@id in the context of
the bivariate and trivariate von Mises distributions, dieg first the efficiency for the
bivariate case in Section 4.2. Simulation from the bivariand trivariate models was
discussed in Chapter 2, and in Section 4.2.4 we simulatefdatathe bivariate model
that support the efficiency calculations and show the biagke@MLEs and MPLES to be
very similar. In Section 4.3, the pseudolikelihood is irtigested for the trivariate case by
considering properties of the pseudlokelihood estimdtesiselves and comparing them
with maximum likelihood estimates, for various parametenfigurations and based on
simulated data. The Gibbs sampler data simulation methdded in Section 2.4 is

also scrutinized. Finally, in Section 4.4, we apply thedriate von Mises distribution
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to two types of protein data set, one of them protein folds @redother amino acid
conformations. We also investigate hypothesis testingttier trivariate model in the

context of these data.

As defined in Chapter 3, the full pseudolikelihood, based aarmlom sample of
observations ot = (Y1, Y5, ..., Y,)7, is given by

» P

FPL(Y;q) ﬁ ﬁgj Yii|rest; q) (4.2)
j=1i=1
where g¢;(Yj|rest;q) is the  conditional distribution of Y, given
(Y1,....Y;.1,Y;41,...,Y,) and g is an unknown parameter vector of length
For thep—variate von Mises distribution introduced in Chapter 2, vese the vector
0 = (01,...,0,)" of observations. Under high concentration, this followspproximate
p—variate normal distribution, in which case the methods lb&iter 3 are appropriate.

The full pseudolikelihood for thp—variate von Mises case is given by

n

p , -1 .
FPL = (2m) " [ T [10n8)]  exp {5 sty — )}
j=111=1
where

Mg.’:lest = pj+tan”’ { [Z Ajisin(0y; — Ml)] /K’j} ;

1]

2
Z >\jl sin(@li — ,ul)]

I#j

1/2

(@) _ 2
Kj-rest - Hj +

and ..t @aNdkj.er are the mean direction and concentration parameter resglgahf
the conditional distribution o®, given all otherd values, which was shown by Theorem
2.3.1 in Chapter 2 to be univariate von Mises. The vegtof unknown observations in

this case i) = (K1, K2, K3, A2, A13, Aas, i1, o, p13) With lengthr = 9.



Parameter estimation and inference for the multivariateMees distribution 55

4.2 Efficiency of the pseudolikelihood for the bivariate

von Mises distribution

In this section we use a numerical approach in order to agkessfficiency of the
pseudolikelihood for the bivariate von Mises distributieith unknowns; = ky = &,
say, knownu; = ps = 0 and unknown parameter. The approach outlined in Chapter
3.2, based on comparison of information matrices, will bedusSince we are dealing
with the bivariate case, the full pseudolikelihood FPL amel pairwise pseudolikelihood
PPL are equivalent. The joint probability density functip(v,, 62) of the bivariate von

Mises distribution is given by
CVexp {ky cos(0) — 1) + Ko cos(fy — pig) + Asin(0y — py) sin(0y — pa)},  (4.2)

where the normalizing constant’s inver§e= C/(k, k2, A) was given by Singh et al.
(2002) as

= om\ AN\ .
C = 47? mz:o < m) (5) Ky " L (K1) kg ™ L (K2). (4.3)
and/,(-) is the modified Bessel function of the first kind and order

The following identity, adapted from Abramowitz and Stedd®972), will be used to

obtain derivatives of Bessel functions:

d {L,(:E)] _ fu+1(55)' (4.4)

der | =¥ v

4.2.1 Fisher information for the full likelihood approach

We consider the joint density ((4.2) and (4.3)) with = x; = Kk andpu; = ps = 0.
When calculating the Fisher information matrix from thenfqadf of the distribution, the

matricesJ; and H; are equal. We have

log f (01,6;) = Kk cosb + kcosby + Asin by sin Oy — log C,
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and since the second derivatives of this expression witletdox and ) are independent

of 6, andd,, the elements off; can be found directly as

2 2 2
Hy - -2 _ 08 (ao)

OK2 Ok2 Ok
Plog f ., 0°C _, oC
Hilo = [Hiln = =55 = O 5y~ 5 (4.5)
Plogf ., 0°C ., [9C\°
Hyln =5 =0 g2 ¢ (m) '

Using the identity in Equation (4.4) we now calculate thewdgives in (4.5). We get
aC = om\ (AN .
Frie 871-277;) (m> (5) (&7 L (K)] [K " It (R)] - (4.6)
Writing k=™ = k&~ ™+, and using (4.4) and the chain rule, we find
92C = 2m\ [ A\
D Z —m —(m+1)
o2 8 mz:o <m) (2) {H I, (R) |:I£I£ Lio(K) +
+ /Q_(m+1)_[m+1(ff):| + [H_m_[m+1(/€):|2 },

whilst differentiating (4.6) with respect tbgives

0*C — (2
= 87 mz:() (777?) 2mA*" 127 [T L, (K)) [/ﬁ/ﬁ_(mﬂ)]mﬂ(m)] :

OKOA
Finally,
oc 2 — (2m 2m—1o—2m [,.—m 2
o T mz:o <m )2m)\ 27" [T L (k)
and
*C s (2m 2m—26—2m [,.—m 2
o =4 > (m )2m(2m — AP [ (k)] (4.7)

SubstitutingC' (with k; = Ky = k) from Equation (4.3), and its derivatives from
Equations (4.6)—(4.7), into Equation (4.5), gives the Eisimformation matrixl; =
H; = J; for the full likelihood approach. For comparison, we now sioer the Fisher

information matrix obtained for the pseudolikelihood aggurh.
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4.2.2 Information matrix for the pseudolikelihood approach

Since the marginal density 6f can be written as (see Equation (1.14))
f(gl) = 271'0_1]0((11)6““)891 s

where C is as in Equation (4.3) and; = /(x> + A\2sin?6,), and similarly for
f(6,), the logarithm of the product of conditional densitieg|f(0:1]62)f(02]01)] =
log{f(01,62)*/[f(61)f(62)]} for a pseudolikelihood approach can be written

log gpr, = —2log 27 + K cos 0 + K cos by + 2Xsin b sin Oy — log I(ar) — log In(as)

wherea, = /(k? + A?sin” 6,).

Noting thatda; /0x = r/a; andda;/ON = (Asin?0;)/a;, 7 = 1,2, and using Equation
(4.4), we find

091 = costh + cosfy — f@Al(al) - &Al(QQ) (4.8)
Ok ax a2
whereA, (-) = 1,(-)/Iy(-). Similarly
9P _ 9 g 0, sin Oy — )\ sin® QIM — Asin? QQM (4.9)
O\ ay az
Now
0 | Ailay) K2 Ai(aj)a
5 ] = 5 o)+ 2 - Aoy
Therefore ,
0%g K2 a;
aKEL = Z ? [Al(aj)2 — AQ(CLj) — Al(aj)ﬁ—;} . (410)

j=1 "7
Using a similar approach, or by consideration of the symynatrolved, we find

2

Tar -3 0 )~ Aala) — ) it| (D

o = g A2 sin” 6
and )
%y kA sin® 6;
ooy = [Ai(@)" = As(ay)]. (4.12)
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In order to obtain the matricad,

gprPL

to take expectations of the expressions (or products orrsgud expressions in the case

andJ

gprPL

for the pseudolikelihood approach, we need

of J,.,) in Equations (4.8)—(4.12). To do this, we multiply the eegsion of interest by
the joint pdf (4.2), and integrate the resulting expressioith respect t@; andd,, each
integral over the interval0, 2m). As these double integrals are intractable analytically,
numerical integration is performed using théapt function inR for the desired: and

A values. The information matrix for the pseudolikelihoogegach is then obtained
numerically using Equation (3.3). For any pair of paramestues(x, \), we now have

a means of calculating the information matrix for both thi ilkelihood approach and
the pseudolikelihood approach, and can therefore caktitat relative efficiency of the

two methods using Equation (3.4).

The terms in the infinite sums involved become small very kjyior m greater than
about3. For all (x, \) parameter configurations to be used in Section 4.2.3, we amedp
the ratio of the first seventy terms of Equation (4.3) to treilteobtained by integrating
numerically the exponential of the joint pdf (4.2). Thisoatas found to be unity in each
case. In order to compute the infinite sums, therefore, we tiad first seventy terms in
each case. For those parameter configurations to be coedjdee observe the largest
70th term to bel0~75.

4.2.3 Efficiency of the pseudolikelihood

The efficiency of the pseudolikelihood, for any pair of vaie, \), can be calculated
from Equation (3.4). We compute the efficiency for all conations ofx = 1,2,...,15
and|\| = 0.5 and1,2,...,15 (efficiency for A\ = [ is the same as fok = —[). If
k1 = ko = 0 then the expression in Equation (4.3) for the normalizingstant is not
suitable. In fact the normalizing constant in this case app® involve beta functions.

Sincex; = k9 = 0 is something of a degenerate case, we will not constder0 in the
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following.

The results of the efficiency calculations are displayedigufes 4.1 and 4.2. From
Figure 4.1 we can more easily consider the functional @tstiip between efficiency
and the parameter values for eitheor X fixed and the other varying, whilst Figure 4.2
contains only selected values [0f] (as shown on the legend), and gives a better idea of

efficiency values.

For A = 0 the efficiency is unity, since in this cag&t,,0,) = f(01]62)f(02]01). We
observe that efficiency is high for small|. It was shown in Section 3.3 that both
pseudolikelihoods are fully efficient for the bivariate mal distribution with known
i1 = po = 0 and unknown parametessandp. Since the bivariate von Mises distribution
tends to a normal distribution for largevalues (Singh et al., 2002), the efficiency should
tend to unity in the current case as— oo. From Singh et al. (2002), for the bivariate
case withu; = pus = 0 andk; = ks = k, the corresponding parameters of the normal
distribution are

9 K A

o = —— p:—
K2 — )22 K

In order thats? > 0 we requirex > |\|. The aforementioned improvement in efficiency
ask increases should therefore only be expected to occur, fed fixfor those regions

in Figure 4.2 in whichs > |\|. This is indeed the case, and the efficiency is greater than
0.9 for all suchk, A pairs in Figure 4.2. Fok < A, the joint distribution off; andd, is
bimodal (Mardia et al., 2007b), and in this case the effigreaq@pears to be a quadratic

function of , with greater efficiency for very smallandx close to).

4.2.4 Simulation

We now investigate the properties of the pseudolikelihostireator for the bivariate
von Mises distribution by simulating0 000 bivariate samples for each of four different

parameter configurations and for each of three sample siZés. rejection sampling



60 Chapter 4

Figure 4.1: Efficiency of pseudolikelihood for bivariatervblises distribution withx =

1,2,...,15,A=0.5,1,2,...,15.
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Figure 4.2: Efficiency of pseudolikelihood for bivariatervdlises distribution with: =
1,2,...,10, |\ = 0.5,1,2,4,6,8, 10.
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algorithm described in Chapter 2.4 is used for the data sitt. The configurations
(k,A\) = (2, 0.5), (8, 4), (6, 6) and(2, 4) will be used for samples of siz&€§, 50 and
100. Figure 4.3 displays the estimated bias and variance glaig@inst sample size for
each parameter configuration. The efficiency values for segolikelihood for these
parameter configurations, as calculated in Section 4. 213lmplayed in Figures 4.1 and
4.2, are, in the order stated above and plotied)7, 0.996, 0.953 and0.899. Certainly the
variance plots exemplify this ordering of efficiency, andi@aces of parameter estimates
for the pseudolikelihood and full likelihood are closelygoarable when the sample size
is at leasb0. Even in the worst case scenario — when\) = (2,4) (which corresponds
to a bimodal density) with a sample size20f— the ratio of variances full:pseudo for the
estimate of\ is 0.834, and clearly greater far There is also a slightly greater bias for
the pseudolikelihood with this parameter configuratiooutyh in general the bias is very
similar for the two methods. Whefm:, \) = (8,4) there is even the slight suggestion of

less bias for the pseudolikelihood estimates.

4.3 Data simulation and parameter estimation for the

trivariate von Mises distribution

In this section we investigate data simulation and paranestgmation for the trivariate
von Mises distribution. The Gibbs sampling technique dbsdrin Section 2.4 is used
to simulate data, and the properties of pseudolikelihodidneses are investigated and
compared with maximum likelihood estimates. The full ps#ikelihood for the trivariate

von Mises distribution is given by

n

(2m) 2" H[fo(/igl.)g,g)fo(%5?)1,3)]0(’2%2.)1,2)]_1 exp{r{}ycos(By; — uihy) +
=1

+ Hg-)l,ii cos(fy; — Hg)m) + "0:(32-)1,2 cos(f3; — M:(sl)m)} (4.13)
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Figure 4.3: Estimates of bias and variance for pseudohkeld and full likelihood
estimators for the bivariate von Mises distribution. Baead 0 000 simultions for each

configuration and samples of siz&g 50 and100.
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where

Mgi.)g,s =y + tan g sin(65) — o) + Mg sin(65” — ps)]/ma }
Kby = V2 Daasin(0y) — o) + Aigsin(65) — pi)]?}

and analogously forl) ;, x5 5, 1) » andxy) .

4.3.1 Data simulation and pseudolikelihood estimation

63

For chosen parametexs, rq, k3, A12, A13 @nd o3, the following Gibbs sampling method

will be used in order to simulate variates from the trivaiabn Mises distribution. For

the simulation method, the mean direction vector will betsetero. For subsequent

estimation, mean directions will be added to (zero—meaniiksited data.

e Firstly, two independent von Mises distributed vectors ahehsionn, are

simulated with concentration parametersand ., respectively. These are the

initial vectors representing, andd, respectively.

e Next, using the parameteks, A3 and\s3, a vector off; values is simulated such

thatés; is von Mises with mean directio,mg_)L2 and concentration parameﬂeﬁ?’w

as defined for Equation (4.13) and given theandd, vectors { = 1, ..., ny).

e The simulation proceeds by cycling through columns one ama,teach time

replacing the values therein with new, von Mises distridutiata generated

conditionally on the current values in the other two columiéis loop is done

n9 times.

e n3 such data sets are generated giving, in tetals vectors(y, 0,, 03).

Parameters are estimated by minimising the negative kbgarf the pseudolikelihood

(4.13). The parameter values chosen@fe ks, 3, A2, A13, A2z) = (2,3,1,2,2,2). We
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experiment with three different estimation methods, twlues ofn; and two values of

ns. Tables 4.1-4.3 summarise the results:

Table 4.1

Table 4.1 gives means and standard deviations of pseutlotike estimates for
simulated trivariate von Mises data with zero means. Pa@g/s(b) and (c) show the
effect of changing the values ef (number of data points for eaéh) andn, (number of

times each vector is updated in the Gibbs sampler).

Table 4.2

As for Table 4.1 except that a mean vectdr3, 1) is added to the simulated data and
estimated usinglm and the pseudolikelihood. In this case the meang:foy., and s

in the table are the sample mean directions ofrtine estimates, whilst the figures in the

(SD) column are — R, whereR is the mean resultant length of them estimates.

Table 4.3

As for Table 4.2 except that mean directions are estimated tise sample means of each
variable in each data set, antin estimates are calculated for the remaining parameters
using mean (direction) corrected daBetweertables butwithin panels (a), (b) and (c),

the parameters are estimated using the same data.

Conclusions

The results of the above procedure are a means of assessngddguacy of a
number of things: the simulation procedure and the numbetecdtions of the Gibbs
sampler; nlm as an estimation algorithm, and the use of the pseudoli@tihas

an estimation method. The starting values of parameters uséhe nlm algorithm

are (K1, Ko, K3, M2, M3, Aoz, i1, fla, f3) = (K1, Ko, R3,0,0,0,0,,0,,05), wheres; is the

univariate maximum likelihood estimate ef based on thé,’s, 8, is the sample mean

direction of thed,’s for each data set and fgr= 1,2, 3. These latter are used only when
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(@) (b) (©)
n1 =100 n9 =100 | n1 =100 ne =150 | ny =200 mne =100
Mean (SD) Mean (SD) Mean (SD)
K1 2.02 (0.27) 2.08 (0.33) | 2.06 (0.22)
ko | 3.15 (0.44) 3.07 (0.42) | 3.02 (0.31)
ks | 1.04 (0.24) 1.01 (0.22) | 1.03 (0.13)
A2 2.01 (0.60) 2.03 (0.54) 2.03 (0.39)
iz | 2.06 (0.40) 2.05 (0.46) | 2.08 (0.35)
Xos | 213 (0.45) 2.07 (053) | 2.02 (0.34)
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Table 4.1: Mean values and standard deviations of nim estimates fogrgeed trivariate von

Mises data.
(a) (b) (c)
n1 =100 n9 =100 | n1 =100 ne =50 | ny =200 mne =100
Mean (SD) Mean (SD) Mean (SD)
K1 2.03 (0.28) 2.09 (0.33) 2.07 (0.22)
Ko | 317 (0.45) 3.09 (0.43) 3.04 (0.31)
ks | 1.05 (0.25) 1.01 (0.22) 1.04 (0.13)
A2 2.02 (0.60) 2.04 (0.55) 2.03 (0.39)
Az | 2.08 (0.41) 2.08 (0.47) 2.10 (0.35)
Xos | 1.99 (0.47) 2.09 (0.54) 2.03 (0.35)
| 1.99 (0.002) 2.0 (0.002) | 2.01 (0.001)
2 3.01 (0.002) 3.00 (0.002) | 3.00 (0.001)
ps | -1.00 (0.002) | -1.01 (0.002) | -1.00 (0.001)

Table 4.2: Mean values and standard deviations of nlm estimates foergead trivariate von

Mises data withu = (2, 3,

1),
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(a) (b) (©)
ny =100 ne =100 | n;1 =100 ng =50 | ny =200 ng =100
Mean (SD) Mean (SD) Mean (SD)
K1 2.00 (0.28) 2.06 (0.32) 2.05 (0.22)
ke | 3.11 (0.43) 3.02 (0.42) 3.00 (0.32)
ks | 1.03 (0.24) 1.00 (0.22) 1.03 (0.12)
Ao | 213 (0.58) 2.15 (0.54) 2.07 (0.38)
Az | 1.86 (0.42) 1.89 (0.50) 2.01 (0.35)
Xos | 1.98 (0.48) 1.90 (0.53) 1.95 (0.37)
pi | 2.00 (0.01) 2.01 (0.01) 2.02 (0.01)
o 3.01 (0.01) 3.01 (0.01) 3.00 (0.003)
ps | -1.00 (0.04) -0.99 (0.04) | -0.99 (0.02)

Table 4.3: Mean values and standard deviations of nlm estimates foergtad trivariate von

Mises data, once marginal circular means have been suddr&oim the data columns.

we usenlm to estimate the mean directions.

A comparison of panels (a) and (b) of each table indicate§ #ialeast with these
parameter values, a value of = 50 gives comparable accuracy to that achieved with
ny = 100, and is enough to give reasonably accurate estimates. Comgparts (a) and
(c), we see that a value af = 200 gives more accurate results than a value0f 100

for fixed no, ng. Overall, the accuracy of the estimates and the effect ohging n,

are encouraging signs that both the simulation method amcs$kimation method are
effective even though, thus far, only one combination ofpseter values has been tested.
Comparison of Tables 4.1, 4.2 and 4.3 reveals little or nfzihce in the effectiveness
of the estimation procedure for the three scenarios. In &lse of Table 4.3, the sample
mean directions serve as a good estimate ofitharameters, being very close to the true

values(2, 3, —1).
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In order to investigate the effectiveness of the estimagtimeedure for smaklt values, we
first take/ﬁ?l = 1, Ko = 1.5 and/ﬁ?g = 0.5. With )\12 = )\13 = )\23 = 1, known/,l, =0
and using; = 100, no, = 50) the results shown in Table 4.4 are obtained. Clearly, the

halving of thex values has had no significant detrimental effect on the esiom.

K1 Ko K3 A2 A13 A23
Mean| 1.02 1.53 0.54 2.03 2.00 2.1(
(SD) | (0.26) (0.31) (0.22) (0.53) (0.51) (0.52

~

Table 4.4: Mean values and standard deviations of nim estimates fogrgeed trivariate von

Mises data with<1 = 1, ko = 1.5, ki3 = 0.5 andXjs = A3 = Aoz = 1

K1 Ko K A2 A13 23
Mean | 0.53 0.80 0.28 2.10 2.02 2.06
(SD) | (024) (0.21) (0.17) (0.52) (0.53) (0.54)

Table 4.5: Mean values and standard deviations of nlm estimates foergeatd trivariate von

Mises data with<; = 0.5, ko = 0.75, k3 = 0.25 andAjs = A\j3 = Aoz =1

Halving the truex values again yields the results in Table 4.5. Again the egamare
adequate in terms of the mean values, although the standaiatidn of thex estimates
increases relative to the size of the true parameter valsi¢seatruer values become

smaller.

4.3.2 Pseudolikelihood versus full likelihood

Having developed a data simulation method and verified that gseudolikelihood
provides a reasonable means of estimating parameters dotritfariate von Mises
distribution, we next compare the properties of pseudbliked estimates with their full
likelihood counterparts, for various parameter configoret. Tables 4.6 and 4.7 display

maximum likelihood (ML) and pseudolikelihood (PL) estireatbased on a single data
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set for each of four different parameter configurations asidgin; = 100, ny, = 50
(see previous section). The first of these configurationeesponds to that studied in
the previous section. The four configurations are also thmsefor which the univariate
and bivariate marginals were plotted in Figures 2.1 and i figures in brackets give
approximate standard errors of estimates, and are caddui@m the Hessian matrix (by
taking the square roots of the diagonal elements of the sevef the Hessian), which is
obtained numerically by thelm estimation routine. Maximum likelihood estimates are
obtained by incorporating a numerical integration intolestage of thalm algorithm in

order to evaluate the unknown normalizing constant.

True| ML (SD) | PL  (SD) | True| ML (SD) | PL  (SD)
k1| 2 | 223 (0.31)] 223 (0.33)| 0.5 | 0.46 (0.23)| 0.46 (0.23)
3 | 281 (0.38)]2.81 (0.36)| 0.75| 0.92 (0.26)| 0.91 (0.26)
1 [1.09 (0.22)| 1.17 (0.22)| 0.25 | 0.01 (0.25)| 0.01 (0.26)
M2 | 2 |163 (051) 1.39 (0.48)| 2.0 |1.84 (0.71)| 1.73 (0.64)
2
2

2.09 (0.43)| 2.37 (0.38)| 3.0 | 3.14 (0.67) 3.25 (0.64)
2.30 (0.46)| 2.58 (0.46)| 4.0 | 3.75 (0.67)| 3.76 (0.64)

Table 4.6:Mean values and approximate standard errors of pseudbtikel and full likelihood

estimates for trivariate von Mises data.

True | ML (SD) PL (SD) | True| ML (SD) PL (SD)
K1 2 2.72 (0.80)| 2.73 (0.81)| 2.0 2,52 (0.31)| 2,52 (0.31)
Ko 2 2.03 (0.76)| 2.03 (0.77)| 2.0 2.32 (0.28)| 2.32 (0.28)
K3 2 2.34 (0.91)| 2.33 (0.93)| 2.0 2.12 (0.26)| 2.12 (0.26)
A2 | 20 | 12.45 (6.65)| 12.69 (7.45)| 0.1 0.16 (0.32)| 0.15 (0.26)
A3 | 30 | 38.60 (7.42)| 3851 (7.42)] 0.1 | -0.12 (0.31)| -0.12 (0.26)
Aoz | 40 | 38.43 (3.90)| 38.27 (7.42)| 0.1 0.42 (0.31)| 0.44 (0.27)

Table 4.7:Mean values and approximate standard errors of pseudbtikel and full likelihood

estimates for trivariate von Mises data.

Comparison of the MLEs and MPLEs themselves reveals vetyg tifference in terms
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of accuracy. The approximate standard errors are alsolglosmparable, with the odd
exception, for example for the estimates\gf for parameter configuration three. For the
A estimates in parameter configurations one, two and fourgitre:n standard errors are
in general slightly smaller for the pseudolikelihood esties than for the full likelihood
estimates. It should be noted however that these are appatxiand the difference is

small.

As an indication of the relative computational expense efttto methods, the estimation
of parameters using the pseudolikelihood took less thancbnsek for each of the
configurations in Table 4.7, whilst the corresponding figue the full likelihood were
38 minutes and 15 minutes. These figures clearly indicatadle for an alternative to
the full likelihood in the current situation, whilst the figes in the Tables of the current
chapter show the pseudolikelihood to be a good candidattni®alternative. It should
be expected that the computational expense of MLES relaii®.Es is even greater for

higher dimensional data.

We now use the trivariate von Mises distribution in order tmd®l protein data sets, using

both the full likelihood and the pseudolikelihood.

4.4  Application to protein data

In this section we consider two different types of proteitadand report the results of
fitting trivariate von Mises distributions to each type. Tst data set to be considered
comprises the conformational angles of Gamma turns, wiiéssecond contains main
chain and side chain conformational angles for the amindsaserine and valine.

Modeling of the former was also considered by Hughes et ADg2
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4.4.1 Gamma turn data

Definition: A gamma turn is a three—residue chain defined by the existd#rachydrogen
bond betweerC'O of residuei and NH of residue: + 2. In addition, the¢ and ¢

angles of residue + 1 fall in the rangesy;.; € [35°,115°] = [0.61,2.00] radiansand

Vi1 € [—104°, —24°] = [—1.82, —0.42] radians respectively.

The data to be analysed in this section comprisedttend ¢ triplets of 497 Gamma
turns. Figures 4.4 and 4.5 display correlation plots of ta&adwith circular plots on
the main diagonal, pairwise plots on the upper panels adlair correlation values on
the lower panels. Circular correlations are calculateddpyacing(z; — =) and(y; — 7)

in Pearson’s product moment correlation férandY by sin(z; — 7) andsin(y; — 7),
wherez andy in the latter two expressions are sample mean directiprsalues for
testing the significance of the correlation coefficientsase given. For full details of
this sample circular correlation coefficient, the readeefsrred to Jammalamadaka and
SenGupta (2001, chap. 8). Briefly, under the hypothesigiigairue value op. is zero,

the distribution of the estimate, for largen, is such that
v <n5\205\02/5\22) re ~ N(0,1),

where
n

Sy == sind (g — @) sind (64 — )
n
k=1
for a random sample (of size n) of circular variablas/?) with unspecified joint density.

It is from this relation that the—values are calculated.

As an exploratory analysis, a univariate von Mises distrdsuwith mean directiom and
concentration parameteris fitted separately to each of andy;, j = 1,2, 3. Maximum

likelihood estimates ofi andx are displayed in Table 4.8.

We now use both the pseudolikelihood approach and the kelliiood approach to fit
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p. =0.06
p.val=0.2
p.=0.14 pc=-0.07
p.val=0 p.val=0.1

Figure 4.4: Matrix plot of¢p angles of gamma turn data, with circular plots on main

diagonal, pairwise plots on upper panels and correlatiorswer panels

©

-1 0 1 2 3

pc=-0.01

p.val=0.87

pc=-0.15 pc=0.24
p.val=0 p.val=0

Figure 4.5: Matrix plot ofiy angles of gamma turn data, with circular plots on main

diagonal, pairwise plots on upper panels and correlatiorswer panels
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a trivariate von Mises distribution to theand angles, separately, of the Gamma turn
data, the results of which are shown in Table 4.9. Due to prablof convergence
when the mean directiong,, p, and s are included in the optimization process for
the maximum likelihood approach applied to thangles, we estimate these parameters
using the marginal sample mean directions of¢h@ata. The remaining parameters are
estimated using thelm approach (described in the previous section) applied toden
(direction) corrected data. Standard errors of estimatestaoown in brackets (except for
the ¢y mean directions using the MLE approach), and are calculiated the Hessian
matrix obtained using thalm estimation procedure, by taking the square roots of the

diagonal elements of the inverse of the numerically catedl#essian.

¢ 92 ¢z Y e Yy
-1.64 1.20 -1.76 158 -1.02 1.03

158 3146 167 0.44 8.19 031

=

x>

Table 4.8: Marginal MLEs of: andx for gamma turn data.

Gamma turn MLE Gamma turn PLE Simulated PLE
¢ p ¢ p ¢ )

K1 160 (0.09)| 0.44 (0.07)| 1.60 (0.09)| 0.44 (0.07)| 1.65 (0.10)| 0.52 (0.07)
ko | 31.72 (2.00)| 887 (0.54)| 31.73 (1.99)| 8.87 (0.53)| 33.25 (2.08)| 7.75 (0.46)
K3 169 (0.10)| 032 (0.67)| 169 (0.10)| 0.31 (0.07)| 1.77 (0.10)| 0.33 (0.07)
A2 055 (0.41)| 0.23 (0.20)| 0.65 (0.31)| 0.15 (0.13)| 1.04 (0.30)| 0.06 (0.14)
A3 0.32 (0.12)| -043 (0.10)| 0.39 (0.09)| -0.33 (0.06)| 0.46 (0.08)| -0.48 (0.06)
A2z | -0.71 (0.42)| 135 (0.21)| -0.79 (0.31)| 1.13 (0.13)| -0.66 (0.30)| 0.94 (0.14)

p1 | -1.64  (0.05)| 158 . -1.63  (0.05)| 1.46 (0.12)| -1.66 (0.05)| 1.49 (0.09)
p2 | 120 (0.01)] -1.02 . 1.20 (0.01)| -1.02 (0.02)| 1.18 (0.01)| -1.02 (0.02)
ps | -1.75  (0.04)| 1.03 . 173 (0.04)| 1.27 (0.10)| -1.64 (0.04)| 1.29 (0.09)

Table 4.9: Maximum likelihood estimates (MLES) and pseikétihood estimates (PLES)
(and their standard errors) ferand angles of Gamma turn data and for data simulated

using these estimates.

Comparing Tables 4.8 and 4.9 we see that the univariate MbEs &ndx are similar to
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the estimates for andx in the trivariate case, with a possible tendency for the ante
k estimates to be slightly smaller. Moreover, thestimates are generally quite close to

zero, although most also have small standard errors relgtitheir magnitude.

As an assessment of the goodness-of-fit of the model, twoddettsvariate data are
simulated using the MLEs and compared with the originandy Gamma turn data.

Figure 4.6 displays the data obtained.

(] L25) 3
?1 ) ®3

o A

Figure 4.6: Circular plot oft97 simulated¢ and triplets with true parameter values

equal to the MLEs for the original gamma turn data.

It can be seen that the data simulated are reasonably stoillae original data. For the
1 angles there appears to be a slight bimodality in angbkesd3 of the original data that
is not reproduced in the simulation. For betland+, the plots for angle$ and3 of the

simulated data appear slightly more gradual in terms of gbain density on the circle

than the original data.

Using the pseudolikelihood to re-estimate the parametasged on the simulated data
gives the results in the right hand part of Table 4.9, and wsenfe comparable results

with those displayed in the left part of the table, indicgtreasonable goodness—of-fit.
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We extend the analysis of the Gamma turn data by develogietiHood ratio tests for

the trivariate von Mises distribution.

Hypothesis testing

An important part of fitting statistical models is the forratibn and testing of hypotheses.
In this section we compare likelihood ratio test statistiased on a von Mises maximum
likelihood approach, a von Mises pseudolikelihood appnpand a normal approximation

approach.

We will test two hypotheses regarding the mean directionghefangles composing
Gamma turns. Firstly, the hypothesis = u3 for the ¢ and angles of such a turn
will be tested. A further test on the mean directions of ghangles could be based on
the hypothesig,; = u3 = ps — m. Although these hypotheses may be criticised on the
grounds that they have been generated by looking at the tthetdocus of the present
section is on formulating test procedures rather than thaltseof the tests per se. A test
of independence of, ¢, and ¢3 is equivalent to testing that aN values are equal to

zero. These three hypotheses will be tested in the three dessibed above.

We outline the procedure for using a Normal approximatiotihéovon Mises distribution
in order to test the above hypotheses. Althouglalues for angles$ and3 of both¢ and

1y are reasonably small, the trivariate Normal distribution
(@1, O3, 03) ~ N3(pe, 2@), (4.14)

where (25 = ki, (') = —A; andi # j, will be used to test the hypothesis
1 = ps. In (4.14),0 is to be replaced by or ¥, depending on the variable of interest,
whilst e is the vector comprising the mean direction$gf ©, and©;. For fi, and iy,

we take the maximum likelihood estimates. The covarianciioes obtained for and
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1, based on the MLEs of the trivariate von Mises model, areaetsgely

~6.28 143  12.06 067 001 015
3, = 143 —0.11 —1.96 3, = | 001 003 —0.01
12.06 —1.96 —16.98 015 —0.01 063

The matrix3,, is not positive definite, a direct result of the values of theBd for the
trivariate von Mises fit — since not all parameter values eéd to a positive definite
normal approximation (in which case the normal approxioratis inappropriate).
Therefore the hypothesis described will be carried outHiergt angles only. It is noted
here that in Section 4.4.2 alternative, moment based estimwill be discussed, which
would lead to a positive definite covariance matrix. Sinaesthare based on a normal
approximation, and the estimates of thgparameters for the Gamma turn data are not
particularly large (except for the middle value), discossof these estimators is deferred

until Section 4.4.2.

Test 1y = p3

The test statistic, which is approximately? distributed under the null hypothesis
and for largex values, isS = 2(lgy — lea), Wherelg, is the loglikelihood of the
distribution (4.14) with mean vector and covariance mafkix and f)¢ respectively.
l.eq 1S the corresponding value when the maximum likelihoodnesties are calculated
with p; = ps. We getS = 2.91, with ap—value 0f0.093. We therefore accept the null

hypothesis that the means are equal.

Test2:yy =ps =po — 7

Using the same procedure as for test 1, we obtain a testistaid91.8 on two degrees
of freedom. This is clearly a very large figure and we rejeetribll hypothesis. As seen
in Table 4.9, the difference between the PLEugand bothy; andys is slightly lessthan

m, andu, has a particularly small standard error.
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Test3: Ay = Az = A3 =0

Under this test of independencﬁ;1 for the reduced model igiag(x), wherek is
the MLE of (k1, k2, k3) When all A values are equal to zerok is calculated to be
(1.59,31.46,1.67) (values that correspond almost exactly with those in Tal#, 4nd
the resulting test statistic i§19.8 on three degrees of freedom. Again this value is
highly significant, although perhaps not surprisingly seeg the small magnitude of the

standard errors of the estimates relative to the magnitude of the estimates tHeasse

Of importance in fitting a normal distribution to directidndata is the point at

which the circle is cut. In the current situation we have dtne atx, although this

should perhaps be done separately for each variable in swely ghat the concentration
parameter is maximised. Of course, the more concentrageddta, the easier it is to
select a point at which to cut the circle, and the more appat®the use of the normal
approximation. Since in the current setting and ¢; are quite dispersed, the normal
approximation is perhaps not entirely suitable, and thelpra is therefore not addressed

in detail.

The left half of Table 4.10 gives loglikelihood values foetfull and reduced models
and for each of the three approaches described: full (jeioi) Mises likelihood, von
Mises pseudolikelihood and normal approximation. Thetrltdif of the table displays
the likelihood ratio test statistics based on the valuehaléft part of the table. As
can be seen from the table, the same conclusions are reaaiedling the acceptance
or rejection of the null hypothesis in each case, namelyttie@bnly null hypothesis not

rejected is for test, i1, = p3 (using a5% significance level).

Of more interest, however, is comparison of loglikelihocalues for the different
methods, and the resulting differences in the test stdistiln particular, the log—
pseudolikelihood appears to underestimate the loglikekihslightly (in absolute value)

in the first three rows of Table 4.10. In each case, howewesitte of the underestimation
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Log-likelihood Test statistic

VM joint | VM pseudo | Normal VM joint | VM pseudo | Normal
Full | -1233.66 | -1225.46 -1857.21

Test1l | -1235.34 | -1227.04 -1858.66 3.35 3.17 291
Test2 | -1259.57 | -1250.30 -1953.10 || 51.81 49.70 191.79
Test3 | -1238.88 | -1238.88 -1917.13 || 10.43 26.85 119.84

Table 4.10: Loglikelihood and log—pseudolikelihood valegaluated at MLEs and PLEs,

and test statistics based on these values.

is similar, resulting in little difference in the test s#dics for testd and2. In the case
A = 0 (row 4 of the table), the full likelihood and pseudolikelihood we$ are the
same. This is to be expected, since in this case each is tleigirof the same three
independently distributed von Mises distributions. Thieafis an inflated test statistic

when the test is based on the pseudolikelihood.

4.4.2 Serine and valine data

Of interest in the study of protein structures is the rel&top between the backbone of a
protein and its side—chain conformation (see, for exanfplebrack and Cohen (1997)).
The latter is measured by the anglgsj = 1, ..., 4, and each of the twenty commonly
occuring amino acids has associated with it, 2, 3 or all 4 of thesey angles, as described
in Section 1.2. In this section we use a trivariate von Misssibution to model backbone
and side—chain angles gathered from a database for two amnids, serine and valine,
that have a single side—chain angle The two amino acids are compared in terms of
summary statistics and fitted model parameters, and for @adamo acid the relationship

between the, ¢y andy; angles is investigated using likelihood ratio tests.
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Summary statistics

The raw data comprise the, ¢ and y; (to be referred to asy) angles
for 10475 serine and 11617 valine amino acids, gathered from numerous
proteins and obtained from the Backbone-Dependent Rotamdsrary

(http://dunbrack.fccc.edu/bbdep/bbdepformat.php).

Figures 4.7 and 4.8 show correlation plots, as describethtogamma turn data in the
previous section, for the raw serine and valine data. Fqlayspurposes, the data are
plotted in such a way as to be able to distinguish betweenerkisso that axis endpoints
are not necessarity and—=. The figures show the data to be multimodal, whilstphke
values for the circular correlation coefficients show allwéee correlations to be highly
significant. The plots also reveal an apparent similarityleen the valine and serine data.
In this instance a mixture model appears appropriate, sirveas conjectured in Section
2.3 that the marginal distributions associated with thatrate von Mises distribution are

either unimodal or bimodal.

As an exploratory analysis of the serine and valine data, elecsregions of the plots
in Figures 4.7 and 4.8 and propose a trivariate von Misesilaision for modelling the
resulting data. Working in the interval, ), we take those data for whighe (—,0),

Y e {(14, 7] U (—m —27/3)} andy € (—1.75,0). This leaves data for 1171 serine and
1343 valine amino acids. Correlation plots of the resultata are shown in Figures 4.9
and 4.10.

Based on the plots, the new data appear fairly unimodal. rAgare are similarities
between the valine and serine data, although the formeraappebe slightly more
concentrated. Based on the figures in the lower panels ofbelots, the only non—
significant circular correlation for the serine data is thettveeny, andy. For the valine
data, that betweett, andy, is the only non—significant correlation. Table 4.11 gives

univariate maximum likelihood estimates for each anglénefreduced serine and valine
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pc=-0.53
p.val=0
pc=-0.14 pc=0.17
p.val=0 p.val=0

Figure 4.7: Correlation plot of raw serine data, with ciezsuplots on main diagonal,

pairwise plots on upper panels and correlations on loweelgan
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Figure 4.8: Correlation plot of raw valine data, with cirauplots on main diagonal,

pairwise plots on upper panels and correlations on loweelgan
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Figure 4.9: Correlation plot of selected serine data, wittutar plots on main diagonal,

pairwise plots on upper panels and correlations on loweelgan
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Figure 4.10: Correlation plot of selected valine data, withular plots on main diagonal,

pairwise plots on upper panels and correlations on loweelgan
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data.

Immediately it can be seen from the MLEs, as it can from thésplthat the data are
highly concentrated, particularly the valine data. Thedahility of a trivariate normal
distribution should therefore also be considered. The gampan directions for the two

data sets a reasonably similar, particularly for thealues.

¢S ¢s XS ¢v wv XU
-1.73 251 -1.10 -216 275 -1.08

456 1155 28.29 932 2546 52.83

=

x>

Table 4.11: Univariate von Mises MLEs pfandx for serine and valine data

Fitting a trivariate von Mises distribution

We now fit the proposed trivariate von Mises distributiontie serine and valine data.
The results are displayed in Table 4.12. The maximum likelthestimates are obtained
as described for the gamma turn data analysed in Sectiah 4#d the pseudolikelihood
estimates are used as the starting point for the algorithon.tife maximum likelihood

approach, the same convergence issues arise as fgrdahgles of the gamma turn data.
For this reason, we again estimate the mean directions Mtfeapproach by taking the

marginal sample mean directions. The mean (directionected data are then used in

estimation of the remaining parameters.

We observe from Table 4.12 that the MLEs and PLEs are veryairpiarticularly for the

serine data. This should be expected, since the data ary bigicentrated and we know
that, as the concentration parameters tend to infinity,rit@rtate von Mises distribution
tends to a trivariate normal distribution, for which the pdelikelihood estimators are
fully efficient. There is some disagreement in the magnitofdthe standard errors of

the estimates based on the full likelihood and pseudohikell, and since these are only
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MLE PLE PLE (simulated)
Serine Valine Serine Valine Serine Valine
Ko 459 (0.17)| 9.61 (0.36)| 4.58 (0.17)| 9.63 (0.36)| 4.80 (0.18)| 9.84 (0.36)
Ky | 11.66  (0.47)| 26.26 (1.00)| 11.66 (0.47)| 26.28 (0.99)| 12.33 (0.50)| 28.09  (1.06)
Ky | 28.49 (1.17)| 53.25 (2.05)| 28,50 (1.16)| 53.28 (2.04)| 28,52 (1.16)| 54.55 (2.09)
Aoy | -0.43  (0.23)| -2.85 (0.46)| -0.42 (0.16)| -2.99 (0.33)| -0.28 (0.17)| -2.98 (0.34)
Aoy | -0.17 (0.36)| 1.81 (0.64)| -0.16 (0.25)| 1.94 (0.47)| -0.13 (0.26)| 1.92 (0.46)

Apy | 159 (055)| 222 (1.04)| 164 (040)| 234 (0.75)| 142 (0.40)| 224 (0.76)

pe | 173 . 216 . 173 (0.01)| -216 (0.01)| -1.73 (0.01)| -2.17 (0.01)
py | 251 . 275 . 251 (0.01)| 274 (0.01)| 250 (0.01)| 2.74 (0.01)
py | -1.10 -1.08 . 110 (0.01)| -1.09 (0.00)| -1.09 (0.01)| -1.08  (0.00)

Table 4.12: Maximum likelihood estimates (MLEsS) and pseikdbhood estimates
(PLEs) (and their standard errors) of parameters for senkevaline data, and for data

simulated using these estimates.

approximate, the significance of parameters would be betmored with likelihood ratio
tests. As with the gamma turn data, NA's in the table are thalt®f negative values on

the diagonal of the inverse of the numerically obtained Hessatrix.

Comparing the ability of the maximum likelihood and psetkkdihood procedures
to maximise the full likelihood function, the loglikelihdoevaluated at the MLEs is
—816.4236 and evaluated at the PLEs#816.4254 for the serine data. The corresponding
figures for the valine data afi&4.7315 and584.6620. The maximum likelihood approach
is therefore seen to be superior (as expected) in this respéwough the difference is
practically zero. On the other hand, estimation of pararedskes over two hours for
each data set based on the ML approach, whilst the PLEs andai&id in approximately

ten seconds, giving an idea of the relative computationa¢ege of the two approaches.

Comparing Tables 4.11 and 4.12, we see that#hestimates based on independent
univariate von Mises distributions are very similar to thbssed on the trivariate models,
with those of the latter being very slightly larger in eackeaWe note that the same was

true for the gamma turn data, and in both cases the estimatatles are quite small.
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The closeness of the agreement between the univariate igadate ~ estimates could
be an indication of the dependence of the variables in thartate model, with ‘closer’
agreement indicating less dependence, although this ia ety rigorous assessment.
Based on the\ estimates and their standard errors, using either the MY _gs, the
indication for the serine data is again that the only nomiB@ant correlation is that

betweeny, andy,. For the valine data, all three appear significant.

As an assessment of the goodness—of—fit of the model, wevftie same approach as
for the gamma turn data and simulate data based on the pgealithalod estimates, then
compare the resulting data with the original data in terngai and parameter estimates.
The pseudolikelihood estimates of the simulated data spdajied in Table 4.12, whilst

correlation plots of the simulated data are given in Figdrd4 and 4.12.

We see from Table 4.12 that the PLEs for the simulated datesiargar to the true
parameters (the PLEs of the original data), but with a teogléor the x parameters to
be overestimated. Considering Figures 4.11 and 4.12, tbelar plots on the diagonals
appear similar for the original and simulated data, alttosigghtly less so fors™ than
for the other variables. The plots on the upper panels apgegatly different for the
original and simulated data, although this is partly dudaeodlightly different axis scales.
Specifically, the simulated data are not subject to the raeggictions imposed on the
original data. In terms of the circular correlation coeéfitis and their significance,
the former are very similar for the original and simulatedagalthough the correlation
betweenys™ andS™ is noticeably less significant than that betwegrand), based on

thep—values.

In summary, the model appears to be a reasonable fit for betkethine and valine data
based on the comparison between the original data and timoskated using PLES as true
parameter values. Indeed, some of the discrepancies @olseray be due to the problem

of simulating data without the restriction in range imposedhe original data.
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pe=-0.03

p.val =0.23

pc=-0.01 pc =0.07
p.val =0.67 p.val =0.01

Figure 4.11: Correlation plot of simulated serine data,hwatrcular plots on main

diagonal, pairwise plots on upper panels and correlatiorswer panels.

pc=-0.17

p.val=0

pc=0.07 pc. =0.04
p.val =0.01 p.val=0.11

Figure 4.12: Correlation plot of simulated valine data, hmircular plots on main

diagonal, pairwise plots on upper panels and correlatiorswer panels.



Parameter estimation and inference for the multivariateMees distribution 85

Since we have seen that the estimates ofxtlparameters for both the serine and valine
data are large, we here describe an alternative method afmgder estimation, based on
moment estimators and an assumption of high concentralioparticular, we estimate
the covariance matrix of the normal distribution under hegimcentration (independent

of any particular circular model) using (Singh et al., 2007)

2(1 - El) g12 §13
%= 21— Rs)  Sa (4.15)
2(1 — R3)
where
= _ iy cos(0 — 6;) = _ 2isin(f; —0;)sin(0y — 0))
RJ = - ) Sjl - L ,
n n
j # l andd; is the sample mean direction of tife values,i = 1,...,n. We note

that an alternative would be to usg; for j = [ (ie. the diagonal elements of the
matrix). The inverse of this matrix can then be compared whth covariance matrix

of the limiting normal distribution of the trivariate von B&s distribution, which was
derived in Section 2.3 to be of the for(E~").. = &;, (X7, = =Xy, j # L.
Estimates of the: and A\ parameters based on the matrix (4.15) can then be obtained
and compared with the maximum likelihood estimates and g@éelihood estimates
from Table 4.12. Table 4.13 shows moment estimates of.taed A\ parameters for the

serine and valine data. The estimates are obtained byngléte inverse of the matrix

K1 Ko K3 )\@/, )\qu )‘TZJX
Serine| 4.27 11.39 28.22 -0.33 -0.14 1.44
Valine | 9.33 25.94 5296 -253 1.62 2.08

Table 4.13: Estimates ef and\ parameters for serine and valine data based on moment

estimator of covariance matrix of the normal distribution.

in (4.15) to the inverse covariance matrix under high cotre¢gion of the trivariate von
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Mises distribution. Specifically, the diagonal elementshe former are the estimates
of the x parameters, whilst the remaining elements are negatedier ¢o obtain the\
parameter estimates. Comparing Tables 4.12 and 4.13, vihadbe moment estimates
are very similar to the estimates obtained using a maximuseilitiood approach and a
pseudolikelihood approach. The absolute value of eachnpeisa estimate is slightly
smaller for the moment estimates. Since the moment estimate constructed assuming
high concentration and using a normal approximation apgroée similarity of the
moment estimates and the likelihood estimates indicatgsatimormal distribution may

be reasonable for modeling the serine and valine data.

In the next section we investigate hypothesis testing fersérine and valine amino acid

data.

Hypothesis testing

We now use those methods employed for the gamma turn datden trtest hypotheses
on the \ values of the serine and valine data. Since it is of inter@shvestigate the
interrelationships between thg ¢» and y values, we first test the hypothesis that.all
values for a particular data set are equal to zare=(0). In this case the pseudolikelihood
and full likelihood are identical, the joint density 6f andy being the product of three
independent von Mises distributions. The MLEs and PLEsli@ tmodel are therefore

simply the univariate maximum likelihood estimates base@éach column of the data.

For serine, the subsequent tesf,, = X4, = 0 is also performed. In this
case, ¢, follows a univariate von Mises distribution whilgt, and y, have a joint

bivariate von Mises distribution. Comparison of a full likeod and a pseudolikelihood
approach in this case therefore reduces essentially to pareson of the likelihood and

pseudolikelihood for a bivariate von Mises distribution.

The results of testing the hypotheses described are desplaylable 4.14. The following
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four methods are used to test the hypotheses:

1. Full and reduced models are fitted using the joint trivanan Mises distribution
and likelihood ratio tests are performed using values ofdlékelihood function
at the MLEs.

2. The pseudolikelihood is used for fitting the full and reeldicnodels, and likelihood

ratio tests are performed using values of the log—pseueldiiod at the PLEs.

3. A trivariate normal distribution is fitted to the data fbetfull and reduced models

and likelihood ratio tests are performed.

4. A trivariate normal approximation based on the MLEs isduge obtain
loglikelihood values based on a normal distribution anélihood ratio tests are

performed using these values.

In addition to the conclusions of the results of the tes&) af interest is comparison of
the four approaches. They provide a means of comparing #edpsikelihood and full
likelihood for hypothesis testing, and also for assesdnegappropriateness of a normal

distribution by comparing the results of methods 3 and 4 abov

Log-likelihood Test statistic
Serine | VMjoint | VM pseudo | Normal | Norm appr. || VMjoint | VM pseudo | Normal | Norm appr.
Full | -816.42 -810.25 -813.02 | -817.94
A=0 | -822.67 | -822.67 -818.35 | -823.20 12.49 24.83 10.66 10.53
Agyp = Apy =0 | -818.40 | -813.86 -814.66 | -819.60 3.96 7.21 3.29 3.33
Valine | VMjoint | VM pseudo | Normal | Norm appr. || VMjoint | VM pseudo | Normal | Norm appr.
Full 584.73 613.01 551.23 | 547.73
A=0 559.87 559.87 526.77 | 523.24 49.72 106.27 48.90 48.98

Table 4.14: Loglikelihood values and test statistics baseftbur different approaches.

A number of conclusions and observations can be made basdlkeoresults of the

tests. For both serine and valine, the hypothesis that alues are equal to zero is
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strongly rejected by all the tests, based on a chi-squastdhdition with3 degrees of
freedom, the% critical value of which i9.84. Again for both data sets, the maximised
von Mises log—pseudolikelihood is greater than the maxeohison Mises log-likelihood
when based on the full model. When allparameters are equal to zero, however, the
pseudolikelihood and likelihood are, as mentioned abalentical. We therefore obtain
a greatly inflated test statistic when this test is performsithg the pseudolikelihood.
Comparison of both loglikelihood and test statistic valtersthe von Mises and normal
distribution approaches reveals close similarities betwt@e two, particularly for serine.
The closeness of the agreement could be an indication opih@priateness of a normal
distribution for modelling the data. When the normal disition model is fitted and
evaluated itis important to cut the circle in such a way adtaio a unimodal distribution.
In the current context, this is achieved by addingto all negativey) values, as for the

plots in Figures 4.9 and 4.10.

For the test\,,, = A\, = 0 for serine we obtain non-significant test statistics fotests
except that based on the pseudolikelihood. The test st&tigt for the pseduolikelihood
approach has p—value 0f0.027 based on a chi-squared distribution with two degrees of
freedom, whilst that based on the likelihood approach¢, has ap—value of0.13. As
discussed above, in fitting this reduced model we are ablertgpare the full likelihood
and pseudolikelihood for thigivariate von Mises distribution. As for the trivariate case,
the latter, at least for these data, overestimates the for@iace the overestimation is
not as great (in absolute terms) as for the trivariate maglelagain obtain an inflated
test statistic relative to the other approaches. We coecthdt there is not significant

evidence to reject the hypothesis that bagh and),, are equal to zero.

We observe from Table 4.14 that the test statistics based hen vbn Mises
pseudolikelihood approach are approximately twice thased on the von Mises full
likelihood approach. A similar observation can be made ler lhypothesis that alk

parameters are equal to zero for the Gamma turn data (Télfe 4f we consider normal
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variatesz andy in the context of a regression problem, then the hypothggis= 0 is
equivalent to each of the hypothesgs= 0 in the regression of onz andj3, = 0 in

the regression ot ony. In employing the full likelihood approach we are effective
testing either3, = 0 or 3, = 0, whilst a pseudolikelihood approach uses both. The
likelihood ratio test statistic based on the latter shoblete¢fore be twice that based on
the former. We conjecture that a similar statement is trugigher dimensions for both
the partial pseudolikelihood and the full pseudolikeliipalthough this is not discussed

further here.

We conclude the section by noting that it may also be instre¢d compare data sets in
terms of their parameter estimates by using likelihoodrests. For example, we could
test the hypothesis that the value of each parameter foresisrequal to the corresponding
parameter value for valine. This would be done by fitting eaniate von Mises model to
the pooled data, and comparing the loglikelihood with tha sfithe loglikelihoods of the
two separate models. In the present situation the pararestienates are very different

(especially for the; parameters) and so this hypothesis will not be explorethéurt

4.5 Conclusions

In this chapter we have derived the efficiency of the pseudiiood for the bivariate

von Mises distribution. This efficiency has been shown toetepon the values of
parameters, and is reasonably high so long &s not very large. We have performed
a thorough analysis of properties of pseudolikelihoodnestes for the trivariate von
Mises distribution, implementing a Gibbs sampling apphoéz data simulation and

comparing pseudolikelihood estimates with maximum liketid estimates. For all
parameter combinations considered, the two are shown ®diawvlar properties in terms
of accuracy and precision of estimates, whilst the formercaiculated at a fraction of

the computational cost. An analysis of protein fold datanshthe trivariate model to
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be a reasonabile fit for those data studied, and likelihood ta$ts have been developed
for the trivariate distribution. A further analysis haseastigated the relationship between
the backbone and side—chain conformation of two amino as&tne and valine. Based
on the region of data analysed, it was concluded thatthegles for the serine dara are
independent of both the¢ andy values. The results concerning efficiency for the bivariate
case and regarding efficiency and model fitting for the tratarcase are summarised in
Mardia et al. (2007a) and Singh et al. (2007) respectively.

Using an extension of the bivariate Cosine model, discussei@tail by Mardia et al.
(2007b) and defined in Equation (1.13), an alternative wauitate von Mises model, the

multivariate Cosine model, can be defined®r= (0,,0,,...,0,) as follows:

f(@) = Cp_l(’{? A) exp {K’TC(07 y’) - 5(07 #’)TA 5(07 H) - 6(07 “)TA 6(07 Pl’)} )

where—7m < 6, < m, —7m < p; <7, k;j >0, d; > 0. The vectors(0, ),
s(0, 1), p andk are defined as for the multivariate Sine model (Equation)2vhile
[A];, = 0 = &;; andd;; = 0. The normalizing constant S, («, A). This model can
be investigated in ways similar to the analysis of Chaptdosffor the multivariate Sine
model. Comparisons analogous to those made by Mardia &Qfl7b) for the bivariate
Sine and Cosine models can then be made for the multivariatiels. The two can also
be compared, for example, in terms of the efficiency of theigskkelihood for parameter

estimation.
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Chapter 5

Directional time series models

5.1 Introduction

Directional time series occur in a number of meteorologioakanographic, geological
and biological contexts. The first of these has receivedgpsitthe most attention in the
literature, Breckling (1989) providing the most compresiea account with his analysis
of wind speeds and directions, whilst Fisher and Lee (198d)@oles (1998) also use
wind directions in their examples. On the other hand, biialgpplications, for example,
are seldom found, and with the emergence of bioinformakiegbtential for exploiting

existing models and developing new ones provides the oppitytfor advancement and

increased usage of the subject of directional time series.

In contrast to the wealth of tools at the disposal of thosehints to analyse linear
time series, various challenges associated with the amabfsdirectional data have
hindered the development of analogous techniques for tariesscomprising directional
measurements. In this section we survey the existing mashelshighlight some of the

problems associated with the further development of sudhaoas.

Attention focuses on exploratory analysis (in Section 2u2) on four directional time
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series models: the von Mises autoregressive (AR) processi¢f 5.3); processes based
on link functions (Section 5.4), the wrapped AR process t{8ec5.5) and projected
processes (Section 5.6). Criteria for choosing betweemtiaels are discussed in Section

5.7, whilst Section 5.8 summarises the chapter.

5.2 Directional time series and exploratory analysis

In many statistical analyses, the first step is to use extgorar descriptive techniques
to investigate features of the data being studied. Forfitizee series, examples include
the autocorrelation coefficient and a simple time plot tantdg potential trend, non—

stationarity, seasonal effects, etc (see, for exampletfielta(1975) for comprehensive

details).

Fisher (1993) describes some analogous methods for theoraimly analysis of
directional time series. For highlighting trends in a diiecal time series{6;}, i =
1,...,n, he describes kernel estimat&s) andy(t) based onx; = cos 6; andy; = sin 6;,

1 = 1,...,n. In practice, ther; andy; values are smoothed individually, each being
a weighted average of values measured at titneeart¢. In particular, the following

expression gives(¢) whilst an analogous expression can be used to oljtajn

o i Kt =t
#lt) = > ic Kn(t =)

whereK,(t) = h 'K (t/h) andK is the desired kernel functiori:(¢) andy(t) are used

to obtain a smoothed estimat&) of the form
6 = tan™" {§(t)/@(t)} .

Analogous to the autocorrelation coefficient for lineariables, he describes la-lag

circular autocorrelation coefficient ¢, } based on thén — k) data pairs

(‘917 Qk—i-l)? (027 0k+2)7 EIC) (en—ka Hn)
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His circular autocorrelation coefficient is based on amestor of the circular correlation
B E [sin(0; — O9) sin(Py — Dy)]

U B [sin?(0, — )] E [sin’(@) — ®,)]}?

between two circular variable® and ¢ introduced by Fisher and Lee (1983). Here,

(5.1)

(01, ®;) and(O,, ®,) are distributed independently &9, ®). The estimator opr used

is
R Y i<icj<n SN(0; — 0;) sin(¢; — ¢;)

PT = 1
) ) 3
Zl§i<j§n sm2(9i —05) Zl§i<j§n Sm2(¢i — ;)
and forms the basis for calculation of the circular autoglation coefficient. For

, (5.2)

convenience, if we write; = 0, ,7 = 1,...,n — k, then we have thén — k) pairs

(617 9251)7 (627 9252)7 ceey (Qn—lﬁ ¢n—k>7

based on which we can calculate #aéag circular autocorrelatiopy (k) as

k) = Y i<icicn_i Sin(0; — 0;) sin(d; — ¢;) _ (5.3)

[Zl§i<j§n—k' Sinz(‘gi —0;) Zl§i<j§n—k sinQ(ngZ- - ¢J)] i

Plotting o (k) versusk then gives a circular correlogram. In order to assess the

significance of these coefficients, permutation tests cacabged out, in whichk—lag
circular autocorrelation coefficients are calculated fétarge number (or preferably all)
of then! — 1 possible orderings of the data other than that observed¢c@amgbared with

that value calculated based on the actual data.

Fisher (1993) also gives a detailed account of rank cunvalaium (CUSUM) methods
due to Lombard (1988), based on which one can investigatepdssibility that a
directional time series comprises blocks of data differingtheir population mean

directions.

5.3 The von Mises autoregressive process

Breckling (1989) develops a directional process, the vosdgliautoregressive (AR)
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process, by direct analogy with the linear AR process. Sipatly, for a directional
process ¢, }, if the conditional distribution of; given(6,_4, ..., 6;_,) is von Mises with

concentration vector (see Definition 1.3.2)
p
vy = Z ki; (cos by, sin 6, ;)" + (Ko, 0)"
j=1

then{6,} is a von Mises process and

p
FO010,1,...,0,) = [2nIy(v,)] " exp {Z K; cos(0y — Or—j) + kg cos Ht}
j=1

wherev; = ||v,|| is the length ofv,.

An important distinction between this directional AR presand its linear counterpart is
that the former doesot have constant concentration whilst the latter does havstanh
variance. For the special case= 1 andx, = 0, {6;} becomes a process with constant

concentration and; has a uniform marginal distribution with densityr) .

Maximum likelihood estimators and least squares estirsdtors = (ro,...,r,)" are
shown to agree, the estimating equation#dn each case being

dlogL. ~~[ A
@108 Le _ Z {_MFtFtTK/—'_’Yt} =0,

dk V¢
t=p

whereL,. is the likelihood function conditional ofy, A,(-) = I,,/Io(+),

1 0 cos 0,
cosb_y sinf,;_ cos(0; — 0,_
Ft: .tl .tl and ,}/t: (t tl)
cos by, sinb;_, cos(b; — 0:—p)

In general, an iterative technique is required to obgaithe exception being foy = 1

andr, = 0. Breckling (1989) applies the model with= 1 to a series of wind directions.
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5.4 Linked processes

Fisher and Lee (1994) use the idea of link functions to adapat time series models to

a directional context using two approaches.

Firstly, they define a circular stationary procegs} with mean directionu to be a
linked autoregressive moving average (LARMA) process ifl amly if the process
{z:} = {97 4(0; — )} is an autoregressive moving average (ARMA) process, wi@re
is an odd, monotone function mapping the real line dnto, 7] andg(0) = 0. Thek-lag

circular autocorrelation function d#, } is given as

pr(k) = pr{9(Xe), 9(Xegn) },

wherepr is as in Equation (5.1). They use this to plot acf’s for LAR(hodels based

on the probit link, where the directional serifgs } is obtained from the simulated linear
series{z;}. Given a serie$6,} it is suggested that standard methods for linear series be
used to model the series = ¢~'(0; — /1), whereji is the sample mean direction of the
series. The suggested approach is thereforgthgis chosen so as to make the associated

linear process approximately normal.

An alternative specification of a circular autoregressiGAR) process using a link
function is also described by Fisher and Lee (1994), in wit¢tgivend,_,,...,0;_,

follows a von Mises distribution with concentration paraene and mean direction

e =p+g{wg (O —p) + . A wpg (O — 1)} (5.4)

In contrast to Breckling’s use of the conditional likeliltbdor parameter estimation,
Fisher and Lee (1994) assume a univariate von Mises diisibi¥/ (1, ) for eachy; (but

observe that these are not the true marginals). It is claieséichation is not adversely
effected by making this assumption for series that are notstwort. The likelihood

function is then
p

IT 76— 1= g [wrg™ {(Orms — 1) /2} -+ + wpg™ {(Or—p — 1)/2}]) [ ] £(6: — 1)

t=p+1 t=1
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where f is the density of the von Mises distribution with zero mead aancentration
parameters. Again an iterative procedure is needed for parameter aftm The
two linked processes are used to fit directional ARfodels to a time series of wind

directions and(-) is taken to be the probit link.

5.5 Wrapped processes

The directional time series model that has received the @shtion in the literature
is the wrapped autoregressive (WAR) process, developedrbgkBng (1989). There
are various reasons for this. It provides a natural circatelogue to linear processes
and interpretation is aided by the relationship with thenmairdistribution on the line.
The covariance matrix, for example, maintains many of iegpprties under the wrapping
procedure (Coles, 1998). On the other hand, inference éombdel is complicated, and
various methods have therefore been proposed with the aowen€oming this difficulty

in order that the WAR process can realise its potential.

The wrapped AR process is most simply viewed as the resultrapping a linear AR

process X, } around the circle. Given the linear AR(process
p
Xt = ZO&th,j + €4, € N(O, 02) lld,
j=1

the WAR({p) process{7,} is defined by
n = X¢(mod2m), t=1,...,n.

Thus, if we observe the seri¢s, }, the linear process is given by, = n; + 27k;, where
the k, are unobserved integers, called wrapping coefficients. iffieeential complexity
arises from the fact that that we need to estimate the paeasnet, . .., a,,c* of the

linear process, given only the wrapped process.
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Breckling (1989) developed inferential methods based encttrrelogram of wrapped
processes. More recently, treating the problem as one dfimgisiata, Fisher and Lee
(1994) proposed use of the expectation maximisation (Egrdhm. The calculations
involved in the E—step are ‘prohibitive’, and an approxiimais used, although for higher
order models the resulting equations are even more congdicd hey assert, therefore,

that the wrapped normal approach is only feasible for AR rioelow order.

Coles (1998) also notes the inferential difficulties asstec! with the model, and develops
a Bayesian approach using Markov chain monte carlo (MCMGQhous. Some problems
arise in the case of large variance, for which stronger prave needed to overcome
the problem of wrapping coefficients and large variance comepts confounding. He
simulates a linear AR( process, which is then wrapped around the circle, and hses t
MCMC procedure in order to estimate parameters. Model 8eteis explored briefly by
showing the AR(2) parameter to be redundant. Estimatesharersto agree closely with
the original parameter values= 1 anda; = 0.8. The approach is also used to estimate

the parameters of a WAR(2) process applied to a series of datal

Fisher and Lee (1994) give the circular correlation funtfig of ©; = Y;(mod2x) and
©, = Ys(mod2m) for the bivariate normally distributeg;, Y>) and derive from it the
circular autocorrelation function of the circular WAR (rocess. The former is given by

sinh(2pcy09)
T — L
{sinh(20%) sinh(203)}?>

wherevar(X;) = o7, i = 1,2 andcorr(X,, X5) = p. The latter, with{n;} viewed as the

7

result of wrapping the ARY{) processX; around the circle, is given by

pT(k) _ sinh {QP(k)UQ/(l - alp(l) R app(p))}
sinh {202/(1 — a1p(1) — ... — aup(p)) }
wherep(k) is thek—lag (linear) autocorrelation function ¢f,}, anda, ..., a,, o* are

its AR(p) parameters. They suggest solving

pr(k) = sinh(2¢op(k))/ sinh(2¢o)
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in order to estimate(k), wherepr(k) is as in (5.3),¢, is obtained from the equation

R = exp(—cy/2) and R is the mean resultant length of the elements of the sérigs

5.6 Projected processes

Another situation in which the problem of missing data arisein that of the projected
Gaussian process, due to Fisher and Lee (1994). Suppbseand {Y;} are two
independent, stationary Gaussian time series, each withrmean. The pointX;, Y;)
can be represented in polar coordinate§3soO,), say. Ther{©,} is a stationary circular

time series with uniform marginal distributions (Fisheddree, 1994).

Noting that we observ®, and notR;, the EM algorithm is again proposed for parameter
estimation. As for the wrapped model, computational comiplelimits potential

application to low order AR processes.

Fisher and Lee (1994) show that(iX;, Y7) and( X5, Y>) are independent random vectors
from a bivariate normal distribution with variances botluaktoo, and correlation, and
if ©, and©, are defined by X;,Y;) = R;(cos©;,sin0;), i = 1,2, then the circular

correlationpr is given by
_ 21— 2 dom (3.2 9.2 (5.5)
Pr = 16P 1Y 2471 27 27 P ) .

where, [} is the hypergeometric function. If the linear proces§&s} and{Y;} have
the commork-lag autocorrelation functiop(k), then thek—lag circular autocorrelation
function pr(k) of {©,} is obtained by replacing® by p?(k) in (5.5). An estimate of
p(k) is given by replacing(k) in the resulting expression by (k) from (5.3), and then
solving for p(k).
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5.7 Choosing between the models

Fisher and Lee (1994) discuss the types of data that the sduey describe (linked,
wrapped and projected) can accommodate. They give theaebrice that the first of
these should be preferred for data that are reasonable/lughtentrated, whilst the latter
two better accommodate dispersed data. This is qualifietidpbservation that each is

fairly flexible and able to accommodate different types dada

Breckling (1989) gives a comparison of von Mises and wrappednal variables
preceding his time series analysis, noting that the two@agpprate each other reasonably
well, especially for very large or very smail He also notes the complications associated
with inference based on the wrapped normal model, and stgytfessefore that the von
Mises process may be preferred when inference is the aincking’s von Mises process

is characterised by changing concentration over timecataig use of this model for

non—stationary series.

5.8 Conclusions

We have surveyed and summarised the main contribution®tbténature of directional
time series models with discussion of four approaches —ahédises AR process, linked,
wrapped and projected AR models. Itis evident that the \wedlimethods and techniques
available for the analysis of linear time series is not gasitendable to a directional
setting. In a comment on work by Erwin et al. (2002), Kent aratrdifla (2002) comment
that intractability of the equilibrium distribution or tlednditional distribution (or both)
of directional models “appears to be universal law”. Monedi methods involving link
functions or wrapping lead to problems of missing data. Jalamadaka and SenGupta
(2001) also succinctly summarise the work done on direatitime series, including

work from PhD theses.
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Chapter 6

Sine and Cosine time series models

6.1 Introduction

In this chapter we present two first order directional timeesemodels based on the
conditional distributions of the bivariate Sine and Cosmedels (first introduced in
Chapter 1 and further studied in Part | of the thesis in the cdghe former). For the
latter, we present the model in vectorial form, a slightiyeelised version of the von
Mises AR(1) model of Breckling (1989) described in Sectiod. S5ection 6.2 focuses on

the Sine model, whilst Section 6.3 discusses the Cosine lmode

The Sine model (first described in Section 1.4) is adapted tona series setting
in Section 6.2.1, which section also considers the modet¢uhih concentration. The
behaviour of the deterministic component of the model id@edl in detail in Section
6.2.2, and this behaviour related to the values of modelnpaters. Data simulation
is considered in Section 6.2.3, and the behaviour of the |latexd data related both to
the deterministic and random components of the model. Theeisf bimodality is also

discussed in this section. In Section 6.2.4 we derive thailikod function for the Sine
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time series model and investigate parameter estimatiorgusis likelihood function,
based on simulated data sets and various parameter cotibgsrarhe Sine time series
model is applied to the and:> angles of a particular protein in Section 6.2.5. An analysis
of the goodness—of—fit of the model is explored in some detdhiis section, including
the use of smoothing and kernel density estimation to coenfeatures of the raw data
with features of the fitted model. A conclusion of the obsgores made throughout

Section 6.2 is given in Section 6.2.6.

The analysis of the Cosine time series model proceeds in ya sigrilar fashion to
that of the Sine time series model. The model is outlined ictiSe 6.3.1, and related
to the von Mises AR process of Breckling (1989) defined in i8ack.3. The model
under high concentration is also considered in this sectibime relationship with the
Cosine model (defined in Section 1.4) is highlighted in $ec6.3.2. Model properties
are discussed in Section 6.3.3, with the main focus beinghanalysis of the behaviour
of the deterministic component of the model. As for the Sineetseries model, this is
followed by a discussion of data simulation in Section G.84wvhich section simulated
data are related, in terms of their behaviour, to the valdesadel parameters. The
likelihood function and parameter estimation are disadisse Section 6.3.5, whilst
application of the model to the same data as considered éoSie time series model
is outlined in Section 6.3.6. This section also comparesSihe and Cosine time series
models in terms of their goodness—of—fit to the protein dafnally, Section 6.3.7

summarises the observations made on the Cosine model.

The possible extension of the Sine and Cosine time seriexlfi@éd ARp) models
is discussed in Section 6.4. Also outlined in this secticamisther potential extension of
the Cosine model to a Kalman filter setting, as proposed byt Ked Mardia (2002) in
the discussion of a paper by Erwin et al. (2002).
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6.2 The Sine time series model

6.2.1 The model

In this section we revisit the Sine model and adapt it to autanctime series setting. The

joint density of the two circular random variabl&sandé, for the Sine model is given by
f(61,62) = Cexp{rycos(by — 1)+ ko cos(fz — 1) + Asin(0y — py) sin(by — o) }, (6.1)

where—n < 01,0, < 7, K1, ke > 0, —00 < A < coand—7n < uq,pus < w. C'is the

appropriate normalization constant, given by
= /2m A2\
= 4n? Lo (1) L (K2).
¢ i mzo m 4K1 Ko (151) i (152)

For largex,, ko the distribution (6.1) reduces to a bivariate normal distiion with

covariance parameters

K K A
2 2 2 1
o =—"-——, 05 =—"-—— p= (6.2)
1 2
/*3}1:‘4,2—)\27 /*3}1:‘4,2—)\27 \/:‘4,1/'3}2’

imposing the restriction? < r; k.

In order to formulate a time series model we replégewith 6,, and6; with 6,_; in
(6.1), and use the conditional densityépfgivend, ;. As parameters of the equilibrium
distribution of the process, we also make the replacemeants «, = «, say, andu; =
1o = 1, Say. Equation (1.15) gave the conditional distributiofixafivend; as von Mises

with density
f(92‘91) = [27‘([0(&1)]*16@1 cos(0a—pa—b1)
— [27‘(]0 (al)]—lem cos(O2—p2)+Asin(01 —p1) sin(f2—p2) (63)

1/2

wherea; = {x}+ A\?sin*(6; — 1)} '~. Adapting this density as described above to a

time series setting, we obtain the distributiorfpgivend,_; as von Mises with density
F(O,101) = [2mo(ry)] "t enecosOempo)

— [Qﬂlo(ﬁtﬂ —len cos(0y—p)+Asin(0y —p) sin(0r—1—p) (64)
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where
2 2 2 B 1/2 —1 é . .
ke = {K° + N sin®(6_1 — p) } and p; = p+ tan - sin(6,_1 —p) ¢,

fort = 2,...,n, say. As a circular ARI) process, the model can be equivalently stated

as
0y = p + tan™* {é sin(6;_; — u)} + €, (6.5)
I

wheree, ~ M(0,k), t = 2,...,n. Immediately it can be seen that the model has the

feature of changing concentration over time.

Since the joint density af; andd,_; (Equation (6.1) with the appropriate substitutions) is
symmetric ind; andd;_, it follows that the model is time—reversible and the equilim
distributionII(d) of the process is given by the univariate marginal distidsubf either

0, or 05, the former given in Equation (1.14). That s,

I1(0) = 2nC1y { (% + A\?sin® 0] 1/2} eres? (6.6)

If the 6 values are highly concentrated aroymdthen the differenceg = 6, — p will
be smallvt = 1,...,n. In this case, from (6.4) and using a second order Tayloeseri

approximation, we have

F(0710;_)) o exp{rcost; + Asinf;sinb;_,}
~ exp {k[1—(6;)%/2] + X\6;0;_, }
oc eXp{—E(e*)Q—i—)\H*@* } (6.7)
2 t tVt—1

Rewriting the quadratie; (6;)* + c20; in (6.7) asc: (0] + 52)* — % wherec; andc, are

constants (with respect &j), (6.7) becomes

i k(. A\’
f(gt“gt—l) X exp {_5 <0t - %) } )

which is proportional to the density of a normal distributiwith mean\d;_, /x and

variancel / k. We therefore see that, fdvalues highly concentrated aroungthe process
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{6,},t =1,...,n can be approximated by the linear ARRprocess
0: :p0*71+€t, EtNN(O,l//i),

wherep = M\J;_,/x. Conditions under which thé values can be highly concentrated

aroundu are outlined is Section 6.2.3.

We begin by analysing the deterministic component of the ehodamely the mean

directiony,, = p1 + tan™! {% sin(6;_1 — u)}

6.2.2 The deterministic component

The deterministic component of the model is given by the gqoa

utzu—l—tan_l{%sin(@_l —,u)}, t=2,...,n. (6.8)

We investigate the behaviour of this mean direction foreddht values of\ and ,
restricting attention, without loss of generality, to= 0. We illustrate the problem
by plotting y; for four different parameter combinations and a range dlieslford; .
Figure 6.1 shows:; plotted agains#;_,, the latter over the interval-=, 7). Figure 6.1
(a) shows the mean direction for the parameter combinatibng = (4, 1), (7, 8), (4,8)
and(1, 8). Plot (b) of Figure 6.1 shows the effect of negatingnhamely a reflection in the
line . = 0 on they—axis. For reference, the lings = 6, _; on plot (a) andu; = —0;_;

on plot (b) are also displayed.

A number of features of the deterministic component of thelehoan be observed from
both Equation (6.8) and Figure 6.1. We will focus first on tlase\ > 0. Adhering
for the time being to the restrictiop\| < x that ensures the bivariate density (6.1) is
asymptotically normal, we see from Equation (6.8) thayx) sinf,_,| < 1, and hence
that, sincex = 0, we have|u;| < /4. This means that, regardless of the valué,of,

w¢ is no further thanr /4 from the overall mean direction.
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Figure 6.1: Plots ofi; versug;_, for parameter configurationts, ) = (+4, 1), (£7,8),
(£4,8) and(+1, 8) for the Sine time series model.

From Figure 6.1 we see that, f@,_,| > /2, the furtherd,_; is from the overall mean
(zero), the closer; is to this value, a feature that would perhaps not be expeiftad
observed data set. Another unusual feature of the modeltigita value of:; givend,_; is
the same as the value pf givenm —0,_,. Since, based on the deterministic component of
the model, we observe unusual behaviour for valugs afgreater thanr /2 in absolute
value, and, as mentioned above, there can be at most oneofafueutside the range
(—m/4,7/4), namely6,, it is instructive to consider the probability of this valbeing
outside the interval—= /2, 7/2). In doing this we are no longer limiting attention to the
deterministic component of the model. The required prdiiglzian be calculated using
the equilibrium distribution of the process (Equation §i.6The probabilityp that the
valued, falls outside the interval—= /2, 7 /2) is given by the expression

p=2 /7r I1(0)d6.

us

N
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For the parameter configuratiofp\|,x) = (7,8), (4,8) and (1,8) we obtain (using
numerical integrationp = 0.0007, p = 0.0002 andp = 0.00001 respectively. This
feature of the model is therefore unlikely to cause a probfetis considered for fitting

a highly concentrated data set.

Also observable in Figure 6.1 is the effect of changing theieaf the ratio\/x. In
particular, as this ratio approaches, so the maximum &,_, = +7/2 approaches /4
and the minimum a#;_, = F7/2 approaches-r/4. If « is large relative tg)\|, then the
ratio|\|/ is small, so that, is constrained to a small arc around zero, which is intuifive
appropriate. If on the other handis large relative to:, theny;, is less constrained and

the series less concentrated.

For A < 0, we observe from the right hand plot of Figure 6.1 th& if, > 0 thenyu, < 0,

and conversely a negative valuethf, leads to a positive value ¢f,. More specifically,

Mt‘etfﬁ ()\, /‘6) = Mt\ —0i-1; (—)\7 F&) = _Mt‘etfﬁ (—)\7 F&)-

We now consider the effect of allowing\| > . We observe immediately that the
value of u; is no longer constrained to the intervigbr/4,7/4), but instead to the
interval (—7/2,7/2). From Figure 6.1 (a), comparing the curve for,x) = (4,1)
with the liney, = 6, 1, we see that for values @f_; between 0 andr/2, we have
e > 6;_1. In other words, values df,_; between zero and/2 are rotated positively
towardtan™' {2sin 2} = tan~! {2}. The latter is an increasing function af x, and
tends torr/2 as the ratio tends to infinity. In other words, the larger thgor\/x, the
closer torr/2 the deterministic model rotatésvalues. As can be seen from Figure 6.1
(a), there is avalug,_, € (0, 7/2] for which u; = 6,_; when\ > x. This point is given
by the solution to the equatiaan § = %sin ¢, namelyf = cos™! §. Again, this tends to
m/2as\/k — oo. If 6,1 = cos™! %, then all futuref values are also equal to this value,
based on the deterministic component of the model. Simhbaeovations can be made

for 6, 1 € (—m/2,0). The unusual behaviour of the deterministic model|fipr; | > 7 /2
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is again apparent wheh > . Similar observations can be made in the present case

regarding the effect of negative values)ods above for the case< k.

In the next section we combine the deterministic and randamponents of the model in
order to simulate data, and investigate properties of thaltiag data in view of both
the observations made in the present section and the effaotloding the random

component.

6.2.3 Data simulation

In order to simulate data from the Sine time series mode) (8ewill take 1. to be zero.
The value off; is simulated using steps 1-3 of the algorithm described cti&e2.4.
The values of), ..., 0, are then simulated according to (6.5). Figure 6.2 displays s
data sets each based on different parameter combindtiors. From plots (a), (b) and
(c) of Figure 6.2 we can see the effect of the values ahdx with A > x. Plots (d) and
(e) can be compared to see the effects of the parameters Wken, whilst Figure 6.2

(f) gives an idea of the kind of data obtained for negatweith |\| > k.

A summary of the effects of parameter values is given beloor. drarity, we consider
A > 0and\ < 0 separately. For each of these, we also consider separbhtelyases

|A| >k and|)\| < k.

1. 2> 0:

@ A>k
In order to understand the behaviour observed in plots¢adfFigure 6.2 we
need to consider the equilibrium distribution of the pracegven in Equation
(6.6). As discussed in Section 1.4, this distribution is Byatric around: and
either unimodal with mode at or bimodal with modes at + 6*, wheref*

satisfies Equation (1.18). In the current context, the ithstion is unimodal



Sine and Cosine time series models 111
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Figure 6.2: Simulated data for the Sine time series modduegaof(\, k) are given in

brackets above each plot.

if and only if A;(k) < k*/A\%. SinceA;(x) < 1, a sufficient condition for
unimodality is given by\| < x. Although|\| > x is not a sufficient condition
for bimodality, if A andx are not very close in absolute value ani$ not very

small,|A| > « tends to give a bimodal equilibrium distribution.

Moving to data simulation, starting withk = X\ and increasing\ whilst
keepingx fixed creates clusters df values close tor/2 and —7 /2. This

is due to the deterministic component of the model infladn@glues that are
small in absolute value towards eithef2 or —7 /2 (see Section 6.2.2). If the
ratio A/~ and/or the values of and A themselves are small enough, then the
0 values can switch between clustering closerf@ and clustering close to
—m/2. For the former, the smaller the ratig'x, the further fromr /2 the 6

values cluster and the more likelyaalue passes zero. For the latter, smaller
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r and\ values lead to smaller valuesof = \/ {x? + A?sin” §,_, } and more
dispersed values of the random compongnthus increasing the probability
of § values passing through either zer®ar Using a similar argument, if the
ratio A /x and/or the values of and\ themselves are sufficiently large, th&n
values cluster either around'2 or around—m/2, but do not switch between
the two. All of these features are observable in Figure 6-2(¢

(b) A<k
In this casefl values are rotated towards the overall mean (zero) before a
random term is added. Figure 6.2 (d) and (e) show the effe&eeping
the ratio\/x fixed while decreasing (or increasing) the values<adnd A
themselves, namely that the lower values give rise to a mepersed series.
Fixing the value of\ and increasing: leads to both a smaller rativ/x and
larger values of;, giving a series more concentrated around zero. Fixing
and increasing\ gives a larger ratio\/x, meaningd values are not shrunk

towards zero as much, and random terms are more concerdrat@&td zero.

2. 2<0:

Figure 6.2 (f) shows a simulated data set with a negativeevalu\. As can
be seen, the data set comprises a serigsvaflues that tend to alternate between
positive and negative values. Based on the model (6.5) wéhseewith . = 0,
neither the sign of),_; nor the sign of\ affects the value of;. As discussed
in Section 6.2.2, the deterministic component of the mod#kes the equation
welbi—1; (A, k) = —uel0i—1; (=X, k). Thus, negating every secomdvalue of a
series for which(\, k) = (—[, k) gives a series for whict\, k) = (I, k). If u # 0

then the above holds for the mean corrected data ..

Having successfully simulated data sets, attention twnbe likelihood function and

parameter estimation based on such a data set.
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6.2.4 Likelihood function and parameter estimation

Given a serieg6,} based on Equation (6.4), the likelihood function is given by

L=11(01) [ ] £ (6:16:-1)

t=2
n

. , 0; + Asinf; sin 0, 4 }
—CI 2 4 A2gin2g,]1/2) greosr exp { cos b;
’ {[K sin” 6 } ‘ tll Iy {[FLQ + A2 sin? Ht_1]1/2}

_ Cexp{ry i cosbi}exp{A} . ,sinfsinb}
TI7, Io {[s2 + A2sin® 6,_,]1/2} '

The log likelihood! = log L is therefore

[ =log C—Z log I {[K,Q + A2 sin? Qt,l]l/Q}—H@ Z cos O, +\ Z sinf; sinf;_;. (6.9)

t=3 t=1 t=2

In order to obtain parameter estimates for a given datasehdgative of the loglikelihood
(6.9) is minimised using thelm function inR. Table 6.1 shows the results of fitting the
Sine time series model to simulated data sets for the paearoenfigurationg\, x) =
(4,8), (0.5,1), (8,4) and(—3,7). For each configuratiorn,00 series of lengtm = 200
are simulated, and the table gives the mean and standaatidevof estimates for and

A. For i, the elements in the table are the mean direction of estsvaatd the circular

variancel — R of the estimates, wher® is the mean resultant length of the estimates.

~

(A K) i A i

(4,8) || -0.004 (0.001) 4.036 (0.726) 8.018 (0.804)
(0.5,1) | 0.011 (0.008) 0.505 (0.163) 1.005 (0.118)
(8,4) | 0.010 (0.031) 7.735 (1.718) 4.351 (1.008)
(—3,7) | -0.006 (0.000) -2.976 (0.558) 7.053 (0.677)

Table 6.1: Mean values (and standard deviations) of estsrfar simulated Sine time

series data.
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It can be seen from the table that, based on the mean valgesuthparameter values
are recovered reasonably successfully, althokgind A estimates tend to be slightly
overestimated (the exception beidgvhen (), k) = (8,4)). We further investigate the
behaviour of the loglikelihood function in the vicinity oié true parameter values by
plotting the loglikelihood function in various ways for asgn data set. Figure 6.3 shows
profile loglikelihood plots for the two parameter configimas (1, Ao, ko) = (0,0.5,1)
and (0,—3,7). Plots (a) and (d) show the loglikelihood for a range\o¥alues in the
neighbourhood of the true valug with 1 = o andx = kg, whilst plots (b) and (e) show
the loglikelihood for a range of values in the neighbourhood of the true valyewith
= po and\ = \y. Finally, plots (c) and (f) show the likelihood for a rangerofaind

A values withy fixed atpy. On plots (c) and (f), horizontal and vertical lines show the
true values of\ andx, and are seen to be slightly away from where the loglikelthizo
maximised for the given data sets. As seen from plots (a),(®)and (e), the gradient
of the loglikelihood in the vicinity of the maxima is such ththe maxima are easily

discernible.

As we appear to have a method of estimation that is reasosabbtessful at recovering

true parameter values, we next apply the sine time serieginmd real data set.

6.2.5 Application to protein data

We apply the Sine time series model to th¢9 ¢ and ¢) angles of the protein
triosephosphate isomerase. Table 6.2 shows the maximetinblod estimates of, A
andx for each serie$¢,} and{«}. Approximate standard errors are also given, and are

obtained from the Hessian matrix calculated intih@ estimation procedure.

Using these estimates we simulate two sefig8™} and {«;™}. Maximum likelihood
estimates for these data sets are also given in Table 6.Arargken to be similar to the

estimates for the real data set. As can also be seen fromhle tee have\ > # for
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Figure 6.3: Profiles of loglikelihood function for simuldtdata sets in the vicinity of the

true parameter values. True valueg dfx) are given in brackets above each plot.

the series. Figure 6.4 displays circular and time series ptotiie protein data and the

simulated data.

From the plots for the) series of the protein data, the data appear to be bimodathwhi
would suggesh > k, as is the case for their estimates. Observable more frogirithdar

plot of they series is that the data are more highly concentrated araumdfthe modes
than the other. This is not a feature that was observed in athyeaata sets simulated
in Section 6.2.3. The plots far*™ give a representation of what data might be expected
to look like if the true parameter values are the maximumlilked estimates of the
protein data. Since the features of the plotsifaand*™ are quite different, this would

indicate a poorly fitting model. One reason for this may becigedy that the model is
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¢

¢sim

(0

wsim

S T

x>

-1.564 (0.075)
2.174 (0.364)

3.154 (0.253)

-1.630 (0.067)
2.134 (0.299)

3.184 (0.256)

0.697 (0.069)
1.689 (0.149)

0.314 (0.107)

0.676 (0.054)
1.999 (0.180)
0.369 (0.103)

Table 6.2: Estimates (and standard errors) of Sine timessrodel parameters for protein

and simulated data.

unable to capture the bimodality with differing conceritratat each mode. As can be
seen from the circular plots fay and«s'™, the overall distribution of values around the
circle is quite different for the two. On the other hand, tlemeral tendency to switch

between two modes is evident from the time series plots for bandys™.

Moving to the¢ series, the circular plots ef and¢*™ show the distribution of the latter
to be more symmetric. In the time series plots, there is aatepgefeature observable for
¢ in which short series of values are highly concentratedeclos-/2, which is not the
case for the»™ values. These differences again bring into question thelgess—of—fit

of the model.

Certainly based on the time series plots for bo@#nds) it does appear that a model with
changing concentration over time is appropriate. Basedoomparison of the true data
and the simulated data, however, it also appears that treettbne series model is not

particularly appropriate for modelling these angles.

With the aims of further developing methods of measuring goedness—of—fit of
directional time series models and investigating the gesdgnof—fit of the Sine model
to the protein data being studied, we now consider two marts phat could potentially

diagnose a poorly fitting model.

The left hand side of Figure 6.5 shows plotsgpiversusy; , and, versusy;_; for the
protein data being studied. The right hand side shows qouresng plots forp and
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Figure 6.4:¢ andt conformational angles for a protein data set, and simulataald)

values based on maximum likelihood estimates for the trte da

values simulated using the maximum likelihood estimate#ife protein data. In each of
the four plots, the mlg of . for the relevant data set has been subtracted from the aligin
values prior to plotting. The solid black lines represgnt= tan—{\/#sin 6,_, }, where

0 is to be replaced by the relevant variable and ranges framo n. The dashed lines
represenfy, +1/+/k¢, Wherek;, = / {&2 + \2sin? Ht_l} andd is again to be replaced by
the relevant variable. (The use @f + 1/./k; is motivated by the normal approximation
to the von Mises distribution, for which, i is large, we haver ~ 1/,/k). The plots

of a4, + 1/+4/k, In Figure 6.5 are representative of those obtained morergiyeand
highlight the tendency of non—stationarity being more plent when\ > «. Finally, the
red line represents a smoothed versiofi,ofersus); i, obtained using th& function

smth.circ=function(x,y,grid=seq(-pi,pi,length=101), h){
w=dvm(outer(x,grid,"-"),0,1/h)
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w.mean=atan2(apply(w  *sin(y),2,sum),apply(w * c0S(y),2,sum))

w.mean}

in which z andy are circular variables. This function essentially caltedaa weighted
sample mean direction gfvalues at each point on the “grid” of values betweenand

m. The weightw;, say, applied tg; at grid pointj, is the von Mises density centred at
x;, with concentrationl /h and evaluated at grid poift Mathematically, the estimate

mp(z), at pointz of the “grid”, dependent on bandwidth is

mp(x) = tan™ {Zwl smyz,ZwZ coay,}

wherew; ~ M (z;,1/h).

The value of the smoothing parameters chosen by cross—validation, by minimising
the sum of squared erro}s’” , (4; — v;)*, wherey;, is a weighted sample mean direction
of y1,...,%i—1,Yit1,---,Yn, givenzy, ..., z,. The weightv;, say, applied tg; in the
calculation ofy;, (i # j), is the von Mises density, centredsaf with concentratiori /i

and evaluated at;. The followingR function is used to this end:

smth.CV=function(x,y,h.start){
smth.cv=function(h){
n=length(y); y.hat=y; s=10"10; if (h>0){
v=dvm(outer(x,x,"-"),0,1/h)
v=v-diag(v) =*diag(n)

y.hat=atan2(apply(v * sin(y),2,sum),apply(v * c0s(y),2,sum))
s=(pmin(abs(y.hat-y),abs(y.hat+2 * pi-y),abs(y.hat-2 * Pi-y)))
s=sum(s™2)}

s}

nim(smth.cv,h.start)}

If the model is a good fit to the data, it should be expected ttatsmoothed values

approximately follow the line fofi;. As can be seen from the plots, the approximation
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does appear slightly superior for the simulated data tharptbtein data. The highly
concentrated cluster of values at approximatelyy,_,) = (—=/2, —r/2) of the protein
data appears to be keeping the smoothed line down whilsirteédr /i, increases. The
asymmetric nature of the smoothed line in this case, in ashto the symmetry of the
smoothed line for the simulated data, perhaps indicatedthmaxture of models would be
more appropriate for these data. Based on these plotsfaheree have some evidence
to suggest that the Sine time series model is not such a gokdtiie protein data being

studied, particularly the series.

Figure 6.6 assesses the goodness—of—fit based on the ggmilidistribution of the
process (Equation (6.6)). The plots for the protein dataagesn on the left hand side of
the figure, whilst those for the simulated data are on thd hghd side. The dashed line
in each case is the equilibrium distribution evaluated(far\, x) = (0, \, ) and plotted
between-7 andr. The solid line in each case is a kernel density estimatejmedd using

theR functionbkde , based on the raw data minfigor each variable.

It is important to note that for directional data a slight awment of the kernel density
estimation method is required. Since the data are only imteeval[—, ) but in reality
are cyclical with perio®r, an adjustment is required to obtain the kde. In partictiher,
dataZ are augmented witlh — 27 andZ + 2, the kernel density estimated in the interval
[—3m, 3] and the final estimate taken as three times the middle thitdrgial[—, 7)) of

the overall estimate.

The bandwidth of the kernel is chosen visually to best apprate the plot of the
equilibrium distribution. It may be argued that, for a da¢h fr which the Sine time
series model is appropriate, the raw data may not consétsdenple from the equilibrium
distribution. In the present case, basing the kernel deasttmate on values sampled four
apart makes no discernible difference to the kernel deesiiynate of either the protein
data or the simulated data. Another issue, the effects ofiwduie perhaps observable in

the plots for) andv*™ in Figure 6.6, is that if\ >> x, then even though the equilibrium
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Figure 6.5: Plots o), versusd, 1, a smoothed version (red line) apd+ 1/+/&;, where

g is one ofp, ¢*™, 1 or ys™,
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Figure 6.6: Marginal kde (solid) and pdf (dashed) based ¢m alad MLES respectively.
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distribution is bimodal, a data set simulated using the 3ime series model may be
unimodal (see Figure 6.2 (c)). Even if the simulated datebaredal, they may not be
symmetric about: (contrast the firsB00 values of the data in Figure 6.2 (b) with the first
400: the latter are approximately symmetric about zero butohnmér are not). Therefore
if the equilibrium distribution based on the fitted modeliismbdal, then the goodness—of-
fit plots of the type displayed in Figure 6.6 may not be apgedpr For those MLESs giving
rise to a unimodal equilibrium distribution, however, it ynlae reasonable to expect a
close agreement between the kernel density estimate afitedesquilibrium distribution
plot. In the present case for the protein and simulatedlues, a poorly fitting model is

not diagnosed by either plot.

6.2.6 Conclusions

In this section we have adapted the bivariate circular dgegidied by Singh et al. (2002)
to atime series context using the associated conditiorallalition. A number of features
of the model have been investigated. In particular, we hawestigated the behaviour of
the deterministic model for various parameter configuretiand related the observed
behaviour to simulated data sets. A method of parametenastin has been established,
and the likelihood function of the model investigated. iRgtthe model to a real protein
data set has highlighted aspects of a poorly fitting moded. appropriateness of a model
with changing concentration over time, however, is indédaby time series plots of the
protein data. A number of goodness—of—fit measures have dmerioped which could
be used more generally in the fitting of circular time serieglgl. In particular, methods
have been devised to compare “observed” conditional andil@ium distributions with
their “fitted” counterparts. The former are those based ooathing and kernel density
estimation of the raw data, the latter are those obtained fitting a particular model, in

this case the Sine time series model.
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6.3 The Cosine time series model

In this section we present the system equation component fifeang approach
suggested by Kent and Mardia (2002) in a discussion of a phpeErwin et al.
(2002). This part of the model is also the first order AR vonédiprocess introduced
by Breckling (1989) (see Section 5.3) without the reswictof a zero mean for the
equilibrium distribution. It turns out that the conditidmastribution on which the model
is based is the conditional distribution associated with @osine model, which was

introduced in Section 1.4.

6.3.1 The model

The system equation of the filter is determined by modelling tinit vectorx, =

(cos 0;,sin 0;)T conditionally onx;_; as von Mises (see Definition 1.3.2)
X¢|x4-1 ~ VM (ax,_1 + be), (6.10)

wherea andb > 0 are scalars and = (cos ,sin )7 is a unit vector. The constraint
b > 0 is imposed for identifiability, since in practieecould be any unit vector. The
equilibrium distribution will be seen to be symmetric abputThe pdf ofx;|x;_;, from

Equation (1.9), is

f(xilxim1) = [2rdo(|] axioy + be [)] e (X,
The model can be specified equivalently, and in the notatsed dor the Sine time series
model, asd; ~ M (uy, k), Whereu, = tan~!(asin6;_; + bsin pu, acosb;_1 + bcos ),
ke = /[a* + b* + 2abcos(0;,_1 — )] andtan~'(q, p) € [, ) is the angle between the
positivez-axis and the vectdp, ¢). With this specification we have

F(0:10,_1) ={2n L[/ (a* + b* + 2abcos(0y_1 — )]} x
exp{acos(6; — 0,_1) + bcos(6, — u)}. (6.11)
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If the 6 values are highly concentrated aroynthen small values of, — . = 6;, say,
result. Using the approximatiams ) ~ 1 — ¢?/2 for smallv, the density of); given

67, in this case is given by

f(6:107 1) o< expl{acos(6f —0; )+ bcosb;}
~ eplall - 56 6L H - (672} (6.12)

Rewriting the quadratic ifl; in the exponential of (6.12) as
c1(07) + collf + 3 = c1(0F + c2/2¢1)? + 3 — c3/4cy,

(6.12) is proportional (in terms @) to

abi_,
a+b

exp{—%(a + oy — ity (6.13)

Equation (6.13) is proportional to the density of the disttiond;|0; ; ~ N(ab; ;/[a +
b],1/[a + b)), giving the linear AR(1) model

0f = pb7 |+ €, €~ N(0,1/[a+1]) (6.14)

wherep = a/(a + b). The conditions under which thevalues are highly concentrated

abouty are discussed in the next section.

6.3.2 Relationship with the Cosine model

In Section 1.4 we outlined the two bivariate von Mises dttions referred to as the Sine
model and the Cosine model. In order to highlight the retediop between the latter and
the model currently being considered, we review some of #taild here. Rivest (1987)

considered the set of bivariate models

f1(0, ¢) = C exp{ry cos(f — p) + kg cos(p — v) +
+ avcos(0 — ) cos(¢p — v) + Bsin(0 — p) sin(¢p — v)}, (6.15)
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itself a submodel of a class considered by Mardia (1975)hWit 6 = a, k1 = k3 = b,
w=v=0,0=0,andyp =0, 1, (6.15) reduces to

f1(0:,0,-1) = Cexp{b(cosb; + cosby_1) + acos(fy —0; 1)}, (6.16)

which is the bivariate density of the Cosine model givenioady in Equation (1.13).
The conditional distribution of, givend,_, in this case is given by Equation (1.16). That
is,

F(0:10,-1) = {27 L[/ (a®+b*+2abcos(0; 1 —p))]} ' exp{acos(0;—0; 1 )+bcos(B—p)},

which is precisely the conditional distribution of the tireeries model being studied. In
other words, the joint density d@f;, 6, ) corresponding to the conditional density&f

givend,_; (Equation (6.11)) is nothing but the bivariate Cosine dgnsi

As for the Sine time series model, since the bivariate Coderesity is symmetric i,
andd,_, it follows that the model is time—reversible. The equilibri distributionl1(¢) of
the process is given by the univariate marginal distributibeitheré, or 6,. Specifically,

the probability density function of the equilibrium digtution is
T1(0) = 2rCIy[y/(a® + b + 2abcos(0 — pu))]eb 0=, (6.17)
The normalizing constargt in the current setting is given by
O = A (@)L + 23 LG} (6.18)
p=1
In terms of the random vecter, the density of the equilibrium distribution is

T(x) = 20CIo(|| ax + be ||)e® > (6.19)

The distribution (6.17) is not von Mises, but is seen to berapgmately von Mises for

small values of:;. The distribution is also symmetric abqut It turns out (Mardia et al.,
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2007b) that the equilibrium distribution (Equation (6.Lis)unimodal with mode at for

all e > 0, and fora < 0 is unimodal if and only if

o Z N, (6.20)

where A;(-) = I,(-)/1o(-). If (6.20) does not hold thefl(#) is bimodal with modes
at . + 6%, wheref* is given by Equation (1.19). Since Equation (6.20) is a neags
condition for unimodality with mode at, it also gives a necessary condition fovalues

to be highly concentrated aroupgand therefore a necessary condition for the normality
of the process under high concentration discussed in $e6t1. Figure 6.7 shows an
example of a unimodal and a bimodal equilibrium distribatior « < 0. In the unimodal

casen = —2 andb = 3, whilst the bimodal plot corresponds to wher= —4 andb = 3.

11(0)
005 010 015 020 025 030 035

Figure 6.7: Plots of1(0) versus) for a = —2, b = 3 (unimodal-solid line) and = —4,
b = 3 (bimodal-dashed line)

We next conduct an investigation into the behaviour of thedehdy analysing its

deterministic and random components for various valuesawfdb.
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6.3.3 Model properties

From the expression fqgr,;, one aspect of the deterministic compongnof the model
that is immediately apparent is that| (a,b) = 1|(ca, cb) for any constant. From the

expression fok,, on the other hand, we see thal(ca, cb) = crq|(a, b).

A further investigation into the properties of the model dsn made by plotting the
conditional meanu; = arg E(e%|0,_,), for ,_, ranging from—x to 7. The top left

plot of Figure 6.8 shows a plot qi; (solid line) for §,_; ranging from—= to = and
whena = b = 2 andp = 0. The dashed lines above and below the solid line represent
wu: = 1/4/k¢. As departures from the shape of this plot, the cases b and|a| < b are

also considered.

a=b (a, b)=(2.1, 2)

(a, b)=(3, 3.5) (a, b)=(3, 20)

-7t -n/2 0 /2 m -1t -n/2 0 n/2 n

B-1 61

Figure 6.8: Plots ofi;(£1/+/k:) versusd,_; for (@)a = b, (b)a = 2.1,b = 2, (C) a = 3,
b=3.5and (d)a =3,b =20

The particular case = b requires individual consideration. In this case, from {8, e
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have
f(0:60;-1) o< exp{alcos(0; — 6;_1) + cos 6]}
= exp{2acos(f;_1/2)cos(0, —0,_1/2)},
a von Mises distribution with concentration (at timie x, = 2acos(6;-1/2) and

conditional meany, = 6, /2. The expression fot, explains why, in Figure 6.8 (a), the
domain ofu; whena = bandf;_, € (—m, ) is —m/2tor/2. Considering the expression
for ky, if 6,1 = w(= —m), thenk, = 0 so that, giver?d,_, = =, the distribution of, is
uniform on the circle. This explains the two dashed linegtfrer to = on Figure 6.8 (a),

each representing the possible valuesan take for those particular valuesépf ;.

Starting at|a| = b and increasinga/|, the conditional mean plot displayed in the top
right of Figure 6.8 is similar to that fo = b, without the vertical dashed lines and
with the line extending from the existing solid line up7taand down to—= with slight

curvature introduced. Further increasifag pushes the turning points towards zero in
both directions on the plot, so that eventually|@sbecomes very large, the conditional
mean plot approaches that of the ling=0;,_,. Increasing the absolute value ofalso

brings in the dashed lines representingt 1/./x; so that they turn in the same direction

aS,ut

Consider now starting at| = b and increasing the value 6f as in the bottom left plot

of Figure 6.8, wheré = 3.5, and in (d), wheré = 20. It can be seen that the solid
line representing; is no longer monotonic, and that &screases, the periodicity in the
curvature gets closer tar, whilst the actual conditional mean is constrained to am eve
smaller interval. Fob > |a|, similar behaviour to that of the Sine model is observed for
the Cosine model and is apparent in the bottom two plots afr€i§.8. Firstly, except for
the turning points, there are two possible valueg, of that lead to any single value pf.
Secondly, moving away from the overall mean direction (garoeither direction on the

0,1 axis but past the turning point, the furth®r ; is from the overall mean, the closer
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11; 1S to this value. These are features that perhaps one migleixpect to observe in an
actual data set. In order to further investigate these fegtan expression is obtained for
the probability that any particul@rvalue occurs further away fropn= 0 than the turning

points. Since

; asin ;4
anpy, = —————

Hr acosb;_1+b
we have

o 5 acost,_1(acosB_q +b) + a’sin*0,_,
sec” iy =
d‘gt—l (CL COS ‘gt—l + b)2
It then follows that
dpe  ala+bcost )

= : 6.21
dd;,y  a®>+b*>+ 2abcos ;4 ( )

The turning points are then found as the solutions te bcosf,_; = 0, ie. 6,1 =
cos 1 (—a/b) andf,_; = —cos'(—a/b). For such turning points to exist, therefore, we
requirea < b, as suggested by the plots of Figure 6.8. Moreover, subigtitthis solution
back into the denominator of (6.21) giveés— a)(b + a), which is equal to zero i& = b,

again highlighting: = b as an irregular case.

We can now obtain the probability, giverandb, thaté, ; falls outside the turning points,

as

p=2 / L)

os(—a/b)
wherell(0) is given by Equation (6.17). Table 6.3 displays these prititiab for various
values ofa andb. As can be seen from the tableandb have to be quite small before
the probability exceeds 0.05. Since the concentrationnpater associated with, is

ke = +/[a* + b* + 2abcos(0;_, — p)], the maximumk; can attain iSa + b). From the
evidence in Table 6.3 therefore, the concentration pammnhets to be quite small for the
probability that any particula# value falls beyond the turning points. It could therefore
be argued that the feature observed in Figure 6.8 (c) andipshuld not have too much

of an impact on the model unlegsandb are very small.

We now consider the effect of switching the signaobn the plots of Figure 6.8. With
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all 3 12| 05| 04| 04| 03
b| 35|16 | 15| 12| 06| 05

p | 0.00| 0.01| 0.05] 0.09| 0.13| 0.17

Table 6.3: Probabilities, for variousandb values, that any particul@rvalue will fall in

the tail beyond the turning points.

pu = 0 we havey;, = tan~'(asinf;,_1,acosb;_; + b). If ais switched to—a then the

conditional mean becomes, say, where

*

i = tan '(—asin®,_i,—acosf,_; +b)

= tan '(asin(f_; — 7),acos(f,_, — ) +b).

That is, the effect of switching the sign ofis to shift the plots of Figure 6.8 along the

0,1 axis bym.

Having considered the deterministic component of the magelnext turn our attention

to data simulation, by combining the deterministic and canadomponents of the model.

6.3.4 Data simulation

As for the Sine model, we will consider simulation of datalwit= 0. Again similarly to
the Sine model, we simulate an initial valéieusing steps 1-3 of the algorithm described
in Section 2.4 adapted to the Cosine model and as describdatuya et al. (2007b). The

conditional distribution (6.11) is then used to simulate ¥alueds, . . ., 6, sequentially.

Figure 6.9 shows three data sets, each of lergth for the parameter combinations
(a,b) = (3,3.5), (2.1,2) and(10, 2). Sincea > 0 for all of these parameter combinations,
the equilibrium distribution for each is unimodal and syntneeabouty = 0. For the
parameter value§:, b) = (3,3.5) and(a,b) = (2.1,2), we plotted in Figure 6.8, +
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(3.3.5) (2.1,2) (10,2)
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Figure 6.9: Simulated unimodal Cosine time series dataHervalues of(a,b) given

above each plot.

1/4/k+, and the simulated data are best compared with these ploisich For the plots in
Figure 6.8, the lines fau,+1//x, are slightly further from the ling, for (a, b) = (2.1, 2)
than for(a, b) = (3,3.5). This is reflected in the simulated data, the plots of whiawsh
the data based on the former parameter combination to helgligore dispersed overall.
As predicted in Section 6.3.3, the fact thatis a not a monotonic function @f_; does
not affect the simulated data for the data set for wibich a, since the range of values is
not wide enough for this to be so. Looking again at the plotsgure 6.8, the gradient of
the slope of the ling, for (a,b) = (2.1, 2) is slightly greater than that fdr, b) = (3, 3.5)
(for the approximately straight middle line segment). Theeng the case, the value of

is rotated less in the direction af = 0 so thaty, is closer tod;, ;. The effect is difficult
to discern for the simulated data in this case since theretig great difference in the
slopes for(a, b) = (2.1,2) and(a, b) = (3,3.5). It is perhaps more readily observable in
the third plot in Figure 6.9 in whicku, b) = (10, 2). As discussed in Section 6.3.3, if we
increase the value af whilst keepingp fixed then the conditional mean plot approaches

that of the lineu;=6;_,. Moreover, increasing the value @fncreases; and thus leads to
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a more highly concentrated series. The combined effectseddterministic and random
component of the model are observable in the third plot oifegg5.9, which exhibits
slower changes in the valuestfand periods of higher concentration than those apparent

in the other two plots of Figure 6.9.

Next we consider two bimodal data sets and consider morergignéhe interpretation
and effects of parameters in cases when the equilibriunnilaision of the process is

bimodal. As described in Section 6.3.2, this occurs if angt oz < 0 and

b
Ay(la+ b)) + 190

> 0. (6.22)

Unfortunately this is a more complicated condition thantfae Sine model, for which it
was observed that i is not approximately equal te andx is not very small|\| >
tends to lead to a bimodal equilibrium distribution. No amgalus statement can be made
about the Cosine time series model. As an examplg;) = (—3,1) gives a bimodal
equilibrium distribution, but then (6.22) implies that b) = (—3, 5) also gives a bimodal
equilibrium distribution. Based on (6.22) a necessary gmrdfor bimodality is given by

b < 2lal.

Figure 6.10 shows plots based on the two parameter configusdt:, b) = (—3,1) and
(a,b) = (—16,10). The left hand plots show time series plots for simulated dats of
length50. The middle plots show dashed lines connectintpr ¢ = 1,3,5,---,49 and
solid lines connecting, for event. The right hand plots shoy; andy; + 1//k;. For
display purposes, the-axis for the right hand plots range from zer@toin order that the
plot of 11, is continuous. These right hand plots give an insight inédidhaviour observed
for the simulated data. In particular, the plotgpthow that the effect of the deterministic
component of the model is to rotate | — m negatively towards zero &,_, — 7 € (0, )
and positively towards zero #,_, — 7 € (—m,0). As can be seen from the closeness
of the linesu, + 1//k; to u, when(a,b) = (—16,10), the random components of

the model should be small. Indeed, the range;afivend,_; for the data set shown is
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(6.97,24.75). These effects are visible in the middle plot farb) = (—16, 10), in which

it can be seen that the line f6r for even values of approximate®, — = for odd¢.

(ab)=(-3,1) (ab)=(=3,1) (ab)=(-3,1)

0 10 20 30 40 50 5 10 15 20 25 - -2 0 n/2 s

t t 61

(a,b)=(~16,10) (a,b)=(~16,10) (a,b)=(~16,10)

t t Oi-1

Figure 6.10: Simulated bimodal Cosine time series data: D@he series plots. Middle:

g, for ¢t even (solid) and odd (dashed). Righfz; + 1/+/x, for the given(a, b) values

By comparing the behaviour of the data fat ) = (—3, 1) with the behaviour described
for (a,b) = (—16, 10), we can assess the effect of changingndb. Again we see that
0, for event is approximately equal t¢, — = for odd¢ (this is more clearly visible if we
subtrac2r from the values of), for event € [4,10]). The approximation, however, is
not as close as whefa,b) = (—16, 10), due to the fact that the, values are smaller,
as indicated by the lineg, + 1/+/x, on the top right plot. For the data set for which
(a,b) = (=3, 1), the range of observed valuesfgivend;_, was(2.00,3.99). Due to
the ratio|a|/b being larger wheria,b) = (—3,1) than when(a,b) = (—16,10), u; is

closer tof, _; — = for this data set. The smaller values|ef andb however lead to more
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dispersion contributed from the random component of theehod

Having successfully simulated data and interpreted paemalues for the Cosine time
series model, we next investigate the likelihood functind parameter estimation for the

model.

6.3.5 Likelihood function and parameter estimation

The likelihood function for the model can be obtained from #guation
L=L(0,...,00;a,b, 1) 01) [ £(6:16:—1) (6.23)
t=2
Using equations (6.11) and (6.17) we have

L = CIy[/(a® + b + 2abcos(f; — p))]ebesr=#) x
e cos(0t—0r—1)+bcos (0 —p)

H Io[/(a® + b% + 2abcos(by—1 — 1))

t=2

_ CHebcos(t‘)t*H) Heacos(Htth—l)/H[O[\/(GQ Ny 2abcos(9t,1 . ,U))]
t=2 t=3

Cexp{b S cos(B —p)+a Zf:; cos(0; — ‘9t—1)}.

6.24
[T Io[v/(a? + b? 4 2abcos(6p—1 — p))] (6-24)
The log likelihood! = log L is therefore given by
[ =logC + chos(@t — ) + aZcos(Ht —0;1)
t=1 t=2
- Z log Io[v/(a® + b* + 2abcos(6;_1 — p))]. (6.25)

We next investigate the behaviour of this loglikelihood dtion and discuss parameter

estimation based on it.

In order to investigate the estimation of parameters basedifterent values of. andb

(1 will be set to zero in each case), = 100 data sets, each of size= 200, for each
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possible(ay, by) pairing froma, € {—3,—1,1,3,5} andb, € {1, 2}, are simulated. The
nlm function inR is then used to minimise the functie+i in each case, with = 0,6 = 0
andu = 0 used as initial values for the estimation process, whéséhe directional mean

of the angles in the data set.

Table 6.4 displays the mean values (and standard deviatbtise maximum likelihood
estimates, b andji of a, b andy. respectively. Each entry in the table is basedos 100
data sets. For the elements in the table are, as usual, the mean directiestiohates
and the circular varianceé — R of the estimates, wherB is the mean resultant length
of the estimates. As can be seen, the standard deviatiore &fstimates is quite small,
and the parameter estimates are generally very close toub@arameter values. There
does, however, appear to be a tendency.fandb to be slightly overestimated in absolute

value.

ag
-3 -1 1 3 5
-3.073 (0.285)| -1.013  (0.142)| 1.001 (0.141)| 2.983 (0.315)| 5.009 (0.547)
-3.089 (0.292)| -1.045 (0.177)| 0.945 (0.211)| 3.050 (0.461)| 5.014 (0.614)

[}

bo

1.034 (0.183)| 1.027 (0.164)| 1.007 (0.163)| 1.058 (0.244)| 1.199 (0.355)

b
? 2.081 (0.251)| 2.037 (0.215)| 2.083 (0.279)| 2.148 (0.335)| 2.138 (0.422)

= o
N A N I SR

0.019 (0.015)| -0.020 (0.006)| 0.010 (0.007)| -0.010 (0.015)| 0.009  (0.018)
-0.011  (0.003)| -0.008 (0.001)| -0.002  (0.002)| -0.007 (0.003)| -0.008  (0.004)

bo

Table 6.4: Mean values (and standard deviations) of estsnata, b and p for 10
combinations of 4y, by) and with , = 0, each based on 100 simulated data sets of

200 observations. Estimates obtained using the nim fumati&.

In order to investigate the behaviour of the loglikelihooddtion in the vicinity of the
true parameter values, data are simulated and variousgiladsiced. Figure 6.11 shows
profile loglikelihood plots based on two data sets, each o& 8i = 200, in which
(ag, by) = (2, 1) for data set one an@,, by) = (—3, 1) for data set two. For both data sets,
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po = 0. Figure 6.11(A) and (D) show plots 6; a, by, 110) versusu for a € [ag—2, ag+2]

for data sets one and two respectively, wheie the simulated data set for the particular
values ofay andby. (C) and (E) show plots df 8; ay, b, o) versush for b betweer) and

3. Finally, (C) and (F) show contoured image plots @; a, b, 1) for a € [ag — 2, ap + 2]
andb € [0, 3].

(A): (20, bo) = (2, 1) (B): (20, bo) = (2, 1) (C): (20, bo) = (2, 1)
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Figure 6.11: Profile loglikelihood plots. (A) and (O)8; a, by, 1) fora € [ag—2, ag+2];
(B) and (E):1(8; ag, b, 110) for b € [0, 3] ; (C) and (F)I(0; a, b, o) for a € [ag — 2, ag + 2]
andb € [0, 3].

It can be seen from Figure 6.11 that the profile of the log iiledd function, taken with
respect to eithen or b, is well behaved at the true value of the other two parameters
inasmuch as a unique maximum is clearly visible. Moreoveth w fixed at 1, the
contoured image plot clearly highlights an area in which rtieximum occurs, which
area is around the true valuesofndb. Worthy of note is that, based on the plots of

Figure 6.11, the maximum dfappears to be at values @fandbs that are slightly greater
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in absolute value than the trug andb,, a feature reminiscent of the maximum likelihood

estimates given in Table 6.4.

6.3.6 Application to protein data

Having tested an estimation method for the model, it is notedito the249 ¢ and
1 angles of the same protein, triosephosphate isomerasew#saused for the Sine
model. MLEs of model parameters (and approximate standandseobtained vianlm )
are calculated and displayed in Table 6.5. As a measure alrggss—of—fit, data are
simulated based on the MLEs obtained and the resulting dat@ared with the original.
MLEs for the simulated data are also given in Table 6.5 andsaen to be reasonably

similar to the MLEs for the original data.

¢ P (0 P
fi | -1.425 (0.056) -1.400 (0.057) -0.357 (0.304) 0.079 (0.275)
a| 1.113 (0.218) 1.215 (0.225) 1.345 (0.123) 1.336 (0.125)
b| 2.226 (0.239) 2.230 (0.255) 0.338 (0.117) 0.392 (0.113)

Table 6.5: Estimates (and approximate standard errorspsin€ time series parameters

for protein and simulated data.

Comparison of the simulated data set with the original pnotlata can be made from
Figure 6.12, which shows circular and time series plotsHerdrotein data and simulated
data of both¢ and angles. Similar comparisons between the protein data aad th
simulated data can be made from Figure 6.12 as were made figumeF6.4 in Section
6.2.5 for the Sine model. As for that model, the considerdisderepancies between the

protein data and the simulated data would indicate that theefris a poor fit.

In order to further investigate the goodness—of—fit of thei@®model to the protein data,

plots analogous to those of Figures 6.5 and 6.6 for the Sindefraove produced for the
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Figure 6.12:¢ andt conformational angles for a protein data set, and simulatadd
1 values based on maximum likelihood estimates for the trte asing the Cosine time

series model.

Cosine model and are displayed in Figures 6.13 and 6.14cxapyg. A description of

the methods used to obtain these plots and what they reprgasigiven in Section 6.2.5.

Based on Figure 6.13 we see that again there is some evidesaggest that the model
is not such a good fit to the values of the protein data, although the approximation
of the smoothed line to the line fqr; is not too bad. For the simulated series, the
potential adverse effect of an outlier or influential obs¢ion can be seen. The solid red
line represents the smoothed values of all the data, whistlashed red line represents
the smoothed values omitting the data value in the top leh@bplot. Even for the latter,
similar behaviour on the right hand side of the plot is obedras for the original protein

data, namely that the smoothed line dips away from the jdineBearing this in mind,
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Figure 6.13: Plots of; versug),_;, a smoothed version (red line) ang+-1/+/k;, where

g is one ofp, ¢*™, 1 or s,
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Figure 6.14: Marginal kde (solid) and pdf (dashed) basedaba and MLES respectively.
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there is little evidence from these plots to suggest thatmbedel is a poor fit to the

values of the protein data.

There is clearly very strong evidence, on the other handilleamodel is a poor fit to the
1 protein data. In particular, the maximum likelihood estiesafor these data show that
a unimodal model has been fittedd & 0) to a data set that is clearly bimodal, and the

smoothed line is nothing like the line fox.

By comparing the plots of Figure 6.13 with those of Figurewecan directly compare
the goodness—of—fit of the Cosine model with that of the Sindeh In particular, since
the plots ofY; versug),_; for the protein data are the same save that a different MLE of
has been subtracted in each case, the smoothed red lindd bhoe the same features for
a given data set between models (by construction the chobite emoothing parameter
h is invariant under rotation of the data). Comparison of FegL6.5 and 6.13 shows this
indeed to be the case. Comparison of Figures 6.5 and 6.13¢hevsine model to be a
far superior fit to the) values of the protein data, whilst the plots for thealues not only
show the goodness—of—fit of the two models to be comparabléése data, but also the

models themselves to be similar, based on the lineg fandu; + 1//k;.

Moving on to Figure 6.14, which compares kernel densitynestes (solid lines) with the
density of the equilibrium distribution (dashed lines) &&®n the parameter estimates
of the fitted models, we clearly have further evidence to ssgthat the Cosine time
series model is a poor fit to the protein data, since the kernel density estimate is not
unimodal. None of the remaining plots give strong evidemcsuggest a poorly fitting
model, although the kernel density estimate for ¢hprotein data does appear slightly

skewed.
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6.3.7 Conclusions

In this section we have investigated a circular time serieslehthat can be seen as
the adaptation of the bivariate Cosine density to a timeeserontext through use of
the associated conditional distribution. The behaviouthefdeterministic and random
components of the model have been investigated and intedpne terms of simulated
data. The likelihood function of the model has been inveséid and the accuracy of
parameter estimation using tRefunctionnlm has been studied. The latter has revealed
a tendency to slightly overestimate the absolute valuelseoparameters andb. Further
investigation into the behaviour of the loglikelihood faien in the vicinity of the MLEs
has shown this to perhaps be a feature of the likelihood fometself rather than of the

estimation procedure.

Fitting the model to the and+ values of a protein data set has indicated a very poor fit
for the ¢ angles, and an indication that the model may not be a goodrfihéy series
either. Comparison of the goodness—of—fit plots estaldighé discussed in Section 6.2.5
for the Sine model with the resulting plots for the fitted @@smodel indicate the former
to be a far superior fit for the values of the protein data, whilst comparison of the plots
for the ¢ series indicates both that the goodness—of—fit and the Shé€asine models

themselves are similar for the fitted parameter values.

6.4 Further work

Sections 6.2.6 and 6.3.7 summarised the conclusions drawnanalysis of the Sine and
Cosine models, and a comparison of the two in terms of goaehioésfit to a specific data
set was made in Section 6.3.6. In this section we discussip@extensions of the two

models and potential further work.

An obvious way in which both the Sine and Cosine time seriedatsocould be extended
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is with the inclusion of higher order terms. Starting witle flormer, the simplest way to
extend the Sine time series to an AR(nodel is by defining, given(6,_,,...,0;,_,) as
9t|(0t71a ooy Ht,p) ~ M(,ut, /‘it), where

p
[y = tan™! {Z Ajsin(fr_; — p), n} , (6.26)
=1

1/2

Ry = /432"‘

P 2
> Ajsin(r; — M)]
=1

and, as usuakan—!(g, p) is the angle between the positiveaxis and the vectqp, ¢).

From the expression fqr; in Equation (6.26) we see that, as for the AR(odel,x; is

constrained to lie in the intervat /2, —m /2].

For the Cosine AR{) model, the conditional density specifying the model camiven
either in terms of the vectorial form (Equation (1.9)) of then Mises distribution or
using the angular form (Equation (1.8)). The former is gibgrx,|(x¢_1, ..., Xt—p) ~

VM(a), where

p
_ T T
o= E a;jXg_; + be
=1

andx;_;j = (cos6;_;,sin6, ;)" ande = (cos u,sin u)* are unit vectors. The alternative

specification ig;|(0;_1, . .., 0;—p) ~ M(tan~'(s, c), /(s* + ¢*)), where

P p
s = Zaj sin 0, ; + bsin p and c= Zaj cos 0y_; + bcos p.
j=1 j=1

Another way in which the Cosine model could be extended isiggested by Kent and
Mardia (2002, p. 288). They propose treating {lkg} process as an unobserved signal

and combining it with an observation process
yilxe ~ VM(kxy), k> 0.

A Kalman filter approach is then suggested as a way of reaoyehie signal from the

observations.
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Chapter 7

A M 0Obius time series model

7.1 Introduction

In this chapter a circular regression model due to Downs aadiM (2002) is adapted to
a time series context. The distribution@fgivend,_, is modeled using a particular von
Mises distribution. In Section 7.2 we outline the regressimdel studied by Downs and
Mardia (2002) and adapt it to a time series setting. Theilkeld function (conditional
on the first observation) is derived in Section 7.3 and pakntethods of parameter
estimation are introduced. For certain values of one of tirampeters in the modéb)
the time series model takes a special form. These specied eas considered in Section
7.4. The deterministic component of the model and its behenn terms of the values
of parameters is discussed in Section 7.5, whilst Secti6riotuses on simulating data
from the model. The properties of the simulated data ardeelto the observations
made in Section 7.5. Time-reversibility is an importanttdrtime series modeling,
and we investigate whether the Mobius model has this ptppeSection 7.7. It will be
seen in Section 7.8 that the equilibrium distribution of grecess is difficult to obtain

analytically. We therefore use a numerical approach ingadion in order to obtain the
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equilibrium distribution. The results are compared witk tton Mises distribution and
with a sample from the equilibrium distribution. An anatytipproach is used to derive
the equilibrium distribution under high concentration.tifstion of the parameters of
the model is investigated in Section 7.9, with the focus om &pproaches: a grid search
method and use of the functionnim . In Section 7.10 we apply the model to thend

1) angles of a particular protein and investigate the gooditdst of the model. Finally
the conclusions are summarised in Section 7.11, in whictiosewe compare the three
time series models that have been studied, namely the Sidelptbe Cosine model and

the Mobius model. Possible extensions of the work are alsilned in Section 7.11.

7.2 The model

The deterministic component of the regression model stutie Downs and Mardia

(2002) links the dependent angular variabl® the independent angular variableia
1 1
tani(v—ﬁ) :wtané(u—a), (7.2)

wherew € [—1,1] is a slope parameter andr < «, < 7 are angular location

parameters. Equation (7.1) gives
1 1
v = [+ 2tan {wtani(u—oz)}. (7.2)

Since the application of (7.2) will be to time series datayem@ace the dependent angle
with 0, andu with 0, _;,t = 2,--- ,n. These substitutions also suggest the use of a single

location parametety = (5 say, giving
1 1
tan i(et — a) = wtan 3 (Qt—1 — a) (7.3)

and

0; = o+ 2tan {wtan % (9,5,1 — a)} (7.4)
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as analogues of (7.1) and (7.2).

For the time series model (7.4) in Section 7.2 it is assumathil, ; has a Von Mises

distributon such that
1
0416, ~ M(a+2tan’1{wtan é(ﬁt,l —a)},/-a). (7.5)
In this case the time series model becomes
1 1
0; = a+2tan” {wtan 5(@,1 —a)} + & (7.6)

wheree; ~ M (0, k). We will refer to the mean direction of the conditional distrtion of

0, givenf,_, asyu;. Thatis

1
pe = o+ 2tan”Hwtan 5(«9t_1 —a)}. (7.7)

In what follows, all angles and their sums and differencedaken to be in the half-open

interval[—, 7), otherwise numerical errors will result (Downs and Mar@@02).

The model (7.6) is seen to be of the form of the linked aut@sgjve process discussed
by Fisher and Lee (1994), for which the mean direction of teddtional distribution
of 6, given (6;,_4,...,0;_,) has the form of Equation (5.4). Specifically, with= 1,
g(:) = 2tan"!(+), w; = w andyu = «, Equation (5.4) gives the mean direction of the

distribution in (7.5).

The value otv is restricted to the interval-1, 1] so thatx is uniquely identifiable. To see

this, consider subtracting from the value oty in Equation (7.3). Then
1 1
tani(Ht — a+7r) :wtani(et_l —a+7r) (7.8)
Now sincetan 3(¢ + ) = — cot 2¢, (7.8) is equivalent to

1
— cot 5(@ —a) = —wcot 5(9#1 —a)
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which gives

1 1 1
tan 3 (Qt — a) = tan 3 (Ht_l — a). (7.9)

The equivalence of (7.8) and (7.9) shows thaty ifvere not restricted to the interval

[—1,1], and if (&, ) is a solution to (7.3), theftv — 7, 1) is an equivalent solution.

7.3 Likelihood function

Since
1
046, 1 ~ M(a + 2tan"{wtan 5(9&1 —a)}, /i)

we have
F(0:]0:-1) = {2715(k)} ' exp{r cos(0; — ;) } (7.10)

wherey, is given by Equation (7.7)

Now the conditional pdf ofs, - - - , 6,, givend; is

f(Oa, -, 0,]00) = f(62]01)f(0s,- -, 0,]01,02)
- f(92|91)f(93|917 62)f(04a T >6n|01> 0, 93)

= f(02101)f(05]01,02) f(04]601,02,03) - - f(On]O1, -+, 0n_1).

But from Equation (7.6) the valug depends only on the previous valje,. Therefore
f(etwla T >0t71) - f(9t|9t71),
vVt = 2,---,n. The conditional likelihood is therefore

Le(onw, k) = {2n(k)} Y exp {K,Z cos[f; — o — 2tan”{wtan %(ﬁtl —a)}]}

t=2
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giving the loglikelihood

- 1
lo(a,w, k) = const. — (n—1) log Iy(Kk) + K Z cos[f; —a—2tan ' {wtan 5(@,1 —all.
=2

This is maximised with respect to the unknown parameteaadw by maximising

- 1
_ o — -1 - _
la,w) = ;:2 coslfy — a — 2tan™ {wtan 5 (0r—1 — a}l. (7.11)
The maximisation of (7.11) will be investigated, in Sectib8, in the following ways:

1. The function in (7.11) will be evaluated for various fixealues ofa andw, given

a set of data and the parameter values that generated thtase da

2. Thenlm function inR will be used in an attempt to minimise the functief(«, w)

for numerous data sets.
Oncel(«,w) has been maximised with respectit@ndw, a profile likelihood approach
may be used to obtain a maximum likelihood estimate,dfy maximising
lo(&,w, k) = const. — (n — 1) log [y(k) + Klag (7.12)

with respect tos. Differentiating (7.12) with respect to and noting thatl(/y(x))/dxk =

I(k), the modified Bessel function of the first kind and order o g

(9 n o~ ]1(%)
—! = - —1 ld W
5lle(@ @) = —(n =15+ le
so thatx is the solution to
Li(R) ~lag
]0(,;) n—1

7.4 Special values ob

Before the above estimation methods are investigatedjadpatues ofw for which the

time series model takes a certain form are considered=f1, then (7.6) becomes

Qt = Qt—l + € (713)
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which is a circular random walk. b = 0, then (7.6) reduces to
Qt =+ ¢ (714)

in which case thé,’s are i.i.d von Mises distributed random circular variablgth mean
directiona and concentration parameterand the maximum likelihood estimate ofis

the mean direction of th@ valuest =2, --- ,n;

tan=!(S(1,/C if Cpy >0
oo n~ (Sa)/Cy) " Coy (7.15)
tanfl(S(l)/O(l)) + ngn(S(l)) if 0(1) <0

whereSy) = > ,sind, andCyy = >, cosf,. The addition ofrsgn(S(1)) (where
sgn(-) is the sign function) in the cagg,) < 0 ensures that the mle afis in the interval

[—m, 7).

If w = —1, then (7.6) becomes

Qt =2a0 — Qt—l + € (716)
and (7.11) becomes
> " cos(t; + 0,1 — 2a). (7.17)
t=2

Differentiating (7.17) with respect to gives

a n
%[l(a, w=-1)] « Z sin(0; + 0,1 — 2av)
t=2

n

— Z [sin(6; + 6,-1) cos(2cr) — sin(2cv) cos(6; + 0,1 ).

t=2

Setting this equal to zero gives that

cos(24) Z sin(6; + 6;—1) = sin(24) Z cos(b; + 0,_1)

t=2 t=2

in which case the mle of is

S, .
1 —1 20¢.6¢—1
stan™ " —/—— if Cy, 0 >0
~ 2 C, t,0t—1
a={"° s (7.18)
3 [tan_1 o+ WSlgn(Sghgtil)] if Sp,0,, <0
0,041
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whereSy, g, , = > 1 ,sin(0+0,_1) andCp, 9, , = > 1, cos(0;+6;_1). (7.18) isamean
axis (which identifies an angle with either + 7 or 3 — m, whichever is in the interval

[—m, 7).

7.5 The deterministic component of the model

An analysis of the behaviour of the deterministic compomwétite model (Equation (7.7))
is, as seen for the Cosine and Sine time series models, asadiprecursory investigation
into the model properties. To this end, plots;gfversusf, ; are produced, for various
values ofa andw. Figure 7.1 shows two such plots, in whieh= 0 in both cases whilst
w = 0.2 for the left hand plot and = 0.6 for the right hand plot. Changing the value
of a results in a translation of the plot without altering its g@aln particular, increasing
« by an amount: translates the curves in Figure 7.1 positively along lahth and y,
axes bya. Switching the sign ofv results in a reflection in the ling; = «. A feature
of the deterministic component of the model observable fFogure 7.1, and true more
generally is that, for any andw, if 6, 1 = a« — 7, a or a + 7, thenu, = 6,_,. Figure
7.1 shows the effect of changing the absolute valug,ah the given plots fronb.2 to
0.6. The value ofx is fixed at0. For reference, the ling, = 0;_; is superimposed. As
can be seen, it — 7 < 6,1 < «, then the model rotates_; positively towardo. If

a < 0,1 < a+ wthend,_q, thend,_; is rotated negatively toward. The magnitude of
the rotation in each case is greater the smaller the absadlie ofw, as shown by the

increase in the curvature asdecreases towards zero.

For negativev anda = 0, similar considerations show that the model rotatés ;
towardsa in whichever direction requires the least rotation to reacthe magnitude of
the rotation decreasing (for fixetl ;) asw — —1. A similar statement can be made for

non-zerax by defininga as the zero direction.

Also apparent from the plots is that the deterministic congm of the model is both
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/2 - /2 -

-n/2 - -1/2

-1 -m/2 0 /2 m - -1/2 0 /2 b
61 61
Figure 7.1: Plots ob, versusfd,_; based on Equation (7.4) and far= 0 (both plots),
w = 0.2 (left) andw = 0.6 (right).

continuous and differentiable.

7.6 Simulating data

In order to investigate the Mobius time series model (7 &pdsets are simulated and
their behaviour related both to the observations in theipusvsection regarding the

deterministic component of the model and to the inclusidressrandom component.

In Section 7.8 we will consider the equilibrium distributiof the process, from which (if
an expression for the density of this distribution were woiathle) we could simulate a first
value for a data set. In the present section we will proceddlisvs in order to obtain
a first and subsequent values. With starting valjue- o we simulate a series of values
Y2, - - -, Yny» SAY, USINg Equation (7.3). We then ugg as the first value of our simulated

data set, so that,, = z;, say. A series of valuesz,, ..., z,,, say, are simulated, again
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using (7.3), and we take, . . ., z,, to be our simulated data set.

As mentioned in Section 7.2, numerical errors can resulhgiies and their differences
are not taken in the intervél-7, 7). To see this, consider the situatién, = = — 7,
a=—nm+7forT~0. Thenb,_, — o = 27 — 27, and if this difference is not converted
to the interval—x, 7) then(0,_, — «)/2 = m — 7, which is not what we require. Taking
0,1 — «in the interval[—=, 7), on the other hand, give$, ; — «)/2 = —7, whichis
the correct angle. In the simulation procedure, therefibrig,important to take angles
and their differences in the intervgtr, 7), which for angley can be achieved vig —

(x — m)mod(27) — 7.

Figure 7.2 shows plots of simulated data for the parametafigurations(w, ) =
(0.7,2), (—0.2,2), (0.7,4) and (—0.2,4). The value ofa in each case is taken to be
zero. Comparing these plots, the effects of keeping oneafdx fixed whilst changing
the other can be observed. In particular, keepifiged and increasing the absolute value
of w, the deterministic component of the model has less of actadfethe transformation
of values (see discussion of Figure 7.1) and this is obs&xvalthe plots as the series
appear more “random”. Keepingfixed whilst decreasing the value efsimply induces
more randomness into the model throughdhierms in Equation (7.3). A negative value
of w, as discussed in Section 7.5, has the effect of switchingitireofd, ; (for « = 0)
and then rotating the negated value towards zero based aabdwtute value of. In

these cases we therefore obtain series that cross the(kn@) frequently.

For those parameter configurations considered in the plibts, interpretation of
parameters is seen to be simple. More care is needed when me tosimulating
data using large negative values wf As discussed in Section 7.4, when= -1,
the maximum likelihood estimate af is a mean axis. This property is exhibited by
simulated data not only fas = —1 but also in data for whicly is less than approximately
0.5. Figure 7.3 shows two examples. In each of the plots of Figusewe have taken

a = 7/2 andk = 4. For the top two plots) = —0.6 whilst for the bottom twaw = —0.9.
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Figure 7.2: Plots of simulated data far= 0 and those values of and« given above

each plot.

From the left hand plots, in which the data points are coreteaiith a line, it can clearly
be seen that the overall series seems to switch between two Series” at a distance
of approximatelyr apart. This is more apparent the closegets to—1. At first glance

of these connected plots it may appear that the data are aimdtie right hand plots,
however, which show the same data as points, show that tmalbaistribution of values

appears to tend to uniformity over the interyalr, ) asw tends to—1.

The equilibrium distribution of the Mobius time series nebt discussed in more detail

in Section 7.8, before which time—reversibility is invgstied.



A Mobius time series model 153

w=-0.6 w=-0.6
T ™ . o
o oo O ) o0 o () o 0 %m%
2 - w2 - e :.. ‘0‘.."., % :‘: C?‘ O..ﬂ‘%
o¥s, ORI PO N S ,"%,‘,’ ®
o o 000 o
s 0 s 0 ’ ., ° o
L]
-m/2 - -n/2 -
Ld
~T o -7 . [ 4
T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
t t
w=-0.9 w=-0.9
™ T oo -
. ., 0 o® L)
.‘..o "J "". .o .o~' id '. .,
L] L] (]
/2 n/2 = o % TN}
""‘ o e o o ©«®e % &
o ® ° &y o
_ B ) ) .\ o LI ) e o °
S 0 T 0 ¢ o . % R
00 ¢° . ° @
o ® ] f '0 Q'
-1/2 -m/2 X . . .
r‘“‘ - L R 2
L) ° ® e o O . o o’ .
-7 -7 ° & o .
T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200

Figure 7.3: Plots of simulated data fer= 7/2, x = 4 and those values of above each

plot.

7.7 Checking time-reversibility

An important property in time series modeling is that of tireversibility. Obtaining the
equilibrium distribution of a process can be simplified adaegably if the process is time—
reversible. In the present section we consider the timersavility of the Mobius time
series model, and in Section 7.8 we investigate the equifibdistribution of the model.
It should be noted that the time—reversibility property @ ane that would necessarily
benefit a model for protein data, as polypeptites have a teftart and end, and are not

“reversible”.

We proceed by constructing a transition matrix as followshe Tinterval [—, 7| is

discretised into a vectd of p, say, equally spaced valué8") = —r, ... 0®) = 7).
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Each pair{6), 8\7)) of values,1 < i,j < p gives rise to an element of a transition matrix
P via

P j = fi(0, =076, = 6Y))
whereP,; ; is the(z, j)th element ofP and f; is given by Equation (7.10). The transition

matrix is then normalised so that its rows sum to one.

Denote byp the first eigenvector solution of
pP = P.

In this case, if
piP;; = p;P;; (7.19)

for all (i, j) then the model is time-reversible (Feller, 1968). With- 501 and various
starting values fow andx, solutions are obtained that indicate the model is not time-
reversible. Figure 7.4 shows plots of the left hand side mithe right hand side of
Equation (7.19) for the parameter values ) = (0.3,6) (left) and (w,x) = (0.6, 3)
(right). In each case, the value plused is that value maximising,; P, ; — p, P; ;| over

all values of;.

As can be seen from the plots, the apparent difference batteeleft hand side and
the right hand side of Equation (7.19) for the Mobius timeesemodel, although small,
would indicate that the model is not time-reversible. F@ $pecial casels)| = 1 or 0

and/ork = 0 the model is seen to be time-reversible.

We next consider the equilibrium distribution of the praces

7.8 The equilibrium distribution

The equilibrium distribution of a process describes itsistiaal behaviour at a point in

time a long way from the origin. For a continuous state, @tetime procesX, Xo, ...
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Figure 7.4: Plots of .HS — RH S of Equation (7.19) versu@ = (—m, ) for (w, k) =
(0.3,6) (left) and(w, k) = (0.6, 3) (right). Plot is for that value of leading to the largest

absolute value on the-axis of the plot.

in which f(y,z) = f(X: = z|X,—1 = y) is the transition probability, = 2, 3, ..., this
equilibrium distribution is given by Cox and Miller (1980,135) as

folz) = / " A2 faly)dy. (7.20)

In Section 7.10 a context is given in which the Mobius modepplied as a continuous
state, discrete ‘time’ process, 0, ... In this case, ify = 0,_; andz = 6,, then the

transition probabilityf; (y, z) is given by Equation (7.10), whilgt(-) is the density of the

equilibrium distribution. As noted by Cox and Miller (198@n analytic solution to this
equation is not always obtainable, and numerical methogdrmaequired. As mentioned
in Section 7.7, the equilibrium distribution may be easteobtain if the model is time—
reversible. Since we appear to have evidence to suggeghibas not the case for the
Mobius model, we investigate the equilibrium distributias follows. In Section 7.8.1, a

numerical approach to obtaining an equilibrium distribotis given, whilst Section 7.8.2
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outlines an approximate analytic solution under high catregion.

7.8.1 Numerical approach

Since time-reversibility cannot be used to simplify thecoddtion of a theoretical solution
to the equilibrium distribution, a numerical solution isr@esought. This is obtained
by discretising the intervdl-r, 7], calculating a transition matrix and using an iterative
method to carry out a numerical integration. The numeriodlt®ons (NS) found (for
various values ofv andx) are compared with von Mise&/{M) distributions and kernel
density estimates{(DE) based on samples from the equilibrium distribution, inrsac
way as to minimiséNS — VM)? and(NS — KDE)?.

Since the transtition probabilities are assumed to beostarty,d, andé; will be used in
place of¢, andd,_,, respectively. Additionally, the mean of all von Mises disiitions

will be set to zero.

Numerical integration

In order to obtain a numerical solution to the equation

f2(02) Z/f1(92\‘91)f2(‘91)d91 (7.21)

we obtain the transition matri® as described in Section 7.7. Since the initial distribution
(that of6,) is unknown,f, (6, ) is initialised as a vectod{(?)) of lengthp with all elements

equal tol /p. The numerical integration is then performed using thatten
¢+ = pra), k=0,1,...

until
- )| < e
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whereIT\*) is the 'th element of I1®). The squared Euclidean distance is used with
e=107°5.

With the solution of the numerical integration denoted®y°), a plot of I1(>*) agains®

is informative in showing the shape of the numerical solutibtained. Figure 7.5 shows
such a plot, in which the values = 0.3 andx; = 4 are chosen for the calculation
of f1(6,]0;) in the transition matrix, where; is the concentration parameter of the

conditional pdff;(6|6,). For comparison, a plot of the von Mises pdf with parameters

0.6

density
0.4
|

0.0
!

T
-7 -m/2 0 /2 s

Figure 7.5: Comparison of numerical solution to the equitiim distribution (solid line)
based on initial parameter values= 0.3, k; = 4 and the von Mises density (dashed line)

with i = 0 andx = 4.

1 = 0andx = 4 is superimposed on the same plot with a dashed line. As cagdme the
plots are very similar in shape, suggesting that the eqiuhidistribution is at least close
to a von Mises distribution, even if not actually von MisefieTcomparison between the
numerical equilibrium distribution and the von Mises dHsttion is further explored later

in the section.

We observed in Section 7.6 that forclose to—1 the equilibrium distribution appears to



158 Chapter 7

be approximately uniform. The numerically calculated &frium distribution concurs
with this, and a circular uniform distribution is obtaineden |w| = 1 and/orx = 0.
If w = 0 then it is easily seen that the equilibrium distribution mvMises with

concentration.

As an alternative to numerical integration, the eigen dgmusition of Section 7.7 could
be used in place of the above approach in order to obtain a meaheolution to the
equilibrium distribution. Comparison between the two agmhes in the current context

shows negligible disagreement between the solutionsreddai

Comparing the numerical solution with a supposed sample frm the equilibrium

distribution

In order to obtain a sample from the equilibrium distribuatiof the model, data are

simulated as described in Section 7.6 for chosen valuesoflx;, and values from these

data are sampled sufficiently far apart to ensure that threledion structure imposed by

w is no longer influential. In this way, a comparison can be nizstereen the numerical

solution to the equilibrium distribution and this supposathple. Indeed, a kernel density
estimate (kde) based on the sample can be computed, anththieinction inR used to

choose a bandwidth for the kde to minimise

> _[(Fa(w.m1) = f2(0))°). (7.22)
]

The functionfs(w, k1) in (7.22) is the vectorial solution to the equilibrium dibtrtion.
That is, f>(w, k1) is the numerical solution to the equilibrium distributioal@ulated for
thep values(—, ..., ) and based on the initial choiceswfnds,. The functionf,(b)
is the kernel density estimate of the sample from the equilib distribution, calculated
over the samg values from—r to 7, and dependent on the choicef bandwidth. As with
the Sine and Cosine time series models, the appropriatstadgut for density estimation

from circular data is made before the density is estimated.
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Figure 7.6 shows two plots making the comparison explaiheyde, the first of which is

based on the valués) = 0.6, x; = 3) and the second on the values= —0.1, k; = 5).

density
density

Figure 7.6: Comparisons of numerical solutions (NS) to tpailéorium distribution and
kde’s based on samples from the equilibrium distributiossdadl on initial parameters

(w= 0.6,k = 3) (left)and(w = —0.1, k; = 5) (right).

In each case, the simulated data are sampled forty aparttéamnabe sample from the
equilibrium distribution. Each sample is of siz@0. As can be seen in both cases, there

is a close resemblance between the plot of the numericdi@oland the kernel density

estimate.

Figure 7.7 shows a polar plot corresponding to the right lphoicbf Figure 7.6. The plots,
in cartesian coordinates, are thosé @f+ g) cos @, (1 + ¢) sin @), where the function is
given by f,(w, k1) for the numerical solution (dashed line) and be) for the kernel
density estimate (solid line). For comparison with thesgtglthe unit circle is also
displayed. As with the plotin Figure 7.6, there is seen to blese resemblance between

the numerical solution and the kernel density estimate.
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Figure 7.7: Polar plot based on the right hand plot of Figuéecémparing the numerical
solution (NS) to the equilibrium distribution, based ortiadivaluesw = —0.1,x; = 5,
with a kernel density estimate (KDE) based on a sample frenetjuilibrium distribution

with these parameter values.

Comparing the numerical solution with a von Mises distribution

Having obtained a numerical solution to the equilibriuntriigition that looks as though
it may be at least approximated by a von Mises distributitienapts are made to compare
von Mises distributions, with various values of= k5, say, to the numerical solution
obtained, given the initial values af andx; that were used in obtaining the numerical
solution. In particular, if we denote bj(w, x1) the numerical solution as calculated
with the valuesv andx,, and byf(x,) the pdf of the von Mises distribution with mean

direction equal to zero and concentration parameterthen we wish to choose, to
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minimise
> {lfolw, 61) — f(r2)]*}. (7.23)
(4
The sum in Equation (7.23) is taken over the values in theovettand is minimised

using thenlm function inR. Of additional interest is the relationship betwegnand

(w, k1), Wherex; is that value of; which minimises (7.23).

Figure 7.8(a) shows a plot comparifigw = 0.6, xk; = 4) and f(x%), wherex} has been
calculated to be 2.40. As can be seen, there is a reasonally @dsemblance between
the two, suggesting that a von Mises distribution can, &t/ a good approximation to
the equilibrium distribution. Similar experimentationtiwiother starting values of and

k1 lead to the same conclusion.

© o
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o o - w=0.4
w=0.6
< | --- w=0.8
o
© -
Fy
2 24 &
) o
° < -
N -
S ~
g N /
=} s
o | o A S
=}

-1 —T‘[/2 0 2 n 0 2 4 6 8 10

Figure 7.8: Left: comparison of numerical solution (NS) faquilibrium distribution
based on the valugss = 0.6,x; = 4) and the von Mises pdf (VM) with parameters
(u = 0,ry = 2.4). Right: Plots ofx; versusx} for w = 0,0.2,0.4,0.6,0.8 (top line to

bottom line).

In order to investigate the relationship betwegnand (w, ), x5 is computed for all

combinations ofl < x; < 10andw = 0,0.1,0.2,...,0.8. (Negative values ab give the
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same results as positive values.) Some of the results grkavgesl (with points connected
for ease of interpretation) on part (b) of Figure 7.8, witk times, from top to bottom,
representing = 0,0.2, 0.4, 0.6 and0.8 respectively. As can be seen, each line is virtually
straight as:; increases. As expected, the line representing 0 has a zero intercept and
a slope equal to unity, since in this caéd,|0;) in Equation (7.21) is the von Mises pdf
with parameters (mean) zero and (concentratign)Also apparent from the plot is that
w andx, are negatively correlated in their effect @h This can be seen on consideration
of the fact that increasing (the absolute valuewfjecreases; (for fixed «,), whereas

increasing the value of; increases:; (for fixedw).

To further investigate the relationship betwegrand(x:,w) regression models are fitted
that are consistent with the right hand plot of Figure 7.8atTik, regression models in

which x; acts multiplicatively on:} (sincex; = 0 = x5 = 0) and for which

o w=0= K = K;

e ry depends on either the absolute or squared (or both) value of

are fitted. The models fitted are as follows:

Ky = ki + Briw? (7.24)
Ky = aki+ Ori|wl
Ky = aky+ Briw? + kW)

The adjusted?? values for the three models were respectivedy96, 0.994 and0.9996.
The only parameter not significantly different from zerota¢ 1% level was~, with a
p-value of 0.14. The model selected for further investigaietherefore that given by
Equation (7.24), for whicla = 0.997 andj3 = —1.048, so that

Ak

Ry~ k(1 — w?).
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The left hand plot of Figure 7.9 shows a plot of the fitted val(g = ar, + Briw?)
versus the residuals, in which a different symbol type regmés each different value of

k1. As can be seen, there is a curvature to the plot overall,imindicates the inclusion

b |
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Figure 7.9: Left: Residuals versus fitted values for regoesmodel z; = 0.997 —
1.048k,w?, with a symbol for eaclk = 1,3, 5,7, 9. Right: Residuals versus fitted values
for five models of the form:} = ar; + Briw?, with k; = 1,3,5,7,9 (increasing from

left to right).

of a higher order term im; or w. Also apparent is a decrease in curvature and range of
residuals as; increases, as can be seen on consideration of each of theedifsets of
symbols. This suggests that the fit of the model improves,aacreases. This point is
emphasised by the right hand plot of Figure 7.9. For this, fie¢ separate regression
models of the form (7.24) have been fitted, one for each of #heesx; = 1,3,5,7,9,

and the residuals plotted against the fitted values. It isediately apparent that the fit of

the model improves as, increases.
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7.8.2 Analytic approach

In Downs and Mardia (2002, p.56), an alternative form for &epn (7.10) is shown to be

(given here in terms of andy)

fizly) = [27lo(r1)e ™) exp{—2k1y "nm "y /(1 + 2wyw, cos y) } (7.25)

wheref andx have been replaced by andx; respectively, as suggested by the current

context, and where, 1, w, andw, are defined as follows:

y' = [sin1/2(z +y), —cos1/2(z +y),sin1/2(z — y), — cos 1/2(x — y)];

N’ = [w, cos a, w, sin @, wy, 0]; (7.26)
1 — w?
2 2 _ 1. _
C(Jp +wq = 1, 2wpwq = m

Settinga equal to zero and for ‘large!, we have

yT ~ [(ZL’ + y)/27 _17 (:L’ - y)/Q, _1];
Nt = [wp, 0,w,, 0]; (7.27)

1+ 2wpwg cosy =~ 1+ 2wpwy,

substitution of which into (7.25) yields, upon simplifigati

—2k1 [wp (x4 1) /2 + wylz —y) /2] } (7.28)

filzly) = [2nLo(r1)e™ ] exp { 1+ 2w,w

Multiplying Equation (7.28) byf,(y), the von Mises pdf with mean direction equalto
gives an expression in which a functiéfix,, x,) of k; andx, multiplies an exponential
term. This exponential term is a quadraticginof the formay? + by + ¢, which can be
written equivalently ag(y + b/2a)? + ¢ — b*/4a. In this case, Equation (7.20) becomes

27 Iy (ko) 1™ 5% = C'(ky, ko) exp(c — b*/4a) / expla(y + b/2a)?dy.  (7.29)

— 00
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The integrand in Equation (7.29) is proportional to the @df normal distribution. Using

this fact and the approximatiains = ~ 1 — 22 /2, we have, from (7.29),
exp[ra(1 — 2%/2)] o exp[c — b*/4a). (7.30)

Using the expressions in Equation (7.26) dgrandw, in terms ofw, and some algebra,
we can calculate

H1H2I2
2(k1w? + Kg)
Putting (7.31) in (7.29), we see that both the left and rigimichsides of (7.29) have a

c—b*/4a = — (7.31)

normalising constant and an exponential term involvidgin which case, since the left
hand side is a von Mises pdf, the right hand side must also d@dih of a von Mises

distribution. Using (7.31) and equating termsethin Equation (7.30) gives
ke = k(1 — w?). (7.32)

Thus, for ‘large’x, the equilibrium distribution is approximately von Misestdbuted
with concentration parameter = x,(1 — w?). This result is both simple and intuitively

appropriate, as = 0 = ko = Ky, andr; = 0 = Ky = 0.

Returning to the regression model of Section 7.8.1, we sat ttiere is agreement
between the theoretical relationship of Equation (7.323ioled above and the regression
model suggested by a numerical approach to the equilibristrilsition. Moreover, the
approximation obtained above explains the patterns ofeék&lmal plots of Figure 7.9.
That is, the curvature in the first plot can be attributed kanigr only the first two terms
in the expansion ofos x with the approximatioros z ~ 1 — x?/2, whilst clearly the
improvement in fit for increasing; evident in the second plot is due to the fact that
ke = k1(1 — w?) is an approximation for large;. Of additional interest is the rate of
this improvement. In particular, there appears to be a denable improvement between
k1 = 1l andk; = 3, after which the rate of improvement decreases. This pkrefiore
gives a graphical indication of how ‘large’; must be in order for the approximation to

be ‘acceptable’ in some sense.
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To investigate this further, a grid of values is calculated f < x; < 10 andw =

0,0.1,0.2,...,0.8, in which each cell is the absolute difference
ks — k1(1 — w?)], (7.33)

where k3, as in Section 7.8.1, is that value of the concentrationrpater of a von
Mises distribution which minimises the difference betwela numerical equilibrium
distribution and a von Mises distribution, as determinedElyation (7.23). The results

are displayed on the left hand plot of Figure 7.10. The pefie<; = 0 andw = 0

coooo
AN

€EEEEE

Kz

0.0 0.2 0.4 0.6 0.8 0 2 4 6 8 10

w K1

Figure 7.10: Left: Image plot of Equation (7.33) fay, = 1,...,10 andw =
0,0.1,...,0.8. Right: Lines representing, = ;(1—w?)forx; = 1,...,10 (x-axis) and
w=10,0.2,0.4,0.6,0.8 (top line to bottom line), with corresponding superimposed as

points.

represent a perfect fit. In other areas of the image, the iwepnent in fit is evident
as k, increases, but more so for smaller valuesvof This point is emphasised by the
right hand plot of Figure 7.10, in which the lines = r;(1 — w?) (for 1 < x; < 10
andw = 0,0.2,0.4,0.6,0.8) are displayed alongside points which are the correspgndin

values ofx3. The lines, from top to bottom, correspondde= 0, 0.2, 0.4, 0.6 and0.8, and
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are approximated more closely by the points for smalleremhfw, the approximation

within each line improving (with increasing) less asv increases.

7.9 Estimating model parameters

In this section we consider parameter estimation for theiM&time series model. Firstly,
a grid search method is used in order to estimate the paresmetand w based on
Equation (7.11), and the behaviour of the function (7.11pvestigated over this grid of
values. Second, a numerical approach is considered usiRyftinctionnlm . For each,
the method outlined in Section 7.6 is employed for data satmh, and the parameters

estimated based on the simulated data.

7.9.1 Grid search and likelihood plots

Equation (7.11) can be evaluated for a grid of valuesdnu) space which contains
the true parameter valuesy( wy), say, used in the simulation of data. Searching this
grid for values ofo andw that maximise (7.11) is then a means of estimating the model
parameters, and more specifically a way to compare thesaatss with the ¢, wp)

that generated the data. Evaluating a grid of values in tlaig also enables one to
investigate the behaviour of the conditional likelihooddgtting Equation (7.11) either

as a 2-dimensional perspective plot, a contour plot, or afl@mplots for one ofx or w,

given a fixed value (for example&, or w,) of the other.

Two sets of data are investigated using the above methodgstlyFithe values
(v, wo, ko) = (m/4,0.6,4) are used to simulate a data set of length 200. Using a300
by 100 grid of values covering the intervals= [—7, 7] andw = [—1, 1] respectively, the

maximum value of (7.11) for the simulated data across the @frivalues is found to be
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that value for whicHa, =) = (0.788, 0.556), which are close to the true values andw,

(r/4 = 0.785 to three decimal places).

Figure 7.11 shows plots based on the values of Equation)(Tot Yarious parts of the
grid. The top left plot show$(ay,w) for w between—1 and1, whilst the top right plot
shows!(«, wy) for a between—7 andw. The bottom left plot/(«, —w,) again fora
between-7 andr. Finally, animage and contour plot is shownfoe [ag—0.4, ag+0.4]

andw € [wy — 0.1,wo + 0.1]. In each plot, dashed lines show the true valugandwy.

Ia, w)
100 120 140 160

-1.0 -0.5 0.0 0.5 1.0 -1 -/2 0 /2 m

Ia, w)
50 100

-50 O

w
0.50 055 0.60 0.65 0.70

-100

Figure 7.11: Likelihood plots based on simulated data setihichagy = 7 /4, wy = 0.6,
k= 4,n = 200. (a) Profile inw with a = «. (b) Profile ina with w = wy. (c) Profile in

a With w = —wy. (d) Contour likelihood plot.

The first profile in the figure, for fixed atay, shows a maximum for the profile of the
likelihood at a value close to, = 0.6. Similarly, whenw is fixed atwy, the profile of
(7.11) shows a maximum around4. In both these cases, the profile plots each exhibit

a single maximum. In the third of the profile plots howeverewh is fixed at—0.6,
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there are also local maxima at approximately+ =. The reason for this can be seen
on consideration of the special case= —1 discussed in Section 7.4. In this case,
the maximum likelihood estimate of is a mean axis. Although in the present case the
maximum of the likelihod is considerably less in the profdibiting the local maxima,

this may not necessarily be the case more generally (whsmvery close to-1).

The second set of data simulated are obtained using the svdtugwy, ky) =
(2m/3,—0.4,4) andn = 200. Using the grid search approach we obtain the parameter
estimatega, @) = (2.049,—0.414). These values are again close to the true valyes
andwq (27/3 = 2.094 to three decimal places). Figure 7.12 shows the plots pextlirc
Figure 7.11 for the new data set. In this case, however, thgenplot is plotted over the

intervalsa € [ap — 0.2, a9 + 0.2] andw € [wy — 0.2, wp + 0.2].
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Figure 7.12: Likelihood plots based on simulated data setvhich oy = 27/3, wy =
—0.4, k = 4, n = 500. (a) Profile inw with a = «. (b) Profile ina with w = wy. (C)

Profile ina with w = —wy. (d) Contour likelihood plot.

As for data set one, we again observe that the maximum gneesalre reasonably close
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to the true parameter values. For data set one, the maximtime édnction (7.11) is seen

to lead to a more accurate estimatenahan ofw, whilst for data set two the opposite is
true. For data set two we again observe the phenomenon dfnfcama in the profile
likelihood of & whenw < 0. This has the potential to be more of an issue when the true
parameter value is negative, although the maximum is gleaslible and a value ody

closer to—1 may be needed to cause problems in estimation.

We next consider a numerical approach to maximising thditiked functionl(a, w) by

using theR functionnim .

7.9.2 Gradient descent

In this section we investigate the usenrin to estimate model parameters for the Mobius

time series model based on data sets simulated using va@éoaseter values.

Experimentation with numerous data sets shows that, uthlesgaluew, that is used for
data simulation is very close tel, and/orx is very small, the starting valués, w) =
(6,0) result in reasonably good parameter estimates, whiréhe mean direction of the
simulated data set. Indeed, the mean direction itself gas/a reasonable estimatenof
In the casev ~ —1, 0 occasionally correctly gives,, but also occasionally gives, + ,
for the reasons given in Section 7.4. On some occasionssthmation method appears
to fail, returning estimates of approximately zero for batlandw, even when the true

value of the former is-/2 and the true value of the latter is close-ta.

For small values of. (below about 1), a larger value efenables better estimation af

provided the value of is not “too” small.

Tables 7.1, 7.2 and 7.3 display the results of estimatingandx using thenlm function

for o andw and using the profile likelihood (see Section 7.3)£oiT he latter is obtained
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by minimising the absolute value of

Il (/‘i) ld@

Iy(k) (n—1)

over a sequence of values fobetweer).1 and10, oncel, ., (from Equation (7.11)) has

been obtained vialm .

For each combination of true parameter values«, ), 100 data sets, each comprising
400 observations, are simulated. The mean values and stadeaiations of the
parameter estimates over the 100 replications, within éachv, ) combination, are
then calculated. In the case of we calculatel — R instead of the standard deviation,
whereR is the mean resultant length of the estimates.oThe parameter values used in
the simulation process are every combinatioficf, wy, o) from oy = (—27/3,27/3),

wy = (—0.5,0.5) andrky = (1,5).

As can be seen from the tables, the means of the parameteagsti are close to the
original parameter estimates that generated the datastwhi standard deviations of

estimates for andw are greater for = 1 than fork = 5.

The problems of parameter estimation induced by bimodé@Myenw is close to—1)
are not observed for the data simulated with the parameleesgiven in Table 7.3. For
individual data sets when this is a problem, a visual analgéithe data (for example

those data plotted in Figure 7.3) may give a better idea ofrtlteeparameter values.

7.10 Application to protein data

Having experimented with numerous simulated data setanthgel is applied to a real

data set comprising the conformational angles of a protein.

In an attempt to categorise proteins by the properties atudenaf their 3-D conformation,

the Mobius time series model can be applied to data setsmsingpthe¢ and angles
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ap — —2m/3 27/3
Ko — 1 5 1 5
-0.5 |-2.093 (0.001) -2.094 (0.000) 2.089 (0.004) 2.096 (0.002)
W
" 05 |-2.084 (0.028) -2.100 (0.001) 2.120 (0.050) 2.092 (0.003)

Table 7.1: Mean values (and one minus mean resultant leof§#gtimates oty for 8

combinations ofdy, o, wy), €ach based on 100 simulated data sets of 400 observations.

ap — —21/3 21/3

Ko — 1 5 1 5

0.5 |-0.499 (0.052) -0.497 (0.034) -0.493 (0.083) -0.496 (0.038)
“ 05 | 0501 (0.057) 0.497 (0.037) 0504 (0.062) 0.493 (0.035)

Table 7.2: Mean values (and standard deviations) of estgnaftu for 8 combinations of

(cvo, Ko, wp), €ach based on 100 simulated data sets of 400 observations.

Qo —

—2m/3

27/3

Rg —

1

5

1

5

-0.5
Wo

0.5

0.998 (0.081) 5.063 (0.329)
0.994 (0.070) 5.034 (0.259)

1.000 (0.066) 4.997 (0.295)
0.992 (0.070) 4.971 (0.264)

Table 7.3: Mean values (and standard deviations) of estsradi: for 8 combinations of

(a0, Ko, wo), €ach based on 100 simulated data sets of 400 observations.
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that define their conformation. Ultimately, of course, thaleenge is to incorporate both
¢ andy jointly into the analysis. As a first stage, however, the nhddegeloped is applied

to ¢ andv individually.

The data to be considered comprise the 338nd angles, as described above, of
a particular peptide chain. Table 7.4 displays maximumlilik®d estimates of the
parametersy, w andx for each of¢ and+. The table also shows estimated standard
errors of the estimates ef andw, obtained from the numerically calculated (through
nim) Hessian matrix. As a measure of goodness—of-fit, data mn@laied based on the
parameter estimates, the parameters of the resulting daestmated and the simulated
data are compared with the original protein data both in $eofmmaximum likelihood
estimates and in terms of the data themselves. Table 7.4da&ptays the maximum

likelihood estimates of the parameters for the simulated ¢&&" andys™.

¢ P (0 (T
4 || -1.420 (0.062) -1.390 (0.061) 2.214 (0.164) 2.166 (0.162)
& || -0.004 (0.012) 0.006 (0.068) 0.554 (0.116) 0.499 (0.063)
i | 2.783 3.100 1.467 1.476
9 | -1.420 -1.389 -0.140 2.165
AR(1) | 0.006 -0.002 0.057 -0.087

Table 7.4: Maximum likelihood estimates (and estimatedddad errors) for protein data
and for data simulated based on these estimates. Also greemean directiong for
each data set, and AR) parameter estimates &f = tan(0, — &)/2, whered is to be

replaced by the variable of interest.

Also given in Table 7.4 are the mean directdof each data set and an estimate of the
AR(1) parameter of the datg = tan(f; — &)/2, wheref is to be replaced by the variable

(¢, ™™, 1) or ™) of interest. For the latter, if is large thert, in the time series model
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(7.6) will be small, in which case the model can be approxaddny
1 1
tan 3 (Ht — a) ~ w tan 3 (Qt—1 — a). (7.34)

The parametew in (7.34) is then the AR(1) parameter of the transformed data-

tan %(Ht — «). Comparison ofv and the AR(1) estimates in Tables 7.4 indicates that the
¥ andy*™ data are too dispersed forand the AR1) estimate to be comparable. For the
¢ and¢*™ data, bothv and the AR1) estimate are seen to be close to zero. When0

the data are simply a random sample from a univariate vondWigribution with mean

« and concentration. The closeness af to zero for they values therefore indicates

little or no dependence betweénandé,_, assuming the model is appropriate.

Figure 7.13 shows circular plots and time series plots oh ltbbé protein data and the
simulated data. As can be seen from the plots, the protelata are very different from

the simulated/*™ data, indicating a poorly fitting model for thevalues. There is less
discrepancy between the protein data and the simulatedfalathe ¢ series, although

for these series differences are again apparent. For eratig proteiny data appear

to exhibit changing concentration throughout the series tli other hand, not only
do the simulated data not exhibit this feature, the Mobioe tseries model in general
has constant concentration. This can be contrasted witBitteeand Cosine time series
models, for which the concentration parameter of the candht distribution off; given

0,_1 is time—dependent.

Figure 7.14 shows profile loglikelihood plots, as describe&ection 7.9 for simulated
data. The loglikelihood profile plots in for the protein data are markedly different from
those encountered when the data were simulated, with shamng points atv = 0 in
each case. In the case of thangles a maximum is difficult to identify visually due to the
small gradient in its vicinity. For all other estimatescodndw, there is a close agreement

between thelm estimates and the profile plots.

For the ¢ angles, the profile plots in are very similar for the protein and simulated
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Figure 7.13: Circular and time series plots of thand> angles of a polypeptide chain,
and of data simulated using the parameter estimates obtaynktting the Mobius model

to the protein data.

data. For the) angles, we observe a local maximum at slightly less thaa 0 which
corresponds to the mean direction as given in Table 7.4. Enencircular plot of the)
protein data in Figure 7.13, we clearly observe bimodalityich leads to the difficulty
in identifying « in this case. Again the large discrepancy between the pbots fand
for )™ would indicate a poorly fitting model for the protein data. The discrepancy is
again seen to be less for tieand ¢*™ series, although the profile in for the protein
data exhibits the aforementioned sharp turning poiant at 0 that is not apparent for the

simulated)®™ values.

Figures 7.15 and 7.16 show the goodness—of—fit plots deselap Chapter 6 for the
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Figure 7.14: Profile loglikelihood plots for protein and sil@ted data. Profiles in each of

« andw taken at the maximum likelihood estimate of the other.

Sine and Cosine time series models. That is, Figure 7.15sptots ofd, — & versus
0,_1 — & wheref is to be replaced by the variable of interest ands the maximum
likelihood estimate ofy for that variable. Solid black lines represent the functign=
2tan~' {&tan(h;_,/2)} whilst dashed black lines represait+ 1/,/. Finally, solid
red lines represent a smoothed versiod;of & versusd; ; — & where the smoothing is

performed using the functiotirc.smth ~ described in Section 6.2.5.

From these plots we clearly have further evidence that thdeinis a very poor fit to
the protein data. For the values, the red line approximates the black line reasonably
well, although there is a slight curvature apparent in theng. This kind of curvature
was observed for the fitted Sine and Cosine models in FiguBear@l 6.13 respectively,
indicating that they could be competing models for thesa.d&ithough the Sine and

Cosine models were fitted to a different protein data set ihaarrently being analysed,
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S

Figure 7.15: Plots of, versug),_;, a smoothed version (red line) ang+1//k;, where

6 is one ofg, ¢*'™, 1) or ™.

comparing the plots in this section with those for the Sing @osine model reveal close

similarities.

Figure 7.16 compares the (numerically calculated) equuirh distributions based on the
fitted models with kernel density estimates of the data tledwes. Again we see evidence
of a very poorly fitting model for the values, with the kernel density estimate exhibiting
the bimodality also apparent in the plots in Figure 7.13 Fart data. For they values
we observe a kernel density estimate that is slightly skeavetlheavy in the tails, but
which provides a reasonable approximation to the equiibrdistribution based on the

fitted model.
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Figure 7.16: Numerically calculated equilibrium distrilin based on parameter

estimates (dashed lines) and kernel density estimated bas#ata (solid lines).

7.11 Conclusions

A circular regression model introduced by Downs and Mar@@0@) has been adapted
to a circular time series context. The model properties I@en investigated, including
analysis of the deterministic component of the model. Datalkation and parameter
estimation have been discussed, and successfull methed<kan developed in order
to accomplish both. The potential problem of identifyingvhenw is close to—1 has
been identified via analysis of the behaviour of the logih@bd function. A thorough
investigation into the equilibrium distribution has releshsimilarities with a von Mises
distribution. For the special cases| = 1 and/orx = 0, the equilibrium distribution is

uniform on the circle, whilst ifv = 0 then it is von Mises with concentration

The model has been fitted to theand« angles of a protein data set, and has been shown
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to be a very poor fit for the latter. For tlievalues, the fit appears reasonable and suggests

that the dependence @fond,_; is at most very slight.

Having studied the Mobius model, the Sine time series manélthe Cosine time series
model, it is instructive to compare the properties of thed¢hrThis was done briefly in
Sections 6.3.6 and 6.3.7 for the Sine and Cosine models, arfteve compare the three

models and their properties. These comparisons build setbbHughes et al. (2005).

For comparison of the conditional means of the models, weasgume that = 0 for
the Sine and Cosine models and that 0 for the Mobius model. We observed for the
Sine model that the mean directipnof 6, givend,_, is equal tou; givent — 6,_,, which
was considered an unusual property that may not be expectdobserved data set. A
similar (but not exactly the same) thing was observeg,oh the Cosine model when
the values of the parametersandb are such thak > |a|. On the other handy, for the
Mobius model was seen to be a monotonic (increasing or dsitrg, depending on the

sign ofw) function ofé,_;.

In terms of parameter interpretation, that for the Sine aosi® models is made awkward
with A and x for the Sine model and andb for the Cosine model affecting both the
deterministic and random components of the model. In ceptthe parameterv alone
(takinga = 0) determines the behaviour of the deterministic componétiteMobius

model, whilstx determines the random component, making interpretatiochrsimpler.

The equilibrium distributions of the Sine and Cosine modetse seen to be symmetric
aroundy and either unimodal or bimodal. For the numerically caltedaequilibrium

distribution for the Mobius model, only unimodal margin&tere observed, although for
values ofw close to—1 the overall series was seen to alternate between two “nmra ti

series” at a distance af apart.

One result of the relatively simple form of the Mobius modeinpared with the Sine and

Cosine models is that the latter two result in a wider rang@osEible data, incorporating
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the possibility of bimodality and varying concentratioreotime. The important question
is whether or not these features are observed in real sef®@s.the protein series,
both changing concentration and bimodality were obserbeatnot in a way that was
successfully captured by the models. For the protein dathest (which were seen to be
reasonably similar), there isn’t much to distinguish betwéhe three models in terms of
goodness—of—fit for the values, but for the) values the Sine model was seen to be far

superior to the other two.

It is clear that analysis of the individual models and congmar of the three can be
extended by fitting the models to alternative data, as théepralata seem to exhibit
behaviour that cannot be captured particularly well by drip@three time series models.
The analysis of the three models in Part Il of the thesis piewia strong foundation on

which further analysis can be built.

Another obvious way in which the work in this chapter could d&dended is by
considering higher order models. The general ARfodel then takes the form of
Equation (5.4) withy(-) = 2tan~!(-). In particular, the AR{) model is defined by the
conditional distributiond; |(6;_1, ..., 0,) ~ M (s, k), t =p+1,...,n, where

1 1
pe = a+2tan”?! {wl tani(Qt_l —a)+... +wptan§(0t_p — a)} :

Again, the methods employed in this Chapter can be externdeddstigate the behaviour

of this higher order model.
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Chapter 8

Conclusions

We have presented in each chapter of this thesis a sectidniogitthe conclusions

reached in that chapter and ways in which the work thereirbeagxtended or improved.
Just as it was insightful to consider in the introductoryptbamaterial that was to recur
throughout the thesis, so it is instructive to summarisesgectively the conclusions

drawn throughout the thesis that have a common theme.

In the abstract of the thesis the aims of both developingssital methodologies for
modeling circular data and applying these methodologipsdtein conformational angles
were presented. At this juncture it is appropriate to caarside relative success of these
two aspects, and also to summarise the achievements of Eaetabove are the aims of
this concluding chapter. We begin by considering the themleadvancement of circular
models, separate from any specific data and in terms of tisestas a whole. Thereatfter,
the conclusions drawn concerning fitting multivariate amdutar time series models to

actual protein data are summarised.
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8.1 Multivariate and time series models for circular data

As outlined in Chapters 2 and 5 respectively, there is a ggakmultivariate circular

models and circular time series models. There are varicasores for this, and some
of them have been observed throughout the thesis. As pyiowted, Kent and

Mardia (2002) commented that intractability of at least @neother of the marginals
or conditionals seems to be a universal law in directionatlel® We were unable to
obtain an expression for the univariate marginal distrdsuivhen the trivariate von Mises
distribution was considered. Even in the bivariate casemharginals are not von Mises
and can be unimodal or bimodal. The results of this fact wégeoved in time series
modeling, with bimodal data obtained when simulating datenfthe Sine time series
model for certain parameter values, and the same is trueed@@disine time series model.
For the Mobius model the equilibrium distribution could e obtained analytically, and

numerical solutions were instead obtained.

Certain aspects of formulating multivariate and time senedels were specific to the
type of model being considered, since the former conceatnaiainly on the joint density
whilst the latter focused on the conditionals. For the maliate von Mises model,
parameter estimation provided the problem of an unknowmabsing constant, and
study of the pseudolikelihood provided valuable resultgarding its efficiency both
for the von Mises case and for the multivariate normal distion. For the Sine and
Cosine time series models, unusual behaviour of the meactain of 4, given 6;_,
was observed, and the features of time series models withgaig concentration over
time were considered. Of course, the features observedéotime series models are
relevant to the understanding of the multivariate modetsl (ace versa), and, with the
extension of the bivariate Cosine model to a multivariatetext, the observations made
in both parts of the thesis could contribute to a comparidahe multivariate Sine and

multivariate Cosine models, extending the comparisonsengdMardia et al. (2007b)
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for the bivariate case.

In spite of the difficulties associated with multivariatedaimme series circular models,
progress has been made regarding the formulation of modEte multivariate von
Mises distribution discussed has the appealing propeofidsllowing an approximate
multivariate normal distribution under high concentratiand is a natural extension of
the univariate von Mises distribution and bivariate Sinedelo Circular time series
models have been adapted from distributions in the liteeaind for both the multivariate
and time series models, the methods of parameter estimatsented were seen to be
successful for simulated data. The important question isragarding whether or not
real data exhibit the features observed for these simulda¢al Various goodness—of—
fit measures have also been developed for the circular tiness@odels, by comparing

features of distributions based on the fitted model withéHmssed on the data.

For all of the models developed and considered in the thesigs in which the analysis
can be extended have been outlined. For the multivariatdrses model, the alternative
provided by the bivariate Cosine density for formulationaomultivariate von Mises
model was discussed in Section 4.5. The development of tbdehwould both provide
the potential for the comparison with the multivariate mopeesented and also give
a competing model. Each of the time series models presertedden discussed as
a circular AR() model, and there is clearly scope for the extension of timesdels

to AR(p) processes or even ARMA(g) processes. With these extensions the tools
discussed in Section 5.2, such as the circular correlogcauld be employed in, for

example, model selection.
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8.2 Modeling protein data with the multivariate and time

series models

Certain features of protein conformational angles datee heaused difficulty in the
application of the circular models formulated. The mostabtd of these is the
multimodality or bimodality of data observed, for exampie, Figures 4.8 and 6.4
respectively. In the case of the former, when the serine ahdesdata were considered,
the problem was addressed by isolating a single mode of ttzefdaanalysis. For the
latter (thety time series values), the fitted Sine and Cosine models wecebamodal,
but were unable to capture the type of bimodality observetthenreal data, which had
different concentrations at each mode. The Mobius timesenodel, capturing only
unimodal data, was less successful with regard to moddimg aingles. All models were
a comparatively good fit to the angles, which may be due in part to the fact that these
data are less bimodal, and perhaps in part to the possithifityas suggested by the fitted
Mobius model, there is little association betwegnand ¢; ;. A potential alternative
could be to model certain regions of a polypeptide chain \hth time series models,

rather than the polypeptide in its entirety.

In respect of both the multivariate von Mises model and theugar time series models,
just as the models themselves can be extended, so the gxistidels can be applied to
different data sets to gauge their potential usefulnes®mgenerally, and in this regard

there are numerous ways in which this work can be extended.
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