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Abstract
Over the past few years, the research area of bioinformaticshas been the subject

of increasing attention. At its core remains what is often termed the “holy grail”

of structural biology: the prediction of a protein’s three dimensional structure from

its associated amino acid sequence. Bioinformatics is an interdisciplinary field

of research incorporating, among others, biochemists, statisticians and computer

scientists. The international collaboration involved is exemplified by the Leeds Annual

Statistical Research (LASR) workshops (www.maths.leeds.ac.uk/statistics/workshop),

yearly meetings of such researchers in which new ideas are shared.

The research contained in this thesis focuses on the development of circular multivariate

and time series models and their application to the three-dimensional conformation of

proteins. The aims of the work presented herein are therefore twofold: we strive to

advance the scope of circular statistics both theoretically and also in practice. In terms of

the former, a multivariate circular distribution is proposed and investigated and circular

time series models are developed and explored. With respectto the latter, all the models

considered are applied to the conformational angles of particular proteins, and their

suitability discussed in detail.

Although the thesis focuses primarily on circular data, dueto the close relationship

between highly concentrated circular data and data on the real line, aspects of the work

in this thesis inevitably concentrate on the latter as a limiting case of the former. In these

cases, the results obtained for the linear case are clearly of interest in their own right, as

well as being important to the circular cases to which they relate.
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Chapter 1

Introduction

1.1 Motivation and background

The research presented in this thesis is motivated by the increasingly popular area of

structural bioinformatics, and in particular by the challenge of understanding the three

dimensional structure of proteins. The so–called “proteinfolding problem”, that of

predicting the three dimensional structure of a protein given its amino acid sequence,

is one of the most fundamental unsolved challenges in structural biology. Also of great

interest in the study of proteins is the relationship between their structure and function.

The link between the amino acid sequence and the function of aprotein is therefore its

three dimensional structure, and it is a better understanding of this structure that motivates

the research presented herein.

The work is partitioned into two separate yet connected statistical methodologies. The

first, discussed in Part I of the thesis, is the formulation and application of multivariate

circular models; the second, the focus of Part II, is the development and implementation

of time series models for circular data. The application of each is to the conformational

angles of protein data. We therefore unify in the present chapter the topics that recur
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throughout the thesis. In particular, we give an introduction to protein structure in Section

1.2, outline certain aspects of univariate circular statistics (Section 1.3) and, in Section

1.4, give a summary of two bivariate circular distributionsknown as the Sine model and

the Cosine model that will be revisited throughout the thesis. Section 1.5 gives a more

detailed breakdown of the structure of the thesis.

1.2 Introduction to protein structure

We here give a brief outline of the fundamental aspects of protein structure that will

be important in the application to protein data of the statistical models formulated in

the thesis. There are a number of excellent texts giving comprehensive introductions to

protein structure, just two of which are Branden and Tooze (1998) and Lesk (2000).

There are twenty commonly occurring amino acids, each with acentral carbon atom (Cα)

and, attached to it, a hydrogen atom, an amine group of atoms,a carboxyl group of atoms

and a side chain. It is the latter that enables us to distinguish between amino acids. The

carboxyl group of one amino acid condenses with the amine group of another, creating

a peptide bond between the two amino acids (see Figure 1.1). This process continues,

giving a structural sequence called a polypeptide chain. One or more polypeptide chains

then bind together to form a protein. Two aspects of this protein will be of particular

interest in the current research; the backbone of the protein and the side chains of the

amino acids.

1.2.1 The protein backbone

The backbone of a polypeptide chain comprises a sequence of atoms

N1−Cα
1−C1−N2−Cα

2−C2− . . .−Np−Cα
p−Cp,
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(a) Amino acid 1. (b) Amino acid 2.

(c) Amino acids 1 and 2 joined by a peptide bond.

Figure 1.1: The carboxyl group (COOH) of amino acid 1 condenses with the amine group

(NH2) of amino acid 2, eliminatingH2O and forming a peptide bond between theC atom

of amino acid 1 and theN atom of amino acid 2. The process continues to produce a

polypeptide.
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in which the lengths of the bonds between any two successive atoms and the angle

between any three successive atoms are, to a good approximation, constant (Lesk, 2000).

The degrees of freedom of the polypeptide therefore involveangles within chains of 4

atoms. Since there are 3 different atoms in the backbone (N, C andCα), there are 3

angles to be considered. The situation is summarised in Figure 1.2. We label the atoms

A1, A2, A3 andA4 and the bondsb1, b2 andb3. Looking atA2 in such a way thatA3

andb2 are blocked from view byA2, andA1 is directly belowA2 (see Figure 1.2), the

dihedral angle in each case is that between bondsb1 andb3. A zero direction is observed

whenb1 eclipsesb3, whilst a counter clockwise direction is taken as positive.Angles are

measured between−π andπ.

Table 1.1 defines the dihedral anglesφi, ψi andωi in terms of the atomsA1 to A4. For

example, whenA1 = Ci−1, A2 = Ni, A3 = Cα
i andA4 = Ci then the angleθ depicted in

Figure 1.2 representsφi.

Figure 1.2: Dihedral angleθ defined in terms of four atomsA1, A2, A3 (directly behind

A2) andA4. The angleθ is that between bondsb1 andb3.

Note from the above thatφ1 andψp are undefined. The angleω is restricted to be about

zero. Most combinations ofφ andψ angles in proteins are not observed in practice as
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θ A1 A2 A3 A4

φi Ci−1 Ni Cα
i Ci

ψi Ni Cα
i Ci Ni+1

ωi Cα
i−1 Ci−1 Ni Cα

i

Table 1.1: Specification of the dihedral anglesφi, ψi andωi in terms of the angleθ and

atomsA1 to A4 of Figure 1.2. AtomA3 is directly behindA2.

they would result in steric collisions between backbone andside chain atoms.

A Ramachandran plot (Ramachandran et al., 1963) is commonlyused to plotψ versusφ

for amino acids or proteins, and can also be used to highlighttheφ andψ combinations

observable for the components of a protein called alpha helices and beta strands. Figure

1.3 shows a Ramachandran plot for the protein triosephosphate isomerase. As can be seen

from the plot, theφ, ψ pairs tend to separate into clusters. In general the possible φ, ψ

values forβ strands, right–handedα helices and left–handedα helices for any protein

cluster around the regions on Figure 1.3 labelledβ, αR andαL respectively. The amino

acid glycine is an exception to the rule: its side chain is a single hydrogen atom, meaning

that a wider range ofφ, ψ values are possible without causing steric collisions. Most

proteins contain only small quantities of glycine.

Recent examples of the modeling of protein conformational angles include Singh et al.

(2002), who fit the bivariate von Mises model called the Sine model to angles of the

amino acid proline, and Mardia et al. (2007b), who discuss more broadly the Cosine and

Sine models and model theφ andψ angles of the proteins malate dehydrogenase and

myoglobin using mixture models.
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φ

ψ

−180 −90 0 90 180

−
18

0
−

90
0

90
18

0

β

αL

αR

Figure 1.3: Ramachandran plot for the protein triosephosphate isomerase. Regions

labelledβ, αR andαL indicate those in which the(φ,ψ) angles ofβ strands, right–handed

α helices and left–handedα helices can be observed.

1.2.2 The protein side chain

The carbon atoms on the side chain of an amino acid are labelled according to the letters

of the Greek alphabet. The letterα is given to the central carbon atom of the amino

acid (Cα). Each carbon atom on the side chain is then allocated a letter sequentially,

Cβ,Cγ , . . ., and the dihedral angles involving these side chain carbon atoms are denoted

χ1, χ2, . . . Each amino acid therefore has associated with it a certain number ofχ values,

depending on the number of carbon atoms in its side chain.χ1 for example can be defined

in terms of Figure 1.2 by takingA1 = N, A2 = Cα, A3 = Cβ andA4 = Cγ . The angleθ

in the figure then representsχ1. Two amino acids that each have a single side chain angle

χ1 are serine and valine.
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There has been a vast amount of research investigating the relationship between the side

chainχ angles and theφ andψ angles of amino acids and proteins. Dunbrack and Cohen

(1997), for example, present a Bayesian analysis of side chain conformations in order to

predictχ values from the associatedφ andψ angles.

1.3 Univariate circular statistics and the von Mises

distribution

Circular statistics occur in very many and diverse settings. In nature, the homing or

migration direction of birds are but two examples. In medicine and biology, features that

occur periodically, such as month of onset of an illness, or circadian rhythms, can be

regarded as measurements on the circle. In psychology the perception of direction and in

astronomy the relative orbit of planets are two further examples. A contemporary example

that is of particular significance with the vast interest in bioinformatics, and that will play

a central role in this thesis, is the three–dimensional structure of proteins, defined in terms

of dihedral angles.

In order to both highlight some of the aspects of statisticalmodeling of circular data and to

lay the foundation for the multivariate and time series models discussed in the thesis, we

here give an introduction to univariate circular statistics and the von Mises distribution.

For a more detailed outline than is given here and a more general discussion of directional

statistics see, for example, Mardia and Jupp (1999).

1.3.1 Univariate circular statistics

Consider a circular data setθ1, θ2, . . . , θn whereθi ∈ [−π, π), i = 1, 2, . . . , n (in which

interval we shall take circular variables to be throughout the thesis). Eachθi has associated
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with it a unit vectorxi = (cos θi, sin θi), i = 1, . . . , n. The mean directionθ of θ1, . . . , θn

is defined as the direction of the resultant of the vectorsx1, . . . ,xn. Defining

C =
n
∑

i=1

cos θi and S =
n
∑

i=1

sin θi

we see that the length of this resultant is

R =
√

(C2 + S2)

and thatθ is the solution of the equations

C = R cos θ, S = R sin θ.

Takingθ to be in the interval[−π, π), this solution is given (assumingS 6= 0, C 6= 0) by

the function

θ = tan−1(S,C) =







tan−1(S/C) if C > 0

tan−1(S/C) + πsgn(S) if C < 0
,

wheresgn(·) is the sign function. IfC = 0, S 6= 0 thenθ = π
2
sgn(S) whilst if S = 0, C 6=

0 thenθ = π
2
[sgn(C)− 1]. We therefore see that the functiontan−1(a, b) ∈ [−π, π) is the

angle between the positivex–axis and the vector(b, a).

The mean resultant length is given byR = R/n, andR andθ are the polar coordinates of

the sample first trigonometric moment

m
′

1 = C + iS = Reiθ = ρ̂eiµ̂,

whereC = C/n, S = S/n andρ andµ are the polar coordinates of the population first

trigonometric moment. The samplepth trigonometric moment is defined analogously as

m
′

p = ap + ibp = Rpe
imp , (1.1)

say, where

ap =
1

n

n
∑

i=1

cos pθi, bp =
1

n

n
∑

i=1

sin pθi, (1.2)
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Rp is the length of thepth mean resultant andmp is its direction. Clearlya1 = C, b1 = S,

R1 = R andm1 = θ. From (1.1) we have

ap = Rp cosmp, bp = Rp sinmp. (1.3)

Thepth trigonometric moment about the sample mean directionθ is defined as

mp = ap + ibp, (1.4)

where

ap =
1

n

n
∑

i=1

cos p(θi − θ), bp =
1

n

n
∑

i=1

sin p(θi − θ). (1.5)

Expanding the expressions in (1.5) and using the relations (1.2) and (1.3) forap andbp

gives

ap = Rp cos(mp − pθ), bp = Rp sin(mp − pθ), (1.6)

so that, from (1.4),

mp = Rpe
i(mp−pθ).

We now consider the population equivalents of the sample trigonometric moments. Unlike

distributions on the line, circular distributions are uniquely defined by their moments. In

particular, the characteristic functionφ evaluated at integerp is also thepth trigonometric

momentµ
′

p of θ:

µ
′

p = φp = E(eipθ) = αp + iβp = ρpe
iµp , (1.7)

say, where

αp = E(cos pθ), βp = E(sin pθ).

Thepth central trigonometric moment is defined as

µp = E
{

eip(θ−µ1)
}

= αp + iβp.

Using (1.7) we have

µp = ρpe
i(µp−pµ1),
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giving

αp = ρp cos(µp − pµ1), βp = ρp sin(µp − pµ1).

The most widely used circular distribution is the von Mises distribution, which enjoys a

similar status in circular statistics to that of the normal distribution for statistics on the

line. The connection between the two is one that is exploitedthroughout the thesis, and is

worth highlighting in the simplest, univariate case.

Definition 1.3.1 The random angleθ is said to follow a von Mises distribution with mean

directionµ and “concentration”κ ≥ 0 if its density (with respect to the uniform measure

on the circle) is

f(θ) = {2πI0(κ)}−1 exp{κ cos(θ − µ)}, (1.8)

whereIν(·) is the modified Bessel function of the first kind and orderν. In this case we

write θ ∼ M(µ, κ).

Alternatively, we can define the von Mises distribution in terms of the vectorx:

Definition 1.3.2 The unit random vectorx = (cos θ, sin θ)T has a von Mises distribution

with mean directionµ and “concentration” κ ≥ 0 if its density (with respect to the

uniform measure on the circle) is

f(x) = [2πI0(κ)]
−1 exp(xTα), (1.9)

where the concentration vectorα = κ(cosµ, sinµ)T has lengthκ and angleµ, and

Iν(·) is the modified Bessel function of the first kind and orderν. In this case we write

x ∼ VM(α) (in order to distinguish between this definition and that given in Definition

1.3.1).

From Equation (1.8) and sincedI0(y)/dy = I1(y) it is easily seen that the maximum

likelihood estimates ofµ andκ are given by

µ̂ = θ and A1(κ̂) = R
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respectively, whereA1(·) = I1(·)/I0(·).

Under high concentration (ie. ifκ is large), we haveθ − µ ≈ 0 so thatcos(θ − µ) ≈
1 − (θ − µ)2/2 using a second order Taylor series expansion. From Equation(1.8) we

therefore have

f(θ) ≈ [2πI0(κ)]
−1 exp

{

κ− κ(θ − µ)2/2
}

∝ exp
{

−κ(θ − µ)2/2
}

,

which is proportional to the density of a normal distribution with meanµ and variance

1/κ. In other words, ifθ ∼ M(µ, κ) andκ is large, thenθ ∼ N(µ, 1/κ) approximately.

Figure 1.4 compares the probability density functions forM(µ, κ) andN(µ, 1/κ) for

µ = 0 andκ = 0.5, 1, 2 and4. As can be seen from the plots, the approximation of the

latter to the former improves asκ increases, and forκ = 4 the approximation can be seen

to be reasonably good.

There has been much work on the possible extension of the univariate von Mises

distribution to higher dimensions. In the next section we outline some of these, focusing

on two bivariate von Mises distributions referred to as the Sine model and the Cosine

model, which will be central to much of the research in the thesis.

1.4 Bivariate von Mises models

Mardia (1975) proposed a bivariate distribution for two circular variablesθ1 andθ2 which,

with zero directional mean vector, has probability densityfunction proportional to

exp
[

κ1 cos θ1 + κ2 cos θ2 + {cos θ1, sin θ1}A {cos θ2, sin θ2}T
]

(1.10)

whereA is a2 × 2 matrix. Rivest (1987) considered a submodel of (1.10), the density of

which is proportional to

exp [κ1 cos θ1 + κ2 cos θ2 + α cos θ1 cos θ2 + β sin θ1 sin θ2] . (1.11)
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N(0, 1 κ)

Figure 1.4: Comparison of von Mises densities (solid lines)and normal densities (dashed

lines) forκ = 0.5, 1, 2, 4.

Including mean direction parameters, this model has six parameters. In order to obtain

a distribution that is approximately normal under high concentration, we require further

restrictions onα andβ, since the bivariate normal distribution has five parameters.

With the further restrictionα = 0 and withβ = λ we have the so–called Sine model,

studied in detail by Singh et al. (2002) and Mardia et al. (2007b), the density of which,

including mean directions, is given by

fs(θ1, θ2) = Cs exp
{

κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)+ (1.12)

λ sin(θ1 − µ1) sin(θ2 − µ2)
}

,

for −π ≤ θ1, θ2 < π, whereκ1, κ2 ≥ 0, −∞ < λ <∞, −π ≤ µ1, µ2 < π and

C−1
s = 4π2

∞
∑

m=0

(

2m

m

)(

λ2

4κ1κ2

)m

Im(κ1)Im(κ2).
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Alternatively, takingα = β = −κ3 gives the density of the so–called Cosine model,

studied in depth by Mardia et al. (2007b):

fc(θ1, θ2) = Cc exp
{

κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)− (1.13)

κ3 cos [(θ1 − µ1) − (θ2 − µ2)]
}

,

for −π ≤ θ1, θ2 < π, whereκ1 ≥ κ3 ≥ 0, κ2 ≥ κ3 ≥ 0, −∞ < λ < ∞, −π ≤ µ1, µ2 <

π and

C−1
c = 4π2

{

I0(κ1)I0(κ2)I0(κ3) + 2

∞
∑

m=1

Im(κ1)Im(κ2)Im(κ3)

}

.

The joint distribution ofθ1 andθ2 is approximately normal based on bothfs(θ1, θ2) and

fc(θ1, θ2) for highly concentrated data, so long as the joint circular distribution in question

is unimodal, the conditions for which are discussed below. For the models given by

Equations (1.12) and (1.13), the parametersλ andκ3 account for the circular dependency

betweenθ1 andθ2.

The marginal and conditional densities of the Sine and Cosine models are derived in

Singh et al. (2002) and Mardia et al. (2007b), and we here quote these densities for future

reference. For the Sine model, the marginal density ofθ1 is given by

fs(θ1) = 2πCsI0(a1)e
κ1 cos(θ1−µ1) (1.14)

wherea1 =
{

κ2
2 + λ2 sin2(θ1 − µ1)

}1/2
. For the Cosine model, the corresponding result

is

fc(θ1) = 2πCcI0(κ23)e
κ1 cos(θ1−µ1)

whereκ2
23 = κ2

2 + κ2
3 − 2κ2κ3 cos(θ1 − µ1).

The conditional density ofθ2 givenθ1 for the Sine model is

fs(θ2|θ1) = [2πI0(a1)]
−1ea1 cos(θ2−µ2−b1) (1.15)

= [2πI0(a1)]
−1eκ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)
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wheretan b1 = λ
κ

sin(θ1 − µ1). For the Cosine model, we have

fc(θ2|θ1) = [2πI0(κ23)]
−1eκ23 cos(θ2−µ2−c1) (1.16)

= [2πI0(κ23)]
−1eκ2 cos(θ2−µ2)−κ3 cos[(θ1−µ1)−(θ2−µ2)] (1.17)

wheretan c1 = −κ3 sin(θ1 − µ1)/[κ2 − κ3 cos(θ1 − µ1)]. We therefore see that for both

the Sine model and the Cosine model, the conditional densityof θ2 givenθ1 is univariate

von Mises. The same is true ofθ1 givenθ2, for which we have similar expressions to those

given above.

Singh et al. (2002) considered the shape of the marginal distribution fs(θ1) for the Sine

model, whilst Mardia et al. (2007b) explored the shapes of the marginal and joint densities

fc(θ1) andfc(θ1, θ2) for the Cosine model, and the shape of the joint densityfs(θ1, θ2)

for the Sine model. In fact all of these densities are symmetric and either unimodal or

bimodal. Table 1.2 gives the condition, for each, under which the density is bimodal.

Sine model Cosine model

Joint κ1κ2 < λ2 κ3 > κ1κ2/(κ1 + κ2)

Marginal A1(κ2) > κ1κ2/λ
2 A1(|κ1 − κ3|) > |κ1−κ3|κ2

κ1κ3

Table 1.2: Necessary and sufficient conditions for bimodality of joint and marginal

densities for the Sine and Cosine models.

For the marginal densitiesfs(θ1) andfc(θ1), the unique mode is atµ1 if the density is

unimodal. If the density is bimodal, then the modes are located atµ1 ± θ∗1, whereθ∗1 is

defined as follows. For the Sine model,θ∗1 is the solution of

cos(θ∗1 − µ1)A1(a
∗
1)/a

∗
1 = κ1/λ

2, (1.18)

wherea∗1 =
{

κ2
2 + λ2 sin2(θ∗1 − µ1)

}1/2
. For the Cosine model,θ∗1 is the solution to

κ2κ3A1(κ
∗
23)/κ

∗
23 − κ1 = 0, (1.19)
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whereκ∗23 = {κ2
2 + κ2

3 − 2κ2κ3 cos(θ∗1 − µ1)}1/2.

When the joint densities are unimodal the Sine and Cosine models can, under high

concentration, be approximated by normal distributions with common mean vector

(µ1, µ2) and inverse covariance matrices given respectively by

Σ−1
s =





κ1 −λ
−λ κ2



 and Σ−1
c =





κ1 − κ3 κ3

κ3 κ2 − κ3



 .

The correlations betweenθ1 and θ2 for the Sine and Cosine models based on these

approximations are

ρs =
λ√
κ1κ2

and ρc
−κ3

√

(κ1 − κ3)(κ2 − κ3)

respectively. Mardia et al. (2007b) comparedρs and ρc with the correlations of

(cos θ1, cos θ2) and(sin θ1, sin θ2) for various large values ofκ1 andκ2, concluding thatκ3

appears to “track” the value ofρc well over the entire range(−1, 1) of the latter, whereas

λ sometimes only tracksρs over the interval(0, 0.4). Their numerical comparisons of

moments also show the Cosine model to outperform the Sine model in terms of the ability

to capture the correlation betweenθ1 andθ2. On the other hand, the Sine model is easier

to extend to more dimensions, and it is this model that will beextended in Chapter 2 to a

multivariate setting. Mardia et al. (2007b) also give a brief comparison of the conditional

densities ofθ2 givenθ1, and this comparison will be further explored in Chapter 6. Having

outlined the recurring topics of Part I and Part II of the thesis, we next give a more detailed

breakdown of the thesis structure.

1.5 Outline of thesis

As previously mentioned, the thesis is divided into two parts: in Part I (comprising

Chapters 2–4) we focus on a multivariate von Mises distribution with applications to
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protein data, whilst Part II (Chapters 5–6) considers circular time series models with

applications to protein data. A more detailed description of the chapters in Parts I and II

is now given.

1.5.1 Outline of Part I

In Chapter 2 we introduce a multivariate von Mises distribution, which is a natural

extension of the Sine model (Equation (1.12)). The model properties are discussed,

including the normal approximation under high concentration and derivation of the

conditional densities. Data simulation is also discussed for the bivariate and trivariate

models, the former using a rejection algorithm and the latter a Gibbs sampling approach.

Chapter 3 introduces a method of estimation called pseudolikelihood estimation, which

provides an alternative to maximum likelihood estimation when the normalizing constant

of a density is unknown, as is the case for the multivariate von Mises distribution of

dimension greater than two. A review of existing work on the pseudolikelihood is given,

and a method of obtaining its efficiency is presented. Two different pseudolikelihoods are

defined in terms of products of conditional densities. The efficiency of both is discussed,

in this chapter, with reference to the multivariate normal distribution, which approximates

the multivariate von Mises distribution under high concentration. The efficiency is shown

to be unity for all bivariate and trivariate situations considered, except in the bivariate case

whenσ1 andσ2 are known.

In Chapter 4 we discuss parameter estimation and inference for the multivariate von

Mises distribution. In particular, the efficiency of the pseudolikelihood is calculated

numerically for the bivariate case, and simulations support the conclusions reached.

For the trivariate case, efficiency is explored through simulation of data and subsequent

parameter estimation. A trivariate von Mises distributionis used to model two separate

protein data sets, and maximum likelihood estimation is compared with pseudolikelihood
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estimation for these data. Inference is discussed in terms of likelihood ratio testing

for both data sets, which testing includes the use of the pseudolikelihood and normal

approximations.

1.5.2 Outline of Part II

Chapter 5 gives a review of circular time series models. Exploratory analysis is discussed

in terms of thek–lag circular autocorrelation coefficient. A circular correlogram is defined

and a method of assessing the significance of the coefficientsis given. Four approaches

to time series modeling of circular data are discussed, namely the von Mises AR process

(defined in terms of conditional von Mises densities), processes based on link functions,

wrapped AR processes and projected processes.

The use of conditional von Mises densities for the specification of AR(1) models is

discussed in Chapters 6 and 7. In Chapter 6 the focus is on the use of the conditional

densities of the Sine and Cosine models discussed in Section1.4, whilst Chapter 7 adapts

a circular regression model due to Downs and Mardia (2002) toa time series setting, and

we will refer to the resulting model as the Möbius model. In each of Chapters 6 and 7, the

discussion of models proceeds as follows. The deterministic and random components of

the model are discussed, and the behaviour of simulated dataconsidered in terms of the

observations made. The equilibrium distribution of the processes is given explicitly for

the Cosine and Sine time series models, whilst that for the M¨obius model is considered

numerically. The likelihood function and parameter estimation are considered, and the

models are fitted to protein data. An analysis of goodness–of–fit follows, including

the simulation of data based on maximum likelihood estimates and comparison of the

resulting data with the original data. For each model, the potential for further work and

ways in which the model can be extended are also discussed.

In Chapter 8 we summarize the conclusions of the thesis and assess its achievements.
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Chapter 2

A multivariate von Mises distribution

2.1 Introduction

In this chapter we present a multivariate circular distribution that is a natural extension of

the univariate von Mises distribution and which, for highlyconcentrated data, follows

an approximate multivariate normal distribution. The model is also a multivariate

generalization of the Sine model outlined in Section 1.4. This chapter focuses on model

properties and data simulation, whilst the ensuing two chapters (Chapters 3 and 4)

consider parameter estimation and inference for the model (respectively), both in terms

of simulated and actual protein data.

There are very few multivariate circular distributions in the literature. A wrapped

multivariate normal distribution was discussed by Baba (1981). The univariate and

bivariate marginals of this distribution are also wrapped normal, whereas the multivariate

von Mises distribution to be discussed does not have von Mises marginals. However,

maximum likelihood estimation is not computationally feasible for the wrapped model.

A p–variate extension of the bivariate model of Equation (1.10) was given by Mardia and
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Patrangenaru (2005) as

exp
{

∑

as cos θs +
∑

bs sin θs +
∑

ast cos θs cos θt

+
∑

bst cos θs sin θt +
∑

cst sin θs sin θt

}

(2.1)

whereass = bss = css = 0, bst 6= bts ands, t = 1, . . . , p. In this chapter we present

an extension of the Sine model (1.12) top dimensions. The model is also a natural

extension of the univariate von Mises distribution incorporating circular dependency

between variables and approximates a multivariate normal distribution when the range

of observations is small. The model is defined in Section 2.2,and its properties discussed

in Section 2.3, in which section conditional, joint and marginal distributions are also

derived. Methods for simulating bivariate and trivariate data from the model are presented

in Section 2.4, and can be extended to higher dimensions.

2.2 The model

We define the probability density function of the multivariate von Mises distribution for

Θ = (Θ1,Θ2, . . . ,Θp) as follows:

f(Θ) = C−1
p (κ,Λ) exp

{

κT c(θ,µ) +
1

2
s(θ,µ)TΛ s(θ,µ)

}

, (2.2)

where−π < θj ≤ π, −π < µj ≤ π, κj ≥ 0 , −∞ < λjl <∞,

c(θ,µ)T = (cos(θ1 − µ1), cos(θ2 − µ2), . . . , cos(θp − µp)),

s(θ,µ)T = (sin(θ1 − µ1), sin(θ2 − µ2), . . . , sin(θp − µp)),

µT = (µ1, µ2, . . . , µp), κT = (κ1, κ2, . . . , κp),

[Λ]jl = λjl = λlj, λjj = 0,

andC−1
p (κ,Λ) is a normalizing constant. We denote thep–variate von Mises distribution

by Θ ∼ Mp(µ,κ,λ). Forp = 1, (2.2) reduces to the univariate von Mises distribution,
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and forp = 2 to the bivariate distribution studied by Singh et al. (2002). The general

p–variate model was proposed by Singh and Mardia (2004). The work herein expands on

their preliminary work, and is summarised in Singh et al. (2007).

2.3 Model properties

In this section we derive certain properties of the multivariate von Mises distribution: it is

shown that when the circular variables are highly concentrated they follow an approximate

multivariate normal distribution; the univariate conditional distributions are shown to be

von Mises distributed, and the shape of univariate and bivariate marginals for the trivariate

model are explored. Without loss of generality, it will be assumed throughout this section

thatµ = 0.

When the fluctuations in the variablesΘ1,Θ2, . . . ,Θp are small, we have

cos θj ≈ 1 − θ2
j/2, sin θj ≈ θj; j = 1, 2, . . . , p.

If we substitute these expressions back into (2.2), then thepart of the exponential

involving θ is

exp

{

−1

2
θTKθ +

1

2
θTΛθ

}

(2.3)

whereK = diag(κ). (2.3) is proportional to the probability density functionof the

multivariate normal distribution with inverse covariancematrix Σ−1 = K − Λ, ie.

(Σ−1)jj = κj, (Σ−1)jl = −λjl, j 6= l. We therefore see that, under high concentration,

the multivariate von Mises distribution follows an approximate multivariate normal

distribution.

We now derive the univariate conditional distributions associated with (2.2).

Theorem 2.3.1 Let Θ have thep–variate von Mises distribution (2.2). Then the

conditional distribution ofΘp givenθ1, . . . , θp−1 is univariate von Mises with parameters
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given in (2.7).

Proof

Forp > 1 write (2.2) as

f(θ1, . . . , θp) = C−1
p exp

{

p
∑

j=1

κj cos θj +

p−1
∑

j=1

p
∑

l=j+1

λjl sin θj sin θl

}

. (2.4)

Then the conditional density ofΘp given θ1, . . . , θp−1 is proportional to the expression

obtained upon collecting the terms in the exponent of (2.4) involvingθp. Hence we have

f(θp| θ1, . . . , θp−1) ∝ exp

{

κp cos θp +

p−1
∑

j=1

λjp sin θj sin θp

}

. (2.5)

Now defineκp ·1,...,p−1 andµp ·1,...,p−1 (to emphasize conditioning onθ1, . . . , θp−1) by

κp = κp ·1,...,p−1 cosµp ·1,...,p−1

p−1
∑

j=1

λjp sin θj = κp ·1,...,p−1 sinµp ·1,...,p−1 (2.6)

and substitute these expressions into (2.5). Then we have

f(θp| θ1, . . . , θp−1) ∝ exp {κp ·1,...,p−1 [cos θp cosµp ·1,...,p−1 + sin θp sinµp ·1,...,p−1]}

= exp {κp ·1,...,p−1 cos (θp − µp ·1,...,p−1)} . (2.7)

(2.7) is proportional to the pdf of a univariate von Mises distribution with, from Equation

(2.6), mean direction and concentration parameter given respectively by the equations

tanµp ·1,...,p−1 =

p−1
∑

j=1

λjp sin θj/κp

κp ·1,...,p−1 =

{

κ2
p +

(

p−1
∑

j=1

λjp sin θj
)2

}1/2

Thus

f(θp| θ1, . . . , θp−1) = [2πI0 (κp ·1,...,p−1)]
−1 exp {κp ·1,...,p−1 cos (θp − µp ·1,...,p−1)} . (2.8)

2
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Corollary 2.3.2 The marginal pdffmarg = f(θ1, . . . , θp−1) of (Θ1,Θ2, . . . ,Θp−1) is

given by

fmarg = 2πC−1
p I0 (κp ·1,...,p−1) exp

{

p−1
∑

j=1

κj cos θj +

p−2
∑

j=0

p−1
∑

l=j+1

λjl sin θj sin θl

}

. (2.9)

Proof

Equation (2.9) is given by the ratiof(θ1, . . . , θp)/f(θp|θ1, . . . , θp−1). 2

More generally, we can obtain the conditional distributionof Θ1,Θ2, . . . ,Θr given

θr+1, θr+2, . . . , θp using the same approach as in the proof of Theorem 2.3.1. We obtain

fcond = f(Θ1, . . . ,Θr|θr+1, . . . , θp) as

fcond ∝ exp

{

r
∑

j=1

κj cos θj +

r−1
∑

j=1

r
∑

l=j+1

λjl sin θj sin θl +

r
∑

j=1

cj sin θj

}

,

wherecj is constant with respect toθ1, . . . , θr, for j = 1, . . . , r. Writing κj = aj cos νj

and cj = aj sin νj gives that

fcond ∝ exp

{

r
∑

j=1

aj cos(θj − νj) +

r−1
∑

j=1

r
∑

l=j+1

λjl sin θj sin θl

}

.

Next writingφj = θj − νj , so thatθj = φj + νj , gives

fcond ∝ exp

{

r
∑

j=1

aj cosφj +

r−1
∑

j=1

r
∑

l=j+1

λjl sin(φj + νj) sin(φl + νl)

}

.

Expanding each sine term and their product gives, for constantsajl, bjl, cjl anddjl ,

fcond ∝ exp

{

r
∑

j=1

aj cosφj +

r−1
∑

j=1

r
∑

l=j+1

[

ajl cosφj cosφl+

+ bjl sinφj sinφl + cjl cosφj sinφl + djl sinφj cosφl
]

}

. (2.10)

Equation (2.10) is the density of Mardia and Patrangenaru (2005) – given by Equation

(2.1) – withbs = 0 for all s.
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We now consider the shapes of the univariate and bivariate marginal distributions of the

trivariate von Mises distribution, ie. (2.2) withp = 3. As discussed in Section 1.4,

Singh et al. (2002) showed that forp = 2 the univariate marginals are symmetric and

unimodal or bimodal, and derived the conditions under whicheach occur, whilst Mardia

et al. (2007b) did the same for the joint bivariate distribution.

When Θ is distributed according to (2.2) it is clear thatΘ and −Θ have the same

distribution. This implies that all marginal distributions are symmetric. For the trivariate

von Mises density, the bivariate marginal density ofΘ1 andΘ2 is obtained by substituting

p = 3 into (2.9). It does not appear possible to obtain an analyticexpression for the

univariate marginal ofΘ1 from this bivariate density, since it involves the integralof

a Bessel function applied to a function ofθ1 and θ2. In Figures 2.1 and 2.2 we plot

the univariate and bivariate marginal densities for the trivariate von Mises distribution,

the former obtained by integrating the latter numerically and the normalizing constant

for the trivariate distribution obtained by numerically integrating (2.2) withp = 3.

The plots correspond to the four parameter configurations(κ1, κ2, κ3, λ12, λ13, λ23) =

(2, 3, 1, 2, 2, 2), (0.5, 0.75, 0.25, 2, 3, 4), (2, 2, 2, 20, 30, 40) and(2, 2, 2, 0.1, 0.1, 0.1).

We see from the marginal plots that the univariate and bivariate densities are symmetric

and either unimodal or bimodal. For many other parameter conformations we observe

the same, and it appears that all univariate and bivariate marginals associated with the

trivariate density have either a single or two modes and are symmetric aboutµ = 0.

2.4 Simulating data

In this section we outline two possible methods for simulating data from the bivariate

and trivariate von Mises distributions. Simulation from the bivariate model was discussed

by Subramaniam (2005) and Mardia et al. (2007b). The first method to be considered

is the acceptance–rejection method and the second a Gibbs sampler. For the former
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Figure 2.1: Univariate and bivariate marginals for trivariate von Mises distribution with

(κ1, κ2, κ3, λ12, λ13, λ23) given above each plot.
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Figure 2.2: Univariate and bivariate marginals for trivariate von Mises distribution with

(κ1, κ2, κ3, λ12, λ13, λ23) given above each plot.
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we describe the algorithm for the bivariate case. Denote byf2(θ1, θ2; κ1, κ2, λ12) the

bivariate von Mises density and byf1(θ1; κ1, κ2, λ12) the marginal density ofΘ1 in this

case, obtained by substitutingp = 2 into (2.4) and (2.9) respectively. Singh et al. (2002)

compared the marginal ofΘ1 with a univariate von Mises distribution and showed that,

for an appropriately chosenκ in the latter, the two have asymptotically the same normal

density, and are therefore “similar”. As outlined in Section 1.4,f1(θ1; κ1, κ2, λ12) is either

unimodal or bimodal. An appropriate candidate density fromwhich to sample is therefore

a univariate von Mises distribution or a mixture of univariate von Mises distributions,

depending on whetherf1(θ1; κ1, κ2, λ12) is unimodal or bimodal. We therefore define the

candidate density by

g(θ1; κ, ν) =
1

2
[2πI0(κ)]

−1 {eκ cos(θ1+ν) + eκ cos(θ1−ν)
}

,

whereν = 0 if f1(θ1; κ1, κ2, λ12) is unimodal and is given byθ∗ from Equation (1.19)

if it is bimodal. Thenf1(θ1; κ1, κ2, λ12) ≤ Mg(θ1; κ, ν) = h(θ1; κ, ν) for some constant

M > 1 and for allθ1 ∈ [−π, π). The algorithm for simulating a pair of variates(θ1, θ2)

proceeds as follows:

1. For givenκ1, κ2 andλ12, minimise the function

max
−π<θ1≤π

{

f1(θ1; κ1, κ2, λ12)

g(θ1; κ, ν)

}

with respect toκ. TakeM to be this minimum (thus makingM as close to unity as

possible subject to the constraintf1(θ1; κ1, κ2, λ12)/g(θ1; κ, ν) ≤ M), and denote

by κ∗ the value ofκ giving this minimum.

2. Generate a random variateθ∗1 from the candidate densityg(θ1; κ∗, ν) and a

uniformly distributed random variateu ∈ [0, 1].

3. If uMg(θ∗1; κ
∗, ν) ≤ f1(θ

∗
1; κ1, κ2, λ12) then acceptθ∗1 as a random variate from

f1(θ1; κ1, κ2, λ12), else return to step 2.
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4. Generate a random variateθ∗2 using the conditional distribution ofΘ2 givenθ1 = θ∗1,

which is given by Equation (2.8) withp = 2 and is univariate von Mises.

The minimisation in step 1 of the algorithm is performed using theoptim function in

R. In principle, steps 1, 2 and 3 of the above algorithm could beadapted to simulate

random variates for the univariate marginals of thetrivariate von Mises distribution. In

practice, however, since we do not have an analytic expression for these densities, the

process would be computationally very expensive.

Figure 2.3 compares the target densityf1(θ1; κ1, κ2, λ12) with M multiplied by the

candidate densityg(θ1, κ∗, ν) for four parameter configurations. Also shown on the plots

is the efficiency1/M of the simulation in each case. It can be seen from the plots, and is

observed more generally, that efficiency appears to be improve asκ increases and asλ12

decreases (in absolute value – efficiency is the same forλ12 and−λ12).

An alternative approach to simulating variates from the bivariate and trivariate von

Mises distributions is to use the Gibbs sampling approach. For the trivariate case, this

appears to be the only feasible means of generating variates, due to the computational

expense of the rejection sampling mentioned above. We first generate a vector ofθ1

values from a univariate von Mises distribution with concentration parameterκ1 and a

vector ofθ2 values from a univariate von Mises distribution with concentration parameter

κ2. Using the conditional distribution ofΘ3 given (θ1, θ2) we generate a vector ofθ3

values conditional on the other two vectors. We then cycle through theθ1, θ2 and θ3

vectors, replacing the values in the vector of interest at each stage with values generated

conditionally on the values in the other two vectors. If we update each vectorr times,

then the point at which we have a sample from the trivariate von Mises distribution clearly

depends onr. An appropriate choice ofr is discussed further in Chapter 4.
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Figure 2.3: Target (black) and candidate (red) densities for four parameter configurations,

and the efficiency of data simulation for the bivariate von Mises distribution.

As an alternative initialization of theθ1 and θ2 vectors, we could use the rejection

simulation algorithm above to generate variates from thebivariate model, thereby

incorporating aλ parameter.

2.5 Conclusions

We have presented in this chapter a multivariate circular distribution that is a natural

extension of both the univariate von Mises distribution andthe bivariate distribution

known as the Sine model presented in Section 1.4. Many of the properties derived and

observed are themselves natural extensions of the properties of the bivariate model derived

by Singh et al. (2002) and Mardia et al. (2007b).
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In discussion of the model properties it has been seen that the marginal distributions

associated with the multivariate von Mises distribution are not themselves von Mises,

but that all univariate conditional densities do follow vonMises distributions.

For the trivariate von Mises distribution it has been observed, for all parameter

configurations considered, that all univariate and bivariate marginal densities are

symmetric and either unimodal or bimodal, and it is conjectured that this is the case more

generally.

Under high concentration (which requires unimodality of the joint density) it has been

shown that the multivariate von Mises distribution can be approximated by a multivariate

normal distribution, and the specific form of this normal distribution has been derived.

Two potential methods for data simulation have been presented. The first, an acceptance–

rejection method, is suitable for the bivariate case (when the normalizing constant

is known); the second, a Gibbs sampling approach, is more appropriate for higher

dimensions, and will be used in subsequent chapters for simulation from the trivariate

von Mises distribution.

Before considering parameter estimation for the multivariate von Mises distribution, we

outline in the next chapter a general method of estimation useful when the normalizing

constant is unknown, and discuss its efficiency for the multivariate normal distribution.
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Chapter 3

Efficiency of the pseudolikelihood for

multivariate normal distributions

3.1 Introduction

In certain circumstances, inference based on the likelihood function can be hindered by,

for example, computational complexity or an unknown normalizing constant. In such

cases it is necessary to seek an alternative method of estimation. Two pseudolikelihoods,

each based on conditional distributions, are assessed in terms of their efficiency relative

to the full likelihood for the multivariate normal distribution. By comparing information

matrices, it is shown that both the pseudolikelihoods are fully efficient for the multivariate

normal distribution with all variances equal toσ2 and all correlations equal toρ. Loss

of efficiency is shown for the estimator of equalρ in the case of knownσ2. Both

pseudolikelihoods are also shown to be fully efficient for the bivariate normal distribution

with parametersσ1, σ2 andρ. The derivation provides an outline of the procedure used to

show that both pseudolikelihoods are also efficient for the trivariate normal distribution

(with known mean vector). For the latter, information matrix elements are given.
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An alternative approach to showing full efficiency is outlined for the five-parameter

bivariate normal distribution, for which estimating equations for the full and

pseudolikelihood approaches are compared.

The results for the normal distribution are of interest in their own right, but also give

an insight into a limiting case of the multivariate von Misesdistribution which, in the

previous chapter, was shown to approximate a multivariate normal distribution when the

variables are highly concentrated.

The two pseudolikelihoods to be studied are defined as follows. For ap–dimensional

vector random variableY = (Y1, Y2, . . . , Yp)
T with joint probability density function

f(y; q), where q is an unknown parameter vector of lengthr, we define the full

pseudolikelihood (FPL), based on a random sample ofn observations ofY , as

FPL(Y ; q) =

p
∏

j=1

n
∏

i=1

g1(Yji|rest; q) (3.1)

where g1(Yj|rest; q) is the conditional distribution of Yj given

(Y1, . . . , Yj−1, Yj+1, . . . , Yp). The partial pseudolikelihood (PPL) is defined as

PPL(Y ; q) =

p
∏

j 6=k

n
∏

i=1

g2(Yji|Yki; q). (3.2)

Maximum pseudolikelihood estimates are then obtained by maximising (3.1) and (3.2)

with respect to the parameters inq.

Both pseudolikelihoods are consistent and asymptoticallynormal under the usual

regularity conditions, as discussed by Arnold and Strauss (1991). Attention herein

therefore focuses solely on efficiency. Cox and Reid (2004) discuss a class of

pseudolikelihoods of which PPL is a special case. They discuss consistency of estimators

for a single parameter and for parameter vectors for ap-dimensional random variable

as n increases and for fixedn as p increases. FPL is the pseudolikelihood studied

by Besag (1975, 1977). Arnold and Strauss (1991) discuss a general pseudolikelihood
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of which both FPL and PPL are special cases. They show the pseudolikelihood

estimator to be consistent and asymptotically normal underthe standard regularity

conditions, and consider its efficiency in special cases forexponential and beta conditional

distributions, among others. They also briefly consider alternative specifications of

the pseudolikelihood with trivariate or higher dimension.Arnold et al. (2001) give a

comprehensive review of the role of conditionally specifieddistributions, including the

pseudolikelihood. Wood (1993) uses the same approach as we use here in order to

calculate the efficiency of a pseudolikelihood for the Bingham distribution, in which ML

estimation is hindered by the normalizing constant. As we dofor the bivariate von Mises

distribution in the next chapter, he shows that efficiency tends to unity as parameters

approach certain limits.

In Section 3.2 we give an outline of how to obtain the efficiency of the pseudolikelihood.

Section 3.3 gives the derivation for the multivariate normal case with equal variances and

equal correlations, whilst Section 3.4 describes the loss of efficiency in the estimator for

ρ when the variances are known. Full efficiency is derived for the bivariate and trivariate

cases in Section 3.5 with the only restriction on parametersbeing that the means are

assumed to be known. Finally, the alternative approach of comparing estimating equations

is outlined in Section 3.6, in which we show the pseudolikelihood to be fully efficient for

the five parameter bivariate normal distribution.

3.2 Efficiency of the pseudolikelihood

The efficiency of one estimation method relative to another will be defined in terms of the

ratio of determinants of information matrices for the two methods given the underlying

densityf(y; q). We therefore first calculate the information matrixI for each method.

Following Kent (1982), define the score vector byUf (y; q) = ∂ log f(y; q)/∂q. The
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Fisher information matrix can be defined equivalently as

If(q) =

∫

Uf (y; q)Uf(y; q)Tf(y; q)dy and

If(q) = −
∫

∂Uf (y; q)/∂qTf(y; q)dy.

Now suppose we wish to calculate the information based on a density g(y; q), when the

underlying density isf(y; q). To this end, define the squared score matrix by

Jg(q) =

∫

Ug(y; q)Ug(y; q)Tf(y; q)dy,

and the expected score derivative matrix by

Hg(q) = −
∫

∂Ug(y; q)/∂qTf(y; q)dy.

The information matrix based ong when the underlying density isf , is then

Ig(q) = Hg(q)Jg(q)−1Hg(q), (3.3)

Note that, iff = g, we haveIg = Hg = Jg.

The efficiency of estimation based ong relative to estimation based onf can then be

obtained as (see, for example, Davison (2003, p. 113))

{ |Ig(q)|
|If (q)|

}1/r

(3.4)

wherer is the dimension ofq.

3.3 Multivariate normal with unknown σ2 and ρ

We consider first the case in whichY = (Y1, Y2, . . . , Yp)
T follows a multivariate normal

distribution withvar(Yj) = σ2, corr(Yj , Yk) = ρσ2 andE(Yj) = 0, for all 1 ≤ j 6= k ≤ p.

In this case the vectorq of unknown parameters isq = (σ, ρ) andr = 2.
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3.3.1 Full pseudolikelihood

For FPL (Equation (3.1)) we have

Yj|rest ∼ Np

(

ρ

1 + (p− 2)ρ

[

p
∑

r=1

yr − yj

]

, σ2

[

1 − (p− 1)ρ2

1 + (p− 2)ρ

]

)

, (3.5)

j = 1, 2, . . . , p. Denote bygFPL the contribution to FPL (ignoring constant terms) from a

single observationy of Y . Based on (3.5) we have

log gFPL = −p
2

log

{

σ2

[

1 − (p− 1)ρ2

1 + (p− 2)ρ

]}

−

∑p
j=1

[

yj −
ρ(
∑p
r=1

yr−yj)
1+(p−2)ρ

]2

2σ2
[

1 − (p−1)ρ2

1+(p−2)ρ

] . (3.6)

Writing
∑p

r=1 yr = py, multiplying the numerator and denominator of the second term in

(3.6) bya2, wherea = [1 + (p− 2)ρ], and expanding the square, gives the numerator of

this second term as

b2
p
∑

j=1

y2
j + p(c2 − 2bc)y2, (3.7)

whereb = 1 + (p− 1)ρ andc = pρ. Now write
∑

j y
2
j =

∑

j(yj − y)2 + py2 and define

SSW =
∑

j(yj − y)2 andSSB = y2. Then (3.7) becomes

b2SSW + p(1 − ρ)2SSB,

where the coefficient ofSSB is p(b2 + c2 − 2bc) = p(b − c)2 = p(1 − ρ)2. log gFPL is

therefore

−p
2

log

{

σ2

[

1 − (p− 1)ρ2

a

]}

− b2SSW + p(1 − ρ)2SSB
2σ2 {a2 − (p− 1)ρ2a} . (3.8)

Due to the complicated nature of some of the expressions, most of the derivatives in this

chapter are checked using Maple. Differentiating (3.8) with respect toσ gives

∂ log gFPL

∂σ
= −p

σ
+
b2SSW + p (1 − ρ)2 SSB
σ3 {a2 − (p− 1) ρ2a} , (3.9)

whilst the first derivative with respect toρ can be calculated as

∂ log gFPL

∂ρ
=
pσ2 [2ρ(p− 1)a− ρ2(p− 1)(p− 2)] − 2 [b(p− 1)SSW − p(1 − ρ)SSB]

2σ2 [a2 − (p− 1)ρ2a]

+

[

b2SSW + p (1 − ρ)2 SSB
]

[2a (p− 2) − (p− 1) ρ(3a− 1)]

2σ2 [a2 − (p− 1) ρ2a]2
. (3.10)
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The second derivatives of (3.8) can be found as follows:

∂2 log gFPL

∂σ2
=

p

σ2
− 3

b2SSW + p (1 − ρ)2 SSB
σ4 {a2 − (p− 1) ρ2a} ; (3.11)

∂2 log gFPL

∂ρ2
= ASSW +BSSB + C (3.12)

where

A =
(b+ 2)(p− 2)2ρ2 + 6(p− 2)ρ+ 4 − p

σ2 [(p− 1)ρ2 − (p− 3)ρ− 1]3
,

B =
p [(p− 1)2(p− 2)2(ρ3 − 3ρ2) − 6(p− 1)2(p− 2)ρ− (p− 1)(3p− 4)]

σ2 [(p− 1)(p− 2)ρ2 + (2p− 3)ρ+ 1]3
,

C =
p(p− 1) [(p− 1)(p− 2)2ρ4 + 4(p− 1)(p− 2)ρ3 + 2(p− 1)ρ2 + 2a]

2 [(p− 1)ρ2 − (p− 2)ρ− 1]2 a2
.

Finally,

∂2 log gFPL

∂ρ∂σ
=

(p− 2)(b+ 1)ρ+ 2

σ3(1 − ρ)2a2
SSW+

p(p− 1) [(p− 2)(ρ2 − 2ρ) − 2]

σ3a2b2
SSB. (3.13)

In order to obtain theHgFPL
andJgFPL

matrices for FPL we require expressions for the

expectations ofSSB, SSW and their product and squares. We first show thatSSB and

SSW are independent, enabling us to calculate the expected value of their product as the

product of their expected values.

Theorem 3.3.1 Let Y have ap–variate normal distribution with all correlations equal

to ρ, all variances equal toσ2 and all means equal to zero. Then the expressionsSSW =
∑

j(yj − y)2 andSSB = y2, wherey =
∑p

j=1 yj/p, are independent.

Proof

SSB andSSW are independent if(yj − y) andy are independent for allj = 1, 2, . . . , p.

Now (yj−y) andy are independent ifCov {(yj − y), y} = 0, and sinceE(y)E(yj−y) =

0 it suffices to show thatE {(yj − y)y} = 0, ie. thatE(yjy) = E(y2). Now

E(yjy) =
E(y2

j ) + (p− 1)E(yjyk)

p
=
σ2 [1 + (p− 1)ρ]

p
,



Efficiency of the pseudolikelihood for multivariate normaldistributions 39

k 6= j, whilst

E(y2) =
pE(y2

j ) + p(p− 1)E(yjyk)

p2
=
σ2 [1 + (p− 1)ρ]

p
.

ThusE(yjy) = E(y2) andSSW andSSB are independent. 2

Remark: The independence ofSSW andSSB requires that all correlations are equal, all

variances are equal and all means are equal (but not necessarily zero).

By collecting terms of the formyiyj for SSB andSSW , and of the formyiyjykyl for their

squares, where any, all or none ofi, j, k, l could be equal, and by using Theorem 3.3.1,

we find that

E(SSB) =
bσ2

p
; E(SSW ) = (p− b)σ2; E(SSBSSW ) =

b(p− b)σ4

p
;

E(SS2
B) =

3b2σ4

p2
; E(SS2

W ) = (p2 − 1)(1 − ρ)2σ4. (3.14)

By substituting the expressions from (3.14) into the secondderivatives (3.11)–(3.13) and

the product and squares of the first derivatives (3.9) and (3.10) we obtain the symmetric

elements of the matricesHgFPL
andJgFPL

:

[HgFPL
]11 =

2p

σ2
(3.15)

[HgFPL
]12 = −p(p− 1)(a+ 1)ρ

ab(1 − ρ)σ

[HgFPL
]22 =

p(p− 1) {(p− 1)(p− 2)(a+ 3)ρ3 + 2 [a+ (p− 1)ρ2]}
2a2b2(1 − ρ)2

[JgFPL
]11 =

2p {[1 + (p− 1)(p− 2)] ρ2 + 2(p− 2)ρ+ 1}
a2σ2

[JgFPL
]12 = −p(p− 1)ρ {(p− 2) {[1 + (p− 1)(p− 2)]ρ3 + (4a+ 3)ρ} + 4}

a3b(1 − ρ)σ

[JgFPL
]22 =

p(p− 1) {(p− 1)(p− 2)2 {[1 + (p− 1)(p− 2)]ρ6 + (6a+ 11)ρ4 +D}}
2a4b2(1 − ρ)2σ2
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where

D = 4(p− 1)(p− 2)(1 + 4ρ)ρ2 + 4(2a+ ρ2 − 1).

We can therefore calculate the information matrixIgFPL
= HgFPL

J−1
gFPL

HgFPL
as defined

in Section 3.2. We obtain

IgFPL
=





2p
σ2 −p(p−1)ρ

bσ(1−ρ)

−p(p−1)ρ
bσ(1−ρ)

p(p−1)[1+(p−1)ρ2]
2b2(1−ρ)2



 . (3.16)

The matrix in (3.16) can be compared with the Fisher Information matrix based on the

full likelihood, the (i, j)th element of which can be written as (see, for example, Porat

and Friedlander (1986))

[If ]ij =

[

∂µ

∂qi

]T

Σ−1

[

∂µ

∂qj

]

+
1

2
tr

{

Σ−1∂Σ

∂qi
Σ−1 ∂Σ

∂qj

}

; (3.17)

i, j = 1, 2, . . . , p, whereµ andΣ are the mean vector and covariance matrix respectively.

In fact (3.16) and (3.17) are equal whenµ = 0, all diagonal elements ofΣ equalσ2

and all other elements are equal toρσ2, showing that the full pseudolikelihood is fully

efficient for the multivariate normal distribution with unknown parametersρ andσ. We

next consider the partial pseudolikelihood in the same parameter setting.

3.3.2 Partial pseudolikelihood

For the partial pseudolikelihood (PPL) (Equation (3.2)) wehave

Yj|Yk ∼ N
(

ρyk, σ
2[1 − ρ2]

)

, 1 ≤ j 6= k ≤ p.

The contributionlog gPPL to log PPL (ignoring constant terms) from a single observation

of Y is therefore

log gPPL = −p(p−1) log σ− p(p− 1)

2
log(1−ρ2)−

∑p
j=1

∑p
j 6=k=1 (yj − ρyk)

2

2σ2 (1 − ρ2)
. (3.18)
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By writing the numerator of the final term in (3.18) as

(p− 1)

p
∑

j=1

y2
j + ρ2(p− 1)

p
∑

j=1

y2
j − 2ρ

[

(

p
∑

j=1

yj

)2

−
p
∑

j=1

y2
j

]

=
[

(p− 1)
(

1 + ρ2
)

+ 2ρ
]

p
∑

j=1

y2
j − 2ρ

(

p
∑

j=1

yj

)2

we can writelog gPPL as

−p(p− 1) log σ− p(p− 1)

2
log(1− ρ2)− [(p− 1) (1 + ρ2) + 2ρ]SS1 − 2ρSS2

2σ2 (1 − ρ2)
(3.19)

whereSS1 =
∑p

j=1 y
2
j andSS2 = (

∑p
j=1 yj)

2. Differentiating (3.19) with respect toσ

gives
∂ log gPPL

∂σ
=

[(p− 1) (1 + ρ2) + 2ρ]SS1 − 2ρSS2

σ3 (1 − ρ2)
− p(p− 1)

σ

whilst the first derivative with respect toρ is

∂ log gPPL

∂ρ
=

(1 + ρ2)SS2 − [2b− (1 − ρ2)]SS1 + p(p− 1)ρ (1 − ρ2)σ2

σ2 (1 − ρ2)2 .

The second derivatives can be calculated as

∂2 log gPPL

∂σ2
=
p(p− 1)

σ2
− 3 {[(p− 1) (1 + ρ2) + 2ρ]SS1 − 2ρSS2}

σ4 (1 − ρ2)
,

∂2 log gPPL

∂ρ2
=

2ρ (ρ2 + 3)SS2 − {6bρ+ 2(p− 1) + 2ρ3}SS1 + p(p− 1) (1 − ρ4)σ2

σ2 (1 − ρ2)3

and
∂2 log gPPL

∂ρ∂σ
=

2 {[2(p− 1)ρ+ (1 + ρ2)]SS1 − (1 + ρ2)SS2}
σ3 (1 − ρ2)2 .

Using the approach described in Section 3.3.1 we obtain the expected values ofSS1, SS2

and their product and squares as

E(SS1) = pσ2; E(SS2) = bpσ2; E(SS1SS2) = bp(2b+ p)σ4;

E(SS2
1) = pσ4

[

2ρ2(p− 1) + 2 + p
]

; E(SS2
2) = 3b2p2σ4
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whereb = 1 + (p − 1)ρ as in Section 3.3.1. The elements of the symmetric matrices

HgFPL
andJgFPL

can then be calculated as:

[HgPPL
]11 =

2p(p− 1)

σ2

[HgPPL
]12 = −2p(p− 1)ρ

σ (1 − ρ2)

[HgPPL
]22 =

p(p− 1) (1 + ρ2)

(1 − ρ2)2

[JgPPL
]11 =

2p(p− 1) {(p− 1) [(p− 1)ρ4 − 2(p− 3)ρ3 + 2ρ+ 1] + (p2 − 5p+ 8) ρ2}
σ2 (1 + ρ)2

[JgPPL
]12 =

2p(p− 1)ρ {(p− 1)(p− 2)ρ3 − 2 [p2 − 3(p− 1)] ρ2 + (p− 1)(p− 6)ρ− 2}
σ (1 + ρ)3 (1 − ρ)

[JgPPL
]22 =

2p(p− 1) {[p2 − 3(p− 1)] ρ4 − 2(p− 1)(p− 3)ρ3 + E}
(1 + ρ)4(1 − ρ)2

,

whereE = (p2 − 3p+ 4) ρ2 + 2b− 1.

Calculating the information matrixIgPPL
= HgPPL

J−1
gPPL

HgPPL
yields the same matrix as

in Equation (3.16) for FPL. We therefore conclude that PPL isalso fully efficient for the

multivariate normal distribution being studied.

3.4 Loss of efficiency with known unit variances

We now consider the case in whichY follows a multivariate normal distribution with

(known) unit variances and unknown equal correlationsρ. Cox and Reid (2004) calculate

the efficiency of the partial pseudolikelihood in this context, and their results will be

compared with the efficiency of the full pseudolikelihood. We proceed as in the case

of unknownσ. The terms of interestlog gFPL and its derivatives with respect toρ, the

expected values of the sums of squares and the valuesHgFPL
andJgFPL

can all be obtained

by substitutingσ2 = 1 into the relevant expressions in Section 3.3.1. In particular,

the informationIgFPL
= H2

gFPL
/JgFPL

from a single observation in the current setting
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is obtained by substitutingσ2 = 1 into [HgFPL
]22 from Equation (3.15) to obtainHgFPL

,

and similarly forJgFPL
. The informationIf based on the full likelihood is simply the

second diagonal element of the matrix in Equation (3.16), and the efficiency of FPL is the

ratio of IgFPL
to If .

Figure 3.1 shows the efficiency of both FPL and PPL (the latteras obtained by Cox and

Reid (2004)) forρ ∈ [0, 1]. The efficiency of both is unity forp = 2 and for anyp if ρ is

0 or 1. Figure 3.1 displays the efficiency forp = 3, 5, 8 and10, increasingp resulting in a

loss of efficiency. It can be seen that in general the efficiency of FPL is greater than that

of PPL, although forp = 3 they are almost identical.

In the current context, the covariance matrix is positive definite for ρ ∈ (−1/(p− 1), 1).

Figure 3.2 shows the efficiency of each pseudolikelihood forρ ∈ (−1/(p− 1), 0) and for

the same values ofp as before. In this interval it is clear that FPL outperforms PPL. As

can be seen from the plots, the efficiency whenρ = −1/(p− 1) is unity for FPL and zero

for PPL. The exception is whenp = 2, in which case the two pseudolikelihoods are equal

with full efficiency for allρ ∈ [−1, 1].

3.5 Efficiency for the case of unequal variances and

correlations

In this section we consider the efficiency for the bivariate and trivariate normal

distributions when the variances and correlations are not restricted to being equal. By

deriving the information matrices for the pseudolikelihood and full likelihood, we show

the former to be fully efficient for the bivariate case. The same approach can be adopted

in order to show that both pseudolikelihoods are fully efficient for the trivariate normal

distribution. For this case, we give information matrix elements and highlight symmetries

that could potentially be exploited in order to show the pseudolikelihoods to be fully
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Figure 3.1: Efficiency of FPL and PPL for multivariate normaldistribution (with known

unit variances) as a function ofρ ∈ [0, 1] and forp = 3, 5, 8, 10 (top to bottom).
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Figure 3.2: Efficiency of FPL and PPL for multivariate normaldistribution (with known

unit variances) as a function ofρ ∈ (−1/(p− 1), 0) and forp = 3, 5, 8, 10 (left to right).
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efficient for the generalp–variate normal distribution.

3.5.1 Efficiency for the bivariate normal distribution

We follow the approach outlined in Section 3.2 and applied inSections 3.3 and 3.4 in

order to obtain the efficiency of the pseudolikelihood for the bivariate normal distribution

with parametersσ1, σ2 andρ.

The log density of the bivariate normal distribution with zero mean vector is given

(ignoring constant terms) by

log f(y1, y2) = − log σ1 − log σ2 −
1

2
log(1 − ρ2) − y2

1σ
2
2 + y2

2σ
2
1 − 2ρy1y2σ1σ2

2σ2
1σ

2
2(1 − ρ2)

.

For direct comparison the log product of conditional densities (omitting constant terms)

used for the pseudolikelihood is

log g(y1, y2) = − log σ1 − log σ2 − log(1− ρ2) − (y2
1σ

2
2 + y2

2σ
2
1)(1 + ρ2) − 4ρy1y2σ1σ2

2σ2
1σ

2
2(1 − ρ2)

.

The information matrix based on maximum likelihood estimation is calculated from

Equation (3.17) as

IML =















2−ρ2

σ2

1
(1−ρ2)

−ρ2

σ1σ2(1−ρ2)
−ρ

σ1(1−ρ2)

−ρ2

σ1σ2(1−ρ2)
2−ρ2

σ2
2(1−ρ2)

−ρ
σ2(1−ρ2)

−ρ
σ1(1−ρ2)

−ρ
σ2(1−ρ2)

1+ρ2

(1−ρ2)2















. (3.20)

We now derive the information matrix based on the pseudolikelihood approach. The

derivatives required can are calculated and simplified to give the following expressions,

for i, j = 1, 2; i 6= j:
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∂ log g

∂σi
=
y2
i σj(1 + ρ2) − σ2

i σj(1 − ρ2) − 2ρyiyjσi
σ3
i σj(1 − ρ2)

, (3.21)

∂ log g

∂ρ
=

2[y1y2σ1σ2(1 + ρ2) + σ2
1σ

2
2ρ(1 − ρ2) − ρ(y2

1σ
2
2 + y2

2σ
2
1)]

σ2
1σ

2
2(1 − ρ2)2

, (3.22)

∂2 log g

∂σ2
i

=
σ2
i σj(1 − ρ2) − 3y2

i σj(1 + ρ2) + 4ρyiyjσi
σ4
i σj(1 − ρ2)

, (3.23)

∂2 log g

∂ρ2
=

2[2ρy1y2σ1σ2(ρ
2 + 3) + σ2

1σ
2
2(1 − ρ4) − (y2

1σ
2
2 + y2

2σ
2
1)(1 + 3ρ2)]

σ2
1σ

2
2(1 − ρ2)3

, (3.24)

∂2 log g

∂σi∂σj
=

2ρyiyj
σ2
i σ

2
j (1 − ρ2)

, (3.25)

∂2 log g

∂σi∂ρ
=

2yi[2ρyiσj − yjσi(1 + ρ2)]

σ3
i σj(1 − ρ2)2

. (3.26)

Taking expectations of the second derivatives, and expectations of the products of the first

derivatives in Equations (3.21)–(3.26), enables us to calculate elements of theHPL and

JPL matrices needed to obtain the information matrix for the pseudolikelihood. Omitting

much algebra, we obtain

HPL =















2
σ1

2(1−ρ2)
−2ρ2

σ1σ2(1−ρ2)
−2ρ

σ1(1−ρ2)

−2ρ2

σ1σ2(1−ρ2)
2

σ2
2(1−ρ2)

−2ρ
σ2(1−ρ2)

−2ρ
σ1(1−ρ2)

−2ρ
σ2(1−ρ2)

2(1+ρ2)

(1−ρ2)2















(3.27)

and

JPL =















2(1+ρ2)
σ1

2(1−ρ2)

−2ρ2(1+ρ2)
σ1σ2(1−ρ2)

−4ρ
σ1(1−ρ2)

−2ρ2(1+ρ2)
σ1σ2(1−ρ2)

2(1+ρ2)
σ2

2(1−ρ2)
−4ρ

σ2(1−ρ2)

−4ρ
σ1(1−ρ2)

−4ρ
σ2(1−ρ2)

4(1+ρ2)

(1−ρ2)2















. (3.28)

We obtain the inverse ofJPL as
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J−1
PL =















σ1
2(1+3 ρ4)

2(1+ρ2)2(1−ρ2)2
ρ2σ1σ2(3+ρ4)

2(1+ρ2)2(1−ρ2)2
ρσ1

2(1−ρ2)

ρ2σ1σ2(3+ρ4)
2(1+ρ2)2(1−ρ2)2

σ2
2(1+3 ρ4)

2(1+ρ2)2(1−ρ2)2
ρσ2

2(1−ρ2)

ρσ1

2(1+ρ2)
ρσ2

2(1−ρ2)
1+ρ2

4















. (3.29)

Calculating the information matrixIPL based on the pseudolikelihood approach yields the

matrix in Equation (3.20), the information matrix obtainedusing the maximum likelihood

approach. We therefore conclude that the pseudolikelihoodis fully efficient for the

bivariate normal distribution with parametersσ1, σ2 andρ.

3.5.2 Efficiency for the trivariate normal distribution

Using the approach adopted throughout the current chapter,it is possible to show that

both the full and partial pseudolikelihoods are fully efficient for the trivariate normal

distribution with known means and unknown parametersσ1, σ2, σ3, ρ12, ρ13 andρ23. The

calculations involved were done in Maple, and most of the formulae are too complicated

to include. We therefore include only the elements of the information matrixI obtained

from both the full likelihood and pseudolikelihood approaches.

For conciseness, we shall introduce the notationsΠρ = ρ12ρ13ρ23 andΣρ2 = ρ2
12 + ρ2

13 +

ρ2
23.

We have, fori, j, k = 1, 2, 3 andi 6= j 6= k,
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Iσiσi =
2 − ρ2

jk − Σρ2 + 2Πρ

σ2
1(1 − Σρ2 + 2Πρ)

Iσiσj =
Πρ− ρ2

ij

σiσj(1 − Σρ2 + 2Πρ)

Iρijρij =
1 + ρ2

ij − ρ2
ik − ρ2

jk − 2ρ2
ikρ

2
jk − 2Πρ

(1 − Σρ2 + 2Πρ)2

Iρijρik =
2ρijρik − ρ2

ijρjk − ρ2
ikρjk − ρjk(1 − ρ2

jk)

(1 − Σρ2 + 2Πρ)2

Iσiρij =
ρikρjk − ρij

σ1(1 − Σρ2 + 2Πρ)

Iσiρjk = 0.

The expressions for theH andJ matrices based on a pseudolikelihood approach are

more complicated, without being particularly enlightening, and are therefore not given.

3.6 Comparison of estimating equations

An alternative way of assessing the pseudolikelihood approach is to compare the estimates

themselves with those based on a full likelihood approach. Here, we consider the five-

parameter bivariate normal distribution and, by comparingthe estimating equations for

the two approaches, show that the MLE’s are also solutions tothe estimating equations

for the pseudolikelihood approach. Since we are here concerned with the bivariate case,

the two pseudolikelihoods FPL and PPL are equivalent, and inthis section we will simply

use the notation ‘PL’.

SupposeY1 andY2 follow a (five-parameter) bivariate Normal distribution. Then the

conditional distributions ofY1|Y2 andY2|Y1 are

(Y1|Y2) ∼ N

(

µ1 + ρ
σ1

σ2
(y2 − µ2), σ

2
1(1 − ρ2)

)
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and

(Y2|Y1) ∼ N

(

µ2 + ρ
σ2

σ1
(y1 − µ1), σ

2
2(1 − ρ2)

)

respectively. Given a sample of sizen, the maximum likelihood estimates based on the

full likelihood are

µ̂1 = y1 =
∑

y1i/n; µ̂2 = y2 =
∑

y2i/n; ρ̂σ̂1σ̂2 = S12 =
∑ (y1i − µ1)(y2i − µ2)

n

σ̂2
1 = S2

1 =
∑

(y1i − µ1)
2/n; σ̂2

2 = S2
2 =

∑

(y2i − µ2)
2/n. (3.30)

Consider now the pseudolikelihood

PL =

n
∏

i=1

f(y1i|y2i)f(y2i|y1i) ∝
[

σ2
1

(

1 − ρ2
)]−n/2 [

σ2
2

(

1 − ρ2
)]−n/2

exp {E} (3.31)

where

E = −1

2

n
∑

i=1







{

(y1i − µ1) − ρσ1

σ2

(y2i − µ2)
}2

σ2
1 (1 − ρ2)

+

{

(y2i − µ2) − ρσ2

σ1

(y1i − µ1)
}2

σ2
2 (1 − ρ2)






.

Taking the logarithm of (3.31) after rearranging its exponent gives

Pl = log(PL) = −n
2

log σ2
1 −

n

2
log σ2

2 − n log
(

1 − ρ2
)

− S

2σ2
1σ

2
2 (1 − ρ2)

(3.32)

where

S =

n
∑

i=1

{

σ2
2(y1i − µ1)

2
(

1 + ρ2
)

+ σ2
1(y2i − µ2)

2
(

1 + ρ2
)

−

4ρσ1σ2(y1i − µ1)(y2i − µ2)
}

.

Writing

n
∑

i=1

(y1i − µ1)
2 =

n
∑

i=1

[(y1i − y1) + (y1 − µ1)]
2

=
n
∑

i=1

(y1i − y1)
2 + n(y1 − µ1)

2
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and similarly for
∑

(y2i−µ2)
2 and

∑

(y1i−µ1)(y2i−µ2), we see that (3.32) is maximised

with respect toµ1 andµ2 when

m = σ2
2

(

1 + ρ2
)

(y1−µ1)
2 +σ2

1

(

1 + ρ2
)

(y2−µ2)
2−4ρσ1σ2(y1−µ1)(y2−µ2) (3.33)

is minimised with respect to these two parameters. We getµ1 = y1 andµ2 = y2, so that

the maximum pseudo likelihood estimates ofµ1 andµ2 are equal to the full maximum

likelihood estimates.

Substituting the estimates ofµ1 andµ2 back into (3.32) gives

−n
2

log σ2
1 −

n

2
log σ2

2 − n log
(

1 − ρ2
)

− F (3.34)

whereS2
1 , S2

2 andS12 are as defined in (3.30) and

F =
n [σ2

1S
2
2 (1 + ρ2) + σ2

2S
2
1 (1 + ρ2) − 4ρσ1σ2S12]

2σ2
1σ

2
2 (1 − ρ2)

.

Differentiating (3.34) with respect toσ2
1, setting it equal to zero and multiplying

throughout by−2/n gives

1

σ2
1

+

{

[

S2
2

(

1 + ρ2
)

− 2ρ
σ2

σ1
S12

]

[

σ2
1σ

2
2

(

1 − ρ2
)]

−

−
[

σ2
2

(

1 − ρ2
)] [

σ2
1S

2
2

(

1 + ρ2
)

+ σ2
2S

2
1

(

1 + ρ2
)

− 4ρσ1σ2S12

]

}

/

σ4
1σ

2
2

(

1 − ρ2
)

.

Multiplying throughout byσ3
1σ

2
2(1 − ρ2) and rearranging gives

σ1

(

1 − ρ2
)

σ2
2 =

(

1 + ρ2
) σ2

2

σ1
S2

1 − 2ρσ2S12. (3.35)

By symmetry, the corresponding equation forσ2 is

σ2

(

1 − ρ2
)

σ2
1 =

(

1 + ρ2
) σ2

1

σ2
S2

2 − 2ρσ1S12. (3.36)

Differentiating (3.34) with respect toρ, setting the derivative equal to zero and multiplying

throughout byσ2
1σ

2
2(1 − ρ2)2 gives

2ρ
(

1 − ρ2
)

σ2
1σ

2
2 = ρ

[(

1 + ρ2
) (

σ2
1S

2
2 + σ2

2S
2
1

)

− 4ρσ1σ2S12

]

+ (3.37)
(

1 − ρ2
) (

ρσ2
1S

2
2 + ρσ2

2S
2
1 − 2σ1σ2S12

)

.
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Substituting the maximum likelihood estimatesσ̂2
1 , σ̂2

2 and ρ̂ from (3.30) into (3.35),

(3.36) and (3.37) verifies that the maximum likelihood estimates also give solutions to the

estimating equations for the pseudo likelihood, as the lefthand sides and right hand sides

are indeed equal upon making these substitutions. This indicates that the pseudolikelihood

estimates are fully efficient.

3.7 Conclusions

By considering multivariate normal distributions with various restrictions on parameters,

we have shown in this chapter that (except for the case of known σ) both the full and

partial pseudolikelihood are fully efficient when all variances are equal, all correlations

are equal and means are known.

More generally, as would be expected given the results for the bivariate and trivariate

cases described in this chapter, it turns out that both pseudolikelihoods are fully efficient

for the generalp–variate normal distribution (Mardia et al., 2007a).

The approach considered also provides an insight into the efficiency of pseudolikelihood

estimators for the multivariate von Mises distribution when the circular variables are

highly concentrated. In the next chapter, we will discuss parameter estimation for the

multivariate von Mises distribution, calculating the efficiency of estimators in the bivariate

case and comparing maximum likelihood estimates with pseudolikelihood estimates in the

trivariate case, both in terms of accuracy and in terms of computational expense.
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Chapter 4

Parameter estimation and inference for

the multivariate von Mises distribution

4.1 Introduction

In this chapter we discuss parameter estimation and inference for the multivariate von

Mises distribution introduced in Chapter 2. This builds on the preliminary results

of Singh and Mardia (2004). We discuss the full pseudolikelihood in the context of

the bivariate and trivariate von Mises distributions, deriving first the efficiency for the

bivariate case in Section 4.2. Simulation from the bivariate and trivariate models was

discussed in Chapter 2, and in Section 4.2.4 we simulate datafrom the bivariate model

that support the efficiency calculations and show the bias ofthe MLEs and MPLEs to be

very similar. In Section 4.3, the pseudolikelihood is investigated for the trivariate case by

considering properties of the pseudlokelihood estimates themselves and comparing them

with maximum likelihood estimates, for various parameter configurations and based on

simulated data. The Gibbs sampler data simulation method outlined in Section 2.4 is

also scrutinized. Finally, in Section 4.4, we apply the trivariate von Mises distribution
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to two types of protein data set, one of them protein folds andthe other amino acid

conformations. We also investigate hypothesis testing forthe trivariate model in the

context of these data.

As defined in Chapter 3, the full pseudolikelihood, based on arandom sample ofn

observations ofY = (Y1, Y2, . . . , Yp)
T , is given by

FPL(Y ; q) =

p
∏

j=1

n
∏

i=1

gj(Yji|rest; q) (4.1)

where gj(Yj|rest; q) is the conditional distribution of Yj given

(Y1, . . . , Yj−1, Yj+1, . . . , Yp) and q is an unknown parameter vector of lengthr.

For thep–variate von Mises distribution introduced in Chapter 2, wehave the vector

θ = (θ1, . . . , θp)
T of observations. Under high concentration, this follows anapproximate

p–variate normal distribution, in which case the methods of Chapter 3 are appropriate.

The full pseudolikelihood for thep–variate von Mises case is given by

FPL = (2π)−pn
p
∏

j=1

n
∏

i=1

[

I0(κ
(i)
j·rest)

]−1

exp
{

κ
(i)
j·rest cos(θji − µ

(i)
j·rest)

}

where

µ
(i)
j·rest = µj + tan−1

{[

∑

l 6=j

λjl sin(θli − µl)

]

/κj

}

,

κ
(i)
j·rest =







κ2
j +

[

∑

l 6=j

λjl sin(θli − µl)

]2






1/2

andµj·rest andκj·rest are the mean direction and concentration parameter respectively of

the conditional distribution ofΘj given all otherθ values, which was shown by Theorem

2.3.1 in Chapter 2 to be univariate von Mises. The vectorq of unknown observations in

this case isq = (κ1, κ2, κ3, λ12, λ13, λ23, µ1, µ2, µ3) with lengthr = 9.
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4.2 Efficiency of the pseudolikelihood for the bivariate

von Mises distribution

In this section we use a numerical approach in order to assessthe efficiency of the

pseudolikelihood for the bivariate von Mises distributionwith unknownκ1 = κ2 = κ,

say, knownµ1 = µ2 = 0 and unknown parameterλ. The approach outlined in Chapter

3.2, based on comparison of information matrices, will be used. Since we are dealing

with the bivariate case, the full pseudolikelihood FPL and the pairwise pseudolikelihood

PPL are equivalent. The joint probability density functionf (θ1, θ2) of the bivariate von

Mises distribution is given by

C−1 exp {κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + λ sin(θ1 − µ1) sin(θ2 − µ2)} , (4.2)

where the normalizing constant’s inverseC = C(κ1, κ2, λ) was given by Singh et al.

(2002) as

C = 4π2
∞
∑

m=0

(

2m

m

)(

λ

2

)2m

κ−m1 Im(κ1)κ
−m
2 Im(κ2). (4.3)

andIν(·) is the modified Bessel function of the first kind and orderν.

The following identity, adapted from Abramowitz and Stegun(1972), will be used to

obtain derivatives of Bessel functions:

d

dx

[

Iν(x)

xν

]

=
Iν+1(x)

xν
. (4.4)

4.2.1 Fisher information for the full likelihood approach

We consider the joint density ((4.2) and (4.3)) withκ1 = κ2 = κ andµ1 = µ2 = 0.

When calculating the Fisher information matrix from the joint pdf of the distribution, the

matricesJf andHf are equal. We have

log f (θ1, θ2) = κ cos θ1 + κ cos θ2 + λ sin θ1 sin θ2 − logC,
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and since the second derivatives of this expression with respect toκ andλ are independent

of θ1 andθ2, the elements ofHf can be found directly as

[Hf ]11 = −∂
2 log f

∂κ2
= C−1∂

2C

∂κ2
− C−2

(

∂C

∂κ

)2

[Hf ]12 = [Hf ]21 = −∂
2 log f

∂κ∂λ
= C−1 ∂

2C

∂κ∂λ
− C−2 ∂C

∂κ∂λ
(4.5)

[Hf ]22 = −∂
2 log f

∂λ2
= C−1∂

2C

∂λ2
− C−2

(

∂C

∂λ

)2

.

Using the identity in Equation (4.4) we now calculate the derivatives in (4.5). We get

∂C

∂κ
= 8π2

∞
∑

m=0

(

2m

m

)(

λ

2

)2m
[

κ−mIm(κ)
] [

κ−mIm+1(κ)
]

. (4.6)

Writing κ−m = κκ−(m+1), and using (4.4) and the chain rule, we find

∂2C

∂κ2
= 8π2

∞
∑

m=0

(

2m

m

)(

λ

2

)2m{

κ−mIm(κ)

[

κκ−(m+1)Im+2(κ) +

+ κ−(m+1)Im+1(κ)

]

+
[

κ−mIm+1(κ)
]2
}

,

whilst differentiating (4.6) with respect toλ gives

∂2C

∂κ∂λ
= 8π2

∞
∑

m=0

(

2m

m

)

2mλ2m−12−2m
[

κ−mIm(κ)
] [

κκ−(m+1)Im+1(κ)
]

.

Finally,
∂C

∂λ
= 4π2

∞
∑

m=0

(

2m

m

)

2mλ2m−12−2m
[

κ−mIm(κ)
]2

and
∂2C

∂λ2
= 4π2

∞
∑

m=0

(

2m

m

)

2m(2m− 1)λ2m−22−2m
[

κ−mIm(κ)
]2
. (4.7)

SubstitutingC (with κ1 = κ2 = κ) from Equation (4.3), and its derivatives from

Equations (4.6)–(4.7), into Equation (4.5), gives the Fisher information matrixIf =

Hf = Jf for the full likelihood approach. For comparison, we now consider the Fisher

information matrix obtained for the pseudolikelihood approach.



Parameter estimation and inference for the multivariate von Mises distribution 57

4.2.2 Information matrix for the pseudolikelihood approach

Since the marginal density ofθ1 can be written as (see Equation (1.14))

f(θ1) = 2πC−1I0(a1)e
κ cos θ1 ,

where C is as in Equation (4.3) anda1 =
√

(κ2 + λ2 sin2 θ1), and similarly for

f(θ2), the logarithm of the product of conditional densitieslog[f(θ1|θ2)f(θ2|θ1)] =

log{f(θ1, θ2)
2/[f(θ1)f(θ2)]} for a pseudolikelihood approach can be written

log gPL = −2 log 2π + κ cos θ1 + κ cos θ2 + 2λ sin θ1 sin θ2 − log I0(a1) − log I0(a2)

wherea2 =
√

(κ2 + λ2 sin2 θ2).

Noting that∂aj/∂κ = κ/aj and∂aj/∂λ = (λ sin2 θj)/aj, j = 1, 2, and using Equation

(4.4), we find
∂gPL

∂κ
= cos θ1 + cos θ2 − κ

A1(a1)

a1

− κ
A1(a2)

a2

(4.8)

whereAν(·) = Iν(·)/I0(·). Similarly

∂gPL

∂λ
= 2 sin θ1 sin θ2 − λ sin2 θ1

A1(a1)

a1
− λ sin2 θ2

A1(a2)

a2
(4.9)

Now
∂

∂κ

[

κ
A1(aj)

aj

]

=
κ2

a2
j

[

A2(aj) +
A1(aj)aj

κ2
− A1(aj)

2

]

.

Therefore
∂2gPL

∂κ2
=

2
∑

j=1

κ2

a2
j

[

A1(aj)
2 − A2(aj) − A1(aj)

aj
κ2

]

. (4.10)

Using a similar approach, or by consideration of the symmetry involved, we find

∂2gPL

∂λ2
=

2
∑

j=1

λ2 sin4 θj
a2
j

[

A1(aj)
2 − A2(aj) − A1(aj)

aj
λ2 sin2 θj

]

(4.11)

and
∂2gPL

∂κ∂λ
=

2
∑

j=1

κλ sin2 θj
a2
j

[

A1(aj)
2 − A2(aj)

]

. (4.12)
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In order to obtain the matricesHgPL
andJgPL

for the pseudolikelihood approach, we need

to take expectations of the expressions (or products or squares of expressions in the case

of JgPL
) in Equations (4.8)–(4.12). To do this, we multiply the expression of interest by

the joint pdf (4.2), and integrate the resulting expressions with respect toθ1 andθ2, each

integral over the interval(0, 2π). As these double integrals are intractable analytically,

numerical integration is performed using theadapt function inR for the desiredκ and

λ values. The information matrix for the pseudolikelihood approach is then obtained

numerically using Equation (3.3). For any pair of parametervalues(κ, λ), we now have

a means of calculating the information matrix for both the full likelihood approach and

the pseudolikelihood approach, and can therefore calculate the relative efficiency of the

two methods using Equation (3.4).

The terms in the infinite sums involved become small very quickly for m greater than

about3. For all(κ, λ) parameter configurations to be used in Section 4.2.3, we compared

the ratio of the first seventy terms of Equation (4.3) to the result obtained by integrating

numerically the exponential of the joint pdf (4.2). This ratio was found to be unity in each

case. In order to compute the infinite sums, therefore, we take the first seventy terms in

each case. For those parameter configurations to be considered, we observe the largest

70th term to be10−78.

4.2.3 Efficiency of the pseudolikelihood

The efficiency of the pseudolikelihood, for any pair of values (κ, λ), can be calculated

from Equation (3.4). We compute the efficiency for all combinations ofκ = 1, 2, . . . , 15

and |λ| = 0.5 and 1, 2, . . . , 15 (efficiency forλ = l is the same as forλ = −l). If

κ1 = κ2 = 0 then the expression in Equation (4.3) for the normalizing constant is not

suitable. In fact the normalizing constant in this case appears to involve beta functions.

Sinceκ1 = κ2 = 0 is something of a degenerate case, we will not considerκ = 0 in the



Parameter estimation and inference for the multivariate von Mises distribution 59

following.

The results of the efficiency calculations are displayed in Figures 4.1 and 4.2. From

Figure 4.1 we can more easily consider the functional relationship between efficiency

and the parameter values for eitherκ or λ fixed and the other varying, whilst Figure 4.2

contains only selected values of|λ| (as shown on the legend), and gives a better idea of

efficiency values.

For λ = 0 the efficiency is unity, since in this casef(θ1, θ2) = f(θ1|θ2)f(θ2|θ1). We

observe that efficiency is high for small|λ|. It was shown in Section 3.3 that both

pseudolikelihoods are fully efficient for the bivariate normal distribution with known

µ1 = µ2 = 0 and unknown parametersσ andρ. Since the bivariate von Mises distribution

tends to a normal distribution for largeκ values (Singh et al., 2002), the efficiency should

tend to unity in the current case asκ → ∞. From Singh et al. (2002), for the bivariate

case withµ1 = µ2 = 0 andκ1 = κ2 = κ, the corresponding parameters of the normal

distribution are

σ2 =
κ

κ2 − λ2
, ρ =

λ

κ

In order thatσ2 > 0 we requireκ > |λ|. The aforementioned improvement in efficiency

asκ increases should therefore only be expected to occur, for fixedλ, for those regions

in Figure 4.2 in whichκ > |λ|. This is indeed the case, and the efficiency is greater than

0.9 for all suchκ, λ pairs in Figure 4.2. Forκ < λ, the joint distribution ofθ1 andθ2 is

bimodal (Mardia et al., 2007b), and in this case the efficiency appears to be a quadratic

function ofκ, with greater efficiency for very smallκ andκ close toλ.

4.2.4 Simulation

We now investigate the properties of the pseudolikelihood estimator for the bivariate

von Mises distribution by simulating10 000 bivariate samples for each of four different

parameter configurations and for each of three sample sizes.The rejection sampling
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Figure 4.1: Efficiency of pseudolikelihood for bivariate von Mises distribution withκ =

1, 2, . . . , 15, λ = 0.5, 1, 2, . . . , 15.
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Figure 4.2: Efficiency of pseudolikelihood for bivariate von Mises distribution withκ =

1, 2, . . . , 10, |λ| = 0.5, 1, 2, 4, 6, 8, 10.
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algorithm described in Chapter 2.4 is used for the data simulation. The configurations

(κ, λ) = (2, 0.5), (8, 4), (6, 6) and(2, 4) will be used for samples of sizes20, 50 and

100. Figure 4.3 displays the estimated bias and variance plotted against sample size for

each parameter configuration. The efficiency values for the pseudolikelihood for these

parameter configurations, as calculated in Section 4.2.3 and displayed in Figures 4.1 and

4.2, are, in the order stated above and plotted,0.997, 0.996, 0.953 and0.899. Certainly the

variance plots exemplify this ordering of efficiency, and variances of parameter estimates

for the pseudolikelihood and full likelihood are closely comparable when the sample size

is at least50. Even in the worst case scenario – when(κ, λ) = (2, 4) (which corresponds

to a bimodal density) with a sample size of20 – the ratio of variances full:pseudo for the

estimate ofλ is 0.834, and clearly greater forκ. There is also a slightly greater bias for

the pseudolikelihood with this parameter configuration, though in general the bias is very

similar for the two methods. When(κ, λ) = (8, 4) there is even the slight suggestion of

less bias for the pseudolikelihood estimates.

4.3 Data simulation and parameter estimation for the

trivariate von Mises distribution

In this section we investigate data simulation and parameter estimation for the trivariate

von Mises distribution. The Gibbs sampling technique described in Section 2.4 is used

to simulate data, and the properties of pseudolikelihood estimates are investigated and

compared with maximum likelihood estimates. The full pseudolikelihood for the trivariate

von Mises distribution is given by

(2π)−3n
n
∏

i=1

[I0(κ
(i)
1·2,3)I0(κ

(i)
2·1,3)I0(κ

(i)
3·1,2)]

−1 exp{κ(i)
1·2,3 cos(θ1i − µ

(i)
1·2,3) +

+ κ
(i)
2·1,3 cos(θ2i − µ

(i)
2·1,3) + κ

(i)
3·1,2 cos(θ3i − µ

(i)
3·1,2)} (4.13)
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Figure 4.3: Estimates of bias and variance for pseudolikelihood and full likelihood

estimators for the bivariate von Mises distribution. Basedon 10 000 simultions for each

configuration and samples of sizes20, 50 and100.
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where

µ
(i)
1·2,3 = µ1 + tan−1{[λ12 sin(θ

(i)
2 − µ2) + λ13 sin(θ

(i)
3 − µ3)]/κ1}

κ
(i)
1·2,3 =

√{κ2
1 + [λ12 sin(θ

(i)
2 − µ2) + λ13 sin(θ

(i)
3 − µ3)]

2}

and analogously forµ(i)
2·1,3, κ

(i)
2·1,3, µ

(i)
3·1,2 andκ(i)

3·1,2.

4.3.1 Data simulation and pseudolikelihood estimation

For chosen parametersκ1, κ2, κ3, λ12, λ13 andλ23, the following Gibbs sampling method

will be used in order to simulate variates from the trivariate von Mises distribution. For

the simulation method, the mean direction vector will be setto zero. For subsequent

estimation, mean directions will be added to (zero–mean) simulated data.

• Firstly, two independent von Mises distributed vectors of dimension n1 are

simulated with concentration parametersκ1 and κ2 respectively. These are the

initial vectors representingθ1 andθ2 respectively.

• Next, using the parametersκ3, λ13 andλ23, a vector ofθ3 values is simulated such

thatθ3i is von Mises with mean directionµ(i)
3·1,2 and concentration parameterκ(i)

3·1,2,

as defined for Equation (4.13) and given theθ1 andθ2 vectors (i = 1, . . . , n1).

• The simulation proceeds by cycling through columns one at a time, each time

replacing the values therein with new, von Mises distributed data generated

conditionally on the current values in the other two columns. This loop is done

n2 times.

• n3 such data sets are generated giving, in total,n1n3 vectors(θ1, θ2, θ3).

Parameters are estimated by minimising the negative logarithm of the pseudolikelihood

(4.13). The parameter values chosen are(κ1, κ2, κ3, λ12, λ13, λ23) = (2, 3, 1, 2, 2, 2). We
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experiment with three different estimation methods, two values ofn1 and two values of

n2. Tables 4.1–4.3 summarise the results:

Table 4.1

Table 4.1 gives means and standard deviations of pseudolikelihood estimates for

simulated trivariate von Mises data with zero means. Panels(a), (b) and (c) show the

effect of changing the values ofn1 (number of data points for eachθj) andn2 (number of

times each vector is updated in the Gibbs sampler).

Table 4.2

As for Table 4.1 except that a mean vector(2, 3, 1) is added to the simulated data and

estimated usingnlm and the pseudolikelihood. In this case the means forµ1, µ2 andµ3

in the table are the sample mean directions of thenlm estimates, whilst the figures in the

(SD) column are1 −R, whereR is the mean resultant length of thenlm estimates.

Table 4.3

As for Table 4.2 except that mean directions are estimated using the sample means of each

variable in each data set, andnlm estimates are calculated for the remaining parameters

using mean (direction) corrected data.Betweentables butwithin panels (a), (b) and (c),

the parameters are estimated using the same data.

Conclusions

The results of the above procedure are a means of assessing the adequacy of a

number of things: the simulation procedure and the number ofiterations of the Gibbs

sampler ; nlm as an estimation algorithm, and the use of the pseudolikelihood as

an estimation method. The starting values of parameters used in the nlm algorithm

are (κ1, κ2, κ3, λ12, λ13, λ23, µ1, µ2, µ3) = (κ̂1, κ̂2, κ̂3, 0, 0, 0, θ1, θ2, θ3), whereκ̂j is the

univariate maximum likelihood estimate ofκj based on theθj ’s, θj is the sample mean

direction of theθj ’s for each data set and forj = 1, 2, 3. These latter are used only when
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(a) (b) (c)

n1 = 100 n2 = 100 n1 = 100 n2 = 50 n1 = 200 n2 = 100

Mean (SD) Mean (SD) Mean (SD)

κ1 2.02 (0.27) 2.08 (0.33) 2.06 (0.22)

κ2 3.15 (0.44) 3.07 (0.42) 3.02 (0.31)

κ3 1.04 (0.24) 1.01 (0.22) 1.03 (0.13)

λ12 2.01 (0.60) 2.03 (0.54) 2.03 (0.39)

λ13 2.06 (0.40) 2.05 (0.46) 2.08 (0.35)

λ23 2.13 (0.45) 2.07 (0.53) 2.02 (0.34)

Table 4.1: Mean values and standard deviations of nlm estimates for generated trivariate von

Mises data.

(a) (b) (c)

n1 = 100 n2 = 100 n1 = 100 n2 = 50 n1 = 200 n2 = 100

Mean (SD) Mean (SD) Mean (SD)

κ1 2.03 (0.28) 2.09 (0.33) 2.07 (0.22)

κ2 3.17 (0.45) 3.09 (0.43) 3.04 (0.31)

κ3 1.05 (0.25) 1.01 (0.22) 1.04 (0.13)

λ12 2.02 (0.60) 2.04 (0.55) 2.03 (0.39)

λ13 2.08 (0.41) 2.08 (0.47) 2.10 (0.35)

λ23 1.99 (0.47) 2.09 (0.54) 2.03 (0.35)

µ1 1.99 (0.002) 2.0 (0.002) 2.01 (0.001)

µ2 3.01 (0.002) 3.00 (0.002) 3.00 (0.001)

µ3 -1.00 (0.002) -1.01 (0.002) -1.00 (0.001)

Table 4.2: Mean values and standard deviations of nlm estimates for generated trivariate von

Mises data withµ = (2, 3,−1).
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(a) (b) (c)

n1 = 100 n2 = 100 n1 = 100 n2 = 50 n1 = 200 n2 = 100

Mean (SD) Mean (SD) Mean (SD)

κ1 2.00 (0.28) 2.06 (0.32) 2.05 (0.22)

κ2 3.11 (0.43) 3.02 (0.42) 3.00 (0.32)

κ3 1.03 (0.24) 1.00 (0.22) 1.03 (0.12)

λ12 2.13 (0.58) 2.15 (0.54) 2.07 (0.38)

λ13 1.86 (0.42) 1.89 (0.50) 2.01 (0.35)

λ23 1.98 (0.48) 1.90 (0.53) 1.95 (0.37)

µ1 2.00 (0.01) 2.01 (0.01) 2.02 (0.01)

µ2 3.01 (0.01) 3.01 (0.01) 3.00 (0.003)

µ3 -1.00 (0.04) -0.99 (0.04) -0.99 (0.02)

Table 4.3: Mean values and standard deviations of nlm estimates for generated trivariate von

Mises data, once marginal circular means have been subtracted from the data columns.

we usenlm to estimate the mean directions.

A comparison of panels (a) and (b) of each table indicates that, at least with these

parameter values, a value ofn2 = 50 gives comparable accuracy to that achieved with

n2 = 100, and is enough to give reasonably accurate estimates. Comparing parts (a) and

(c), we see that a value ofn1 = 200 gives more accurate results than a value ofn1 = 100

for fixed n2, n3. Overall, the accuracy of the estimates and the effect of changing n1

are encouraging signs that both the simulation method and the estimation method are

effective even though, thus far, only one combination of parameter values has been tested.

Comparison of Tables 4.1, 4.2 and 4.3 reveals little or no difference in the effectiveness

of the estimation procedure for the three scenarios. In the case of Table 4.3, the sample

mean directions serve as a good estimate of theµ parameters, being very close to the true

values(2, 3,−1).
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In order to investigate the effectiveness of the estimationprocedure for smallκ values, we

first takeκ1 = 1, κ2 = 1.5 andκ3 = 0.5. With λ12 = λ13 = λ23 = 1, knownµ = 0

and using (n1 = 100, n2 = 50) the results shown in Table 4.4 are obtained. Clearly, the

halving of theκ values has had no significant detrimental effect on the estimation.

κ1 κ2 κ3 λ12 λ13 λ23

Mean 1.02 1.53 0.54 2.03 2.00 2.10

(SD) (0.26) (0.31) (0.22) (0.53) (0.51) (0.52)

Table 4.4: Mean values and standard deviations of nlm estimates for generated trivariate von

Mises data withκ1 = 1, κ2 = 1.5, κ3 = 0.5 andλ12 = λ13 = λ23 = 1

κ1 κ2 κ3 λ12 λ13 λ23

Mean 0.53 0.80 0.28 2.10 2.02 2.06

(SD) (0.24) (0.21) (0.17) (0.52) (0.53) (0.54)

Table 4.5: Mean values and standard deviations of nlm estimates for generated trivariate von

Mises data withκ1 = 0.5, κ2 = 0.75, κ3 = 0.25 andλ12 = λ13 = λ23 = 1

Halving the trueκ values again yields the results in Table 4.5. Again the estimates are

adequate in terms of the mean values, although the standard deviation of theκ estimates

increases relative to the size of the true parameter values as the trueκ values become

smaller.

4.3.2 Pseudolikelihood versus full likelihood

Having developed a data simulation method and verified that the pseudolikelihood

provides a reasonable means of estimating parameters for the trivariate von Mises

distribution, we next compare the properties of pseudolikelihood estimates with their full

likelihood counterparts, for various parameter configurations. Tables 4.6 and 4.7 display

maximum likelihood (ML) and pseudolikelihood (PL) estimates based on a single data
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set for each of four different parameter configurations and using n1 = 100, n2 = 50

(see previous section). The first of these configurations corresponds to that studied in

the previous section. The four configurations are also thosefour for which the univariate

and bivariate marginals were plotted in Figures 2.1 and 2.2.The figures in brackets give

approximate standard errors of estimates, and are calculated from the Hessian matrix (by

taking the square roots of the diagonal elements of the inverse of the Hessian), which is

obtained numerically by thenlm estimation routine. Maximum likelihood estimates are

obtained by incorporating a numerical integration into each stage of thenlm algorithm in

order to evaluate the unknown normalizing constant.

True ML (SD) PL (SD) True ML (SD) PL (SD)

κ1 2 2.23 (0.31) 2.23 (0.33) 0.5 0.46 (0.23) 0.46 (0.23)

κ2 3 2.81 (0.38) 2.81 (0.36) 0.75 0.92 (0.26) 0.91 (0.26)

κ3 1 1.09 (0.22) 1.17 (0.22) 0.25 0.01 (0.25) 0.01 (0.26)

λ12 2 1.63 (0.51) 1.39 (0.48) 2.0 1.84 (0.71) 1.73 (0.64)

λ13 2 2.09 (0.43) 2.37 (0.38) 3.0 3.14 (0.67) 3.25 (0.64)

λ23 2 2.30 (0.46) 2.58 (0.46) 4.0 3.75 (0.67) 3.76 (0.64)

Table 4.6:Mean values and approximate standard errors of pseudolikelihood and full likelihood

estimates for trivariate von Mises data.

True ML (SD) PL (SD) True ML (SD) PL (SD)

κ1 2 2.72 (0.80) 2.73 (0.81) 2.0 2.52 (0.31) 2.52 (0.31)

κ2 2 2.03 (0.76) 2.03 (0.77) 2.0 2.32 (0.28) 2.32 (0.28)

κ3 2 2.34 (0.91) 2.33 (0.93) 2.0 2.12 (0.26) 2.12 (0.26)

λ12 20 12.45 (6.65) 12.69 (7.45) 0.1 0.16 (0.32) 0.15 (0.26)

λ13 30 38.60 (7.42) 38.51 (7.42) 0.1 -0.12 (0.31) -0.12 (0.26)

λ23 40 38.43 (3.90) 38.27 (7.42) 0.1 0.42 (0.31) 0.44 (0.27)

Table 4.7:Mean values and approximate standard errors of pseudolikelihood and full likelihood

estimates for trivariate von Mises data.

Comparison of the MLEs and MPLEs themselves reveals very little difference in terms
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of accuracy. The approximate standard errors are also closely comparable, with the odd

exception, for example for the estimates ofλ23 for parameter configuration three. For the

λ estimates in parameter configurations one, two and four, thegiven standard errors are

in general slightly smaller for the pseudolikelihood estimates than for the full likelihood

estimates. It should be noted however that these are approximate and the difference is

small.

As an indication of the relative computational expense of the two methods, the estimation

of parameters using the pseudolikelihood took less than 1 second for each of the

configurations in Table 4.7, whilst the corresponding figures for the full likelihood were

38 minutes and 15 minutes. These figures clearly indicate theneed for an alternative to

the full likelihood in the current situation, whilst the figures in the Tables of the current

chapter show the pseudolikelihood to be a good candidate forthis alternative. It should

be expected that the computational expense of MLEs relativeto PLEs is even greater for

higher dimensional data.

We now use the trivariate von Mises distribution in order to model protein data sets, using

both the full likelihood and the pseudolikelihood.

4.4 Application to protein data

In this section we consider two different types of protein data and report the results of

fitting trivariate von Mises distributions to each type. Thefirst data set to be considered

comprises the conformational angles of Gamma turns, whilstthe second contains main

chain and side chain conformational angles for the amino acids serine and valine.

Modeling of the former was also considered by Hughes et al. (2006).
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4.4.1 Gamma turn data

Definition: A gamma turn is a three–residue chain defined by the existenceof a hydrogen

bond betweenCO of residuei and NH of residuei + 2. In addition, theφ and ψ

angles of residuei + 1 fall in the rangesφi+1 ∈ [35◦, 115◦] = [0.61, 2.00] radiansand

ψi+1 ∈ [−104◦,−24◦] = [−1.82,−0.42] radians, respectively.

The data to be analysed in this section comprise theφ andψ triplets of 497 Gamma

turns. Figures 4.4 and 4.5 display correlation plots of the data, with circular plots on

the main diagonal, pairwise plots on the upper panels and circular correlation values on

the lower panels. Circular correlations are calculated by replacing(xi − x) and(yi − y)

in Pearson’s product moment correlation forX andY by sin(xi − x) andsin(yi − y),

wherex andy in the latter two expressions are sample mean directions.p–values for

testing the significance of the correlation coefficients arealso given. For full details of

this sample circular correlation coefficient, the reader isreferred to Jammalamadaka and

SenGupta (2001, chap. 8). Briefly, under the hypothesis thatthe true value ofρc is zero,

the distribution of the estimaterc, for largen, is such that

√(
nλ̂20λ̂02/λ̂22

)

rc ∼ N(0, 1),

where

λ̂ij =
1

n

n
∑

k=1

sini(αk − α) sinj(βk − β)

for a random sample (of size n) of circular variables(α, β) with unspecified joint density.

It is from this relation that thep–values are calculated.

As an exploratory analysis, a univariate von Mises distribution with mean directionµ and

concentration parameterκ is fitted separately to each ofφj andψj , j = 1, 2, 3. Maximum

likelihood estimates ofµ andκ are displayed in Table 4.8.

We now use both the pseudolikelihood approach and the full likelihood approach to fit
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a trivariate von Mises distribution to theφ andψ angles, separately, of the Gamma turn

data, the results of which are shown in Table 4.9. Due to problems of convergence

when the mean directionsµ1, µ2 andµ3 are included in the optimization process for

the maximum likelihood approach applied to theψ angles, we estimate these parameters

using the marginal sample mean directions of theψ data. The remaining parameters are

estimated using thenlm approach (described in the previous section) applied to themean

(direction) corrected data. Standard errors of estimates are shown in brackets (except for

theψ mean directions using the MLE approach), and are calculatedfrom the Hessian

matrix obtained using thenlm estimation procedure, by taking the square roots of the

diagonal elements of the inverse of the numerically calculated Hessian.

φ1 φ2 φ3 ψ1 ψ2 ψ3

µ̂ -1.64 1.20 -1.76 1.58 -1.02 1.03

κ̂ 1.58 31.46 1.67 0.44 8.19 0.31

Table 4.8: Marginal MLEs ofµ andκ for gamma turn data.

Gamma turn MLE Gamma turn PLE Simulated PLE

φ ψ φ ψ φ ψ

κ1 1.60 (0.09) 0.44 (0.07) 1.60 (0.09) 0.44 (0.07) 1.65 (0.10) 0.52 (0.07)

κ2 31.72 (2.00) 8.87 (0.54) 31.73 (1.99) 8.87 (0.53) 33.25 (2.08) 7.75 (0.46)

κ3 1.69 (0.10) 0.32 (0.67) 1.69 (0.10) 0.31 (0.07) 1.77 (0.10) 0.33 (0.07)

λ12 0.55 (0.41) 0.23 (0.20) 0.65 (0.31) 0.15 (0.13) 1.04 (0.30) 0.06 (0.14)

λ13 0.32 (0.12) -0.43 (0.10) 0.39 (0.09) -0.33 (0.06) 0.46 (0.08) -0.48 (0.06)

λ23 -0.71 (0.42) 1.35 (0.21) -0.79 (0.31) 1.13 (0.13) -0.66 (0.30) 0.94 (0.14)

µ1 -1.64 (0.05) 1.58 . -1.63 (0.05) 1.46 (0.12) -1.66 (0.05) 1.49 (0.09)

µ2 1.20 (0.01) -1.02 . 1.20 (0.01) -1.02 (0.02) 1.18 (0.01) -1.02 (0.02)

µ3 -1.75 (0.04) 1.03 . -1.73 (0.04) 1.27 (0.10) -1.64 (0.04) 1.29 (0.09)

Table 4.9: Maximum likelihood estimates (MLEs) and pseudolikelihood estimates (PLEs)

(and their standard errors) forφ andψ angles of Gamma turn data and for data simulated

using these estimates.

Comparing Tables 4.8 and 4.9 we see that the univariate MLEs for µ andκ are similar to
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the estimates forµ andκ in the trivariate case, with a possible tendency for the univariate

κ estimates to be slightly smaller. Moreover, theλ estimates are generally quite close to

zero, although most also have small standard errors relative to their magnitude.

As an assessment of the goodness-of-fit of the model, two setsof trivariate data are

simulated using the MLEs and compared with the originalφ andψ Gamma turn data.

Figure 4.6 displays the data obtained.

φ1 φ2 φ3

ψ1 ψ2 ψ3

Figure 4.6: Circular plot of497 simulatedφ andψ triplets with true parameter values

equal to the MLEs for the original gamma turn data.

It can be seen that the data simulated are reasonably similarto the original data. For the

ψ angles there appears to be a slight bimodality in angles1 and3 of the original data that

is not reproduced in the simulation. For bothφ andψ, the plots for angles1 and3 of the

simulated data appear slightly more gradual in terms of changes in density on the circle

than the original data.

Using the pseudolikelihood to re-estimate the parameters based on the simulated data

gives the results in the right hand part of Table 4.9, and we observe comparable results

with those displayed in the left part of the table, indicating reasonable goodness–of–fit.
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We extend the analysis of the Gamma turn data by developing likelihood ratio tests for

the trivariate von Mises distribution.

Hypothesis testing

An important part of fitting statistical models is the formulation and testing of hypotheses.

In this section we compare likelihood ratio test statisticsbased on a von Mises maximum

likelihood approach, a von Mises pseudolikelihood approach, and a normal approximation

approach.

We will test two hypotheses regarding the mean directions ofthe angles composing

Gamma turns. Firstly, the hypothesisµ1 = µ3 for the φ andψ angles of such a turn

will be tested. A further test on the mean directions of theφ angles could be based on

the hypothesisµ1 = µ3 = µ2 − π. Although these hypotheses may be criticised on the

grounds that they have been generated by looking at the data,the focus of the present

section is on formulating test procedures rather than the results of the tests per se. A test

of independence ofφ1, φ2 andφ3 is equivalent to testing that allλ values are equal to

zero. These three hypotheses will be tested in the three waysdescribed above.

We outline the procedure for using a Normal approximation tothe von Mises distribution

in order to test the above hypotheses. Althoughκ values for angles1 and3 of bothφ and

ψ are reasonably small, the trivariate Normal distribution

(Θ1,Θ2,Θ3) ∼ N3(µΘ,ΣΘ), (4.14)

where(Σ−1
Θ )ii = κi, (Σ−1

Θ )ij = −λij and i 6= j, will be used to test the hypothesis

µ1 = µ3. In (4.14),Θ is to be replaced byΦ or Ψ, depending on the variable of interest,

whilst µΘ is the vector comprising the mean directions ofΘ1, Θ2 andΘ3. Forµ̂φ andµ̂ψ

we take the maximum likelihood estimates. The covariance matrices obtained forφ and
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ψ, based on the MLEs of the trivariate von Mises model, are respectively

Σ̂ψ =











−6.28 1.43 12.06

1.43 −0.11 −1.96

12.06 −1.96 −16.98











Σ̂φ =











0.67 0.01 0.15

0.01 0.03 −0.01

0.15 −0.01 0.63











.

The matrixΣ̂ψ is not positive definite, a direct result of the values of the MLEs for the

trivariate von Mises fit – since not all parameter values willlead to a positive definite

normal approximation (in which case the normal approximation is inappropriate).

Therefore the hypothesis described will be carried out for theφ angles only. It is noted

here that in Section 4.4.2 alternative, moment based estimators will be discussed, which

would lead to a positive definite covariance matrix. Since these are based on a normal

approximation, and the estimates of theκ parameters for the Gamma turn data are not

particularly large (except for the middle value), discussion of these estimators is deferred

until Section 4.4.2.

Test 1:µ1 = µ3

The test statistic, which is approximatelyχ2
1 distributed under the null hypothesis

and for largeκ values, isS = 2(lfull − lred), where lfull is the loglikelihood of the

distribution (4.14) with mean vector and covariance matrixµ̂φ and Σ̂φ respectively.

lred is the corresponding value when the maximum likelihood estimates are calculated

with µ1 = µ3. We getS = 2.91, with a p–value of0.093. We therefore accept the null

hypothesis that the means are equal.

Test 2:µ1 = µ3 = µ2 − π

Using the same procedure as for test 1, we obtain a test statistic of 191.8 on two degrees

of freedom. This is clearly a very large figure and we reject the null hypothesis. As seen

in Table 4.9, the difference between the PLE ofµ2 and bothµ1 andµ3 is slightly lessthan

π, andµ2 has a particularly small standard error.
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Test 3:λ12 = λ13 = λ23 = 0

Under this test of independencêΣ−1
φ for the reduced model isdiag(κ̂), where κ̂ is

the MLE of (κ1, κ2, κ3) when all λ values are equal to zero.̂κ is calculated to be

(1.59, 31.46, 1.67) (values that correspond almost exactly with those in Table 4.8), and

the resulting test statistic is119.8 on three degrees of freedom. Again this value is

highly significant, although perhaps not surprisingly so, given the small magnitude of the

standard errors of theλ estimates relative to the magnitude of the estimates themselves.

Of importance in fitting a normal distribution to directional data is the point at

which the circle is cut. In the current situation we have donethis atπ, although this

should perhaps be done separately for each variable in such away that the concentration

parameter is maximised. Of course, the more concentrated the data, the easier it is to

select a point at which to cut the circle, and the more appropriate the use of the normal

approximation. Since in the current settingφ1 andφ3 are quite dispersed, the normal

approximation is perhaps not entirely suitable, and the problem is therefore not addressed

in detail.

The left half of Table 4.10 gives loglikelihood values for the full and reduced models

and for each of the three approaches described: full (joint)von Mises likelihood, von

Mises pseudolikelihood and normal approximation. The right half of the table displays

the likelihood ratio test statistics based on the values in the left part of the table. As

can be seen from the table, the same conclusions are reached regarding the acceptance

or rejection of the null hypothesis in each case, namely thatthe only null hypothesis not

rejected is for test1, µ1 = µ3 (using a5% significance level).

Of more interest, however, is comparison of loglikelihood values for the different

methods, and the resulting differences in the test statistics. In particular, the log–

pseudolikelihood appears to underestimate the loglikelihood slightly (in absolute value)

in the first three rows of Table 4.10. In each case, however, the size of the underestimation
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Log-likelihood Test statistic

VM joint VM pseudo Normal VM joint VM pseudo Normal

Full -1233.66 -1225.46 -1857.21

Test 1 -1235.34 -1227.04 -1858.66 3.35 3.17 2.91

Test 2 -1259.57 -1250.30 -1953.10 51.81 49.70 191.79

Test 3 -1238.88 -1238.88 -1917.13 10.43 26.85 119.84

Table 4.10: Loglikelihood and log–pseudolikelihood values evaluated at MLEs and PLEs,

and test statistics based on these values.

is similar, resulting in little difference in the test statistics for tests1 and2. In the case

λ = 0 (row 4 of the table), the full likelihood and pseudolikelihood values are the

same. This is to be expected, since in this case each is the product of the same three

independently distributed von Mises distributions. The effect is an inflated test statistic

when the test is based on the pseudolikelihood.

4.4.2 Serine and valine data

Of interest in the study of protein structures is the relationship between the backbone of a

protein and its side–chain conformation (see, for example,Dunbrack and Cohen (1997)).

The latter is measured by the anglesχj , j = 1, . . . , 4, and each of the twenty commonly

occuring amino acids has associated with it0, 1, 2, 3 or all4 of theseχ angles, as described

in Section 1.2. In this section we use a trivariate von Mises distribution to model backbone

and side–chain angles gathered from a database for two aminoacids, serine and valine,

that have a single side–chain angleχ1. The two amino acids are compared in terms of

summary statistics and fitted model parameters, and for eachamino acid the relationship

between theφ, ψ andχ1 angles is investigated using likelihood ratio tests.
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Summary statistics

The raw data comprise theφ, ψ and χ1 (to be referred to asχ) angles

for 10475 serine and 11617 valine amino acids, gathered from numerous

proteins and obtained from the Backbone–Dependent RotamerLibrary

(http://dunbrack.fccc.edu/bbdep/bbdepformat.php).

Figures 4.7 and 4.8 show correlation plots, as described forthe gamma turn data in the

previous section, for the raw serine and valine data. For display purposes, the data are

plotted in such a way as to be able to distinguish between clusters, so that axis endpoints

are not necessarilyπ and−π. The figures show the data to be multimodal, whilst thep–

values for the circular correlation coefficients show all pairwise correlations to be highly

significant. The plots also reveal an apparent similarity between the valine and serine data.

In this instance a mixture model appears appropriate, sinceit was conjectured in Section

2.3 that the marginal distributions associated with the trivariate von Mises distribution are

either unimodal or bimodal.

As an exploratory analysis of the serine and valine data, we select regions of the plots

in Figures 4.7 and 4.8 and propose a trivariate von Mises distribution for modelling the

resulting data. Working in the interval[−π, π), we take those data for whichφ ∈ (−π, 0),

ψ ∈ {(1.4, π] ∪ (−π,−2π/3)} andχ ∈ (−1.75, 0). This leaves data for 1171 serine and

1343 valine amino acids. Correlation plots of the resultingdata are shown in Figures 4.9

and 4.10.

Based on the plots, the new data appear fairly unimodal. Again there are similarities

between the valine and serine data, although the former appear to be slightly more

concentrated. Based on the figures in the lower panels of the two plots, the only non–

significant circular correlation for the serine data is thatbetweenφs andχs. For the valine

data, that betweenψv andχv is the only non–significant correlation. Table 4.11 gives

univariate maximum likelihood estimates for each angle of the reduced serine and valine
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Figure 4.7: Correlation plot of raw serine data, with circular plots on main diagonal,

pairwise plots on upper panels and correlations on lower panels.
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Figure 4.8: Correlation plot of raw valine data, with circular plots on main diagonal,

pairwise plots on upper panels and correlations on lower panels.
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Figure 4.9: Correlation plot of selected serine data, with circular plots on main diagonal,

pairwise plots on upper panels and correlations on lower panels.
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data.

Immediately it can be seen from the MLEs, as it can from the plots, that the data are

highly concentrated, particularly the valine data. The suitability of a trivariate normal

distribution should therefore also be considered. The sample mean directions for the two

data sets a reasonably similar, particularly for theχ values.

φs ψs χs φv ψv χv

µ̂ -1.73 2.51 -1.10 -2.16 2.75 -1.08

κ̂ 4.56 11.55 28.29 9.32 25.46 52.83

Table 4.11: Univariate von Mises MLEs ofµ andκ for serine and valine data

Fitting a trivariate von Mises distribution

We now fit the proposed trivariate von Mises distribution to the serine and valine data.

The results are displayed in Table 4.12. The maximum likelihood estimates are obtained

as described for the gamma turn data analysed in Section 4.4.1, and the pseudolikelihood

estimates are used as the starting point for the algorithm. For the maximum likelihood

approach, the same convergence issues arise as for theψ angles of the gamma turn data.

For this reason, we again estimate the mean directions in theMLE approach by taking the

marginal sample mean directions. The mean (direction) corrected data are then used in

estimation of the remaining parameters.

We observe from Table 4.12 that the MLEs and PLEs are very similar, particularly for the

serine data. This should be expected, since the data are highly concentrated and we know

that, as the concentration parameters tend to infinity, the trivariate von Mises distribution

tends to a trivariate normal distribution, for which the pseudolikelihood estimators are

fully efficient. There is some disagreement in the magnitudeof the standard errors of

the estimates based on the full likelihood and pseudolikelihood, and since these are only
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MLE PLE PLE (simulated)

Serine Valine Serine Valine Serine Valine

κφ 4.59 (0.17) 9.61 (0.36) 4.58 (0.17) 9.63 (0.36) 4.80 (0.18) 9.84 (0.36)

κψ 11.66 (0.47) 26.26 (1.00) 11.66 (0.47) 26.28 (0.99) 12.33 (0.50) 28.09 (1.06)

κχ 28.49 (1.17) 53.25 (2.05) 28.50 (1.16) 53.28 (2.04) 28.52 (1.16) 54.55 (2.09)

λφψ -0.43 (0.23) -2.85 (0.46) -0.42 (0.16) -2.99 (0.33) -0.28 (0.17) -2.98 (0.34)

λφχ -0.17 (0.36) 1.81 (0.64) -0.16 (0.25) 1.94 (0.47) -0.13 (0.26) 1.92 (0.46)

λψχ 1.59 (0.55) 2.22 (1.04) 1.64 (0.40) 2.34 (0.75) 1.42 (0.40) 2.24 (0.76)

µφ -1.73 . -2.16 . -1.73 (0.01) -2.16 (0.01) -1.73 (0.01) -2.17 (0.01)

µψ 2.51 . 2.75 . 2.51 (0.01) 2.74 (0.01) 2.50 (0.01) 2.74 (0.01)

µχ -1.10 . -1.08 . -1.10 (0.01) -1.09 (0.00) -1.09 (0.01) -1.08 (0.00)

Table 4.12: Maximum likelihood estimates (MLEs) and pseudolikelihood estimates

(PLEs) (and their standard errors) of parameters for serineand valine data, and for data

simulated using these estimates.

approximate, the significance of parameters would be betterexplored with likelihood ratio

tests. As with the gamma turn data, NA’s in the table are the result of negative values on

the diagonal of the inverse of the numerically obtained Hessian matrix.

Comparing the ability of the maximum likelihood and pseudolikelihood procedures

to maximise the full likelihood function, the loglikelihood evaluated at the MLEs is

−816.4236 and evaluated at the PLEs is−816.4254 for the serine data. The corresponding

figures for the valine data are584.7315 and584.6620. The maximum likelihood approach

is therefore seen to be superior (as expected) in this respect, although the difference is

practically zero. On the other hand, estimation of parameters takes over two hours for

each data set based on the ML approach, whilst the PLEs are calculated in approximately

ten seconds, giving an idea of the relative computational expense of the two approaches.

Comparing Tables 4.11 and 4.12, we see that theκ estimates based on independent

univariate von Mises distributions are very similar to those based on the trivariate models,

with those of the latter being very slightly larger in each case. We note that the same was

true for the gamma turn data, and in both cases the estimatedλ values are quite small.
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The closeness of the agreement between the univariate and trivariateκ estimates could

be an indication of the dependence of the variables in the trivariate model, with ‘closer’

agreement indicating less dependence, although this is nota very rigorous assessment.

Based on theλ estimates and their standard errors, using either the MLEs or PLEs, the

indication for the serine data is again that the only non–significant correlation is that

betweenφs andχs. For the valine data, all three appear significant.

As an assessment of the goodness–of–fit of the model, we follow the same approach as

for the gamma turn data and simulate data based on the pseudolikelihood estimates, then

compare the resulting data with the original data in terms ofplots and parameter estimates.

The pseudolikelihood estimates of the simulated data are displayed in Table 4.12, whilst

correlation plots of the simulated data are given in Figures4.11 and 4.12.

We see from Table 4.12 that the PLEs for the simulated data aresimilar to the true

parameters (the PLEs of the original data), but with a tendency for theκ parameters to

be overestimated. Considering Figures 4.11 and 4.12, the circular plots on the diagonals

appear similar for the original and simulated data, although slightly less so forφsim
s than

for the other variables. The plots on the upper panels appearslightly different for the

original and simulated data, although this is partly due to the slightly different axis scales.

Specifically, the simulated data are not subject to the rangerestrictions imposed on the

original data. In terms of the circular correlation coefficients and their significance,

the former are very similar for the original and simulated data, although the correlation

betweenφsim
s andψsim

s is noticeably less significant than that betweenφs andψs based on

thep–values.

In summary, the model appears to be a reasonable fit for both the serine and valine data

based on the comparison between the original data and those simulated using PLEs as true

parameter values. Indeed, some of the discrepancies observed may be due to the problem

of simulating data without the restriction in range imposedon the original data.
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Figure 4.11: Correlation plot of simulated serine data, with circular plots on main

diagonal, pairwise plots on upper panels and correlations on lower panels.
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Since we have seen that the estimates of theκ parameters for both the serine and valine

data are large, we here describe an alternative method of parameter estimation, based on

moment estimators and an assumption of high concentration.In particular, we estimate

the covariance matrix of the normal distribution under highconcentration (independent

of any particular circular model) using (Singh et al., 2007)

Σ̂ =











2(1 − R1) S12 S13

2(1 − R2) S23

2(1 −R3)











(4.15)

where

Rj =

∑n
i=1 cos(θji − θj)

n
, Sjl =

∑n
i=1 sin(θji − θj) sin(θli − θl)

n
,

j 6= l and θj is the sample mean direction of theθji values,i = 1, . . . , n. We note

that an alternative would be to useSjl for j = l (ie. the diagonal elements of the

matrix). The inverse of this matrix can then be compared withthe covariance matrix

of the limiting normal distribution of the trivariate von Mises distribution, which was

derived in Section 2.3 to be of the form(Σ−1)jj = κj, (Σ−1)jl = −λjl, j 6= l.

Estimates of theκ andλ parameters based on the matrix (4.15) can then be obtained

and compared with the maximum likelihood estimates and pseudolikelihood estimates

from Table 4.12. Table 4.13 shows moment estimates of theκ andλ parameters for the

serine and valine data. The estimates are obtained by relating the inverse of the matrix

κ1 κ2 κ3 λφψ λφχ λψχ

Serine 4.27 11.39 28.22 -0.33 -0.14 1.44

Valine 9.33 25.94 52.96 -2.53 1.62 2.08

Table 4.13: Estimates ofκ andλ parameters for serine and valine data based on moment

estimator of covariance matrix of the normal distribution.

in (4.15) to the inverse covariance matrix under high concentration of the trivariate von
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Mises distribution. Specifically, the diagonal elements ofthe former are the estimates

of theκ parameters, whilst the remaining elements are negated in order to obtain theλ

parameter estimates. Comparing Tables 4.12 and 4.13, we seethat the moment estimates

are very similar to the estimates obtained using a maximum likelihood approach and a

pseudolikelihood approach. The absolute value of each parameter estimate is slightly

smaller for the moment estimates. Since the moment estimators are constructed assuming

high concentration and using a normal approximation approach, the similarity of the

moment estimates and the likelihood estimates indicates that a normal distribution may

be reasonable for modeling the serine and valine data.

In the next section we investigate hypothesis testing for the serine and valine amino acid

data.

Hypothesis testing

We now use those methods employed for the gamma turn data in order to test hypotheses

on theλ values of the serine and valine data. Since it is of interest to investigate the

interrelationships between theφ, ψ andχ values, we first test the hypothesis that allλ

values for a particular data set are equal to zero (λ = 0). In this case the pseudolikelihood

and full likelihood are identical, the joint density ofφ, ψ andχ being the product of three

independent von Mises distributions. The MLEs and PLEs for this model are therefore

simply the univariate maximum likelihood estimates based on each column of the data.

For serine, the subsequent testλφsψs = λφsχs = 0 is also performed. In this

case,φs follows a univariate von Mises distribution whilstψs and χs have a joint

bivariate von Mises distribution. Comparison of a full likelihood and a pseudolikelihood

approach in this case therefore reduces essentially to a comparison of the likelihood and

pseudolikelihood for a bivariate von Mises distribution.

The results of testing the hypotheses described are displayed in Table 4.14. The following



Parameter estimation and inference for the multivariate von Mises distribution 87

four methods are used to test the hypotheses:

1. Full and reduced models are fitted using the joint trivariate von Mises distribution

and likelihood ratio tests are performed using values of theloglikelihood function

at the MLEs.

2. The pseudolikelihood is used for fitting the full and reduced models, and likelihood

ratio tests are performed using values of the log–pseudolikelihood at the PLEs.

3. A trivariate normal distribution is fitted to the data for the full and reduced models

and likelihood ratio tests are performed.

4. A trivariate normal approximation based on the MLEs is used to obtain

loglikelihood values based on a normal distribution and likelihood ratio tests are

performed using these values.

In addition to the conclusions of the results of the tests, also of interest is comparison of

the four approaches. They provide a means of comparing the pseudolikelihood and full

likelihood for hypothesis testing, and also for assessing the appropriateness of a normal

distribution by comparing the results of methods 3 and 4 above.

Log-likelihood Test statistic

Serine VM joint VM pseudo Normal Norm appr. VM joint VM pseudo Normal Norm appr.

Full -816.42 -810.25 -813.02 -817.94

λ = 0 -822.67 -822.67 -818.35 -823.20 12.49 24.83 10.66 10.53

λφψ = λφχ = 0 -818.40 -813.86 -814.66 -819.60 3.96 7.21 3.29 3.33

Valine VM joint VM pseudo Normal Norm appr. VM joint VM pseudo Normal Norm appr.

Full 584.73 613.01 551.23 547.73

λ = 0 559.87 559.87 526.77 523.24 49.72 106.27 48.90 48.98

Table 4.14: Loglikelihood values and test statistics basedon four different approaches.

A number of conclusions and observations can be made based onthe results of the

tests. For both serine and valine, the hypothesis that allλ values are equal to zero is
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strongly rejected by all the tests, based on a chi–squared distribution with3 degrees of

freedom, the2% critical value of which is9.84. Again for both data sets, the maximised

von Mises log–pseudolikelihood is greater than the maximised von Mises log–likelihood

when based on the full model. When allλ parameters are equal to zero, however, the

pseudolikelihood and likelihood are, as mentioned above, identical. We therefore obtain

a greatly inflated test statistic when this test is performedusing the pseudolikelihood.

Comparison of both loglikelihood and test statistic valuesfor the von Mises and normal

distribution approaches reveals close similarities between the two, particularly for serine.

The closeness of the agreement could be an indication of the appropriateness of a normal

distribution for modelling the data. When the normal distribution model is fitted and

evaluated it is important to cut the circle in such a way as to obtain a unimodal distribution.

In the current context, this is achieved by adding2π to all negativeψ values, as for the

plots in Figures 4.9 and 4.10.

For the testλφψ = λφχ = 0 for serine we obtain non–significant test statistics for alltests

except that based on the pseudolikelihood. The test statistic 7.21 for the pseduolikelihood

approach has ap–value of0.027 based on a chi–squared distribution with two degrees of

freedom, whilst that based on the likelihood approach,3.96, has ap–value of0.13. As

discussed above, in fitting this reduced model we are able to compare the full likelihood

and pseudolikelihood for thebivariatevon Mises distribution. As for the trivariate case,

the latter, at least for these data, overestimates the former. Since the overestimation is

not as great (in absolute terms) as for the trivariate model,we again obtain an inflated

test statistic relative to the other approaches. We conclude that there is not significant

evidence to reject the hypothesis that bothλφψ andλφχ are equal to zero.

We observe from Table 4.14 that the test statistics based on the von Mises

pseudolikelihood approach are approximately twice those based on the von Mises full

likelihood approach. A similar observation can be made for the hypothesis that allλ

parameters are equal to zero for the Gamma turn data (Table 4.10). If we consider normal
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variatesx andy in the context of a regression problem, then the hypothesisρxy = 0 is

equivalent to each of the hypothesesβx = 0 in the regression ofy on x andβy = 0 in

the regression ofx on y. In employing the full likelihood approach we are effectively

testing eitherβx = 0 or βy = 0, whilst a pseudolikelihood approach uses both. The

likelihood ratio test statistic based on the latter should therefore be twice that based on

the former. We conjecture that a similar statement is true inhigher dimensions for both

the partial pseudolikelihood and the full pseudolikelihood, although this is not discussed

further here.

We conclude the section by noting that it may also be instructive to compare data sets in

terms of their parameter estimates by using likelihood ratio tests. For example, we could

test the hypothesis that the value of each parameter for serine is equal to the corresponding

parameter value for valine. This would be done by fitting a trivariate von Mises model to

the pooled data, and comparing the loglikelihood with the sum of the loglikelihoods of the

two separate models. In the present situation the parameterestimates are very different

(especially for theκ parameters) and so this hypothesis will not be explored further.

4.5 Conclusions

In this chapter we have derived the efficiency of the pseudolikelihood for the bivariate

von Mises distribution. This efficiency has been shown to depend on the values of

parameters, and is reasonably high so long asλ is not very large. We have performed

a thorough analysis of properties of pseudolikelihood estimates for the trivariate von

Mises distribution, implementing a Gibbs sampling approach to data simulation and

comparing pseudolikelihood estimates with maximum likelihood estimates. For all

parameter combinations considered, the two are shown to have similar properties in terms

of accuracy and precision of estimates, whilst the former are calculated at a fraction of

the computational cost. An analysis of protein fold data shows the trivariate model to
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be a reasonable fit for those data studied, and likelihood ratio tests have been developed

for the trivariate distribution. A further analysis has investigated the relationship between

the backbone and side–chain conformation of two amino acids, serine and valine. Based

on the region of data analysed, it was concluded that theφ angles for the serine dara are

independent of both theψ andχ values. The results concerning efficiency for the bivariate

case and regarding efficiency and model fitting for the trivariate case are summarised in

Mardia et al. (2007a) and Singh et al. (2007) respectively.

Using an extension of the bivariate Cosine model, discussedin detail by Mardia et al.

(2007b) and defined in Equation (1.13), an alternative multivariate von Mises model, the

multivariate Cosine model, can be defined forΘ = (Θ1,Θ2, . . . ,Θp) as follows:

f(Θ) = C−1
p (κ,∆) exp

{

κT c(θ,µ) − s(θ,µ)T∆ s(θ,µ) − c(θ,µ)T∆ c(θ,µ)
}

,

where−π < θj ≤ π, −π < µj ≤ π, κj ≥ 0 , δjl ≥ 0. The vectorsc(θ,µ),

s(θ,µ), µ andκ are defined as for the multivariate Sine model (Equation (2.2)), while

[∆]jl = δjl = δlj andδjj = 0. The normalizing constant isC−1
p (κ,∆). This model can

be investigated in ways similar to the analysis of Chapters 2to 4 for the multivariate Sine

model. Comparisons analogous to those made by Mardia et al. (2007b) for the bivariate

Sine and Cosine models can then be made for the multivariate models. The two can also

be compared, for example, in terms of the efficiency of the pseudolikelihood for parameter

estimation.
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Part II

Time series models with application to

protein conformational angles
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Chapter 5

Directional time series models

5.1 Introduction

Directional time series occur in a number of meteorological, oceanographic, geological

and biological contexts. The first of these has received perhaps the most attention in the

literature, Breckling (1989) providing the most comprehensive account with his analysis

of wind speeds and directions, whilst Fisher and Lee (1994) and Coles (1998) also use

wind directions in their examples. On the other hand, biological applications, for example,

are seldom found, and with the emergence of bioinformatics the potential for exploiting

existing models and developing new ones provides the opportunity for advancement and

increased usage of the subject of directional time series.

In contrast to the wealth of tools at the disposal of those wishing to analyse linear

time series, various challenges associated with the analysis of directional data have

hindered the development of analogous techniques for time series comprising directional

measurements. In this section we survey the existing modelsand highlight some of the

problems associated with the further development of such methods.

Attention focuses on exploratory analysis (in Section 5.2)and on four directional time
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series models: the von Mises autoregressive (AR) process (Section 5.3); processes based

on link functions (Section 5.4), the wrapped AR process (Section 5.5) and projected

processes (Section 5.6). Criteria for choosing between themodels are discussed in Section

5.7, whilst Section 5.8 summarises the chapter.

5.2 Directional time series and exploratory analysis

In many statistical analyses, the first step is to use exploratory or descriptive techniques

to investigate features of the data being studied. For linear time series, examples include

the autocorrelation coefficient and a simple time plot to identify potential trend, non–

stationarity, seasonal effects, etc (see, for example, Chatfield (1975) for comprehensive

details).

Fisher (1993) describes some analogous methods for the exploratory analysis of

directional time series. For highlighting trends in a directional time series{θi}, i =

1, . . . , n, he describes kernel estimatesx̂(t) andŷ(t) based onxi = cos θi andyi = sin θi,

i = 1, . . . , n. In practice, thexi andyi values are smoothed individually, each being

a weighted average of values measured at timesti neart. In particular, the following

expression giveŝx(t) whilst an analogous expression can be used to obtainŷ(t):

x̂(t) =

∑n
i=1Kh(t− ti)xi
∑n

i=1Kh(t− ti)

whereKh(t) = h−1K(t/h) andK is the desired kernel function.̂x(t) andŷ(t) are used

to obtain a smoothed estimateθ̂(t) of the form

θ̂t = tan−1 {ŷ(t)/x̂(t)} .

Analogous to the autocorrelation coefficient for linear variables, he describes ak–lag

circular autocorrelation coefficient of{θi} based on the(n− k) data pairs

(θ1, θk+1), (θ2, θk+2), . . . , (θn−k, θn).
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His circular autocorrelation coefficient is based on an estimator of the circular correlation

ρT =
E [sin(Θ1 − Θ2) sin(Φ1 − Φ2)]

{

E
[

sin2(Θ1 − Θ2)
]

E
[

sin2(Φ1 − Φ2)
]}

1

2

(5.1)

between two circular variablesΘ and Φ introduced by Fisher and Lee (1983). Here,

(Θ1,Φ1) and(Θ2,Φ2) are distributed independently as(Θ,Φ). The estimator ofρT used

is

ρ̂T =

∑

1≤i<j≤n sin(θi − θj) sin(φi − φj)
[

∑

1≤i<j≤n sin2(θi − θj)
∑

1≤i<j≤n sin2(φi − φj)
]

1

2

, (5.2)

and forms the basis for calculation of the circular autocorrelation coefficient. For

convenience, if we writeφi = θi+k, i = 1, . . . , n− k, then we have the(n− k) pairs

(θ1, φ1), (θ2, φ2), . . . , (θn−k, φn−k),

based on which we can calculate thek–lag circular autocorrelation̂ρT (k) as

ρ̂T (k) =

∑

1≤i<j≤n−k sin(θi − θj) sin(φi − φj)
[

∑

1≤i<j≤n−k sin2(θi − θj)
∑

1≤i<j≤n−k sin2(φi − φj)
]

1

2

. (5.3)

Plotting ρ̂T (k) versusk then gives a circular correlogram. In order to assess the

significance of these coefficients, permutation tests can becarried out, in whichk–lag

circular autocorrelation coefficients are calculated for alarge number (or preferably all)

of then! − 1 possible orderings of the data other than that observed, andcompared with

that value calculated based on the actual data.

Fisher (1993) also gives a detailed account of rank cumulative sum (CUSUM) methods

due to Lombard (1988), based on which one can investigate thepossibility that a

directional time series comprises blocks of data differingin their population mean

directions.

5.3 The von Mises autoregressive process

Breckling (1989) develops a directional process, the von Mises autoregressive (AR)
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process, by direct analogy with the linear AR process. Specifically, for a directional

process{θt}, if the conditional distribution ofθt given(θt−1, . . . , θt−p) is von Mises with

concentration vector (see Definition 1.3.2)

vt =

p
∑

j=1

κj (cos θt−j , sin θt−j)
T + (κ0, 0)T

then{θt} is a von Mises process and

f(θt|θt−1, . . . , θt−p) = [2πI0(vt)]
−1 exp

{

p
∑

j=1

κj cos(θt − θt−j) + κ0 cos θt

}

wherevt = ||vt|| is the length ofvt.

An important distinction between this directional AR process and its linear counterpart is

that the former doesnot have constant concentration whilst the latter does have constant

variance. For the special casep = 1 andκ0 = 0, {θt} becomes a process with constant

concentration andθt has a uniform marginal distribution with density(2π)−1.

Maximum likelihood estimators and least squares estimators for κ = (κ0, . . . , κp)
T are

shown to agree, the estimating equation forκ in each case being

d logLc
dκ

=

n
∑

t=p

{

−A1(vt)

vt
ΓtΓ

T
t κ + γt

}

= 0,

whereLc is the likelihood function conditional onθ0, Aν(·) = Iν/I0(·),

Γt =

















1 0

cos θt−1 sin θt−1

...
...

cos θt−p sin θt−p

















and γt =

















cos θt

cos(θt − θt−1)
...

cos(θt − θt−p)

















.

In general, an iterative technique is required to obtainκ̂, the exception being forp = 1

andκ0 = 0. Breckling (1989) applies the model withp = 1 to a series of wind directions.
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5.4 Linked processes

Fisher and Lee (1994) use the idea of link functions to adapt linear time series models to

a directional context using two approaches.

Firstly, they define a circular stationary process{θt} with mean directionµ to be a

linked autoregressive moving average (LARMA) process if and only if the process

{xt} = {g−1(θt − µ)} is an autoregressive moving average (ARMA) process, whereg(x)

is an odd, monotone function mapping the real line onto(−π, π] andg(0) = 0. Thek–lag

circular autocorrelation function of{θt} is given as

ρT (k) = ρT {g(Xt), g(Xt+k)} ,

whereρT is as in Equation (5.1). They use this to plot acf’s for LAR(1) models based

on the probit link, where the directional series{θt} is obtained from the simulated linear

series{xt}. Given a series{θt} it is suggested that standard methods for linear series be

used to model the seriesxt = g−1(θt − µ̂), whereµ̂ is the sample mean direction of the

series. The suggested approach is therefore thatg(·) is chosen so as to make the associated

linear process approximately normal.

An alternative specification of a circular autoregressive (CAR) process using a link

function is also described by Fisher and Lee (1994), in whichΘt given θt−1, . . . , θt−p

follows a von Mises distribution with concentration parameterκ and mean direction

µt = µ+ g
{

ω1g
−1(θt−1 − µ) + . . .+ ωpg

−1(θt−p − µ)
}

. (5.4)

In contrast to Breckling’s use of the conditional likelihood for parameter estimation,

Fisher and Lee (1994) assume a univariate von Mises distributionM(µ, κ) for eachθt (but

observe that these are not the true marginals). It is claimedestimation is not adversely

effected by making this assumption for series that are not too short. The likelihood

function is then
n
∏

t=p+1

f
(

θt − µ− g
[

ω1g
−1{(θt−1 − µ)/2} · · ·+ ωpg

−1{(θt−p − µ)/2}
])

p
∏

t=1

f(θt − µ)
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wheref is the density of the von Mises distribution with zero mean and concentration

parameterκ. Again an iterative procedure is needed for parameter estimation. The

two linked processes are used to fit directional AR(1) models to a time series of wind

directions andg(·) is taken to be the probit link.

5.5 Wrapped processes

The directional time series model that has received the mostattention in the literature

is the wrapped autoregressive (WAR) process, developed by Breckling (1989). There

are various reasons for this. It provides a natural circularanalogue to linear processes

and interpretation is aided by the relationship with the normal distribution on the line.

The covariance matrix, for example, maintains many of its properties under the wrapping

procedure (Coles, 1998). On the other hand, inference for the model is complicated, and

various methods have therefore been proposed with the aim ofovercoming this difficulty

in order that the WAR process can realise its potential.

The wrapped AR process is most simply viewed as the result of wrapping a linear AR

process{Xt} around the circle. Given the linear AR(p) process

Xt =

p
∑

j=1

αjXt−j + εt; εt ∼ N(0, σ2) i.i.d,

the WAR(p) process{ηt} is defined by

ηt = Xt(mod2π), t = 1, . . . , n.

Thus, if we observe the series{ηt}, the linear process is given byXt = ηt + 2πkt, where

thekt are unobserved integers, called wrapping coefficients. Theinferential complexity

arises from the fact that that we need to estimate the parametersα1, . . . , αp, σ
2 of the

linear process, given only the wrapped process.
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Breckling (1989) developed inferential methods based on the correlogram of wrapped

processes. More recently, treating the problem as one of missing data, Fisher and Lee

(1994) proposed use of the expectation maximisation (EM) algorithm. The calculations

involved in the E–step are ‘prohibitive’, and an approximation is used, although for higher

order models the resulting equations are even more complicated. They assert, therefore,

that the wrapped normal approach is only feasible for AR models of low order.

Coles (1998) also notes the inferential difficulties associated with the model, and develops

a Bayesian approach using Markov chain monte carlo (MCMC) methods. Some problems

arise in the case of large variance, for which stronger priors are needed to overcome

the problem of wrapping coefficients and large variance components confounding. He

simulates a linear AR(1) process, which is then wrapped around the circle, and uses the

MCMC procedure in order to estimate parameters. Model selection is explored briefly by

showing the AR(2) parameter to be redundant. Estimates are shown to agree closely with

the original parameter valuesσ = 1 andα1 = 0.8. The approach is also used to estimate

the parameters of a WAR(2) process applied to a series of winddata.

Fisher and Lee (1994) give the circular correlation function ρT of Θ1 = Y1(mod2π) and

Θ2 = Y2(mod2π) for the bivariate normally distributed(Y1, Y2) and derive from it the

circular autocorrelation function of the circular WAR(p) process. The former is given by

ρT =
sinh(2ρσ1σ2)

{sinh(2σ2
1) sinh(2σ2

2)}
1

2

,

wherevar(Xi) = σ2
i , i = 1, 2 andcorr(X1, X2) = ρ. The latter, with{ηt} viewed as the

result of wrapping the AR(p) processXt around the circle, is given by

ρT (k) =
sinh {2ρ(k)σ2/(1 − α1ρ(1) − . . .− αpρ(p))}

sinh {2σ2/(1 − α1ρ(1) − . . .− αpρ(p))}
,

whereρ(k) is thek–lag (linear) autocorrelation function of{Xt}, andα1, . . . , αp, σ
2 are

its AR(p) parameters. They suggest solving

ρ̂T (k) = sinh(2c0ρ̂(k))/ sinh(2c0)
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in order to estimateρ(k), whereρ̂T (k) is as in (5.3),c0 is obtained from the equation

R = exp(−c0/2) andR is the mean resultant length of the elements of the series{ηt}.

5.6 Projected processes

Another situation in which the problem of missing data arises is in that of the projected

Gaussian process, due to Fisher and Lee (1994). Suppose{Xt} and {Yt} are two

independent, stationary Gaussian time series, each with zero mean. The point(Xt, Yt)

can be represented in polar coordinates as(Rt,Θt), say. Then{Θt} is a stationary circular

time series with uniform marginal distributions (Fisher and Lee, 1994).

Noting that we observeΘt and notRt, the EM algorithm is again proposed for parameter

estimation. As for the wrapped model, computational complexity limits potential

application to low order AR processes.

Fisher and Lee (1994) show that, if(X1, Y1) and(X2, Y2) are independent random vectors

from a bivariate normal distribution with variances both equal toσ2 and correlationρ, and

if Θ1 andΘ2 are defined by(Xi, Yi) = Ri(cos Θi, sin Θi), i = 1, 2, then the circular

correlationρT is given by

ρT =
π2

16
ρ2(1 − ρ2)2

{

2F1

(

3

2
,
3

2
, 2; ρ2

)}

, (5.5)

where2F1 is the hypergeometric function. If the linear processes{Xt} and{Yt} have

the commonk–lag autocorrelation functionρ(k), then thek–lag circular autocorrelation

function ρT (k) of {Θt} is obtained by replacingρ2 by ρ2(k) in (5.5). An estimate of

ρ(k) is given by replacingρT (k) in the resulting expression bŷρT (k) from (5.3), and then

solving forρ(k).
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5.7 Choosing between the models

Fisher and Lee (1994) discuss the types of data that the models they describe (linked,

wrapped and projected) can accommodate. They give the general advice that the first of

these should be preferred for data that are reasonable highly concentrated, whilst the latter

two better accommodate dispersed data. This is qualified by the observation that each is

fairly flexible and able to accommodate different types of data.

Breckling (1989) gives a comparison of von Mises and wrappednormal variables

preceding his time series analysis, noting that the two approximate each other reasonably

well, especially for very large or very smallκ. He also notes the complications associated

with inference based on the wrapped normal model, and suggests therefore that the von

Mises process may be preferred when inference is the aim. Breckling’s von Mises process

is characterised by changing concentration over time, indicating use of this model for

non–stationary series.

5.8 Conclusions

We have surveyed and summarised the main contributions to the literature of directional

time series models with discussion of four approaches – the von Mises AR process, linked,

wrapped and projected AR models. It is evident that the wealth of methods and techniques

available for the analysis of linear time series is not easily extendable to a directional

setting. In a comment on work by Erwin et al. (2002), Kent and Mardia (2002) comment

that intractability of the equilibrium distribution or theconditional distribution (or both)

of directional models “appears to be universal law”. More direct methods involving link

functions or wrapping lead to problems of missing data. Jammalamadaka and SenGupta

(2001) also succinctly summarise the work done on directional time series, including

work from PhD theses.
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Chapter 6

Sine and Cosine time series models

6.1 Introduction

In this chapter we present two first order directional time series models based on the

conditional distributions of the bivariate Sine and Cosinemodels (first introduced in

Chapter 1 and further studied in Part I of the thesis in the case of the former). For the

latter, we present the model in vectorial form, a slightly generalised version of the von

Mises AR(1) model of Breckling (1989) described in Section 5.3. Section 6.2 focuses on

the Sine model, whilst Section 6.3 discusses the Cosine model.

The Sine model (first described in Section 1.4) is adapted to atime series setting

in Section 6.2.1, which section also considers the model under high concentration. The

behaviour of the deterministic component of the model is explored in detail in Section

6.2.2, and this behaviour related to the values of model parameters. Data simulation

is considered in Section 6.2.3, and the behaviour of the simulated data related both to

the deterministic and random components of the model. The issue of bimodality is also

discussed in this section. In Section 6.2.4 we derive the likelihood function for the Sine
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time series model and investigate parameter estimation using this likelihood function,

based on simulated data sets and various parameter configurations. The Sine time series

model is applied to theφ andψ angles of a particular protein in Section 6.2.5. An analysis

of the goodness–of–fit of the model is explored in some detailin this section, including

the use of smoothing and kernel density estimation to compare features of the raw data

with features of the fitted model. A conclusion of the observations made throughout

Section 6.2 is given in Section 6.2.6.

The analysis of the Cosine time series model proceeds in a very similar fashion to

that of the Sine time series model. The model is outlined in Section 6.3.1, and related

to the von Mises AR process of Breckling (1989) defined in Section 5.3. The model

under high concentration is also considered in this section. The relationship with the

Cosine model (defined in Section 1.4) is highlighted in Section 6.3.2. Model properties

are discussed in Section 6.3.3, with the main focus being on an analysis of the behaviour

of the deterministic component of the model. As for the Sine time series model, this is

followed by a discussion of data simulation in Section 6.3.4, in which section simulated

data are related, in terms of their behaviour, to the values of model parameters. The

likelihood function and parameter estimation are discussed in Section 6.3.5, whilst

application of the model to the same data as considered for the Sine time series model

is outlined in Section 6.3.6. This section also compares theSine and Cosine time series

models in terms of their goodness–of–fit to the protein data.Finally, Section 6.3.7

summarises the observations made on the Cosine model.

The possible extension of the Sine and Cosine time series models to AR(p) models

is discussed in Section 6.4. Also outlined in this section isanother potential extension of

the Cosine model to a Kalman filter setting, as proposed by Kent and Mardia (2002) in

the discussion of a paper by Erwin et al. (2002).
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6.2 The Sine time series model

6.2.1 The model

In this section we revisit the Sine model and adapt it to a circular time series setting. The

joint density of the two circular random variablesθ1 andθ2 for the Sine model is given by

f(θ1, θ2) = C exp{κ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)}, (6.1)

where−π ≤ θ1, θ2 < π, κ1, κ2 ≥ 0, −∞ < λ < ∞ and−π ≤ µ1, µ2 < π. C is the

appropriate normalization constant, given by

C−1 = 4π2

∞
∑

m=0

(

2m

m

)(

λ2

4κ1κ2

)m

Im(κ1)Im(κ2).

For largeκ1, κ2 the distribution (6.1) reduces to a bivariate normal distribution with

covariance parameters

σ2
1 =

κ2

κ1κ2 − λ2
, σ2

2 =
κ1

κ1κ2 − λ2
, ρ =

λ√
κ1κ2

, (6.2)

imposing the restrictionλ2 < κ1κ2.

In order to formulate a time series model we replaceθ2 with θt, and θ1 with θt−1 in

(6.1), and use the conditional density ofθt givenθt−1. As parameters of the equilibrium

distribution of the process, we also make the replacementsκ1 = κ2 = κ, say, andµ1 =

µ2 = µ, say. Equation (1.15) gave the conditional distribution ofθ2 givenθ1 as von Mises

with density

f(θ2|θ1) = [2πI0(a1)]
−1ea1 cos(θ2−µ2−b1)

= [2πI0(a1)]
−1eκ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2) (6.3)

wherea1 =
{

κ2
2 + λ2 sin2(θ1 − µ1)

}1/2
. Adapting this density as described above to a

time series setting, we obtain the distribution ofθt givenθt−1 as von Mises with density

f(θt|θt−1) = [2πI0(κt)]
−1 eκt cos(θt−µt)

= [2πI0(κt)]
−1eκ cos(θt−µ)+λ sin(θt−µ) sin(θt−1−µ) (6.4)
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where

κt =
{

κ2 + λ2 sin2(θt−1 − µ)
}1/2

and µt = µ+ tan−1

{

λ

κ
sin(θt−1 − µ)

}

,

for t = 2, . . . , n, say. As a circular AR(1) process, the model can be equivalently stated

as

θt = µ+ tan−1

{

λ

κ
sin(θt−1 − µ)

}

+ εt, (6.5)

whereεt ∼ M(0, κt), t = 2, . . . , n. Immediately it can be seen that the model has the

feature of changing concentration over time.

Since the joint density ofθt andθt−1 (Equation (6.1) with the appropriate substitutions) is

symmetric inθt andθt−1 it follows that the model is time–reversible and the equilibrium

distributionΠ(θ) of the process is given by the univariate marginal distribution of either

θ1 or θ2, the former given in Equation (1.14). That is,

Π(θ) = 2πCI0

{

[

κ2 + λ2 sin2 θ
]1/2
}

eκ cos θ. (6.6)

If the θ values are highly concentrated aroundµ, then the differencesθ∗t = θt − µ will

be small∀t = 1, . . . , n. In this case, from (6.4) and using a second order Taylor series

approximation, we have

f(θ∗t |θ∗t−1) ∝ exp
{

κ cos θ∗t + λ sin θ∗t sin θ∗t−1

}

≈ exp
{

κ
[

1 − (θ∗t )
2/2
]

+ λθ∗t θ
∗
t−1

}

∝ exp
{

−κ
2
(θ∗t )

2 + λθ∗t θ
∗
t−1

}

. (6.7)

Rewriting the quadraticc1(θ∗t )
2 + c2θ

∗
t in (6.7) asc1(θ∗t + c2

2c1
)2 − c2

2

4c1
, wherec1 andc2 are

constants (with respect toθ∗t ), (6.7) becomes

f(θ∗t |θ∗t−1) ∝ exp

{

−κ
2

(

θ∗t −
λθ∗t−1

κ

)2
}

,

which is proportional to the density of a normal distribution with meanλθ∗t−1/κ and

variance1/κ. We therefore see that, forθ values highly concentrated aroundµ, the process
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{θt}, t = 1, . . . , n can be approximated by the linear AR(1) process

θ∗t = ρθ∗t−1 + εt, εt ∼ N(0, 1/κ),

whereρ = λθ∗t−1/κ. Conditions under which theθ values can be highly concentrated

aroundµ are outlined is Section 6.2.3.

We begin by analysing the deterministic component of the model, namely the mean

directionµt = µ+ tan−1
{

λ
κ

sin(θt−1 − µ)
}

.

6.2.2 The deterministic component

The deterministic component of the model is given by the equation

µt = µ+ tan−1

{

λ

κ
sin(θt−1 − µ)

}

, t = 2, . . . , n. (6.8)

We investigate the behaviour of this mean direction for different values ofλ and κ,

restricting attention, without loss of generality, toµ = 0. We illustrate the problem

by plottingµt for four different parameter combinations and a range of values forθt−1.

Figure 6.1 showsµt plotted againstθt−1, the latter over the interval[−π, π). Figure 6.1

(a) shows the mean direction for the parameter combinations(λ, κ) = (4, 1), (7, 8), (4, 8)

and(1, 8). Plot (b) of Figure 6.1 shows the effect of negatingλ, namely a reflection in the

line µ = 0 on they–axis. For reference, the linesµt = θt−1 on plot (a) andµt = −θt−1

on plot (b) are also displayed.

A number of features of the deterministic component of the model can be observed from

both Equation (6.8) and Figure 6.1. We will focus first on the caseλ > 0. Adhering

for the time being to the restriction|λ| < κ that ensures the bivariate density (6.1) is

asymptotically normal, we see from Equation (6.8) that|(λ/κ) sin θt−1| < 1, and hence

that, sinceµ = 0, we have|µt| < π/4. This means that, regardless of the value ofθt−1,

µt is no further thanπ/4 from the overall mean direction.
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(a)

θt−1

µ t

− π − π 2 0 π 2 π

− π 2

− π 4

0

π 4

π 2
(λ, κ)

(4, 1)
(7, 8)
(4, 8)
(1, 8)

(b)

θt−1

µ t

− π − π 2 0 π 2 π

− π 2

− π 4

0

π 4

π 2
(λ, κ)

(−4, 1)
(−7, 8)
(−4, 8)
(−1, 8)

Figure 6.1: Plots ofµt versusθt−1 for parameter configurations(λ, κ) = (±4, 1), (±7, 8),

(±4, 8) and(±1, 8) for the Sine time series model.

From Figure 6.1 we see that, for|θt−1| > π/2, the furtherθt−1 is from the overall mean

(zero), the closerµt is to this value, a feature that would perhaps not be expectedof an

observed data set. Another unusual feature of the model is that the value ofµt givenθt−1 is

the same as the value ofµt givenπ−θt−1. Since, based on the deterministic component of

the model, we observe unusual behaviour for values ofθt−1 greater thanπ/2 in absolute

value, and, as mentioned above, there can be at most one valueof θ outside the range

(−π/4, π/4), namelyθ1, it is instructive to consider the probability of this valuebeing

outside the interval(−π/2, π/2). In doing this we are no longer limiting attention to the

deterministic component of the model. The required probability can be calculated using

the equilibrium distribution of the process (Equation (6.6)). The probabilityp that the

valueθ1 falls outside the interval(−π/2, π/2) is given by the expression

p = 2

∫ π

π
2

Π(θ)dθ.
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For the parameter configurations(|λ|, κ) = (7, 8), (4, 8) and (1, 8) we obtain (using

numerical integration)p = 0.0007, p = 0.0002 and p = 0.00001 respectively. This

feature of the model is therefore unlikely to cause a problemif it is considered for fitting

a highly concentrated data set.

Also observable in Figure 6.1 is the effect of changing the value of the ratioλ/κ. In

particular, as this ratio approaches±1, so the maximum atθt−1 = ±π/2 approachesπ/4

and the minimum atθt−1 = ∓π/2 approaches−π/4. If κ is large relative to|λ|, then the

ratio|λ|/κ is small, so thatµt is constrained to a small arc around zero, which is intuitively

appropriate. If on the other handλ is large relative toκ, thenµt is less constrained and

the series less concentrated.

Forλ < 0, we observe from the right hand plot of Figure 6.1 that ifθt−1 > 0 thenµt < 0,

and conversely a negative value ofθt−1 leads to a positive value ofµt. More specifically,

µt|θt−1; (λ, κ) = µt| − θt−1; (−λ, κ) = −µt|θt−1; (−λ, κ).

We now consider the effect of allowing|λ| > κ. We observe immediately that the

value of µt is no longer constrained to the interval(−π/4, π/4), but instead to the

interval (−π/2, π/2). From Figure 6.1 (a), comparing the curve for(λ, κ) = (4, 1)

with the lineµt = θt−1, we see that for values ofθt−1 between 0 andπ/2, we have

µt > θt−1. In other words, values ofθt−1 between zero andπ/2 are rotated positively

towardtan−1
{

λ
κ

sin π
2

}

= tan−1
{

λ
κ

}

. The latter is an increasing function ofλ/κ, and

tends toπ/2 as the ratio tends to infinity. In other words, the larger the ratio λ/κ, the

closer toπ/2 the deterministic model rotatesθ values. As can be seen from Figure 6.1

(a), there is a valueθt−1 ∈ (0, π/2] for whichµt = θt−1 whenλ > κ. This point is given

by the solution to the equationtan θ = λ
κ

sin θ, namelyθ = cos−1 κ
λ
. Again, this tends to

π/2 asλ/κ → ∞. If θt−1 = cos−1 κ
λ
, then all futureθ values are also equal to this value,

based on the deterministic component of the model. Similar observations can be made

for θt−1 ∈ (−π/2, 0). The unusual behaviour of the deterministic model for|θt−1| > π/2
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is again apparent whenλ > κ. Similar observations can be made in the present case

regarding the effect of negative values ofλ as above for the caseλ < κ.

In the next section we combine the deterministic and random components of the model in

order to simulate data, and investigate properties of the resulting data in view of both

the observations made in the present section and the effect of including the random

component.

6.2.3 Data simulation

In order to simulate data from the Sine time series model (6.5) we will takeµ to be zero.

The value ofθ1 is simulated using steps 1–3 of the algorithm described in Section 2.4.

The values ofθ2, . . . , θn are then simulated according to (6.5). Figure 6.2 displays six

data sets each based on different parameter combinations(λ, κ). From plots (a), (b) and

(c) of Figure 6.2 we can see the effect of the values ofλ andκ with λ > κ. Plots (d) and

(e) can be compared to see the effects of the parameters whenλ < κ, whilst Figure 6.2

(f) gives an idea of the kind of data obtained for negativeλ with |λ| > κ.

A summary of the effects of parameter values is given below. For clarity, we consider

λ > 0 andλ < 0 separately. For each of these, we also consider separately the cases

|λ| > κ and|λ| ≤ κ.

1. λ > 0:

(a) λ > κ

In order to understand the behaviour observed in plots (a)–(c) of Figure 6.2 we

need to consider the equilibrium distribution of the process, given in Equation

(6.6). As discussed in Section 1.4, this distribution is symmetric aroundµ and

either unimodal with mode atµ or bimodal with modes atµ ± θ∗, whereθ∗

satisfies Equation (1.18). In the current context, the distribution is unimodal
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Figure 6.2: Simulated data for the Sine time series model. Values of(λ, κ) are given in

brackets above each plot.

if and only if A1(κ) ≤ κ2/λ2. SinceA1(κ) ≤ 1, a sufficient condition for

unimodality is given by|λ| ≤ κ. Although|λ| > κ is not a sufficient condition

for bimodality, ifλ andκ are not very close in absolute value andκ is not very

small,|λ| > κ tends to give a bimodal equilibrium distribution.

Moving to data simulation, starting withκ = λ and increasingλ whilst

keepingκ fixed creates clusters ofθ values close toπ/2 and−π/2. This

is due to the deterministic component of the model inflatingθ values that are

small in absolute value towards eitherπ/2 or−π/2 (see Section 6.2.2). If the

ratioλ/κ and/or the values ofκ andλ themselves are small enough, then the

θ values can switch between clustering close toπ/2 and clustering close to

−π/2. For the former, the smaller the ratioλ/κ, the further fromπ/2 the θ

values cluster and the more likely aθ value passes zero. For the latter, smaller
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κ andλ values lead to smaller values ofκt =
√{

κ2 + λ2 sin2 θt−1

}

and more

dispersed values of the random componentεt, thus increasing the probability

of θ values passing through either zero or2π. Using a similar argument, if the

ratioλ/κ and/or the values ofκ andλ themselves are sufficiently large, thenθ

values cluster either aroundπ/2 or around−π/2, but do not switch between

the two. All of these features are observable in Figure 6.2 (a)–(c).

(b) λ ≤ κ

In this caseθ values are rotated towards the overall mean (zero) before a

random term is added. Figure 6.2 (d) and (e) show the effect ofkeeping

the ratioλ/κ fixed while decreasing (or increasing) the values ofκ andλ

themselves, namely that the lower values give rise to a more dispersed series.

Fixing the value ofλ and increasingκ leads to both a smaller ratioλ/κ and

larger values ofκt, giving a series more concentrated around zero. Fixingκ

and increasingλ gives a larger ratioλ/κ, meaningθ values are not shrunk

towards zero as much, and random terms are more concentratedaround zero.

2. λ < 0:

Figure 6.2 (f) shows a simulated data set with a negative value of λ. As can

be seen, the data set comprises a series ofθ values that tend to alternate between

positive and negative values. Based on the model (6.5) we seethat, withµ = 0,

neither the sign ofθt−1 nor the sign ofλ affects the value ofκt. As discussed

in Section 6.2.2, the deterministic component of the model satisfies the equation

µt|θt−1; (λ, κ) = −µt|θt−1; (−λ, κ). Thus, negating every secondθ value of a

series for which(λ, κ) = (−l, k) gives a series for which(λ, κ) = (l, k). If µ 6= 0

then the above holds for the mean corrected dataθt − µ.

Having successfully simulated data sets, attention turns to the likelihood function and

parameter estimation based on such a data set.
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6.2.4 Likelihood function and parameter estimation

Given a series{θt} based on Equation (6.4), the likelihood function is given by

L = Π(θ1)

n
∏

t=2

f(θt|θt−1)

= CI0
{

[κ2 + λ2 sin2 θ1]
1/2
}

eκ cos θ1

n
∏

t=2

exp {κ cos θt + λ sin θt sin θt−1}
I0
{

[κ2 + λ2 sin2 θt−1]1/2
}

=
C exp {κ∑n

t=1 cos θt} exp {λ∑n
t=2 sin θt sin θt−1}

∏n
t=3 I0

{

[κ2 + λ2 sin2 θt−1]1/2
} .

The log likelihoodl = logL is therefore

l = logC−
n
∑

t=3

log I0
{

[κ2 + λ2 sin2 θt−1]
1/2
}

+κ

n
∑

t=1

cos θt+λ

n
∑

t=2

sin θt sin θt−1. (6.9)

In order to obtain parameter estimates for a given data set, the negative of the loglikelihood

(6.9) is minimised using thenlm function inR. Table 6.1 shows the results of fitting the

Sine time series model to simulated data sets for the parameter configurations(λ, κ) =

(4, 8), (0.5, 1), (8, 4) and(−3, 7). For each configuration,100 series of lengthn = 200

are simulated, and the table gives the mean and standard deviation of estimates forκ and

λ. For µ, the elements in the table are the mean direction of estimates and the circular

variance1 −R of the estimates, whereR is the mean resultant length of the estimates.

(λ, κ) µ̂ λ̂ κ̂

(4, 8) -0.004 (0.001) 4.036 (0.726) 8.018 (0.804)

(0.5, 1) 0.011 (0.008) 0.505 (0.163) 1.005 (0.118)

(8, 4) 0.010 (0.031) 7.735 (1.718) 4.351 (1.008)

(−3, 7) -0.006 (0.000) -2.976 (0.558) 7.053 (0.677)

Table 6.1: Mean values (and standard deviations) of estimates for simulated Sine time

series data.



114 Chapter 6

It can be seen from the table that, based on the mean values, the true parameter values

are recovered reasonably successfully, althoughκ andλ estimates tend to be slightly

overestimated (the exception beingλ̂ when(λ, κ) = (8, 4)). We further investigate the

behaviour of the loglikelihood function in the vicinity of the true parameter values by

plotting the loglikelihood function in various ways for a given data set. Figure 6.3 shows

profile loglikelihood plots for the two parameter configurations(µ0, λ0, κ0) = (0, 0.5, 1)

and (0,−3, 7). Plots (a) and (d) show the loglikelihood for a range ofλ values in the

neighbourhood of the true valueλ0 with µ = µ0 andκ = κ0, whilst plots (b) and (e) show

the loglikelihood for a range ofκ values in the neighbourhood of the true valueκ0 with

µ = µ0 andλ = λ0. Finally, plots (c) and (f) show the likelihood for a range ofκ and

λ values withµ fixed atµ0. On plots (c) and (f), horizontal and vertical lines show the

true values ofλ andκ, and are seen to be slightly away from where the loglikelihood is

maximised for the given data sets. As seen from plots (a), (b), (d) and (e), the gradient

of the loglikelihood in the vicinity of the maxima is such that the maxima are easily

discernible.

As we appear to have a method of estimation that is reasonablysuccessful at recovering

true parameter values, we next apply the sine time series model to a real data set.

6.2.5 Application to protein data

We apply the Sine time series model to the249 φ and ψ angles of the protein

triosephosphate isomerase. Table 6.2 shows the maximum likelihood estimates ofµ, λ

andκ for each series{φt} and{ψt}. Approximate standard errors are also given, and are

obtained from the Hessian matrix calculated in thenlm estimation procedure.

Using these estimates we simulate two series
{

φsim
t

}

and
{

ψsim
t

}

. Maximum likelihood

estimates for these data sets are also given in Table 6.2, andare seen to be similar to the

estimates for the real data set. As can also be seen from the table, we havêλ > κ̂ for
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Figure 6.3: Profiles of loglikelihood function for simulated data sets in the vicinity of the

true parameter values. True values of(λ, κ) are given in brackets above each plot.

theψ series. Figure 6.4 displays circular and time series plots for the protein data and the

simulated data.

From the plots for theψ series of the protein data, the data appear to be bimodal, which

would suggestλ > κ, as is the case for their estimates. Observable more from thecircular

plot of theψ series is that the data are more highly concentrated around one of the modes

than the other. This is not a feature that was observed in any of the data sets simulated

in Section 6.2.3. The plots forψsim give a representation of what data might be expected

to look like if the true parameter values are the maximum likelihood estimates of theψ

protein data. Since the features of the plots forψ andψsim are quite different, this would

indicate a poorly fitting model. One reason for this may be precisely that the model is
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φ φsim ψ ψsim

µ̂ -1.564 (0.075) -1.630 (0.067) 0.697 (0.069) 0.676 (0.054)

λ̂ 2.174 (0.364) 2.134 (0.299) 1.689 (0.149) 1.999 (0.180)

κ̂ 3.154 (0.253) 3.184 (0.256) 0.314 (0.107) 0.369 (0.103)

Table 6.2: Estimates (and standard errors) of Sine time series model parameters for protein

and simulated data.

unable to capture the bimodality with differing concentration at each mode. As can be

seen from the circular plots forψ andψsim, the overall distribution of values around the

circle is quite different for the two. On the other hand, the general tendency to switch

between two modes is evident from the time series plots for bothψ andψsim.

Moving to theφ series, the circular plots ofφ andφsim show the distribution of the latter

to be more symmetric. In the time series plots, there is a repeating feature observable for

φ in which short series of values are highly concentrated close to−π/2, which is not the

case for theφsim values. These differences again bring into question the goodness–of–fit

of the model.

Certainly based on the time series plots for bothφ andψ it does appear that a model with

changing concentration over time is appropriate. Based on comparison of the true data

and the simulated data, however, it also appears that the Sine time series model is not

particularly appropriate for modelling these angles.

With the aims of further developing methods of measuring thegoodness–of–fit of

directional time series models and investigating the goodness–of–fit of the Sine model

to the protein data being studied, we now consider two more plots that could potentially

diagnose a poorly fitting model.

The left hand side of Figure 6.5 shows plots ofφt versusφt−1 andψt versusψt−1 for the

protein data being studied. The right hand side shows corresponding plots forφ andψ
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Figure 6.4:φ andψ conformational angles for a protein data set, and simulatedφ andψ

values based on maximum likelihood estimates for the true data.

values simulated using the maximum likelihood estimates for the protein data. In each of

the four plots, the mlêµ of µ for the relevant data set has been subtracted from the original

values prior to plotting. The solid black lines representµ̂t = tan−1{λ̂/κ̂ sin θt−1}, where

θ is to be replaced by the relevant variable and ranges from−π to π. The dashed lines

represent̂µt±1/
√
κ̂t, whereκ̂t =

√{
κ̂2 + λ̂2 sin2 θt−1

}

andθ is again to be replaced by

the relevant variable. (The use ofµ̂t ± 1/
√
κ̂t is motivated by the normal approximation

to the von Mises distribution, for which, ifκ is large, we haveσ ≈ 1/
√
κ). The plots

of µ̂t ± 1/
√
κ̂t in Figure 6.5 are representative of those obtained more generally, and

highlight the tendency of non–stationarity being more prevalent whenλ > κ. Finally, the

red line represents a smoothed version ofθt versusθt−1, obtained using theR function

smth.circ=function(x,y,grid=seq(-pi,pi,length=101), h){

w=dvm(outer(x,grid,"-"),0,1/h)
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w.mean=atan2(apply(w * sin(y),2,sum),apply(w * cos(y),2,sum))

w.mean}

in which x andy are circular variables. This function essentially calculates a weighted

sample mean direction ofy values at each point on the “grid” of values between−π and

π. The weightwi, say, applied toyi at grid pointj, is the von Mises density centred at

xi, with concentration1/h and evaluated at grid pointj. Mathematically, the estimate

m̂h(x), at pointx of the “grid”, dependent on bandwidthh, is

m̂h(x) = tan−1

{

n
∑

i=1

wi(x) sin yi,
n
∑

i=1

wi(x) cos yi

}

wherewi ∼M(xi, 1/h).

The value of the smoothing parameterh is chosen by cross–validation, by minimising

the sum of squared errors
∑n

i=1(ŷi − yi)
2, whereŷi is a weighted sample mean direction

of y1, . . . , yi−1, yi+1, . . . , yn, givenx1, . . . , xn. The weightvj, say, applied toyj in the

calculation ofŷi, (i 6= j), is the von Mises density, centred atxi, with concentration1/h

and evaluated atxj . The followingR function is used to this end:

smth.CV=function(x,y,h.start){

smth.cv=function(h){

n=length(y); y.hat=y; s=10ˆ10; if (h>0){

v=dvm(outer(x,x,"-"),0,1/h)

v=v-diag(v) * diag(n)

y.hat=atan2(apply(v * sin(y),2,sum),apply(v * cos(y),2,sum))

s=(pmin(abs(y.hat-y),abs(y.hat+2 * pi-y),abs(y.hat-2 * pi-y)))

s=sum(sˆ2)}

s}

nlm(smth.cv,h.start)}

If the model is a good fit to the data, it should be expected thatthe smoothed values

approximately follow the line for̂µt. As can be seen from the plots, the approximation
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does appear slightly superior for the simulated data than the protein data. The highly

concentrated cluster of values at approximately(ψt, ψt−1) = (−π/2,−π/2) of the protein

data appears to be keeping the smoothed line down whilst the line for µ̂t increases. The

asymmetric nature of the smoothed line in this case, in contrast to the symmetry of the

smoothed line for the simulated data, perhaps indicated that a mixture of models would be

more appropriate for these data. Based on these plots, therefore, we have some evidence

to suggest that the Sine time series model is not such a good fitto the protein data being

studied, particularly theψ series.

Figure 6.6 assesses the goodness–of–fit based on the equilibrium distribution of the

process (Equation (6.6)). The plots for the protein data areagain on the left hand side of

the figure, whilst those for the simulated data are on the right hand side. The dashed line

in each case is the equilibrium distribution evaluated for(µ, λ, κ) = (0, λ̂, κ̂) and plotted

between−π andπ. The solid line in each case is a kernel density estimate, obtained using

theR functionbkde , based on the raw data minusµ̂ for each variable.

It is important to note that for directional data a slight amendment of the kernel density

estimation method is required. Since the data are only in theinterval[−π, π) but in reality

are cyclical with period2π, an adjustment is required to obtain the kde. In particular,the

dataZ are augmented withZ−2π andZ+2π, the kernel density estimated in the interval

[−3π, 3π] and the final estimate taken as three times the middle third (interval[−π, π)) of

the overall estimate.

The bandwidth of the kernel is chosen visually to best approximate the plot of the

equilibrium distribution. It may be argued that, for a data set for which the Sine time

series model is appropriate, the raw data may not constitutea sample from the equilibrium

distribution. In the present case, basing the kernel density estimate on values sampled four

apart makes no discernible difference to the kernel densityestimate of either the protein

data or the simulated data. Another issue, the effects of which are perhaps observable in

the plots forψ andψsim in Figure 6.6, is that ifλ >> κ, then even though the equilibrium
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distribution is bimodal, a data set simulated using the Sinetime series model may be

unimodal (see Figure 6.2 (c)). Even if the simulated data arebimodal, they may not be

symmetric aboutµ (contrast the first300 values of the data in Figure 6.2 (b) with the first

400: the latter are approximately symmetric about zero but the former are not). Therefore

if the equilibrium distribution based on the fitted model is bimodal, then the goodness–of–

fit plots of the type displayed in Figure 6.6 may not be appropriate. For those MLEs giving

rise to a unimodal equilibrium distribution, however, it may be reasonable to expect a

close agreement between the kernel density estimate and thefitted equilibrium distribution

plot. In the present case for the protein and simulatedφ values, a poorly fitting model is

not diagnosed by either plot.

6.2.6 Conclusions

In this section we have adapted the bivariate circular density studied by Singh et al. (2002)

to a time series context using the associated conditional distribution. A number of features

of the model have been investigated. In particular, we have investigated the behaviour of

the deterministic model for various parameter configurations and related the observed

behaviour to simulated data sets. A method of parameter estimation has been established,

and the likelihood function of the model investigated. Fitting the model to a real protein

data set has highlighted aspects of a poorly fitting model. The appropriateness of a model

with changing concentration over time, however, is indicated by time series plots of the

protein data. A number of goodness–of–fit measures have beendeveloped which could

be used more generally in the fitting of circular time series model. In particular, methods

have been devised to compare “observed” conditional and equilibrium distributions with

their “fitted” counterparts. The former are those based on smoothing and kernel density

estimation of the raw data, the latter are those obtained from fitting a particular model, in

this case the Sine time series model.
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6.3 The Cosine time series model

In this section we present the system equation component of afiltering approach

suggested by Kent and Mardia (2002) in a discussion of a paperby Erwin et al.

(2002). This part of the model is also the first order AR von Mises process introduced

by Breckling (1989) (see Section 5.3) without the restriction of a zero mean for the

equilibrium distribution. It turns out that the conditional distribution on which the model

is based is the conditional distribution associated with the Cosine model, which was

introduced in Section 1.4.

6.3.1 The model

The system equation of the filter is determined by modelling the unit vectorxt =

(cos θt, sin θt)
T conditionally onxt−1 as von Mises (see Definition 1.3.2)

xt|xt−1 ∼ VM(axt−1 + be), (6.10)

wherea andb > 0 are scalars ande = (cosµ, sinµ)T is a unit vector. The constraint

b > 0 is imposed for identifiability, since in practicee could be any unit vector. The

equilibrium distribution will be seen to be symmetric aboutµ. The pdf ofxt|xt−1, from

Equation (1.9), is

f(xt|xt−1) = [2πI0(‖ axt−1 + be ‖)]−1ex
T
t (axt−1+be).

The model can be specified equivalently, and in the notation used for the Sine time series

model, asθt ∼ M(µt, κt), whereµt = tan−1(a sin θt−1 + b sin µ, a cos θt−1 + b cosµ),

κt =
√

[a2 + b2 + 2ab cos(θt−1 − µ)] andtan−1(q, p) ∈ [−π, π) is the angle between the

positivex-axis and the vector(p, q). With this specification we have

f(θt|θt−1) ={2πI0[
√

(a2 + b2 + 2ab cos(θt−1 − µ))]}−1×

exp{a cos(θt − θt−1) + b cos(θt − µ)}. (6.11)
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If the θ values are highly concentrated aroundµ then small values ofθt − µ = θ∗t , say,

result. Using the approximationcosψ ≈ 1 − ψ2/2 for smallψ, the density ofθ∗t given

θ∗t−1 in this case is given by

f(θ∗t |θ∗t−1) ∝ exp{a cos(θ∗t − θ∗t−1) + b cos θ∗t }

≈ exp{a[1 − 1

2
(θ∗t − θ∗t−1)

2] + b[1 − (θ∗t )
2/2]}. (6.12)

Rewriting the quadratic inθ∗t in the exponential of (6.12) as

c1(θ
∗
t )

2 + c2θ
∗
t + c3 = c1(θ

∗
t + c2/2c1)

2 + c3 − c22/4c1,

(6.12) is proportional (in terms ofθ∗t ) to

exp{−1

2
(a+ b)(θ∗t −

aθ∗t−1

a+ b
)2}. (6.13)

Equation (6.13) is proportional to the density of the distributionθ∗t |θ∗t−1 ∼ N(aθ∗t−1/[a+

b], 1/[a+ b]), giving the linear AR(1) model

θ∗t = ρθ∗t−1 + εt, εt ∼ N(0, 1/[a+ b]) (6.14)

whereρ = a/(a + b). The conditions under which theθ values are highly concentrated

aboutµ are discussed in the next section.

6.3.2 Relationship with the Cosine model

In Section 1.4 we outlined the two bivariate von Mises distributions referred to as the Sine

model and the Cosine model. In order to highlight the relationship between the latter and

the model currently being considered, we review some of the details here. Rivest (1987)

considered the set of bivariate models

f1(θ, φ) = C exp{κ1 cos(θ − µ) + κ2 cos(φ− ν) +

+ α cos(θ − µ) cos(φ− ν) + β sin(θ − µ) sin(φ− ν)}, (6.15)
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itself a submodel of a class considered by Mardia (1975). Withα = β = a, κ1 = κ2 = b,

µ = ν = 0, θ = θt andφ = θt−1, (6.15) reduces to

f1(θt, θt−1) = C exp {b(cos θt + cos θt−1) + a cos(θt − θt−1)} , (6.16)

which is the bivariate density of the Cosine model given originally in Equation (1.13).

The conditional distribution ofθt givenθt−1 in this case is given by Equation (1.16). That

is,

f(θt|θt−1) = {2πI0[
√

(a2+b2+2ab cos(θt−1−µ))]}−1 exp{a cos(θt−θt−1)+b cos(θt−µ)},

which is precisely the conditional distribution of the timeseries model being studied. In

other words, the joint density of(θt, θt−1) corresponding to the conditional density ofθt

givenθt−1 (Equation (6.11)) is nothing but the bivariate Cosine density.

As for the Sine time series model, since the bivariate Cosinedensity is symmetric inθt

andθt−1 it follows that the model is time–reversible. The equilibrium distributionΠ(θ) of

the process is given by the univariate marginal distribution of eitherθ1 or θ2. Specifically,

the probability density function of the equilibrium distribution is

Π(θ) = 2πCI0[
√

(a2 + b2 + 2ab cos(θ − µ))]eb cos(θ−µ). (6.17)

The normalizing constantC in the current setting is given by

C−1 = 4π2{I0(a)[I0(b)]2 + 2

∞
∑

p=1

Ip(a)[Ip(b)]
2}. (6.18)

In terms of the random vectorx, the density of the equilibrium distribution is

Π(x) = 2πCI0(‖ ax + be ‖)ebeTx. (6.19)

The distribution (6.17) is not von Mises, but is seen to be approximately von Mises for

small values ofa. The distribution is also symmetric aboutµ. It turns out (Mardia et al.,
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2007b) that the equilibrium distribution (Equation (6.17)) is unimodal with mode atµ for

all a > 0, and fora < 0 is unimodal if and only if

A1(|a+ b|) +
|a+ b|
a

≤ 0, (6.20)

whereA1(·) = I1(·)/I0(·). If (6.20) does not hold thenΠ(θ) is bimodal with modes

at µ ± θ∗, whereθ∗ is given by Equation (1.19). Since Equation (6.20) is a necessary

condition for unimodality with mode atµ, it also gives a necessary condition forθ values

to be highly concentrated aroundµ, and therefore a necessary condition for the normality

of the process under high concentration discussed in Section 6.3.1. Figure 6.7 shows an

example of a unimodal and a bimodal equilibrium distribution for a < 0. In the unimodal

casea = −2 andb = 3, whilst the bimodal plot corresponds to whena = −4 andb = 3.
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Figure 6.7: Plots ofΠ(θ) versusθ for a = −2, b = 3 (unimodal–solid line) anda = −4,

b = 3 (bimodal–dashed line)

We next conduct an investigation into the behaviour of the model by analysing its

deterministic and random components for various values ofa andb.
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6.3.3 Model properties

From the expression forµt, one aspect of the deterministic componentµt of the model

that is immediately apparent is thatµt|(a, b) = µt|(ca, cb) for any constantc. From the

expression forκt, on the other hand, we see thatκt|(ca, cb) = cκt|(a, b).

A further investigation into the properties of the model canbe made by plotting the

conditional meanµt = argE(eiθt|θt−1), for θt−1 ranging from−π to π. The top left

plot of Figure 6.8 shows a plot ofµt (solid line) for θt−1 ranging from−π to π and

whena = b = 2 andµ = 0. The dashed lines above and below the solid line represent

µt ± 1/
√
κt. As departures from the shape of this plot, the cases|a| > b and|a| < b are

also considered.
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Figure 6.8: Plots ofµt(±1/
√
κt) versusθt−1 for (a) a = b, (b) a = 2.1, b = 2, (c) a = 3,

b = 3.5 and (d)a = 3, b = 20

The particular casea = b requires individual consideration. In this case, from (6.11), we
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have

f(θt|θt−1) ∝ exp{a[cos(θt − θt−1) + cos θt]}

= exp{2a cos(θt−1/2) cos(θt − θt−1/2)},

a von Mises distribution with concentration (at timet) κt = 2a cos(θt−1/2) and

conditional meanµt = θt−1/2. The expression forµt explains why, in Figure 6.8 (a), the

domain ofµt whena = b andθt−1 ∈ (−π, π) is−π/2 toπ/2. Considering the expression

for κt, if θt−1 = π(= −π), thenκt = 0 so that, givenθt−1 = π, the distribution ofθt is

uniform on the circle. This explains the two dashed lines from−π to π on Figure 6.8 (a),

each representing the possible valuesµt can take for those particular values ofθt−1.

Starting at|a| = b and increasing|a|, the conditional mean plot displayed in the top

right of Figure 6.8 is similar to that fora = b , without the vertical dashed lines and

with the line extending from the existing solid line up toπ and down to−π with slight

curvature introduced. Further increasing|a| pushes the turning points towards zero in

both directions on the plot, so that eventually, as|a| becomes very large, the conditional

mean plot approaches that of the lineµt=θt−1. Increasing the absolute value ofa also

brings in the dashed lines representingµt ± 1/
√
κt so that they turn in the same direction

asµt.

Consider now starting at|a| = b and increasing the value ofb, as in the bottom left plot

of Figure 6.8, whereb = 3.5, and in (d), whereb = 20. It can be seen that the solid

line representingµt is no longer monotonic, and that asb increases, the periodicity in the

curvature gets closer to2π, whilst the actual conditional mean is constrained to an ever

smaller interval. Forb > |a|, similar behaviour to that of the Sine model is observed for

the Cosine model and is apparent in the bottom two plots of Figure 6.8. Firstly, except for

the turning points, there are two possible values ofθt−1 that lead to any single value ofµt.

Secondly, moving away from the overall mean direction (zero), in either direction on the

θt−1 axis but past the turning point, the furtherθt−1 is from the overall mean, the closer



128 Chapter 6

µt is to this value. These are features that perhaps one might not expect to observe in an

actual data set. In order to further investigate these features, an expression is obtained for

the probability that any particularθ value occurs further away fromµ = 0 than the turning

points. Since

tanµt =
a sin θt−1

a cos θt−1 + b

we have
dµt
dθt−1

sec2 µt =
a cos θt−1(a cos θt−1 + b) + a2 sin2 θt−1

(a cos θt−1 + b)2
.

It then follows that
dµt
dθt−1

=
a(a+ b cos θt−1)

a2 + b2 + 2ab cos θt−1
. (6.21)

The turning points are then found as the solutions toa + b cos θt−1 = 0, ie. θt−1 =

cos−1(−a/b) andθt−1 = − cos−1(−a/b). For such turning points to exist, therefore, we

requirea < b, as suggested by the plots of Figure 6.8. Moreover, substituting this solution

back into the denominator of (6.21) gives(b− a)(b+ a), which is equal to zero ifa = b,

again highlightinga = b as an irregular case.

We can now obtain the probability, givena andb, thatθt−1 falls outside the turning points,

as

p = 2

∫ π

cos(−a/b)

Π(θ)dθ

whereΠ(θ) is given by Equation (6.17). Table 6.3 displays these probabilities for various

values ofa andb. As can be seen from the table,a andb have to be quite small before

the probability exceeds 0.05. Since the concentration parameter associated withθt is

κt =
√

[a2 + b2 + 2ab cos(θt−1 − µ)], the maximumκt can attain is(a + b). From the

evidence in Table 6.3 therefore, the concentration parameter has to be quite small for the

probability that any particularθ value falls beyond the turning points. It could therefore

be argued that the feature observed in Figure 6.8 (c) and 6.8 (d) should not have too much

of an impact on the model unlessa andb are very small.

We now consider the effect of switching the sign ofa on the plots of Figure 6.8. With
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a 3 1.2 0.5 0.4 0.4 0.3

b 3.5 1.6 1.5 1.2 0.6 0.5

p 0.00 0.01 0.05 0.09 0.13 0.17

Table 6.3: Probabilities, for variousa andb values, that any particularθ value will fall in

the tail beyond the turning points.

µ = 0 we haveµt = tan−1(a sin θt−1, a cos θt−1 + b). If a is switched to−a then the

conditional mean becomesµ∗
t , say, where

µ∗
t = tan−1(−a sin θt−1,−a cos θt−1 + b)

= tan−1(a sin(θt−1 − π), a cos(θt−1 − π) + b).

That is, the effect of switching the sign ofa is to shift the plots of Figure 6.8 along the

θt−1 axis byπ.

Having considered the deterministic component of the model, we next turn our attention

to data simulation, by combining the deterministic and random components of the model.

6.3.4 Data simulation

As for the Sine model, we will consider simulation of data withµ = 0. Again similarly to

the Sine model, we simulate an initial valueθ1 using steps 1–3 of the algorithm described

in Section 2.4 adapted to the Cosine model and as described byMardia et al. (2007b). The

conditional distribution (6.11) is then used to simulate the valuesθ2, . . . , θn sequentially.

Figure 6.9 shows three data sets, each of length100, for the parameter combinations

(a, b) = (3, 3.5), (2.1, 2) and(10, 2). Sincea > 0 for all of these parameter combinations,

the equilibrium distribution for each is unimodal and symmetric aboutµ = 0. For the

parameter values(a, b) = (3, 3.5) and (a, b) = (2.1, 2), we plotted in Figure 6.8µt ±
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Figure 6.9: Simulated unimodal Cosine time series data for the values of(a, b) given

above each plot.

1/
√
κt, and the simulated data are best compared with these plots inmind. For the plots in

Figure 6.8, the lines forµt±1/
√
κt are slightly further from the lineµt for (a, b) = (2.1, 2)

than for(a, b) = (3, 3.5). This is reflected in the simulated data, the plots of which show

the data based on the former parameter combination to be slightly more dispersed overall.

As predicted in Section 6.3.3, the fact thatµt is a not a monotonic function ofθt−1 does

not affect the simulated data for the data set for whichb > a, since the range of values is

not wide enough for this to be so. Looking again at the plots inFigure 6.8, the gradient of

the slope of the lineµt for (a, b) = (2.1, 2) is slightly greater than that for(a, b) = (3, 3.5)

(for the approximately straight middle line segment). Thisbeing the case, the value ofµt

is rotated less in the direction ofµ = 0 so thatµt is closer toθt−1. The effect is difficult

to discern for the simulated data in this case since there is not a great difference in the

slopes for(a, b) = (2.1, 2) and(a, b) = (3, 3.5). It is perhaps more readily observable in

the third plot in Figure 6.9 in which(a, b) = (10, 2). As discussed in Section 6.3.3, if we

increase the value ofa whilst keepingb fixed then the conditional mean plot approaches

that of the lineµt=θt−1. Moreover, increasing the value ofa increasesκt and thus leads to
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a more highly concentrated series. The combined effects on the deterministic and random

component of the model are observable in the third plot of Figure 6.9, which exhibits

slower changes in the values ofθt and periods of higher concentration than those apparent

in the other two plots of Figure 6.9.

Next we consider two bimodal data sets and consider more generally the interpretation

and effects of parameters in cases when the equilibrium distribution of the process is

bimodal. As described in Section 6.3.2, this occurs if and only if a < 0 and

A1(|a+ b|) +
|a+ b|
a

> 0. (6.22)

Unfortunately this is a more complicated condition than forthe Sine model, for which it

was observed that ifλ is not approximately equal toκ andκ is not very small,|λ| > κ

tends to lead to a bimodal equilibrium distribution. No analogous statement can be made

about the Cosine time series model. As an example,(a, b) = (−3, 1) gives a bimodal

equilibrium distribution, but then (6.22) implies that(a, b) = (−3, 5) also gives a bimodal

equilibrium distribution. Based on (6.22) a necessary condition for bimodality is given by

b ≤ 2|a|.

Figure 6.10 shows plots based on the two parameter configurations(a, b) = (−3, 1) and

(a, b) = (−16, 10). The left hand plots show time series plots for simulated data sets of

length50. The middle plots show dashed lines connectingθt for t = 1, 3, 5, · · · , 49 and

solid lines connectingθt for event. The right hand plots showµt andµt ± 1/
√
κt. For

display purposes, they–axis for the right hand plots range from zero to2π in order that the

plot ofµt is continuous. These right hand plots give an insight into the behaviour observed

for the simulated data. In particular, the plots ofµt show that the effect of the deterministic

component of the model is to rotateθt−1 − π negatively towards zero ifθt−1 − π ∈ (0, π)

and positively towards zero ifθt−1 − π ∈ (−π, 0). As can be seen from the closeness

of the linesµt ± 1/
√
κt to µt when (a, b) = (−16, 10), the random componentsεt of

the model should be small. Indeed, the range ofκt givenθt−1 for the data set shown is
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(6.97, 24.75). These effects are visible in the middle plot for(a, b) = (−16, 10), in which

it can be seen that the line forθt for even values oft approximatesθt − π for oddt.
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Figure 6.10: Simulated bimodal Cosine time series data. Left: Time series plots. Middle:

θt for t even (solid) andt odd (dashed). Right:µt ± 1/
√
κt for the given(a, b) values

By comparing the behaviour of the data for(a, b) = (−3, 1) with the behaviour described

for (a, b) = (−16, 10), we can assess the effect of changinga andb. Again we see that

θt for event is approximately equal toθt − π for oddt (this is more clearly visible if we

subtract2π from the values ofθt for event ∈ [4, 10]). The approximation, however, is

not as close as when(a, b) = (−16, 10), due to the fact that theκt values are smaller,

as indicated by the linesµt ± 1/
√
κt on the top right plot. For the data set for which

(a, b) = (−3, 1), the range of observed values ofκt givenθt−1 was(2.00, 3.99). Due to

the ratio|a|/b being larger when(a, b) = (−3, 1) than when(a, b) = (−16, 10), µt is

closer toθt−1 − π for this data set. The smaller values of|a| andb however lead to more
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dispersion contributed from the random component of the model.

Having successfully simulated data and interpreted parameter values for the Cosine time

series model, we next investigate the likelihood function and parameter estimation for the

model.

6.3.5 Likelihood function and parameter estimation

The likelihood function for the model can be obtained from the equation

L = L(θ1, . . . , θn; a, b, µ) = Π(θ1)

n
∏

t=2

f(θt|θt−1). (6.23)

Using equations (6.11) and (6.17) we have

L = CI0[
√

(a2 + b2 + 2ab cos(θ1 − µ))]eb cos(θ1−µ)×
n
∏

t=2

ea cos(θt−θt−1)+b cos(θt−µ)

I0[
√

(a2 + b2 + 2ab cos(θt−1 − µ))]

= C

n
∏

t=1

eb cos(θt−µ)

n
∏

t=2

ea cos(θt−θt−1)
/

n
∏

t=3

I0[
√

(a2 + b2 + 2ab cos(θt−1 − µ))]

=
C exp{b

∑n
t=1 cos(θt − µ) + a

∑n
t=2 cos(θt − θt−1)}

∏n
t=3 I0[

√
(a2 + b2 + 2ab cos(θt−1 − µ))]

. (6.24)

The log likelihoodl = logL is therefore given by

l = logC + b

n
∑

t=1

cos(θt − µ) + a

n
∑

t=2

cos(θt − θt−1)

−
n
∑

t=3

log I0[
√

(a2 + b2 + 2ab cos(θt−1 − µ))]. (6.25)

We next investigate the behaviour of this loglikelihood function and discuss parameter

estimation based on it.

In order to investigate the estimation of parameters based on different values ofa andb

(µ will be set to zero in each case),m = 100 data sets, each of sizen = 200, for each
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possible(a0, b0) pairing froma0 ∈ {−3,−1, 1, 3, 5} andb0 ∈ {1, 2}, are simulated. The

nlm function inR is then used to minimise the function−l in each case, witha = 0, b = 0

andµ = θ used as initial values for the estimation process, whereθ is the directional mean

of the angles in the data set.

Table 6.4 displays the mean values (and standard deviations) of the maximum likelihood

estimateŝa, b̂ andµ̂ of a, b andµ respectively. Each entry in the table is based onm = 100

data sets. Forµ the elements in the table are, as usual, the mean direction ofestimates

and the circular variance1 − R of the estimates, whereR is the mean resultant length

of the estimates. As can be seen, the standard deviation of the estimates is quite small,

and the parameter estimates are generally very close to the true parameter values. There

does, however, appear to be a tendency fora andb to be slightly overestimated in absolute

value.

a0

â ↘ -3 -1 1 3 5

b0
1 -3.073 (0.285) -1.013 (0.142) 1.001 (0.141) 2.983 (0.315) 5.009 (0.547)

2 -3.089 (0.292) -1.045 (0.177) 0.945 (0.211) 3.050 (0.461) 5.014 (0.614)

b̂ ↘

b0
1 1.034 (0.183) 1.027 (0.164) 1.007 (0.163) 1.058 (0.244) 1.199 (0.355)

2 2.081 (0.251) 2.037 (0.215) 2.083 (0.279) 2.148 (0.335) 2.138 (0.422)

µ̂ ↘

b0
1 0.019 (0.015) -0.020 (0.006) 0.010 (0.007) -0.010 (0.015) 0.009 (0.018)

2 -0.011 (0.003) -0.008 (0.001) -0.002 (0.002) -0.007 (0.003) -0.008 (0.004)

Table 6.4: Mean values (and standard deviations) of estimates of a, b and µ for 10

combinations of (a0, b0) and withµ0 = 0, each based on 100 simulated data sets of

200 observations. Estimates obtained using the nlm function in R.

In order to investigate the behaviour of the loglikelihood function in the vicinity of the

true parameter values, data are simulated and various plotsproduced. Figure 6.11 shows

profile loglikelihood plots based on two data sets, each of size n = 200, in which

(a0, b0) = (2, 1) for data set one and(a0, b0) = (−3, 1) for data set two. For both data sets,
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µ0 = 0. Figure 6.11(A) and (D) show plots ofl(θ; a, b0, µ0) versusa for a ∈ [a0−2, a0+2]

for data sets one and two respectively, whereθ is the simulated data set for the particular

values ofa0 andb0. (C) and (E) show plots ofl(θ; a0, b, µ0) versusb for b between0 and

3. Finally, (C) and (F) show contoured image plots ofl(θ; a, b, µ0) for a ∈ [a0 −2, a0 +2]

andb ∈ [0, 3].
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Figure 6.11: Profile loglikelihood plots. (A) and (D):l(θ; a, b0, µ0) for a ∈ [a0−2, a0+2];

(B) and (E):l(θ; a0, b, µ0) for b ∈ [0, 3] ; (C) and (F)l(θ; a, b, µ0) for a ∈ [a0 − 2, a0 + 2]

andb ∈ [0, 3].

It can be seen from Figure 6.11 that the profile of the log likelihood function, taken with

respect to eithera or b, is well behaved at the true value of the other two parameters,

inasmuch as a unique maximum is clearly visible. Moreover, with µ fixed atµ0, the

contoured image plot clearly highlights an area in which themaximum occurs, which

area is around the true values ofa andb. Worthy of note is that, based on the plots of

Figure 6.11, the maximum ofl appears to be at values ofa andb that are slightly greater
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in absolute value than the truea0 andb0, a feature reminiscent of the maximum likelihood

estimates given in Table 6.4.

6.3.6 Application to protein data

Having tested an estimation method for the model, it is now fitted to the249 φ and

ψ angles of the same protein, triosephosphate isomerase, that was used for the Sine

model. MLEs of model parameters (and approximate standard errors obtained vianlm )

are calculated and displayed in Table 6.5. As a measure of goodness–of–fit, data are

simulated based on the MLEs obtained and the resulting data compared with the original.

MLEs for the simulated data are also given in Table 6.5 and areseen to be reasonably

similar to the MLEs for the original data.

φ φsim ψ ψsim

µ̂ -1.425 (0.056) -1.400 (0.057) -0.357 (0.304) 0.079 (0.275)

â 1.113 (0.218) 1.215 (0.225) 1.345 (0.123) 1.336 (0.125)

b̂ 2.226 (0.239) 2.230 (0.255) 0.338 (0.117) 0.392 (0.113)

Table 6.5: Estimates (and approximate standard errors) of Cosine time series parameters

for protein and simulated data.

Comparison of the simulated data set with the original protein data can be made from

Figure 6.12, which shows circular and time series plots for the protein data and simulated

data of bothφ andψ angles. Similar comparisons between the protein data and the

simulated data can be made from Figure 6.12 as were made from Figure 6.4 in Section

6.2.5 for the Sine model. As for that model, the considerablediscrepancies between the

protein data and the simulated data would indicate that the model is a poor fit.

In order to further investigate the goodness–of–fit of the Cosine model to the protein data,

plots analogous to those of Figures 6.5 and 6.6 for the Sine model are produced for the
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Figure 6.12:φ andψ conformational angles for a protein data set, and simulatedφ and

ψ values based on maximum likelihood estimates for the true data using the Cosine time

series model.

Cosine model and are displayed in Figures 6.13 and 6.14 respectively. A description of

the methods used to obtain these plots and what they represent was given in Section 6.2.5.

Based on Figure 6.13 we see that again there is some evidence to suggest that the model

is not such a good fit to theφ values of the protein data, although the approximation

of the smoothed line to the line forµt is not too bad. For the simulatedφ series, the

potential adverse effect of an outlier or influential observation can be seen. The solid red

line represents the smoothed values of all the data, whilst the dashed red line represents

the smoothed values omitting the data value in the top left ofthe plot. Even for the latter,

similar behaviour on the right hand side of the plot is observed as for the original protein

data, namely that the smoothed line dips away from the lineµt. Bearing this in mind,
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Figure 6.13: Plots ofθt versusθt−1, a smoothed version (red line) andµ̂t± 1/
√
κ̂t, where

θ is one ofφ, φsim, ψ or ψsim.
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there is little evidence from these plots to suggest that themodel is a poor fit to theφ

values of the protein data.

There is clearly very strong evidence, on the other hand, that the model is a poor fit to the

ψ protein data. In particular, the maximum likelihood estimates for these data show that

a unimodal model has been fitted (â > 0) to a data set that is clearly bimodal, and the

smoothed line is nothing like the line forµt.

By comparing the plots of Figure 6.13 with those of Figure 6.5we can directly compare

the goodness–of–fit of the Cosine model with that of the Sine model. In particular, since

the plots ofθt versusθt−1 for the protein data are the same save that a different MLE ofµ

has been subtracted in each case, the smoothed red lines should have the same features for

a given data set between models (by construction the choice of the smoothing parameter

h is invariant under rotation of the data). Comparison of Figures 6.5 and 6.13 shows this

indeed to be the case. Comparison of Figures 6.5 and 6.13 shows the Sine model to be a

far superior fit to theψ values of the protein data, whilst the plots for theφ values not only

show the goodness–of–fit of the two models to be comparable for these data, but also the

models themselves to be similar, based on the lines forµt andµt ± 1/
√
κt.

Moving on to Figure 6.14, which compares kernel density estimates (solid lines) with the

density of the equilibrium distribution (dashed lines) based on the parameter estimates

of the fitted models, we clearly have further evidence to suggest that the Cosine time

series model is a poor fit to theψ protein data, since the kernel density estimate is not

unimodal. None of the remaining plots give strong evidence to suggest a poorly fitting

model, although the kernel density estimate for theφ protein data does appear slightly

skewed.
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6.3.7 Conclusions

In this section we have investigated a circular time series model that can be seen as

the adaptation of the bivariate Cosine density to a time series context through use of

the associated conditional distribution. The behaviour ofthe deterministic and random

components of the model have been investigated and interpreted in terms of simulated

data. The likelihood function of the model has been investigated and the accuracy of

parameter estimation using theR functionnlm has been studied. The latter has revealed

a tendency to slightly overestimate the absolute values of the parametersa andb. Further

investigation into the behaviour of the loglikelihood function in the vicinity of the MLEs

has shown this to perhaps be a feature of the likelihood function itself rather than of the

estimation procedure.

Fitting the model to theφ andψ values of a protein data set has indicated a very poor fit

for theψ angles, and an indication that the model may not be a good fit for theφ series

either. Comparison of the goodness–of–fit plots established and discussed in Section 6.2.5

for the Sine model with the resulting plots for the fitted Cosine model indicate the former

to be a far superior fit for theψ values of the protein data, whilst comparison of the plots

for theφ series indicates both that the goodness–of–fit and the Sine and Cosine models

themselves are similar for the fitted parameter values.

6.4 Further work

Sections 6.2.6 and 6.3.7 summarised the conclusions drawn from analysis of the Sine and

Cosine models, and a comparison of the two in terms of goodness–of–fit to a specific data

set was made in Section 6.3.6. In this section we discuss possible extensions of the two

models and potential further work.

An obvious way in which both the Sine and Cosine time series models could be extended
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is with the inclusion of higher order terms. Starting with the former, the simplest way to

extend the Sine time series to an AR(p) model is by definingθt given(θt−1, . . . , θt−p) as

θt|(θt−1, . . . , θt−p) ∼ M(µt, κt), where

µt = tan−1

{

p
∑

j=1

λj sin(θt−j − µ), κ

}

, (6.26)

κt =







κ2 +

[

p
∑

j=1

λj sin(θt−j − µ)

]2






1/2

and, as usual,tan−1(q, p) is the angle between the positivex–axis and the vector(p, q).

From the expression forµt in Equation (6.26) we see that, as for the AR(1) model,µt is

constrained to lie in the interval[π/2,−π/2].

For the Cosine AR(p) model, the conditional density specifying the model can begiven

either in terms of the vectorial form (Equation (1.9)) of thevon Mises distribution or

using the angular form (Equation (1.8)). The former is givenby xt|(xt−1, . . . ,xt−p) ∼
VM(α), where

α =

p
∑

j=1

ajx
T
t−j + beT

andxt−j = (cos θt−j , sin θt−j)
T ande = (cosµ, sinµ)T are unit vectors. The alternative

specification isθt|(θt−1, . . . , θt−p) ∼ M(tan−1(s, c),
√

(s2 + c2)), where

s =

p
∑

j=1

aj sin θt−j + b sin µ and c =

p
∑

j=1

aj cos θt−j + b cosµ.

Another way in which the Cosine model could be extended is as suggested by Kent and

Mardia (2002, p. 288). They propose treating the{xt} process as an unobserved signal

and combining it with an observation process

yt|xt ∼ VM(κxt), κ > 0.

A Kalman filter approach is then suggested as a way of recovering the signal from the

observations.
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Chapter 7

A M öbius time series model

7.1 Introduction

In this chapter a circular regression model due to Downs and Mardia (2002) is adapted to

a time series context. The distribution ofθt givenθt−1 is modeled using a particular von

Mises distribution. In Section 7.2 we outline the regression model studied by Downs and

Mardia (2002) and adapt it to a time series setting. The likelihood function (conditional

on the first observation) is derived in Section 7.3 and potential methods of parameter

estimation are introduced. For certain values of one of the parameters in the model(ω)

the time series model takes a special form. These special cases are considered in Section

7.4. The deterministic component of the model and its behaviour in terms of the values

of parameters is discussed in Section 7.5, whilst Section 7.6 focuses on simulating data

from the model. The properties of the simulated data are related to the observations

made in Section 7.5. Time–reversibility is an important part of time series modeling,

and we investigate whether the Möbius model has this property in Section 7.7. It will be

seen in Section 7.8 that the equilibrium distribution of theprocess is difficult to obtain

analytically. We therefore use a numerical approach in thissection in order to obtain the
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equilibrium distribution. The results are compared with the von Mises distribution and

with a sample from the equilibrium distribution. An analytic approach is used to derive

the equilibrium distribution under high concentration. Estimation of the parameters of

the model is investigated in Section 7.9, with the focus on two approaches: a grid search

method and use of theR functionnlm . In Section 7.10 we apply the model to theφ and

ψ angles of a particular protein and investigate the goodness–of–fit of the model. Finally

the conclusions are summarised in Section 7.11, in which section we compare the three

time series models that have been studied, namely the Sine model, the Cosine model and

the Möbius model. Possible extensions of the work are also outlined in Section 7.11.

7.2 The model

The deterministic component of the regression model studied by Downs and Mardia

(2002) links the dependent angular variablev to the independent angular variableu via

tan
1

2

(

v − β
)

= ω tan
1

2

(

u− α
)

, (7.1)

whereω ∈ [−1, 1] is a slope parameter and−π ≤ α, β < π are angular location

parameters. Equation (7.1) gives

v = β + 2 tan−1{ω tan
1

2

(

u− α
)

}. (7.2)

Since the application of (7.2) will be to time series data, wereplace the dependent anglev

with θt andu with θt−1, t = 2, · · · , n. These substitutions also suggest the use of a single

location parameter,α = β say, giving

tan
1

2

(

θt − α
)

= ω tan
1

2

(

θt−1 − α
)

(7.3)

and

θt = α + 2 tan−1{ω tan
1

2

(

θt−1 − α
)

} (7.4)
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as analogues of (7.1) and (7.2).

For the time series model (7.4) in Section 7.2 it is assumed that θt|θt−1 has a Von Mises

distributon such that

θt|θt−1 ∼ M
(

α + 2 tan−1{ω tan
1

2
(θt−1 − α)}, κ

)

. (7.5)

In this case the time series model becomes

θt = α + 2 tan−1{ω tan
1

2
(θt−1 − α)} + εt (7.6)

whereεt ∼M(0, κ). We will refer to the mean direction of the conditional distribution of

θt givenθt−1 asµt. That is

µt = α + 2 tan−1{ω tan
1

2
(θt−1 − α)}. (7.7)

In what follows, all angles and their sums and differences are taken to be in the half-open

interval[−π, π), otherwise numerical errors will result (Downs and Mardia,2002).

The model (7.6) is seen to be of the form of the linked autoregressive process discussed

by Fisher and Lee (1994), for which the mean direction of the conditional distribution

of θt given (θt−1, . . . , θt−p) has the form of Equation (5.4). Specifically, withp = 1,

g(·) = 2 tan−1(·), ω1 = ω andµ = α, Equation (5.4) gives the mean direction of the

distribution in (7.5).

The value ofω is restricted to the interval[−1, 1] so thatα is uniquely identifiable. To see

this, consider subtractingπ from the value ofα in Equation (7.3). Then

tan
1

2

(

θt − α + π
)

= ω tan
1

2

(

θt−1 − α + π
)

(7.8)

Now sincetan 1
2
(φ+ π) = − cot 1

2
φ, (7.8) is equivalent to

− cot
1

2
(θt − α) = −ω cot

1

2
(θt−1 − α)
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which gives

tan
1

2

(

θt − α
)

=
1

ω
tan

1

2

(

θt−1 − α
)

. (7.9)

The equivalence of (7.8) and (7.9) shows that, ifω were not restricted to the interval

[−1, 1], and if(α̂, ω̂) is a solution to (7.3), then(α̂− π, 1
ω̂
) is an equivalent solution.

7.3 Likelihood function

Since

θt|θt−1 ∼M
(

α + 2 tan−1{ω tan
1

2
(θt−1 − α)}, κ

)

we have

f(θt|θt−1) = {2πI0(κ)}−1 exp{κ cos(θt − µt)} (7.10)

whereµt is given by Equation (7.7)

Now the conditional pdf ofθ2, · · · , θn givenθ1 is

f(θ2, · · · , θn|θ1) = f(θ2|θ1)f(θ3, · · · , θn|θ1, θ2)

= f(θ2|θ1)f(θ3|θ1, θ2)f(θ4, · · · , θn|θ1, θ2, θ3)

= · · ·

= f(θ2|θ1)f(θ3|θ1, θ2)f(θ4|θ1, θ2, θ3) · · · f(θn|θ1, · · · , θn−1).

But from Equation (7.6) the valueθt depends only on the previous valueθt−1. Therefore

f(θt|θ1, · · · , θt−1) = f(θt|θt−1),

∀t = 2, · · · , n. The conditional likelihood is therefore

LC(α, ω, κ) = {2πI0(κ)}−(n−1) exp
{

κ

n
∑

t=2

cos[θt − α− 2 tan−1{ω tan
1

2
(θt−1 − α)}]

}
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giving the loglikelihood

lC(α, ω, κ) = const.− (n−1) log I0(κ)+κ

n
∑

t=2

cos[θt−α−2 tan−1{ω tan
1

2
(θt−1−α}].

This is maximised with respect to the unknown parametersα andω by maximising

l(α, ω) =
n
∑

t=2

cos[θt − α− 2 tan−1{ω tan
1

2
(θt−1 − α}]. (7.11)

The maximisation of (7.11) will be investigated, in Section7.9, in the following ways:

1. The function in (7.11) will be evaluated for various fixed values ofα andω, given

a set of data and the parameter values that generated those data.

2. Thenlm function inR will be used in an attempt to minimise the function−l(α, ω)

for numerous data sets.

Oncel(α, ω) has been maximised with respect toα andω, a profile likelihood approach

may be used to obtain a maximum likelihood estimate ofκ, by maximising

lC(α̂, ω̂, κ) = const.− (n− 1) log I0(κ) + κlα̂,ω̂ (7.12)

with respect toκ. Differentiating (7.12) with respect toκ and noting thatd(I0(κ))/dκ =

I1(κ), the modified Bessel function of the first kind and order one, gives

∂

∂κ
[lC(α̂, ω̂, κ)] = −(n− 1)

I1(κ)

I0(κ)
+ lα̂,ω̂,

so that̂κ is the solution to
I1(κ̂)

I0(κ̂)
=

lα̂,ω̂
n− 1

.

7.4 Special values ofω

Before the above estimation methods are investigated, special values ofω for which the

time series model takes a certain form are considered. Ifω = 1, then (7.6) becomes

θt = θt−1 + εt (7.13)
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which is a circular random walk. Ifω = 0, then (7.6) reduces to

θt = α + εt (7.14)

in which case theθt’s are i.i.d von Mises distributed random circular variables with mean

directionα and concentration parameterκ, and the maximum likelihood estimate ofα is

the mean direction of theθt values,t = 2, · · · , n;

α̂ =







tan−1(S(1)/C(1)) if C(1) > 0

tan−1(S(1)/C(1)) + πsgn(S(1)) if C(1) < 0
(7.15)

whereS(1) =
∑n

t=2 sin θt andC(1) =
∑n

t=2 cos θt. The addition ofπsgn(S(1)) (where

sgn(·) is the sign function) in the caseC(1) < 0 ensures that the mle ofα is in the interval

[−π, π).

If ω = −1, then (7.6) becomes

θt = 2α− θt−1 + εt (7.16)

and (7.11) becomes
n
∑

t=2

cos(θt + θt−1 − 2α). (7.17)

Differentiating (7.17) with respect toα gives

∂

∂α
[l(α, ω = −1)] ∝

n
∑

t=2

sin(θt + θt−1 − 2α)

=
n
∑

t=2

[

sin(θt + θt−1) cos(2α) − sin(2α) cos(θt + θt−1).

Setting this equal to zero gives that

cos(2α̂)

n
∑

t=2

sin(θt + θt−1) = sin(2α̂)

n
∑

t=2

cos(θt + θt−1)

in which case the mle ofα is

α̂ =







1
2
tan−1 Sθt,θt−1

Cθt,θt−1

if Cθt,θt−1
> 0

1
2

[

tan−1 Sθt,θt−1

Cθt,θt−1

+ πsign(Sθt,θt−1
)
]

if Sθt,θt−1
< 0

(7.18)
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whereSθt,θt−1
=
∑n

t=2 sin(θt+θt−1) andCθt,θt−1
=
∑n

t=2 cos(θt+θt−1). (7.18) is a mean

axis (which identifies an angleβ with eitherβ + π or β − π, whichever is in the interval

[−π, π)).

7.5 The deterministic component of the model

An analysis of the behaviour of the deterministic componentof the model (Equation (7.7))

is, as seen for the Cosine and Sine time series models, usefulas a precursory investigation

into the model properties. To this end, plots ofµt versusθt−1 are produced, for various

values ofα andω. Figure 7.1 shows two such plots, in whichα = 0 in both cases whilst

ω = 0.2 for the left hand plot andω = 0.6 for the right hand plot. Changing the value

of α results in a translation of the plot without altering its shape. In particular, increasing

α by an amounta translates the curves in Figure 7.1 positively along bothθt−1 andµt

axes bya. Switching the sign ofω results in a reflection in the lineµt = α. A feature

of the deterministic component of the model observable fromFigure 7.1, and true more

generally is that, for anyα andω, if θt−1 = α − π, α or α + π, thenµt = θt−1. Figure

7.1 shows the effect of changing the absolute value ofω, in the given plots from0.2 to

0.6. The value ofα is fixed at0. For reference, the lineµt = θt−1 is superimposed. As

can be seen, ifα − π < θt−1 < α, then the model rotatesθt−1 positively towardα. If

α < θt−1 < α + π thenθt−1, thenθt−1 is rotated negatively towardα. The magnitude of

the rotation in each case is greater the smaller the absolutevalue ofω, as shown by the

increase in the curvature asω decreases towards zero.

For negativeω andα = 0, similar considerations show that the model rotates−θt−1

towardsα in whichever direction requires the least rotation to reachα, the magnitude of

the rotation decreasing (for fixedθt−1) asω → −1. A similar statement can be made for

non–zeroα by definingα as the zero direction.

Also apparent from the plots is that the deterministic component of the model is both
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Figure 7.1: Plots ofθt versusθt−1 based on Equation (7.4) and forα = 0 (both plots),

ω = 0.2 (left) andω = 0.6 (right).

continuous and differentiable.

7.6 Simulating data

In order to investigate the Möbius time series model (7.6) data sets are simulated and

their behaviour related both to the observations in the previous section regarding the

deterministic component of the model and to the inclusions of a random component.

In Section 7.8 we will consider the equilibrium distribution of the process, from which (if

an expression for the density of this distribution were obtainable) we could simulate a first

value for a data set. In the present section we will proceed asfollows in order to obtain

a first and subsequent values. With starting valuey1 = α we simulate a series of values

y2, . . . , yn1
, say, using Equation (7.3). We then useyn1

as the first value of our simulated

data set, so thatyn1
= x1, say. A series ofx valuesx2, . . . , xn2

, say, are simulated, again
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using (7.3), and we takex1, . . . , xn2
to be our simulated data set.

As mentioned in Section 7.2, numerical errors can result if angles and their differences

are not taken in the interval[−π, π). To see this, consider the situationθt−1 = π − τ ,

α = −π + τ for τ ≈ 0. Thenθt−1 − α = 2π − 2τ , and if this difference is not converted

to the interval[−π, π) then(θt−1 − α)/2 = π − τ , which is not what we require. Taking

θt−1 − α in the interval[−π, π), on the other hand, gives(θt−1 − α)/2 = −τ , which is

the correct angle. In the simulation procedure, therefore,it is important to take angles

and their differences in the interval[−π, π), which for angleχ can be achieved viaχ →
(χ− π)mod(2π) − π.

Figure 7.2 shows plots of simulated data for the parameter configurations(ω, κ) =

(0.7, 2), (−0.2, 2), (0.7, 4) and (−0.2, 4). The value ofα in each case is taken to be

zero. Comparing these plots, the effects of keeping one ofω andκ fixed whilst changing

the other can be observed. In particular, keepingκ fixed and increasing the absolute value

of ω, the deterministic component of the model has less of an effect on the transformation

of values (see discussion of Figure 7.1) and this is observable in the plots as the series

appear more “random”. Keepingω fixed whilst decreasing the value ofκ simply induces

more randomness into the model through theεt terms in Equation (7.3). A negative value

of ω, as discussed in Section 7.5, has the effect of switching thesign ofθt−1 (for α = 0)

and then rotating the negated value towards zero based on theabsolute value ofω. In

these cases we therefore obtain series that cross the lineα(= 0) frequently.

For those parameter configurations considered in the plots,the interpretation of

parameters is seen to be simple. More care is needed when we come to simulating

data using large negative values ofω. As discussed in Section 7.4, whenω = −1,

the maximum likelihood estimate ofω is a mean axis. This property is exhibited by

simulated data not only forω = −1 but also in data for whichω is less than approximately

0.5. Figure 7.3 shows two examples. In each of the plots of Figure7.3, we have taken

α = π/2 andκ = 4. For the top two plotsω = −0.6 whilst for the bottom twoω = −0.9.
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Figure 7.2: Plots of simulated data forα = 0 and those values ofω andκ given above

each plot.

From the left hand plots, in which the data points are connected with a line, it can clearly

be seen that the overall series seems to switch between two “mini series” at a distance

of approximatelyπ apart. This is more apparent the closerω gets to−1. At first glance

of these connected plots it may appear that the data are bimodal. The right hand plots,

however, which show the same data as points, show that the overall distribution of values

appears to tend to uniformity over the interval[−π, π) asω tends to−1.

The equilibrium distribution of the Möbius time series model is discussed in more detail

in Section 7.8, before which time–reversibility is investigated.
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Figure 7.3: Plots of simulated data forα = π/2, κ = 4 and those values ofω above each

plot.

7.7 Checking time-reversibility

An important property in time series modeling is that of time–reversibility. Obtaining the

equilibrium distribution of a process can be simplified considerably if the process is time–

reversible. In the present section we consider the time–reversibility of the Möbius time

series model, and in Section 7.8 we investigate the equilibrium distribution of the model.

It should be noted that the time–reversibility property is not one that would necessarily

benefit a model for protein data, as polypeptites have a definite start and end, and are not

“reversible”.

We proceed by constructing a transition matrix as follows. The interval [−π, π] is

discretised into a vectorθ of p, say, equally spaced values(θ(1) = −π, . . . , θ(p) = π).
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Each pair(θ(i), θ(j)) of values,1 ≤ i, j ≤ p gives rise to an element of a transition matrix

P via

P(i,j) = f1(θ2 = θ(i)|θ1 = θ(j))

whereP(i,j) is the(i, j)th element ofP andf1 is given by Equation (7.10). The transition

matrix is then normalised so that its rows sum to one.

Denote byp the first eigenvector solution of

pP = P .

In this case, if

piPi,j = pjPj,i (7.19)

for all (i, j) then the model is time-reversible (Feller, 1968). Withp = 501 and various

starting values forω andκ, solutions are obtained that indicate the model is not time-

reversible. Figure 7.4 shows plots of the left hand side minus the right hand side of

Equation (7.19) for the parameter values(ω, κ) = (0.3, 6) (left) and (ω, κ) = (0.6, 3)

(right). In each case, the value ofj used is that value maximising|piPi,j − pjPj,i| over

all values ofi.

As can be seen from the plots, the apparent difference between the left hand side and

the right hand side of Equation (7.19) for the Möbius time series model, although small,

would indicate that the model is not time-reversible. For the special cases|ω| = 1 or 0

and/orκ = 0 the model is seen to be time–reversible.

We next consider the equilibrium distribution of the process.

7.8 The equilibrium distribution

The equilibrium distribution of a process describes its statistical behaviour at a point in

time a long way from the origin. For a continuous state, discrete time processX1, X2, . . .
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Figure 7.4: Plots ofLHS − RHS of Equation (7.19) versusθ = (−π, π) for (ω, κ) =

(0.3, 6) (left) and(ω, κ) = (0.6, 3) (right). Plot is for that value ofj leading to the largest

absolute value on they–axis of the plot.

in which f(y, x) = f(Xt = x|Xt−1 = y) is the transition probability,t = 2, 3, . . ., this

equilibrium distribution is given by Cox and Miller (1980, p.135) as

f2(x) =

∫ ∞

−∞

f1(y, x)f2(y)dy. (7.20)

In Section 7.10 a context is given in which the Möbius model is applied as a continuous

state, discrete ‘time’ processθ1, θ2, . . . In this case, ify = θt−1 andx = θt, then the

transition probabilityf1(y, x) is given by Equation (7.10), whilstf2(·) is the density of the

equilibrium distribution. As noted by Cox and Miller (1980), an analytic solution to this

equation is not always obtainable, and numerical methods may be required. As mentioned

in Section 7.7, the equilibrium distribution may be easier to obtain if the model is time–

reversible. Since we appear to have evidence to suggest thatthis is not the case for the

Möbius model, we investigate the equilibrium distribution as follows. In Section 7.8.1, a

numerical approach to obtaining an equilibrium distribution is given, whilst Section 7.8.2
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outlines an approximate analytic solution under high concentration.

7.8.1 Numerical approach

Since time-reversibility cannot be used to simplify the calculation of a theoretical solution

to the equilibrium distribution, a numerical solution is here sought. This is obtained

by discretising the interval[−π, π], calculating a transition matrix and using an iterative

method to carry out a numerical integration. The numerical solutions (NS) found (for

various values ofω andκ) are compared with von Mises (VM) distributions and kernel

density estimates (KDE) based on samples from the equilibrium distribution, in such a

way as to minimise(NS − VM)2 and(NS − KDE)2.

Since the transtition probabilities are assumed to be stationary,θ2 andθ1 will be used in

place ofθt andθt−1, respectively. Additionally, the mean of all von Mises distributions

will be set to zero.

Numerical integration

In order to obtain a numerical solution to the equation

f2(θ2) =

∫

f1(θ2|θ1)f2(θ1)dθ1 (7.21)

we obtain the transition matrixP as described in Section 7.7. Since the initial distribution

(that ofθ1) is unknown,f2(θ1) is initialised as a vector (Π(0)) of lengthpwith all elements

equal to1/p. The numerical integration is then performed using the iteration

Π(k+1) = PΠ(k), k = 0, 1, . . .

until
∥

∥

(

Π
(k+1)
l − Π

(k)
l

)2∥
∥ < ε,
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whereΠ
(k)
l is the l’th element ofΠ(k). The squared Euclidean distance is used with

ε = 10−6.

With the solution of the numerical integration denoted byΠ(∞), a plot ofΠ(∞) againstθ

is informative in showing the shape of the numerical solution obtained. Figure 7.5 shows

such a plot, in which the valuesω = 0.3 andκ1 = 4 are chosen for the calculation

of f1(θ2|θ1) in the transition matrix, whereκ1 is the concentration parameter of the

conditional pdff1(θ2|θ1). For comparison, a plot of the von Mises pdf with parameters
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Figure 7.5: Comparison of numerical solution to the equilibrium distribution (solid line)

based on initial parameter valuesω = 0.3, κ1 = 4 and the von Mises density (dashed line)

with µ = 0 andκ = 4.

µ = 0 andκ = 4 is superimposed on the same plot with a dashed line. As can be seen, the

plots are very similar in shape, suggesting that the equilibrium distribution is at least close

to a von Mises distribution, even if not actually von Mises. The comparison between the

numerical equilibrium distribution and the von Mises distribution is further explored later

in the section.

We observed in Section 7.6 that forω close to−1 the equilibrium distribution appears to
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be approximately uniform. The numerically calculated equilibrium distribution concurs

with this, and a circular uniform distribution is obtained when |ω| = 1 and/orκ = 0.

If ω = 0 then it is easily seen that the equilibrium distribution is von Mises with

concentrationκ.

As an alternative to numerical integration, the eigen decomposition of Section 7.7 could

be used in place of the above approach in order to obtain a numerical solution to the

equilibrium distribution. Comparison between the two approaches in the current context

shows negligible disagreement between the solutions obtained.

Comparing the numerical solution with a supposed sample from the equilibrium

distribution

In order to obtain a sample from the equilibrium distribution of the model, data are

simulated as described in Section 7.6 for chosen values ofω andκ1, and values from these

data are sampled sufficiently far apart to ensure that the correlation structure imposed by

ω is no longer influential. In this way, a comparison can be madebetween the numerical

solution to the equilibrium distribution and this supposedsample. Indeed, a kernel density

estimate (kde) based on the sample can be computed, and thenlm function inR used to

choose a bandwidth for the kde to minimise

∑

θ

[(f2(ω, κ1) − f̂2(b))
2]. (7.22)

The functionf2(ω, κ1) in (7.22) is the vectorial solution to the equilibrium distribution.

That is,f2(ω, κ1) is the numerical solution to the equilibrium distribution calculated for

thep values(−π, . . . , π) and based on the initial choices ofω andκ1. The functionf̂2(b)

is the kernel density estimate of the sample from the equilibrium distribution, calculated

over the samep values from−π toπ, and dependent on the choiceb of bandwidth. As with

the Sine and Cosine time series models, the appropriate adjustment for density estimation

from circular data is made before the density is estimated.
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Figure 7.6 shows two plots making the comparison explained above, the first of which is

based on the values(ω = 0.6, κ1 = 3) and the second on the values(ω = −0.1, κ1 = 5).
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Figure 7.6: Comparisons of numerical solutions (NS) to the equilibrium distribution and

kde’s based on samples from the equilibrium distribution, based on initial parameters

(ω = 0.6, κ1 = 3) (left) and(ω = −0.1, κ1 = 5) (right).

In each case, the simulated data are sampled forty apart to obtain the sample from the

equilibrium distribution. Each sample is of size400. As can be seen in both cases, there

is a close resemblance between the plot of the numerical solution and the kernel density

estimate.

Figure 7.7 shows a polar plot corresponding to the right handplot of Figure 7.6. The plots,

in cartesian coordinates, are those of((1+ g) cosθ, (1+ g) sinθ), where the functiong is

given byf2(ω, κ1) for the numerical solution (dashed line) and byf̂2(b) for the kernel

density estimate (solid line). For comparison with these plots, the unit circle is also

displayed. As with the plot in Figure 7.6, there is seen to be aclose resemblance between

the numerical solution and the kernel density estimate.
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Figure 7.7: Polar plot based on the right hand plot of Figure 7.6 comparing the numerical

solution (NS) to the equilibrium distribution, based on initial valuesω = −0.1, κ1 = 5,

with a kernel density estimate (KDE) based on a sample from the equilibrium distribution

with these parameter values.

Comparing the numerical solution with a von Mises distribution

Having obtained a numerical solution to the equilibrium distribution that looks as though

it may be at least approximated by a von Mises distribution, attempts are made to compare

von Mises distributions, with various values ofκ = κ2, say, to the numerical solution

obtained, given the initial values ofω andκ1 that were used in obtaining the numerical

solution. In particular, if we denote byf2(ω, κ1) the numerical solution as calculated

with the valuesω andκ1, and byf(κ2) the pdf of the von Mises distribution with mean

direction equal to zero and concentration parameterκ2, then we wish to chooseκ2 to
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minimise
∑

θ

{[f2(ω, κ1) − f(κ2)]
2}. (7.23)

The sum in Equation (7.23) is taken over the values in the vector θ, and is minimised

using thenlm function in R. Of additional interest is the relationship betweenκ∗2 and

(ω, κ1), whereκ∗2 is that value ofκ2 which minimises (7.23).

Figure 7.8(a) shows a plot comparingf2(ω = 0.6, κ1 = 4) andf(κ∗2), whereκ∗2 has been

calculated to be 2.40. As can be seen, there is a reasonably close resemblance between

the two, suggesting that a von Mises distribution can, at least, be a good approximation to

the equilibrium distribution. Similar experimentation with other starting values ofω and

κ1 lead to the same conclusion.
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Figure 7.8: Left: comparison of numerical solution (NS) forequilibrium distribution

based on the values(ω = 0.6, κ1 = 4) and the von Mises pdf (VM) with parameters

(µ = 0, κ2 = 2.4). Right: Plots ofκ1 versusκ∗2 for ω = 0, 0.2, 0.4, 0.6, 0.8 (top line to

bottom line).

In order to investigate the relationship betweenκ∗2 and (ω, κ1), κ∗2 is computed for all

combinations of1 ≤ κ1 ≤ 10 andω = 0, 0.1, 0.2, . . . , 0.8. (Negative values ofω give the
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same results as positive values.) Some of the results are displayed (with points connected

for ease of interpretation) on part (b) of Figure 7.8, with the lines, from top to bottom,

representingω = 0, 0.2, 0.4, 0.6 and0.8 respectively. As can be seen, each line is virtually

straight asκ1 increases. As expected, the line representingω = 0 has a zero intercept and

a slope equal to unity, since in this casef1(θ2|θ1) in Equation (7.21) is the von Mises pdf

with parameters (mean) zero and (concentration)κ1. Also apparent from the plot is that

ω andκ1 are negatively correlated in their effect onκ∗2. This can be seen on consideration

of the fact that increasing (the absolute value of)ω decreasesκ∗2 (for fixed κ1), whereas

increasing the value ofκ1 increasesκ∗2 (for fixedω).

To further investigate the relationship betweenκ∗2 and(κ1, ω) regression models are fitted

that are consistent with the right hand plot of Figure 7.8. That is, regression models in

whichκ1 acts multiplicatively onκ∗2 (sinceκ1 = 0 ⇒ κ∗2 = 0) and for which

• ω = 0 ⇒ κ1 = κ∗2

• κ2 depends on either the absolute or squared (or both) value ofω,

are fitted. The models fitted are as follows:

κ∗2 = ακ1 + βκ1ω
2 (7.24)

κ∗2 = ακ1 + βκ1|ω|

κ∗2 = ακ1 + βκ1ω
2 + γκ1|ω|

The adjustedR2 values for the three models were respectively0.9996, 0.994 and0.9996.

The only parameter not significantly different from zero at the 1% level wasγ, with a

p-value of 0.14. The model selected for further investigation is therefore that given by

Equation (7.24), for whicĥα = 0.997 andβ̂ = −1.048, so that

κ̂∗2 ≈ κ1(1 − ω2).
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The left hand plot of Figure 7.9 shows a plot of the fitted values (̂κ∗2 = α̂κ1 + β̂κ1ω
2)

versus the residuals, in which a different symbol type represents each different value of

κ1. As can be seen, there is a curvature to the plot overall, which indicates the inclusion
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Figure 7.9: Left: Residuals versus fitted values for regression model κ̂∗2 = 0.997 −
1.048κ1ω

2, with a symbol for eachκ = 1, 3, 5, 7, 9. Right: Residuals versus fitted values

for five models of the formκ∗2 = ακ1 + βκ1ω
2, with κ1 = 1, 3, 5, 7, 9 (increasing from

left to right).

of a higher order term inκ1 or ω. Also apparent is a decrease in curvature and range of

residuals asκ1 increases, as can be seen on consideration of each of the different sets of

symbols. This suggests that the fit of the model improves asκ1 increases. This point is

emphasised by the right hand plot of Figure 7.9. For this plot, five separate regression

models of the form (7.24) have been fitted, one for each of the valuesκ1 = 1, 3, 5, 7, 9,

and the residuals plotted against the fitted values. It is immediately apparent that the fit of

the model improves asκ1 increases.
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7.8.2 Analytic approach

In Downs and Mardia (2002, p.56), an alternative form for Equation (7.10) is shown to be

(given here in terms ofx andy)

f1(x|y) = [2πI0(κ1)e
−κ1]−1 exp{−2κ1y

TηηTy/(1 + 2ωpωq cos y)} (7.25)

wheref andκ have been replaced byf1 andκ1 respectively, as suggested by the current

context, and wherey, η, ωp andωq are defined as follows:

yT = [sin 1/2(x+ y),− cos 1/2(x+ y), sin 1/2(x− y),− cos 1/2(x− y)];

ηT = [ωp cosα, ωp sinα, ωq, 0]; (7.26)

ω2
p + ω2

q = 1; 2ωpωq =
1 − ω2

1 + ω2
.

Settingα equal to zero and for ‘large’κ, we have

yT ≈ [(x+ y)/2,−1, (x− y)/2,−1];

ηT = [ωp, 0, ωq, 0]; (7.27)

1 + 2ωpωq cos y ≈ 1 + 2ωpωq,

substitution of which into (7.25) yields, upon simplification,

f1(x|y) = [2πI0(κ1)e
−κ1 ]−1 exp

{

−2κ1[ωp(x+ y)/2 + ωq(x− y)/2]2

1 + 2ωpωq

}

. (7.28)

Multiplying Equation (7.28) byf2(y), the von Mises pdf with mean direction equal to0,

gives an expression in which a functionC(κ1, κ2) of κ1 andκ2 multiplies an exponential

term. This exponential term is a quadratic, iny, of the formay2 + by + c, which can be

written equivalently asa(y + b/2a)2 + c− b2/4a. In this case, Equation (7.20) becomes

[2πI0(κ2)]
−1eκ2 cos x = C(κ1, κ2) exp(c− b2/4a)

∫ ∞

−∞

exp[a(y + b/2a)2]dy. (7.29)
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The integrand in Equation (7.29) is proportional to the pdf of a normal distribution. Using

this fact and the approximationcos x ≈ 1 − x2/2, we have, from (7.29),

exp[κ2(1 − x2/2)] ∝ exp[c− b2/4a]. (7.30)

Using the expressions in Equation (7.26) forωp andωq in terms ofω, and some algebra,

we can calculate

c− b2/4a = − κ1κ2x
2

2(κ1ω2 + κ2)
. (7.31)

Putting (7.31) in (7.29), we see that both the left and right hand sides of (7.29) have a

normalising constant and an exponential term involvingx2, in which case, since the left

hand side is a von Mises pdf, the right hand side must also be the pdf of a von Mises

distribution. Using (7.31) and equating terms inx2 in Equation (7.30) gives

κ2 = κ1(1 − ω2). (7.32)

Thus, for ‘large’κ, the equilibrium distribution is approximately von Mises distributed

with concentration parameterκ2 = κ1(1 − ω2). This result is both simple and intuitively

appropriate, asω = 0 ⇒ κ2 = κ1, andκ1 = 0 ⇒ κ2 = 0.

Returning to the regression model of Section 7.8.1, we see that there is agreement

between the theoretical relationship of Equation (7.32) obtained above and the regression

model suggested by a numerical approach to the equilibrium distribution. Moreover, the

approximation obtained above explains the patterns of the residual plots of Figure 7.9.

That is, the curvature in the first plot can be attributed to taking only the first two terms

in the expansion ofcosx with the approximationcosx ≈ 1 − x2/2, whilst clearly the

improvement in fit for increasingκ1 evident in the second plot is due to the fact that

κ2 = κ1(1 − ω2) is an approximation for largeκ1. Of additional interest is the rate of

this improvement. In particular, there appears to be a considerable improvement between

κ1 = 1 andκ1 = 3, after which the rate of improvement decreases. This plot therefore

gives a graphical indication of how ‘large’κ1 must be in order for the approximation to

be ‘acceptable’ in some sense.
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To investigate this further, a grid of values is calculated for 1 ≤ κ1 ≤ 10 andω =

0, 0.1, 0.2, . . . , 0.8, in which each cell is the absolute difference

|κ∗2 − κ1(1 − ω2)|, (7.33)

whereκ∗2, as in Section 7.8.1, is that value of the concentration parameter of a von

Mises distribution which minimises the difference betweenthe numerical equilibrium

distribution and a von Mises distribution, as determined byEquation (7.23). The results

are displayed on the left hand plot of Figure 7.10. The profiles atκ1 = 0 andω = 0
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Figure 7.10: Left: Image plot of Equation (7.33) forκ1 = 1, . . . , 10 and ω =

0, 0.1, . . . , 0.8. Right: Lines representingκ2 = κ1(1−ω2) for κ1 = 1, . . . , 10 (x-axis) and

ω = 0, 0.2, 0.4, 0.6, 0.8 (top line to bottom line), with correspondingκ∗2 superimposed as

points.

represent a perfect fit. In other areas of the image, the improvement in fit is evident

asκ1 increases, but more so for smaller values ofω. This point is emphasised by the

right hand plot of Figure 7.10, in which the linesκ2 = κ1(1 − ω2) (for 1 ≤ κ1 ≤ 10

andω = 0, 0.2, 0.4, 0.6, 0.8) are displayed alongside points which are the corresponding

values ofκ∗2. The lines, from top to bottom, correspond toω = 0, 0.2, 0.4, 0.6 and0.8, and
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are approximated more closely by the points for smaller values ofω, the approximation

within each line improving (with increasingκ) less asω increases.

7.9 Estimating model parameters

In this section we consider parameter estimation for the Möbius time series model. Firstly,

a grid search method is used in order to estimate the parameters α and ω based on

Equation (7.11), and the behaviour of the function (7.11) isinvestigated over this grid of

values. Second, a numerical approach is considered using theR functionnlm . For each,

the method outlined in Section 7.6 is employed for data simulation, and the parameters

estimated based on the simulated data.

7.9.1 Grid search and likelihood plots

Equation (7.11) can be evaluated for a grid of values in (α, ω) space which contains

the true parameter values (α0, ω0), say, used in the simulation of data. Searching this

grid for values ofα andω that maximise (7.11) is then a means of estimating the model

parameters, and more specifically a way to compare these estimates with the (α0, ω0)

that generated the data. Evaluating a grid of values in this way also enables one to

investigate the behaviour of the conditional likelihood byplotting Equation (7.11) either

as a 2-dimensional perspective plot, a contour plot, or as profile plots for one ofα or ω,

given a fixed value (for exampleα0 or ω0) of the other.

Two sets of data are investigated using the above methods. Firstly, the values

(α0, ω0, κ0) = (π/4, 0.6, 4) are used to simulate a data set of lengthn = 200. Using a300

by 100 grid of values covering the intervalsα = [−π, π] andω = [−1, 1] respectively, the

maximum value of (7.11) for the simulated data across the grid of values is found to be
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that value for which(α̃, κ̃) = (0.788, 0.556), which are close to the true valuesα0 andω0

(π/4 = 0.785 to three decimal places).

Figure 7.11 shows plots based on the values of Equation (7.11) for various parts of the

grid. The top left plot showsl(α0, ω) for ω between−1 and1, whilst the top right plot

showsl(α, ω0) for α between−π andπ. The bottom left plotl(α,−ω0) again forα

between−π andπ. Finally, an image and contour plot is shown forα ∈ [α0−0.4, α0+0.4]

andω ∈ [ω0 − 0.1, ω0 + 0.1]. In each plot, dashed lines show the true valuesα0 andω0.
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Figure 7.11: Likelihood plots based on simulated data set 1,in whichα0 = π/4,ω0 = 0.6,

κ = 4, n = 200. (a) Profile inω with α = α0. (b) Profile inα with ω = ω0. (c) Profile in

α with ω = −ω0. (d) Contour likelihood plot.

The first profile in the figure, forα fixed atα0, shows a maximum for the profile of the

likelihood at a value close toω0 = 0.6. Similarly, whenω is fixed atω0, the profile of

(7.11) shows a maximum aroundπ/4. In both these cases, the profile plots each exhibit

a single maximum. In the third of the profile plots however, when ω is fixed at−0.6,
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there are also local maxima at approximatelyα0 ± π. The reason for this can be seen

on consideration of the special caseω = −1 discussed in Section 7.4. In this case,

the maximum likelihood estimate ofα is a mean axis. Although in the present case the

maximum of the likelihod is considerably less in the profile exhibiting the local maxima,

this may not necessarily be the case more generally (whenω is very close to−1).

The second set of data simulated are obtained using the values (α0, ω0, κ0) =

(2π/3,−0.4, 4) andn = 200. Using the grid search approach we obtain the parameter

estimates(α̃, ω̃) = (2.049,−0.414). These values are again close to the true valuesα0

andω0 (2π/3 = 2.094 to three decimal places). Figure 7.12 shows the plots produced in

Figure 7.11 for the new data set. In this case, however, the image plot is plotted over the

intervalsα ∈ [α0 − 0.2, α0 + 0.2] andω ∈ [ω0 − 0.2, ω0 + 0.2].
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Figure 7.12: Likelihood plots based on simulated data set 2,in whichα0 = 2π/3, ω0 =

−0.4, κ = 4, n = 500. (a) Profile inω with α = α0. (b) Profile inα with ω = ω0. (c)

Profile inα with ω = −ω0. (d) Contour likelihood plot.

As for data set one, we again observe that the maximum grid values are reasonably close
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to the true parameter values. For data set one, the maximum ofthe function (7.11) is seen

to lead to a more accurate estimate ofα than ofω, whilst for data set two the opposite is

true. For data set two we again observe the phenomenon of local maxima in the profile

likelihood ofα whenω < 0. This has the potential to be more of an issue when the true

parameter value is negative, although the maximum is clearly visible and a value ofω0

closer to−1 may be needed to cause problems in estimation.

We next consider a numerical approach to maximising the likelihood functionl(α, ω) by

using theR functionnlm .

7.9.2 Gradient descent

In this section we investigate the use ofnlm to estimate model parameters for the Möbius

time series model based on data sets simulated using variousparameter values.

Experimentation with numerous data sets shows that, unlessthe valueω0 that is used for

data simulation is very close to−1, and/orκ is very small, the starting values(α, ω) =

(θ, 0) result in reasonably good parameter estimates, whereθ is the mean direction of the

simulated data set. Indeed, the mean direction itself provides a reasonable estimate ofα.

In the caseω ≈ −1, θ occasionally correctly givesα0, but also occasionally givesα0 ±π,

for the reasons given in Section 7.4. On some occasions, the estimation method appears

to fail, returning estimates of approximately zero for bothα andω, even when the true

value of the former isπ/2 and the true value of the latter is close to−1.

For small values ofκ (below about 1), a larger value ofn enables better estimation ofα

provided the value ofκ is not “too” small.

Tables 7.1, 7.2 and 7.3 display the results of estimatingα, ω andκ using thenlm function

for α andω and using the profile likelihood (see Section 7.3) forκ. The latter is obtained
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by minimising the absolute value of

I1(κ)

I0(κ)
− lα̂,ω̂

(n− 1)

over a sequence of values forκ between0.1 and10, oncelα̂,ω̂ (from Equation (7.11)) has

been obtained vianlm .

For each combination of true parameter values (α0,ω0, κ0), 100 data sets, each comprising

400 observations, are simulated. The mean values and standard deviations of the

parameter estimates over the 100 replications, within each(α, ω, κ) combination, are

then calculated. In the case ofα, we calculate1 − R instead of the standard deviation,

whereR is the mean resultant length of the estimates ofα. The parameter values used in

the simulation process are every combination of(α0, ω0, κ0) from α0 = (−2π/3, 2π/3),

ω0 = (−0.5, 0.5) andκ0 = (1, 5).

As can be seen from the tables, the means of the parameter estimates are close to the

original parameter estimates that generated the data, whilst the standard deviations of

estimates forα andω are greater forκ = 1 than forκ = 5.

The problems of parameter estimation induced by bimodality(whenω is close to−1)

are not observed for the data simulated with the parameter values given in Table 7.3. For

individual data sets when this is a problem, a visual analysis of the data (for example

those data plotted in Figure 7.3) may give a better idea of thetrue parameter values.

7.10 Application to protein data

Having experimented with numerous simulated data sets, themodel is applied to a real

data set comprising the conformational angles of a protein.

In an attempt to categorise proteins by the properties and nature of their 3-D conformation,

the Möbius time series model can be applied to data sets comprising theφ andψ angles
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α0 → −2π/3 2π/3

κ0 → 1 5 1 5

ω0

-0.5 -2.093 (0.001) -2.094 (0.000) 2.089 (0.004) 2.096 (0.002)

0.5 -2.084 (0.028) -2.100 (0.001) 2.120 (0.050) 2.092 (0.003)

Table 7.1: Mean values (and one minus mean resultant length)of estimates ofα for 8

combinations of (α0, κ0, ω0), each based on 100 simulated data sets of 400 observations.

α0 → −2π/3 2π/3

κ0 → 1 5 1 5

ω0

-0.5 -0.499 (0.052) -0.497 (0.034) -0.493 (0.083) -0.496 (0.038)

0.5 0.501 (0.057) 0.497 (0.037) 0.504 (0.062) 0.493 (0.035)

Table 7.2: Mean values (and standard deviations) of estimates ofω for 8 combinations of

(α0, κ0, ω0), each based on 100 simulated data sets of 400 observations.

α0 → −2π/3 2π/3

κ0 → 1 5 1 5

ω0

-0.5 0.998 (0.081) 5.063 (0.329) 1.000 (0.066) 4.997 (0.295)

0.5 0.994 (0.070) 5.034 (0.259) 0.992 (0.070) 4.971 (0.264)

Table 7.3: Mean values (and standard deviations) of estimates ofκ for 8 combinations of

(α0, κ0, ω0), each based on 100 simulated data sets of 400 observations.
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that define their conformation. Ultimately, of course, the challenge is to incorporate both

φ andψ jointly into the analysis. As a first stage, however, the model developed is applied

to φ andψ individually.

The data to be considered comprise the 338φ andψ angles, as described above, of

a particular peptide chain. Table 7.4 displays maximum likelihood estimates of the

parametersα, ω andκ for each ofφ andψ. The table also shows estimated standard

errors of the estimates ofα andω, obtained from the numerically calculated (through

nlm ) Hessian matrix. As a measure of goodness–of–fit, data are simulated based on the

parameter estimates, the parameters of the resulting data are estimated and the simulated

data are compared with the original protein data both in terms of maximum likelihood

estimates and in terms of the data themselves. Table 7.4 alsodisplays the maximum

likelihood estimates of the parameters for the simulated dataφsim andψsim.

φ φsim ψ ψsim

α̂ -1.420 (0.062) -1.390 (0.061) 2.214 (0.164) 2.166 (0.162)

ω̂ -0.004 (0.012) 0.006 (0.068) 0.554 (0.116) 0.499 (0.063)

κ̂ 2.783 3.100 1.467 1.476

θ -1.420 -1.389 -0.140 2.165

AR(1) 0.006 -0.002 0.057 -0.087

Table 7.4: Maximum likelihood estimates (and estimated standard errors) for protein data

and for data simulated based on these estimates. Also given are mean directionsθ for

each data set, and AR(1) parameter estimates ofYt = tan(θt − α̂)/2, whereθ is to be

replaced by the variable of interest.

Also given in Table 7.4 are the mean directionθ of each data set and an estimate of the

AR(1) parameter of the dataYt = tan(θt− α̂)/2, whereθ is to be replaced by the variable

(φ, φsim, ψ or ψsim) of interest. For the latter, ifκ is large thenεt in the time series model
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(7.6) will be small, in which case the model can be approximated by

tan
1

2

(

θt − α
)

≈ ω tan
1

2

(

θt−1 − α
)

. (7.34)

The parameterω in (7.34) is then the AR(1) parameter of the transformed dataYt =

tan 1
2
(θt − α). Comparison of̂ω and the AR(1) estimates in Tables 7.4 indicates that the

ψ andψsim data are too dispersed forω̂ and the AR(1) estimate to be comparable. For the

φ andφsim data, botĥω and the AR(1) estimate are seen to be close to zero. Whenω = 0

the data are simply a random sample from a univariate von Mises distribution with mean

α and concentrationκ. The closeness ofω to zero for theφ values therefore indicates

little or no dependence betweenθt andθt−1, assuming the model is appropriate.

Figure 7.13 shows circular plots and time series plots of both the protein data and the

simulated data. As can be seen from the plots, the proteinψ data are very different from

the simulatedψsim data, indicating a poorly fitting model for theψ values. There is less

discrepancy between the protein data and the simulated datafor theφ series, although

for these series differences are again apparent. For example, the proteinφ data appear

to exhibit changing concentration throughout the series. On the other hand, not only

do the simulated data not exhibit this feature, the Möbius time series model in general

has constant concentration. This can be contrasted with theSine and Cosine time series

models, for which the concentration parameter of the conditional distribution ofθt given

θt−1 is time–dependent.

Figure 7.14 shows profile loglikelihood plots, as describedin Section 7.9 for simulated

data. The loglikelihood profile plots inω for the protein data are markedly different from

those encountered when the data were simulated, with sharp turning points atω = 0 in

each case. In the case of theψ angles a maximum is difficult to identify visually due to the

small gradient in its vicinity. For all other estimates ofα andω, there is a close agreement

between thenlm estimates and the profile plots.

For theφ angles, the profile plots inα are very similar for the protein and simulated
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Figure 7.13: Circular and time series plots of theφ andψ angles of a polypeptide chain,

and of data simulated using the parameter estimates obtained by fitting the Möbius model

to the protein data.

data. For theψ angles, we observe a local maximum at slightly less thanα = 0 which

corresponds to the mean direction as given in Table 7.4. Fromthe circular plot of theψ

protein data in Figure 7.13, we clearly observe bimodality,which leads to the difficulty

in identifying α in this case. Again the large discrepancy between the plots for ψ and

for ψsim would indicate a poorly fitting model for theψ protein data. The discrepancy is

again seen to be less for theφ andφsim series, although the profile inω for the protein

data exhibits the aforementioned sharp turning point atω = 0 that is not apparent for the

simulatedφsim values.

Figures 7.15 and 7.16 show the goodness–of–fit plots developed in Chapter 6 for the
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Figure 7.14: Profile loglikelihood plots for protein and simulated data. Profiles in each of

α andω taken at the maximum likelihood estimate of the other.

Sine and Cosine time series models. That is, Figure 7.15 shows plots ofθt − α̂ versus

θt−1 − α̂ whereθ is to be replaced by the variable of interest andα̂ is the maximum

likelihood estimate ofα for that variable. Solid black lines represent the functionµ̂t =

2 tan−1 {ω̂ tan(θt−1/2)} whilst dashed black lines representµ̂t ± 1/
√
κ̂. Finally, solid

red lines represent a smoothed version ofθt − α̂ versusθt−1 − α̂ where the smoothing is

performed using the functioncirc.smth described in Section 6.2.5.

From these plots we clearly have further evidence that the model is a very poor fit to

theψ protein data. For theφ values, the red line approximates the black line reasonably

well, although there is a slight curvature apparent in the former. This kind of curvature

was observed for the fitted Sine and Cosine models in Figures 6.5 and 6.13 respectively,

indicating that they could be competing models for these data. Although the Sine and

Cosine models were fitted to a different protein data set thanis currently being analysed,
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Figure 7.15: Plots ofθt versusθt−1, a smoothed version (red line) andµ̂t± 1/
√
κ̂t, where

θ is one ofφ, φsim, ψ or ψsim.

comparing the plots in this section with those for the Sine and Cosine model reveal close

similarities.

Figure 7.16 compares the (numerically calculated) equilibrium distributions based on the

fitted models with kernel density estimates of the data themselves. Again we see evidence

of a very poorly fitting model for theψ values, with the kernel density estimate exhibiting

the bimodality also apparent in the plots in Figure 7.13 for theψ data. For theφ values

we observe a kernel density estimate that is slightly skewedand heavy in the tails, but

which provides a reasonable approximation to the equilibrium distribution based on the

fitted model.
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Figure 7.16: Numerically calculated equilibrium distribution based on parameter

estimates (dashed lines) and kernel density estimates based on data (solid lines).

7.11 Conclusions

A circular regression model introduced by Downs and Mardia (2002) has been adapted

to a circular time series context. The model properties havebeen investigated, including

analysis of the deterministic component of the model. Data simulation and parameter

estimation have been discussed, and successfull methods have been developed in order

to accomplish both. The potential problem of identifyingα whenω is close to−1 has

been identified via analysis of the behaviour of the loglikelihood function. A thorough

investigation into the equilibrium distribution has revealed similarities with a von Mises

distribution. For the special cases|ω| = 1 and/orκ = 0, the equilibrium distribution is

uniform on the circle, whilst ifω = 0 then it is von Mises with concentrationκ.

The model has been fitted to theφ andψ angles of a protein data set, and has been shown
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to be a very poor fit for the latter. For theφ values, the fit appears reasonable and suggests

that the dependence ofθt onθt−1 is at most very slight.

Having studied the Möbius model, the Sine time series modeland the Cosine time series

model, it is instructive to compare the properties of the three. This was done briefly in

Sections 6.3.6 and 6.3.7 for the Sine and Cosine models, and we here compare the three

models and their properties. These comparisons build on those of Hughes et al. (2005).

For comparison of the conditional means of the models, we will assume thatµ = 0 for

the Sine and Cosine models and thatα = 0 for the Möbius model. We observed for the

Sine model that the mean directionµt of θt givenθt−1 is equal toµt givenπ−θt−1, which

was considered an unusual property that may not be expected in an observed data set. A

similar (but not exactly the same) thing was observed ofµt in the Cosine model when

the values of the parametersa andb are such thatb > |a|. On the other hand,µt for the

Möbius model was seen to be a monotonic (increasing or decreasing, depending on the

sign ofω) function ofθt−1.

In terms of parameter interpretation, that for the Sine and Cosine models is made awkward

with λ andκ for the Sine model anda and b for the Cosine model affecting both the

deterministic and random components of the model. In contrast, the parameterω alone

(takingα = 0) determines the behaviour of the deterministic component of the Möbius

model, whilstκ determines the random component, making interpretation much simpler.

The equilibrium distributions of the Sine and Cosine modelswere seen to be symmetric

aroundµ and either unimodal or bimodal. For the numerically calculated equilibrium

distribution for the Möbius model, only unimodal marginals were observed, although for

values ofω close to−1 the overall series was seen to alternate between two “mini time

series” at a distance ofπ apart.

One result of the relatively simple form of the Möbius modelcompared with the Sine and

Cosine models is that the latter two result in a wider range ofpossible data, incorporating
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the possibility of bimodality and varying concentration over time. The important question

is whether or not these features are observed in real series.For the protein series,

both changing concentration and bimodality were observed,but not in a way that was

successfully captured by the models. For the protein data studied (which were seen to be

reasonably similar), there isn’t much to distinguish between the three models in terms of

goodness–of–fit for theφ values, but for theψ values the Sine model was seen to be far

superior to the other two.

It is clear that analysis of the individual models and comparison of the three can be

extended by fitting the models to alternative data, as the protein data seem to exhibit

behaviour that cannot be captured particularly well by any of the three time series models.

The analysis of the three models in Part II of the thesis provides a strong foundation on

which further analysis can be built.

Another obvious way in which the work in this chapter could beextended is by

considering higher order models. The general AR(p) model then takes the form of

Equation (5.4) withg(·) = 2 tan−1(·). In particular, the AR(p) model is defined by the

conditional distributionθt|(θt−1, . . . , θt−p) ∼M(µt, κ), t = p+ 1, . . . , n, where

µt = α + 2 tan−1

{

ω1 tan
1

2
(θt−1 − α) + . . .+ ωp tan

1

2
(θt−p − α)

}

.

Again, the methods employed in this Chapter can be extended to investigate the behaviour

of this higher order model.
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Chapter 8

Conclusions

We have presented in each chapter of this thesis a section outlining the conclusions

reached in that chapter and ways in which the work therein canbe extended or improved.

Just as it was insightful to consider in the introductory chapter material that was to recur

throughout the thesis, so it is instructive to summarise retrospectively the conclusions

drawn throughout the thesis that have a common theme.

In the abstract of the thesis the aims of both developing statistical methodologies for

modeling circular data and applying these methodologies toprotein conformational angles

were presented. At this juncture it is appropriate to consider the relative success of these

two aspects, and also to summarise the achievements of each.The above are the aims of

this concluding chapter. We begin by considering the theoretical advancement of circular

models, separate from any specific data and in terms of the thesis as a whole. Thereafter,

the conclusions drawn concerning fitting multivariate and circular time series models to

actual protein data are summarised.



182 Chapter 8

8.1 Multivariate and time series models for circular data

As outlined in Chapters 2 and 5 respectively, there is a sparsity of multivariate circular

models and circular time series models. There are various reasons for this, and some

of them have been observed throughout the thesis. As previously noted, Kent and

Mardia (2002) commented that intractability of at least oneor other of the marginals

or conditionals seems to be a universal law in directional models. We were unable to

obtain an expression for the univariate marginal distribution when the trivariate von Mises

distribution was considered. Even in the bivariate case, the marginals are not von Mises

and can be unimodal or bimodal. The results of this fact were observed in time series

modeling, with bimodal data obtained when simulating data from the Sine time series

model for certain parameter values, and the same is true of the Cosine time series model.

For the Möbius model the equilibrium distribution could not be obtained analytically, and

numerical solutions were instead obtained.

Certain aspects of formulating multivariate and time series models were specific to the

type of model being considered, since the former concentrated mainly on the joint density

whilst the latter focused on the conditionals. For the multivariate von Mises model,

parameter estimation provided the problem of an unknown normalising constant, and

study of the pseudolikelihood provided valuable results regarding its efficiency both

for the von Mises case and for the multivariate normal distribution. For the Sine and

Cosine time series models, unusual behaviour of the mean direction of θt given θt−1

was observed, and the features of time series models with changing concentration over

time were considered. Of course, the features observed for the time series models are

relevant to the understanding of the multivariate models (and vice versa), and, with the

extension of the bivariate Cosine model to a multivariate context, the observations made

in both parts of the thesis could contribute to a comparison of the multivariate Sine and

multivariate Cosine models, extending the comparisons made by Mardia et al. (2007b)
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for the bivariate case.

In spite of the difficulties associated with multivariate and time series circular models,

progress has been made regarding the formulation of models.The multivariate von

Mises distribution discussed has the appealing propertiesof following an approximate

multivariate normal distribution under high concentration, and is a natural extension of

the univariate von Mises distribution and bivariate Sine model. Circular time series

models have been adapted from distributions in the literature, and for both the multivariate

and time series models, the methods of parameter estimationpresented were seen to be

successful for simulated data. The important question remains regarding whether or not

real data exhibit the features observed for these simulateddata. Various goodness–of–

fit measures have also been developed for the circular time series models, by comparing

features of distributions based on the fitted model with those based on the data.

For all of the models developed and considered in the thesis,ways in which the analysis

can be extended have been outlined. For the multivariate vonMises model, the alternative

provided by the bivariate Cosine density for formulation ofa multivariate von Mises

model was discussed in Section 4.5. The development of this model would both provide

the potential for the comparison with the multivariate model presented and also give

a competing model. Each of the time series models presented has been discussed as

a circular AR(1) model, and there is clearly scope for the extension of thesemodels

to AR(p) processes or even ARMA(p, q) processes. With these extensions the tools

discussed in Section 5.2, such as the circular correlogram,could be employed in, for

example, model selection.
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8.2 Modeling protein data with the multivariate and time

series models

Certain features of protein conformational angles data have caused difficulty in the

application of the circular models formulated. The most notable of these is the

multimodality or bimodality of data observed, for example,in Figures 4.8 and 6.4

respectively. In the case of the former, when the serine and valine data were considered,

the problem was addressed by isolating a single mode of the data for analysis. For the

latter (theψ time series values), the fitted Sine and Cosine models were also bimodal,

but were unable to capture the type of bimodality observed inthe real data, which had

different concentrations at each mode. The Möbius time series model, capturing only

unimodal data, was less successful with regard to modeling theψ angles. All models were

a comparatively good fit to theφ angles, which may be due in part to the fact that these

data are less bimodal, and perhaps in part to the possibilitythat, as suggested by the fitted

Möbius model, there is little association betweenφt andφt−1. A potential alternative

could be to model certain regions of a polypeptide chain withthe time series models,

rather than the polypeptide in its entirety.

In respect of both the multivariate von Mises model and the circular time series models,

just as the models themselves can be extended, so the existing models can be applied to

different data sets to gauge their potential usefulness more generally, and in this regard

there are numerous ways in which this work can be extended.
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