Powering Up with Space-Time Wind Forecasting

Amanda S. Hering Texas A&M University

Joint work with Marc G. Genton University of Geneva

Goals of This Talk

- Discuss 3 models for forecasting wind speed (2 hour horizon)
 - Investigate role that wind direction plays
 - Discuss the flexible skew-t distribution
- How to compare predictions of speeds
 - Loss function should be based on power curve
- Models including direction are robust on data

Importance of Wind Forecasting

- Wind-generated electricity cannot be stored. It enters the grid as soon as it is produced.
- Traditional sources of electricity must supply the balance.
 - May require several hours to come online.
- Demand must meet supply.
- Utilities can impose penalties for electrical shortages or excesses.
- Accurate forecasts will allow wind energy to achieve higher penetrations.

Statistical models are effective in the 0-6 hour forecast horizon, and forecasts have uncertainty intervals which improve their reliability.

Unique Characteristics of Wind Speed

- Nonnegative and nonnormal
- Temporally and spatially correlated
- Diurnal and seasonal changes
- Changes rapidly and with high frequency
- Highly correlated with wind direction

Wind Speed and Direction

Dataset

- Data was collected at 3 sites:
 - Goodnoe Hills, Washington
 - Kennewick, Washington
 - Vansycle, Oregon
- For each hour, the following variables were recorded:
 - Day of the year
 - Hour of the day
 - Wind speed
 - Wind direction
- Two sets of continuously recorded data for all 3 sites:
 - 55 days in 2002, Sep-Oct, Training
 - 269 days in 2003, Feb-Nov, Testing

Spatial Positions of 3 Sites

Image from Google Maps

B=Goodnoe Hills, C=Kennewick, and A=Vansycle

Three Models of Interest

- 1. RST model: **R**egime-Switching **S**pace-**T**ime Diurnal model
 - Split into 2 regimes based on the wind direction at the westernmost site.
- 2. TDD model: **T**rigonometric **D**irection **D**iurnal model
 - Incorporates the wind direction directly into the model and eliminates regimes.
- 3. BST model: Bivariate Skew-T model
 - Transforms speed and direction into Cartesian coordinates.

The RST Model

- The Regime-Switching Space-Time Diurnal model was developed by Gneiting et al. (2006) to predict hourly average wind speed at Vansycle two hours ahead.
- The wind speed at Vansycle is modeled using a truncated normal distribution which has two parameters, μ and σ .
- The mean of the truncated normal distribution is the point forecast

$$\mu^{+} = \mu + \sigma \cdot \phi\left(\frac{\mu}{\sigma}\right) / \Phi\left(\frac{\mu}{\sigma}\right).$$

- The parameters μ and σ are regime-dependent.
- In each regime, μ is a linear combination of present and past wind speeds at the 3 sites.

The RST Regimes

Two regimes are based on the current wind direction at Goodnoe Hills.

Westerly Regime: right half of the circle

Easterly Regime: left half of the circle

Goodnoe Hills Wind Direction Distributions by Month

Motivation to Generalize RST

- The RST model addresses many characteristics of the wind speed:
 - Nonnormality and nonnegativity
 - Diurnal variability
 - Spatial and temporal correlation
 - Conditional heteroscedasticity of wind speeds
- However, it is based on a regime structure specific to the topography of this geographic region.
- Defining the regimes is subjective and difficult, making the model difficult to apply elsewhere.

Goal: Eliminate the regimes and incorporate wind direction directly into the model.

The TDD Model Idea

- The **T**rigonometric **D**irection **D**iurnal Model Eliminates the RST regimes by including wind direction as a variable.
- Wind direction is a circular variable, meaning the endpoints of its range, [0°, 360°], meet.
- Wind direction must be "linearized" before including it in any regression for linear variables, such as wind speed.
- Wind speed is still modeled with a truncated normal distribution, but the sine and cosine of wind direction at each site can be included in the model for μ.
- Variables are selected with a BIC-selection method.

ISF 2008

Variable Selection for TDD

Correlations with $V_{t+2}\xspace$ in 2002 Data

	Time Lag							
Variable	t	t-1	t-2	t — 3				
V	0.90	0.85	0.80	0.75				
$\cos(\theta_{\sf V})$	-0.55	-0.54	-0.51	-0.48				
$\sin(\theta_{\sf V})$	-0.22	-0.20	-0.18	-0.16				
K	0.74	0.72	0.69	0.66				
$\cos(heta_{K})$	-0.63	-0.63	-0.62	-0.62				
$\sin(heta_{K})$	-0.04	-0.02	-0.02	0.00				
G	0.60	0.60	0.58	0.56				
$\cos(\theta_{G})$	-0.32	-0.32	-0.32	-0.33				
$\sin(heta_{G})$	-0.45	-0.44	-0.43	-0.41				

The BST Model

- The Bivariate Skew-T model converts wind speed and direction into Cartesian coordinates using $x = r \cos(\theta)$ and $y = r \sin(\theta)$.
- An hourly diurnal component is removed from the coordinate at each location and is divided by an overall standard deviation. For example, at Vansycle we have

$$\mathbf{V}_{t}^{\mathsf{r}} = \left(\mathsf{V}_{t,\mathsf{x}}^{\mathsf{r}},\mathsf{V}_{t,\mathsf{y}}^{\mathsf{r}}\right)' = \left(\frac{\mathsf{V}_{t,\mathsf{x}} - \mathsf{D}_{\mathsf{s},\mathsf{x}}}{\hat{\sigma}_{\mathsf{x}}}, \frac{\mathsf{V}_{t,\mathsf{y}} - \mathsf{D}_{\mathsf{s},\mathsf{y}}}{\hat{\sigma}_{\mathsf{y}}}\right)'.$$

 $\bullet\,$ The residual series at time t+2 at Vansycle is modeled with

$$\mathbf{V}_{t+2}^{\mathsf{r}} = \mathbf{A}_0 + \mathbf{A}_1 \mathbf{V}_t^{\mathsf{r}} + \mathbf{A}_2 \mathbf{V}_{t-1}^{\mathsf{r}} + \mathbf{A}_3 \mathbf{K}_t^{\mathsf{r}} + \mathbf{A}_4 \mathbf{K}_{t-1}^{\mathsf{r}} + \mathbf{A}_5 \mathbf{G}_t^{\mathsf{r}} + \boldsymbol{\epsilon}_t.$$

The Skew-t Distribution

- ϵ_t follows a bivariate skew-t distribution with skewness parameters $\alpha = (\alpha_1, \alpha_2)'$ and degrees of freedom ν controlling kurtosis.
 - If $\alpha = (0,0)'$, then the distribution of ϵ_{t} is symmetric.
 - If $\nu = \infty$, then the distribution of ϵ_t has the same tail behavior as a normal distribution.
 - If both $\alpha = (0,0)'$ and $\nu = \infty$, then the distribution of ϵ_t is bivariate standard normal.

Examples

The BST model predictions are made with the following formula: $\hat{\mathbf{V}}_{t+2} = \left(\hat{\mathbf{A}}_0 + \hat{\mathbf{A}}_1 \mathbf{V}_t^r + \hat{\mathbf{A}}_2 \mathbf{V}_{t-1}^r + \hat{\mathbf{A}}_3 \mathbf{K}_t^r + \hat{\mathbf{A}}_4 \mathbf{K}_{t-1}^r + \hat{\mathbf{A}}_5 \mathbf{G}_t^r + \hat{\boldsymbol{\epsilon}}_t\right) \cdot \hat{\boldsymbol{\sigma}} + \mathbf{D}_{s+2}$ and then take the norm of $\hat{\mathbf{V}}_{t+2}$.

The Skew-t Error Choice

Comparing the Speed Predictions

- Predictions are commonly compared with Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).
- However, are these the most appropriate comparisons since the wind power is the main interest, not the wind speeds?
- We should use the relationship between wind speed and wind power.

GE 1.5 MW Power Curve

Power Curve Error Measure

- The true power output is proprietary.
- True wind speeds → "true" power output
 Predicted wind speeds → "predicted" power output
- To transform speeds to power in Zone 2, a nonparametric regression method is used.
- The true power and predicted power are compared and summarized with the Power Curve Error, or

$$\mathsf{PCE} = \frac{1}{n}\sum_{i=1}^n |\mathsf{P}_{i,t+2} - \mathsf{P}^{\mathsf{mod}}_{i,t+2}|.$$

Model Comparison Summary

	Mod	May	Jun	Jul	Aug	Sep	Oct	Nov	All
RMSE	PER	2.14	1.97	2.37	2.27	2.17	2.38	2.11	2.21
	RST	1.73	1.56	1.69	1.78	1.77	2.07	1.87	1.79
	TDD	1.74	1.55	1.65	1.77	1.73	2.02	1.85	1.77
	BST	1.79	1.64	1.65	1.86	1.88	2.13	2.03	1.86
MAE	PER	1.60	1.45	1.74	1.68	1.59	1.68	1.51	1.61
	RST	1.31	1.19	1.32	1.31	1.36	1.48	1.38	1.34
	TDD	1.34	1.18	1.28	1.31	1.32	1.47	1.37	1.33
	BST	1.34	1.23	1.29	1.38	1.42	1.50	1.52	1.38
PCE	PER	197.8	145.6	228.6	189.7	151.8	184.1	118.8	174.3
	RST	154.6	114.6	167.0	138.6	126.5	163.3	110.4	140.0
	TDD	156.9	114.6	162.7	135.8	124.5	161.1	105.2	137.6
	BST	154.4	119.2	160.6	136.4	129.6	160.3	113.3	139.4

Note: Fitting a bivariate skew-t distribution to the data performs similarly to any robust fitting technique—it downweights extremes and estimates parameters that fit well for the majority of the data.

Conclusions

Models:

- RST model is limited to few locations and known physics.
- TDD & BST can be applied to a wide variety of locations and topographical conditions.
- Incorporating wind direction improves predictions.

Loss Function:

- PCE gives a more realistic assessement of wind speed forecasts.
- Greater penalties on wind speeds are assessed in the region where power is proportional to the cube of speed.
- Can be modified for other turbines and for wind farms.

Continuing Work

- Improve BST forecasts with uncertainty intervals.
- Improve uncertainty intervals for all models to include parameter estimation uncertainty.
- Simulate speed and direction data over space and time using bivariate skew-t approach for utility system experiments.
 - Reproduces the heavy tails of the wind vector, making long runs of realistic data.

Some References

Azzalini, A. (2005) The skew-normal distribution and related multivariate families. *Scandinavian Journal of Statistics*, **32**, 159-188.

Mardia, K. V. and Jupp, P. E. (2000) *Directional Statistics*, John Wiley and Sons: London.

Genton, M.G. and Hering, A.S. (2007) Blowing in the wind. *Significance*, **4**, 11-14.

Gneiting, T., Larson, K., Westrick, K., Genton, M.G., and Aldrich, E. (2006) Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time method. *JASA*, **101**, 968-979.