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Goals of This Talk

• Discuss 3 models for forecasting wind speed (2 hour horizon)

– Investigate role that wind direction plays

– Discuss the flexible skew-t distribution

• How to compare predictions of speeds

– Loss function should be based on power curve

• Models including direction are robust on data
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Importance of Wind Forecasting

• Wind-generated electricity cannot be stored. It enters the grid as

soon as it is produced.

• Traditional sources of electricity must supply the balance.

– May require several hours to come online.

• Demand must meet supply.

• Utilities can impose penalties for electrical shortages or excesses.

• Accurate forecasts will allow wind energy to achieve higher

penetrations.

Statistical models are effective in the 0-6 hour forecast horizon, and

forecasts have uncertainty intervals which improve their reliability.
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Unique Characteristics of Wind Speed

• Nonnegative and nonnormal

• Temporally and spatially correlated

• Diurnal and seasonal changes

• Changes rapidly and with high frequency

• Highly correlated with wind direction
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Dataset

• Data was collected at 3 sites:

– Goodnoe Hills, Washington

– Kennewick, Washington

– Vansycle, Oregon

• For each hour, the following variables were recorded:

– Day of the year

– Hour of the day

– Wind speed

– Wind direction

• Two sets of continuously recorded data for all 3 sites:

– 55 days in 2002, Sep-Oct, Training

– 269 days in 2003, Feb-Nov, Testing
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Spatial Positions of 3 Sites

Image from Google Maps

B=Goodnoe Hills, C=Kennewick, and A=Vansycle
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Three Models of Interest

1. RST model: Regime-Switching Space-Time Diurnal model

• Split into 2 regimes based on the wind direction at the

westernmost site.

2. TDD model: Trigonometric Direction Diurnal model

• Incorporates the wind direction directly into the model and

eliminates regimes.

3. BST model: Bivariate Skew-T model

• Transforms speed and direction into Cartesian coordinates.
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The RST Model

• The Regime-Switching Space-Time Diurnal model was developed by

Gneiting et al. (2006) to predict hourly average wind speed at

Vansycle two hours ahead.

• The wind speed at Vansycle is modeled using a truncated normal

distribution which has two parameters, µ and σ.

• The mean of the truncated normal distribution is the point forecast

µ+ = µ + σ · φ
(µ

σ

)

/Φ
(µ

σ

)

.

• The parameters µ and σ are regime-dependent.

• In each regime, µ is a linear combination of present and past wind

speeds at the 3 sites.
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The RST Regimes

Two regimes are based on the current wind direction at Goodnoe Hills.

Westerly Regime: right half of the circle

Easterly Regime: left half of the circle

Goodnoe Hills Wind Direction Distributions by Month
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Motivation to Generalize RST

• The RST model addresses many characteristics of the wind speed:

– Nonnormality and nonnegativity

– Diurnal variability

– Spatial and temporal correlation

– Conditional heteroscedasticity of wind speeds

• However, it is based on a regime structure specific to the

topography of this geographic region.

• Defining the regimes is subjective and difficult, making the model

difficult to apply elsewhere.

Goal: Eliminate the regimes and incorporate wind direction directly into

the model.

mhering@stat.tamu.edu 10



ISF 2008 Texas A&M University

The TDD Model Idea

• The Trigonometric Direction Diurnal Model

Eliminates the RST regimes by including wind direction as a variable.

• Wind direction is a circular variable, meaning the endpoints of its

range, [0◦, 360◦], meet.

• Wind direction must be “linearized” before including it in any

regression for linear variables, such as wind speed.

• Wind speed is still modeled with a truncated normal distribution,

but the sine and cosine of wind direction at each site can be

included in the model for µ.

• Variables are selected with a BIC-selection method.

mhering@stat.tamu.edu 11



ISF 2008 Texas A&M University

Variable Selection for TDD

Correlations with Vt+2 in 2002 Data

Time Lag

Variable t t − 1 t − 2 t − 3

V 0.90 0.85 0.80 0.75

cos(θV) -0.55 -0.54 -0.51 -0.48

sin(θV) -0.22 -0.20 -0.18 -0.16

K 0.74 0.72 0.69 0.66

cos(θK) -0.63 -0.63 -0.62 -0.62

sin(θK) -0.04 -0.02 -0.02 0.00

G 0.60 0.60 0.58 0.56

cos(θG) -0.32 -0.32 -0.32 -0.33

sin(θG) -0.45 -0.44 -0.43 -0.41
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The BST Model

• The Bivariate Skew-T model converts wind speed and direction into

Cartesian coordinates using x = r cos(θ) and y = r sin(θ).

• An hourly diurnal component is removed from the coordinate at

each location and is divided by an overall standard deviation. For

example, at Vansycle we have

V
r
t =

(

Vr
t,x,V

r
t,y

)

′

=

(

Vt,x − Ds,x

σ̂x

,
Vt,y − Ds,y

σ̂y

)

′

.

• The residual series at time t + 2 at Vansycle is modeled with

V
r
t+2 = A0 + A1V

r
t + A2V

r
t−1 + A3K

r
t + A4K

r
t−1 + A5G

r
t + ǫt.
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The Skew-t Distribution

• ǫt follows a bivariate skew-t distribution with skewness parameters

α = (α1, α2)
′ and degrees of freedom ν controlling kurtosis.

– If α = (0, 0)′, then the distribution of ǫt is symmetric.

– If ν = ∞, then the distribution of ǫt has the same tail behavior

as a normal distribution.

– If both α = (0, 0)′ and ν = ∞, then the distribution of ǫt is

bivariate standard normal.
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Examples
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The Skew-t Error Choice

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PP−plot for normal distribution

VansycleWindSpeed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PP−plot for skew−t distribution

VansycleWindSpeed

The BST model predictions are made with the following formula:

V̂t+2 =

“

Â0 + Â1V
r
t + Â2V

r
t−1 + Â3K

r
t + Â4K

r
t−1 + Â5G

r
t + ǫ̂t

”

· σ̂ + Ds+2

and then take the norm of V̂t+2.
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Comparing the Speed Predictions

• Predictions are commonly compared with Root Mean Squared Error

(RMSE) and Mean Absolute Error (MAE).

• However, are these the most appropriate comparisons since the wind

power is the main interest, not the wind speeds?

• We should use the relationship between wind speed and wind power.
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Power Curve Error Measure

• The true power output is proprietary.

• True wind speeds → “true” power output

Predicted wind speeds → “predicted” power output

• To transform speeds to power in Zone 2, a nonparametric regression

method is used.

• The true power and predicted power are compared and summarized

with the Power Curve Error, or

PCE =
1

n

n
∑

i=1

|Pi,t+2 − Pmod
i,t+2|.
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Model Comparison Summary

Mod May Jun Jul Aug Sep Oct Nov All

PER 2.14 1.97 2.37 2.27 2.17 2.38 2.11 2.21

RMSE RST 1.73 1.56 1.69 1.78 1.77 2.07 1.87 1.79

TDD 1.74 1.55 1.65 1.77 1.73 2.02 1.85 1.77

BST 1.79 1.64 1.65 1.86 1.88 2.13 2.03 1.86

PER 1.60 1.45 1.74 1.68 1.59 1.68 1.51 1.61

MAE RST 1.31 1.19 1.32 1.31 1.36 1.48 1.38 1.34

TDD 1.34 1.18 1.28 1.31 1.32 1.47 1.37 1.33

BST 1.34 1.23 1.29 1.38 1.42 1.50 1.52 1.38

PER 197.8 145.6 228.6 189.7 151.8 184.1 118.8 174.3

PCE RST 154.6 114.6 167.0 138.6 126.5 163.3 110.4 140.0

TDD 156.9 114.6 162.7 135.8 124.5 161.1 105.2 137.6

BST 154.4 119.2 160.6 136.4 129.6 160.3 113.3 139.4

Note: Fitting a bivariate skew-t distribution to the data performs

similarly to any robust fitting technique—it downweights extremes and

estimates parameters that fit well for the majority of the data.
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Conclusions

Models:

• RST model is limited to few locations and known physics.

• TDD & BST can be applied to a wide variety of locations and

topographical conditions.

• Incorporating wind direction improves predictions.

Loss Function:

• PCE gives a more realistic assessement of wind speed forecasts.

• Greater penalties on wind speeds are assessed in the region where

power is proportional to the cube of speed.

• Can be modified for other turbines and for wind farms.
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Continuing Work

• Improve BST forecasts with uncertainty intervals.

• Improve uncertainty intervals for all models to include parameter

estimation uncertainty.

• Simulate speed and direction data over space and time using

bivariate skew-t approach for utility system experiments.

– Reproduces the heavy tails of the wind vector, making long runs

of realistic data.

mhering@stat.tamu.edu 21



ISF 2008 Texas A&M University

Some References

Azzalini, A. (2005) The skew-normal distribution and related multivariate

families. Scandinavian Journal of Statistics, 32, 159-188.

Mardia, K. V. and Jupp, P. E. (2000) Directional Statistics, John Wiley

and Sons: London.

Genton, M.G. and Hering, A.S. (2007) Blowing in the wind.

Significance, 4, 11-14.

Gneiting, T., Larson, K., Westrick, K., Genton, M.G., and Aldrich, E.

(2006) Calibrated probabilistic forecasting at the Stateline wind

energy center: The regime-switching space-time method. JASA,

101, 968-979.

mhering@stat.tamu.edu 22


