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ABSTRACT

Summary: In the last few years, numerous methods have been

proposed for microarray-based class prediction. Although many of

them have been designed especially for the case n � p (much more

variables than observations), preliminary variable selection is almost

always necessary when the number of genes reaches several tens of

thousands, as usual in recent data sets. In the two-class setting, the

Wilcoxon rank sum test statistic is, with the t-statistic, one of

the standard approaches for variable selection. It is well known that

the variable selection step must be seen as a part of classifier

construction and, as such, be performed based on training data only.

When classifier accuracy is evaluated via cross-validation or Monte–

Carlo cross-validation, it means that we have to perform p Wilcoxon

or t-tests for each iteration, which becomes a daunting task for

increasing p. As a consequence, many authors often perform

variable selection only once using all the available data, which can

induce a dramatic underestimation of error rate and thus lead to

misleadingly reporting predictive power. We propose a very fast

implementation of variable selection based on the Wilcoxon test for

use in cross-validation and Monte Carlo cross-validation (also known

as random splitting into learning and test sets). This implementation

is based on a simple mathematical formula using only the ranks

calculated from the original data set.

Availability: Our method is implemented in the freely available

R package WilcoxCV which can be downloaded from the

Comprehensive R Archive Network at http://cran.r-project.org/src/

contrib/Descriptions/WilcoxCV.html

Contact: boulesteix@slcmsr.org

1 INTRODUCTION

Many applied and methodological articles have been devoted to

class prediction based on high-dimensional microarray data

with applications to, e.g. molecular cancer diagnosis or

prediction of response to therapy. In this context, it is

common practice to perform univariate variable selection

before constructing a classifier, even if the chosen classification

method can handle a large number of predictors. In binary

classification, it is usual to rank genes according to the P-value

obtained in, e.g. the t-test for two independent samples and

related methods or the Wilcoxon rank sum test, also known as

the Mann–Whitney test (Boulesteix and Tutz, 2006; Dettling

and Bühlmann, 2003). The genes with the smallest P-values are

then selected and used for classifier construction. In contrast to

the t-test, the Wilcoxon rank sum test is robust against outliers,

which are frequent in microarray data, and does not require

normal distribution of the expression levels within both classes.

This is an important advantage, since normality of gene

expression data is often questionable, even after normalization.

Wilcoxon-based variable selection is reported to perform very

well in one of the most extensive comparison studies on

microarray-based classification (Lee et al., 2005).
The performance of classification methods is commonly

evaluated by cross-validation (CV) or Monte–Carlo cross-

validation (MCCV). In m-fold CV, the n observations are

divided into m (approximately) equally sized groups. In the k-th

CV iteration, the k-th group is considered as test data set,

whereas the remaining m�1 groups form the learning set which

is used for classifier construction. This classifier is then used to

predict the observations from group k. After the m iterations,

the error rate is estimated as the proportion of misclassified

observations. An important special case is leave-one-out

cross-validation (LOOCV), where m ¼ n. Monte–Carlo cross-

validation (also denoted as subsampling or random splitting in

the literature) also consists of several iterations in which

the data set is split into learning and test sets. In contrast to

CV, the test sets are not chosen to form a partition of the whole

data set but drawn randomly (without replacement) from the

n observations at each iteration. The number of iterations

Niter is fixed by the user and can be as high as computationally

feasible, leading to a more robust estimation than CV.

The size ratio between learning and test data sets is also fixed

by the user. Usual choices are, e.g. 2:1, 4:1 or 9:1. Repeated CV

is another robust procedure (Braga-Neto and Dougherty, 2004)

which consists of averaging the results obtained in CV for

different partitions. Braga-Neto and Dougherty (2004) and

Molinaro et al. (2005) review and compare procedures for

estimating the error rate of a classifier, including those

mentioned in the present article and other like bootstrap

sampling.
Procedures such as CV and MCCV are commonly applied

for both estimation and optimization purposes. When used for

estimation, the goal of CV and MCCV is to evaluate the

performance of the considered classifier on independent

data, which is a major topic in all medical articles on*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://cran.r-project.org/src/
http://creativecommons.org/licenses/


microarray-based prediction. In the context of optimization,
CV and MCCV aim at selecting the best combination of

method parameters based on a learning set. These parameters
are then used to predict observations from the test set. Method
parameters may include, e.g. the number of components in PLS

(Boulesteix and Strimmer, 2007) and other dimension reduction
methods (Dai et al., 2006) or the penalty parameter in penalized

logistic regression (Zhu and Hastie, 2004). When reporting the
accuracy of a classification method, it is particularly important

to perform such a CV-based optimization step, denoted as
inner loop by Statnikov et al. (2005).

In many articles using a CV procedure (either for error rate
estimation or for parameter optimization), it is unclear whether

and when preliminary variable selection was performed,
although bias due to too early variable selection are well

documented (Ambroise and McLachlan, 2002). When LOOCV
is used for error estimation, selecting variables using all

n observations instead of considering variable selection as a
part of classifier construction leads to downwardly biased
estimation. Apparently good performing classifiers may be

produced even when predictors are not associated with class
membership, yielding ‘noise discovery’ (Ioannidis, 2005). When

LOOCV is used to determine the optimal parameter value of a
given method, for instance, the number of components in PLS

dimension reduction (Boulesteix and Strimmer, 2007; Dai et al.,
2006), performing variable selection with all available observa-

tions may favor sparse models.
We argue that computational expense is the main reason for

variable selection to be often (spuriously) performed only once
using all available observations. We propose an implementa-

tion of variable selection based on the Wilcoxon rank sum test
in the context of CV and MCCV which solves this problem by

using a simple mathematical formula. It outputs the Wilcoxon
test statistics for all CV or MCCV iterations simultaneously in

much less time than if the Wilcoxon tests were applied
successively in all iterations.

2 IMPLEMENTATION

Let us consider a sample (xi, yi)i¼1,. . .,n, where yi denotes
the binary class membership (yi¼ 0, 1) and xi the expression

level of observation i for the considered gene. For simplicity,
we omit the index g (g ¼ 1, . . ., p) of the gene. Let Ri denote

the rank of observation i. The Wilcoxon rank sum test tests the
equality of the medians in two independent samples (here, the

samples defined by yi¼ 0 and yi¼ 1). The test statistic is given as
W ¼ �i:yi ¼ 0 Ri, which is the sum of the ranks of observations

from class yi¼ 0. The P-value of the test is derived from the
exact null-distribution of W (for very small samples) or from

the asymptotic result

W� n0ðnþ 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n1ðnþ 1Þ=12

p �H0
Nð0; 1Þ; ð1Þ

where n0 and n1 are the numbers of observations with yi ¼ 0

and yi ¼ 1, respectively. In CV or MCCV, we denote as
Tk (k ¼ 1, . . . , Niter) the set of the nTk

observations included

in the test set for the k-th iteration. For example, we have Niter

¼ m, [m
k¼1Tk ¼ f1; . . . ; ng and Tk1

\ Tk2
¼ ; 8k1 6¼ k2 in m-fold

CV. In the special case of LOOCV, Tk is defined as Tk ¼ {k}

and Niter ¼ n. Let Wk denote the Wilcoxon rank sum test

statistic obtained based on the sample (xi,yi)i =2Tk including all

observations except those from Tk. We derive a new simple

formula allowing to compute Wk, k ¼ 1,. . ., Niter simulta-

neously. Let Ri,k denote the rank of observation i in the k-th

iteration, i.e. in the sample (xi, yi)i =2Tk with the convention

Ri,k ¼ 0 ¼ (Ri –Ri) if i2Tk. For i =2Tk, we have

Ri;k ¼ Ri �
X

j2Tk

IðRj < RiÞ: ð2Þ

We obtain

Wk ¼
X

i:yi¼0

Ri;k ¼
X

i:yi¼0

Ri �
X

i2Tk

Ri �
X

i:yi¼0; i =2Tk

X

j2Tk

IðRj < RiÞ:

ð3Þ

This formula is based on the Ri (i ¼ 1, . . ., n) only. Hence, it

allows to compute the Wk simultaneously very efficiently.

Computation of the P-values and ordering of the genes can

then be carried out based on the standardized statistic W �
k

which is asymptotically normally distributed:

W �
k ¼

Wk � n0;kðn� nTk
þ 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0;kðn� nTk
� n0;kÞðn� nTk

þ 1Þ=12
p ; ð4Þ

where n0,k denotes the number of observations with yi ¼ 0 when

observations from Tk are removed. In the k-th iteration, the

best genes are those with the highest jW �
k j values.

2.1 Run time comparison

We compared the time needed to order 1000 genes in CV and

MCCV by (i) running the function wilcox.test for each CV

or MCCV iteration, (ii) using our novel efficient algorithm as

implemented in the function wilcox.selection.split
from our R package WilcoxCV. Results are given in Table 1

for different values of n and two different procedures: LOOCV

and MCCV with size ratio 9:1 and Niter ¼ 100 iterations. As can

be seen from Table 1, the new algorithm reduces computation

time dramatically (up to a factor 50) compared to the standard

approach (carrying out the Wilcoxon rank sum test for each

iteration).
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Table 1. Time (in seconds) needed by the standard approach

(i) (normal font) and our novel algorithm (ii) (italic) as output by the

function system.time

n ¼ 30 n ¼ 50 n ¼ 100

LOOCV 72/1.5 130/2.5 270/5.9

MCCV 9 : 1 250/4.7 250/5.3 270/8.3

Niter ¼ 100
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