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1 Requirements before installing GALGO 
• R software for statistical computing v2.0.1 or above. 

o It can be downloaded from http://www.r-project.org/.  
• R.oo R package installed 

o Instructions for installing and downloading R.oo package are published 
by their authors in http://www.maths.lth.se/help/R/R.classes/. In 
Windows, it can be installed by using the option “Install Packages 
from CRAN…” available via the R console (go to Packages menu, 
select  “Install Package(s)..”, choose a mirror site and then select 
“R.oo”) 

 
 

2 Installing GALGO 
• Download GALGO 

o For Windows: galgo_1.0-10.zip 
o For UNIX: galgo_1.0-10.tar.gz 

• Install GALGO 
o In Windows 

� In the R console use the option “Install package(s) from local 
zip files…” from the “Packages” menu. 

� Select the GALGO zip just downloaded and click “open”. 
o In UNIX 

� Log on as root or any user with privileges to write in system 
directories. 

� Use the command “R CMD INSTALL [galgo .gz file]” 
 
 

3 GALGO Documentation 
• Manual (Manual.pdf) 

o This manual includes a brief introduction to statistical modelling with 
particular reference to a Genetic Algorithms (GA) strategy for variable 
selection. It also includes a step by step example with a detailed 
description of GALGO functionality and on how to use GALGO as a 
general tool to solve optimization problems. 

o This file is included in the GALGO package. Once GALGO has been 
loaded, options to open these files should be available from the 
“Vignettes” menu in the R console. 

• Objects, Methods and Functions (Galgo.pdf) 
o This file contains the standard documentation for functions and objects 

in R in .pdf format. 
• This document as a .pdf (GALGO-SupplementaryMaterial.pdf) 
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• Help system for Objects, Methods and Functions 
o The standard documentation of GALGO in R system can be accessed 

in the usual way in R, typing “?” followed by the object name or by the 
method “dot” object. Examples: 

� ?BigBang 
� ?configBB.VarSel 
� ?plot.BigBang 
� ?fowardSelectionModels.BigBang 
� ?confusionMatrix.BigBang 

o The help system can also be explored by HTML typing “help.start()” 
or by accessing the option “HTML help” in menu Help in R GUI (for 
Windows). Galgo package may be accessed through search engine or 
Packages->Galgo. 

 
 

4 Why developing GALGO? 
In the analysis of large datasets, such as data obtained using Functional Genomics 
Technologies, the selection of gene signatures predictive of sample features (for 
example disease type) is a difficult problem. Commonly the number of samples is 
very low (hundreds or dozens) and certain aspects of the samples are known (for 
example disease type, strain, treatment, etc). One of the most basic problems is the 
selection of genes whose profile is, in some way, associated to the known sample 
type, which in turn would allow acquiring more knowledge about the mechanism of 
action, generating new hypothesis, directing further research, selecting biomarkers, 
and choosing potential drug targets. In statistics, this association of profiles to known 
sample types is called “supervised classification” and there are several classification 
methods that “test” if genes are related to samples phenotype. These methods can be 
subdivided in univariate and multivariate methods. Univariate methods evaluate each 
variable (e.g. a gene) at the time for its ability to discriminate between two or more 
groups of samples. PAMR (Tibshirani et al. 2002), GeneSpring (Silicon Genetics, 
Redwood City, CA), and TNASAS (Vaquerizas et al., 2005) are perhaps the most 
commonly used software packages by the Functional Genomics community that 
implement univariate variable selection methods for classification. Univariate variable 
selection methods use some statistics to identify genes that are differentially 
expressed between two or more groups of samples and then uses the most 
differentially expressed to construct a statistical model (Figure 1). These methods 
have demonstrated to perform well, however, in some cases they can be ineffective 
regardless of the classification method used. An obvious conceptual limitation of 
univariate approaches is also the lack of consideration that genes works in the 
contexts of interconnected pathways and therefore it is their behaviour as a group that 
may be predictive of the phenotypic variables. Multivariate selection methods (Figure 
2) may seem to be more suitable for the analysis of Biological data since variables 
(such as gene expression values) are tested in combination to identify interactions 
between genes. However, the extremely large number of models that can be 
constructed from different combination of thousands of genes cannot be extensively 
evaluated using available computational resources. An alternative to the extensive 
analysis of all possible models is the use of search procedures that “explore” the data 
looking for good, although not optimal, sets of variables. Recently, Markov Chain 
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Monte Carlo methods and Genetic algorithms have been applied successfully to the 
analysis of microarray data (Li et al. 2001; Ooi et al. 2003; Sha et al. 2004). 
 
At present, there is no available software package to support the development of 
statistical models using multivariate variable selection strategies. To address this issue 
we have developed GALGO, an R package that uses a genetic algorithm search 
procedure coupled to statistical modelling methods for supervised classification 
(Figure 2). GALGO is relatively easy to use, can manage parallel searches and has a 
toolset for the analysis of models. Although GALGO include a number of statistical 
modelling methodologies to solve classification problems, GALGO can be used as a 
general tool to solve optimization problems. This requires rewriting the fitness 
function to specify the criteria for the selection of good variable subset. Because of 
the functionality that is already available in R, this can be achieved relatively easily. 
This manual provides a step-by-step tutorial to solve classification problems using 
microarray data. It also provides examples of the use of GALGO as a general tool to 
solve optimization problems. 
 
 
 

 

Figure 1 Schematic representation of univariate variable selection. A dataset of two 

classes of samples (A) is assessed using a univariate test (B) to rank genes by their 

sole ability to distinguish between classes (C). Then, a forward selection strategy 

using a classification method is used to detect the number of ranked genes that 

generates the lowest error (D). 
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Figure 2 Schematic representation of multivariate variable selection. From a dataset of 

two classes of samples (A), a genetic algorithm (B) searches and evolves combination 

of genes (chromosomes representing a multivariate model) that distinguish between 

classes using a classification method. A number of models are generated performing 

this procedure several times (C). These models may differ in gene content but with 

similar high classification accuracy. Genes appearing multiple times in different 

models suggest these genes are important for the classification problem in a 

multivariate context. Therefore, the number of times (frequency) a gene appears in a 

model is computed (D). These frequencies are used to rank genes (E). Then, a forward 

selection strategy is used to select a representative model that generates the lowest 

error (F). 
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5 Application 
The GALGO package has been conceived as an implementation of GA in object-
oriented paradigm under the R language. R is a statistical programming environment 
that is platform-independent, robust, freely available, and is widely used for the 
analysis of functional genomics data. Because of the large collection of statistical 
functions available in R, GALGO can be also used to find optimal variable subsets 
that maximize a wide range of user-defined fitness functions. GALGO uses a GA 
procedure for selecting models with a high fitness value (e.g. classification accuracy) 
and implements functions for the analysis of the populations of selected models as 
well as functions to reconstruct and characterize representative summary models (Li 
et al. 2001). In addition, a function for predicting the class of unknown samples is 
available. 
 

5.1 What is a Genetic Algorithm? 
Genetic Algorithms (GAs) are variable search procedures that are based on the 
principle of evolution by natural selection. The procedure works by evolving sets of 
variables (chromosomes) that fit certain criteria from an initial random population via 
cycles of differential replication, recombination and mutation of the fittest 
chromosomes. The concept of using in-silico evolution for the solution of 
optimization problems has been introduced by John Holland in 1975 (Holland 1975). 
Although their application has been reasonably widespread (see Goldberg’s book 
(Goldberg, 1989)), they became very popular only when sufficiently powerful 
computers became available. What follows is a Step by Step description of the 
procedure in the context of a classification problem (see Figure 3) for a schematic 
representation of the procedure, note that we will use stages here to avoid confusion 
with those steps in the general GALGO pipeline): 
Stage 1: The procedure initially creates a number of random variable sets 
(chromosomes). These variable sets form a population of chromosomes (niche). 
Stage 2: Each chromosome in the population is evaluated for its ability to predict the 
group membership of each sample in the dataset (fitness function). This is achieved 
by training a statistical model. The GA tests the accuracy of the prediction and assigns 
a score to each chromosome that is proportional to the accuracy.  
Stage 3: When a chromosome has a score higher or equal than a predefined value, this 
chromosome is selected and the procedure stops; otherwise, the procedure continues 
to stage 4. 
Stage 4:  The population of chromosomes is replicated. Chromosomes with a higher 
fitness score will generate more numerous offspring.  
Stage 5: The genetic information contained in the replicated parent chromosomes is 
combined through genetic crossover. Two randomly selected parent chromosomes are 
used to create two new chromosomes (Figure 4). This crossover mechanism allows a 
better exploration of possible solutions recombining good chromosomes. 
Stage 6: Mutations are then introduced in the chromosome randomly. These 
mutations produce that new genes are used in chromosomes. 
Stage 7: The process is repeated from stage 2 until an accurate chromosome is 
obtained. The cycle of replication (stage 4), genetic cross-over (stage 5) and mutations 
(stage 6) is called generation. 
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Figure 3 Schematic representation of the GA Procedure. 

 

 
Figure 4 Schematic representation of the Crossover. 

 

5.2 Object-Oriented Design 
The GA procedure evaluates collections of variable subsets for their ability to perform 
a defined task (e.g. supervised classification). It begins from a collection of random 
sets and, using principles of natural selection, evolves better fitted models until a 
model of desired accuracy has been found. In the GA terminology variables are 
defined as genes whereas a subset of n variables that is assessed for its ability to fit a 
statistical model is called a chromosome. Populations of chromosomes are organized 
in niches that are independently evolving environments. However, niches have the 
possibility to occasionally exchange chromosomes with a process called migration. 
Multiple niches can then be part of a world. The object design of the GALGO 
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package (illustrated in Figure 5) reflects the structure we described above. In 
GALGO, Gene object represents a variable whereas the Chromosome object stands 
for a set of n variables that will be included in the multivariate model, which will be 
evaluated using the fitness function. A Niche object organizes chromosomes in 
populations whereas the World object includes several niches. The Galgo object 
performs the GA evolutionary process and saves the best chromosome as a result. 
Finally, a BigBang object stores the results of the search for further analysis. These 
objects have properties that allow users to control the process. We included most 
common GA operators as Reproduction, Mutation, Crossover, Migration, and Elitism 
as methods. An important characteristic of GALGO is that the user can add custom 
defined properties to add new functionality. All objects can be extended and their 
methods can be overwritten to provide more flexibility. In the manual, available in the 
supplementary material, we describe an example where the method mutate is 
overwritten to allow differential mutation rates or variables with defined 
characteristics. 
 

 
Figure 5 Simplified object-oriented structure of the GALGO package. Boxes represent 
objects, which are connected by one-to-many relationships hierarchically. Major object 
properties are marked with solid squares whereas core methods are marked with solid 
circles. Dashed box represents the fitness function, which are included in GALGO for 
several classification methods. Dashed lines represent logical connections. 

 
 

5.3 Analysis Strategy 
Figure 6 shows a flowchart summarizing a typical analysis pipeline that can be 
implemented using the GALGO package. For simplicity the process has been 
represented in four steps. The first step consists in specifying the input data, the error 
estimation strategy, the statistical modeling technique, the fitness function and the 
parameters for the GA procedure. In the second step the GA procedure searches for 
and collects models that have a high value of the fitness function (e.g. classification 
accuracy, evaluated using a cross-validation procedure). In the third step the 
population of models selected in step 2 is analyzed for its variable composition and 
classification accuracy. In the fourth step a forward selection strategy is used to 
develop and test a statistical model that is representative of the model population. 
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Figure 6 Schematic representation of a typical application of GALGO package. The 
figure describes a general analysis pipeline that can be implemented in GALGO. A 
summary of functionality in each step is listed in the right side of the scheme. The 
number of individual functions is shown in brackets. 

 

5.4 Performance 
Developing statistical models using a bona fide multivariate variable selection 
strategy is a very computer intensive procedure and depends on the particularities of 
the dataset. The GA procedure is a very efficient method for developing multivariate 
models. For example, a single evolutionary cycle can select a highly predictive model 
in seconds. However, it is advisable to sample a large number of solutions to represent 
the solution space that can be explored with this procedure. Typically, it is necessary 
to collect between 200 and 1000 chromosomes before observing some degree of 
convergence. In a typical classification problem with a microarray dataset we may 
require several hours of computation to collect a sufficient number of chromosomes. 
Table 1 summarizes the performance of GALGO in three different classification 
problems of increasing complexity. In this example we have collected 500 
chromosomes. In order to increase its performance, GALGO has functions that allow 
the parallelization of the search process on different CPUs (see manual). 
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Problem Samples Chromosome Size Average accuracy Running time 

2-class 143 5  1.0 0h 58m 48s 

5-class 233 5  0.989 2h 37m 49s 

7-class 327 7  0.926 8h 29m 3s 

Table 1 – Performance of GALGO. 

 

6 An Example of Supervised Classification Using 
GALGO 

This section describes a typical application of GALGO in biomarker discovery using 
large scale expression profiling data. The aim of this analysis is to identify gene sets 
that are predictive of disease type in a panel of leukaemia patients (see section 6.1). 
This tutorial will describe the main basic functionality implemented in GALGO. A 
complete description of the functionality available in GALGO can be found in the 
Manual and in the software documentation.  
 

6.1 Dataset 
The dataset used in this analysis is derived from the work of Yeoh et al. (2002). The 
dataset represents the gene expression profiles of five groups of patients (EMLLA i, 
Hyp+50, MLL, T, and TEL including 27, 64, 20, 43, and 79 samples respectively). 
The original dataset comprising 12,600 genes have been processed to eliminate the 
most invariant genes. The standard deviation and difference between maximum and 
minimum expression value were calculated for each gene. The genes were then 
ranked by both values. The genes that had any of these values in the top 15% of the 
ranked lists were selected for further analysis. The dataset after filtering contained the 
expression values for 2,435 genes. 
 

6.2 Step 1 – Setting-Up the Analysis 
In the GALGO package we have included a data-frame object (ALL) that contains the 
normalized gene expression values. The object is a matrix in which rows are genes 
and columns are samples. The identity of the samples is defined in a different object 
called (ALL.classes). Both objects are loaded using the function data (name object). 
 
In R type: 
 
> library(galgo) 
> data(ALL) 
> data(ALL.classes) 
 
Data from an external text file can be loaded within the wrapper function (see manual 
for details).  
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The wrapper function “configBB.VarSel” is used to specify the data, the parameters 
for the GA search, the classification method, the error estimation method, and any 
other user-defined parameter. This function builds a BigBang object that contains the 
data and the values of all parameters and will eventually store the results of the 
analysis.  
 
To set up the GA search type in R:  
 
> bb.nc <- configBB.VarSel( 
data=ALL,  
classes=ALL.classes,  
classification.method=”nearcent”,  
chromosomeSize=5,  
maxSolutions=300,  
goalFitness = 0.90,  
main="ALL-Tutorial",  
saveVariable=”bb.nc”,  
saveFrequency=30,  
saveFile=”bb.nc.Rdata”) 
 
The code above configure a BigBang Object that will store 300 chromosomes 
(maxSolutions=300) which will contain 5 genes (chromosomeSize=5) that correspond 
to models developed using a nearest centroid classifier 
(classification.method=”nearcent”) with a classification accuracy of at least 90% 
(goalFitness=0.9). The other parameters define the name of the saved object that is 
created (saveVariable=”bb.nc”), the frequency of saving the results in a file 
(saveFrequency=30) and the name of the file where the results are saved 
(saveFile=”bb.nc.Rdata”). 
 
In defining the BigBang Object GALGO pre-process the dataset creating two subsets 
of data that are used respectively for the selection of the chromosomes (training data) 
and for the final error estimation of the selected chromosomes (test). In BOX 1 we 
give a brief explanation of the options that GALGO offers to estimate the 
classification accuracy. Further information is available in the Manual (see section 3). 
 
The wrapper function configBB.VarSel can also be used to configure additional 
functions. These are explained in dept in the package Manual. A brief description of 
the full list of parameters that can be defined within the wrapping function can be 
obtained typing: 
 
> ?configBB.VarSel 
 
 

6.3 Step 2 - Evolving Models/Chromosomes  
Once the BigBang and Galgo objects are configured properly, we are ready to start 
the GA procedure for collecting chromosomes associated to good predictive models 
for tumour class. This is achieved by calling the method “blast”. 
 
In R type: 



Trevino and Falciani   GALGO Supplementary Material 

12 

 
> blast(bb.nc) 
 
This command starts the GA search and will continue until the desire number of 
chromosomes is collected. The entire procedure can take from minutes to hours 
depending on the degree of difficulty of the classification problem, on the 
classification method, and on the GA search parameters.  
 
The default configuration in the wrapping function displays the state of the BigBang 
and Galgo objects in the command line including the approximated remaining time.  
 
This is an example of the text output for one GA cycle (61 generations): 
 
[e] Starting: Fitness Goal=0.9, Generations=(10 : 200) 
[e]     Elapsed Time    Generation      Fitness %Fit    [Next Generations] 
[e]     0h 0m 0s        (m)     0       0.64103 71.23%  +++++++...+......... 
[e]     0h 0m 6s                20      0.87179 96.87%  .................... 
[e]     0h 0m 14s               40      0.87179 96.87%  .....+..+.....+.+... 
[e]     0h 0m 22s               60      0.92308 102.56% + 
[e]     0h 0m 22s       ***     61      0.92308 102.56% FINISH: 2164 1612... 
[Bb]    300     299     Sol Ok  0.92308 102.56% 61      22.16s  3722s   
4054s   14 (0h 0m 14s ) 

 
The last line (starting with “[Bb]”) corresponds to the current collection of the 
BigBang object. This line shows respectively the number of evolutions (300 in this 
case), the number of evolutions that have reached the goal fitness (299), the status of 
the last evolution cycle (Sol Ok – the goal fitness was reached), the fitness value of 
the best chromosome from the last evolution (0.92408) along with it percentage 
relative to the goal fitness (102.56%), the number of generations required (61), the 
process time spent in last evolution (22.16 seconds), the cumulative process time 
spent in all evolutions (3,722 seconds), the cumulative real time (4,054 seconds, 
which considers the time spent by saving the object and other operative system 
delays), and the remaining time needed to collect the previously specified number of 
chromosomes (14 seconds). 
 
Lines starting with “[e]” represent the output of the evolutionary process (the genetic 
algorithm search). The first line of each evolution shows the goal fitness and the 
configured minimum and maximum number of generations. Successive lines show, in 
columns, the elapsed time, the current number of generation (by default refreshed 
every 20 generations) and the current best fitness along with the percentage relative to 
the goal fitness. The last column summarize the behaviour of next generations, “+” 
means that maximum fitness of the current population has increased, “-“ means that it 
has decreased, and “.” means that it has not changed. “G” appears occasionally when 
the fitness goal has been reach before the minimum number of generations. 
 
The default configuration would show three plots summarizing the characteristics of 
the population of selected chromosomes (see Figure 7). The topmost plot shows the 
frequency (vertical axis) of each gene (horizontal axis) in the Chromosome 
population. The default settings display the top most frequent 50 genes colour-coded 
on the basis of their frequency rank. The middle plot shows the stability of the rank of 
the top 50 genes over the number of different search cycles (see section 0). The plot at 
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the bottom displays the distribution of the number of generations required by the GA 
process to reach a solution.  
 

Figure 7 Default monitoring of accumulated chromosomes in the BigBang object. 

 
The blast method terminates either when all the requested chromosomes have been 
found or if the process is interrupted (by typing the ctrl-c keys in Linux or esc in 
windows). It is recommended to break the process to perform a preliminary analysis 
after the initial 100-200 chromosomes are selected. The process can be resumed by 
typing the blast command again. The result of the last evolution might be lost but the 
accumulated results should remain be intact. Resuming the process will have the 
effect of restarting the Galgo object as in any cycle. The possibility to interrupt the 
process is very useful for initial exploratory analysis since the most updated results 
can be analysed and can be saved anyway using the saveObject method. Instead of 
interrupting the process, you can open a new R console and benefit from the use of 
progressive saving strategy that updates the current object called “bb.nc” into a file 
named “bb.bc.Rdata” once at least 30 solutions have been reached (controlled by 
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saveVariable, saveFile, and saveFrequency parameters respectively). To do this, a 
previously saved object can be loaded in GALGO using the loadObject method in a 
new R console window: 
 
> library(galgo) 
#change directory to yours 
> loadObject(“bb.nc.Rdata”) 
 
Once the file is loaded, the loadObject method displays a summary of the loaded 
variables and their classes and you can proceed to the analysis step. 
 
 
GALGO can also summarise the population of evolving chromosomes in real time. 
The code below shows the modifications to the definition of the BigBang Object that 
are required to activate this function (marked in red). 
 
> x11() 
> x11() 
> bb.nc <- configBB.VarSel( 
data=ALL,  
classes=ALL.classes,  
classification.method=”nearcent”,  
chromosomeSize=5,  
maxSolutions=300,  
goalFitness = 0.90,  
main="ALL-Tutorial",  
saveVariable=”bb.nc”,  
saveFrequency=30,  
saveFile=”bb.nc.Rdata” ,  
callBackFuncGALGO=plot,  
callBackFuncBB=function(...){dev.set(2);plot(...);dev.set
(3); } )  
 
The topmost panel in Figure 8 shows the gene composition of the evolving 
chromosomes. The middle plot shows the evolution of the fitness relative to the goal 
in the course of generations. The plot at the bottom shows the gene composition of the 
maximum chromosome across generations. 
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Figure 8 Real-time monitoring of the Genetic Algorithm search. The horizontal axis of 
the top and bottom plots display unranked gene indexes. The vertical axis of the top 
panel is displaying the chromosome index whereas the vertical axis of the bottom 
panel is displaying the generation number. In the middle plot the horizontal axis is 
displaying the generation whereas the vertical axis is displaying the fitness value. 

 

6.4 Step 3 - Analysis and refinement of Chromosome 
Populations  6 . 4 . 1
 A r e w e g e t t i n g s o l u t i o n s ?

The first question we have to answer is whether we are getting acceptable solutions. 
By default, configBB.VarSel configures the BigBang object to save all chromosomes 
even if they didn’t reach the goalFitness value. The reason is that we need to assess 
the success of the configured GA search under all searches, not only in those that 
reach solutions. We can analyze the success of the configured GA search by looking 
at the evolution of the fitness value across generations, using the code below. 
 
> plot(bb.nc, type=”fitness”) 
 
Figure 9 shows that in average, we are reaching a solution in generation 40. The blue 
lines show the average fitness for all chromosomes. The cyan line traces those that 
have not reached a goal in a given generation. 
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Figure 9 Evolution of the maximum fitness across generations in 303 independent 
searches. 

 
It is possible to produce a plot that display the evolution of the fitness value for all 
cycles that have lead to a “fit” chromosome by typing: 
 
> par(mfrow=c(2,1)) 
> plot(bb.nc, type=”fitness”, filter=”solutions”) 
 
Similarly, we can plot the evolution of maximum fitness value of cycles that did not 
lead to the fitness goal. 
 
> plot(bb.nc, type=”fitness”, filter=”nosolutions”) 
 
The “filter” parameter is general and can be used in most functions in GALGO. 
  6 . 4 . 2

 W h a t i s t h e o v e r a l l a c c u r a c y o f t h e p o p u l a t i o n o f s e l e c t e dm o d e l s ?
Once the chromosomes have been selected we need to asses the classification 
accuracy of the corresponding models using one of the three Strategies that we 
describe in BOX 1. The default configuration will estimate the accuracy of the models 
using Strategy 3 (Figure 11C) as described in BOX 1. 
 
Use the following command to plot the overall accuracy. 
 
> plot(bb.nc, type=”confusion”) 
 
The output of this function is shown in Figure 10. The horizontal axis represents the 
individual samples grouped according to the disease class whereas the vertical axis 
represents the predicted classes. The barcharts represent the percentage of models that 
classify each sample in a given class. For example, samples in second column 
(marked in red) belong to the HYP+50 class. These are, on average, correctly 
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classified 85.6% of the times. However, on average, they are “wrongly” classified 
2.5% of the times as EMLLAi, 5.4% of the times as MLL, 1.5% as T, and 5% as TEL. 
The plot also report the value of sensitivity and specificity of the prediction. These are 
measures of the overall prediction per class. The sensitivity of the prediction for a 
given class k is defined as the proportion of samples in k that are correctly classified. 
The specificity for a given class k is defined as the number of true negatives divided 
by the sum of true negatives and false positives. 
 
To obtain the confusion matrix, specificity, and sensitivity measures in a numeric 
format use the following code. 

> cpm <- classPredictionMatrix(bb.nc) 
> cm <- confusionMatrix(bb.nc, cpm) 
> sec <- sensitivityClass(bb.nc, cm) 
> spc <- specificityClass(bb.nc, cm) 
 

Figure 10 Overall classification accuracy. 
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BOX 1: Error estimation Strategies in GALGO  
There are several methods to estimate Classification accuracy. These are all based on the 
fundamental principle that a correct estimate of accuracy must be performed on a set of 
samples that has not been used to develop the model itself.  
Classical approaches involve splitting data in training and test sets. The training set is used to 
estimate the parameters of the model whereas the test set is left aside and it is used to asses 
the accuracy of the model itself. This approach is considered the most appropriate when a 
large number of samples is available. However, when the number of samples is relatively 
small, as it is the case of a typical microarray experiment, the test set could be too small to 
estimate the classification accuracy with acceptable precision.  
 
In order to estimate the accuracy with small datasets it is possible to use a different statistical 
technique called cross-validation. The dataset is split in k different training and test sets. The 
classification accuracy is then defined as the average of the classification accuracies 
calculated, by default, on the test sets for each of the k splits. GALGO uses a technique called 
bootstrapping (Efron et al., 1993) to generate the splits. Within GALGO we can use three 
main strategies for estimating classification accuracy. In the first strategy a simple cross-
validation or resubstitution error strategy is used to compute the value of the fitness function 
that guide chromosome selection in the GA procedure. The classification accuracy of the 
selected chromosome is defined as the fitness value (Figure 11A). The second strategy 
(Figure 11B) is a classic Training and Test procedure where the accuracy is estimated on the 
test data.  
 
In the GA process, the value of the fitness function is estimated by cross validation on the 
training data. Other approaches, such as .632 bootstrap (Efron et al., 1993), combine training 
and test accuracies, which can be specified as error weights through the parameter 
classification.test.error = c(.368, .632) for training and test respectively. The third strategy is 
to select the Chromosomes as in the second strategy and to compute the classification 
accuracy of the selected chromosomes as the average of the classification accuracy estimated 
on k data splits as exemplified in Figure 11C. 
GALGO defines the initial split (common to both strategies) as Split 1.  
 

 
Figure 11 Schematic Representation of the Estimation of Classification Accuracy. (A) 

Strategy 1, using all data as training and test. (B) Strategy 2, classical training and test. 

(C) Strategy 3, k repetitions of the strategy 2. The respective values of the parameters, 

train and test,  needed to perform each strategy is shown at the bottom of the schema. 
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6 . 4 . 3
 I s t h e r a n k o f t h e g e n e s s t a b l e ?

Stochastic searches (such as GA) are very efficient methods to identify solutions to an 
optimization problem (e.g. classification). However they are exploring only a small 
portion of the total model space. The starting point of any GA search is a random 
population. Different searches therefore are likely to provide different solutions. In 
order to extensively cover the space of models that can be explored it is necessary to 
collect a large number of chromosomes.  GALGO offers a diagnostic tool to 
determine when the GA searches reach some degree of convergence. Our approach is 
based on the analysis of the frequency that each gene appears in the chromosome 
population. As chromosomes are selected the frequency of each gene in the 
population will change until no new solutions are found. Therefore monitoring the 
stability of gene ranks (based on their frequency) offers the possibility to visualize 
model convergence.  
 
To produce the rank stability plot type: 
 
> plot(bb.nc, type=”generankstability”) 
 
By default, the most frequent 50 genes are shown in 8 different colours with about 6 
or 7 genes per colour (Figure 12). Horizontal axis in Figure 12 shows the genes 
ordered by rank. Vertical axis shows the gene frequency (in the top part of the y axis) 
and the colour coded rank of each gene in previous evolutions. Consequently, for a 
given gene, changes in ranks are marked by different colours (below the frequency). 
Figure 12 shows that the first 7 black genes have been stable at least during the last 50 
solutions whereas some red genes have recently swap from green. Thus, red and green 
genes are not yet stable; this is because 303 chromosomes are not enough to stabilize 
these genes. Probably, 1000 chromosomes would generate more stable results, 
however, the more chromosomes the better. For comparison, Figure 13 shows the 
result for the same run used here but using 1000 chromosomes, which exhibit more in 
ranks. Another property is that top genes are being stabilized in order; first black 
genes, then red, green and so on. For longer runs comparisons, see further sections. 
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Figure 12 Gene Ranks across past evolutions. 

 

Figure 13 Rank Stability in 1000 chromosomes. 
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 6 . 4 . 4
 A r e a l l g e n e s i n c l u d e d i n a c h r o m o s o m e c o n t r i b u t i n g t o t h em o d e l a c c u r a c y ?

 
The chromosome size is fixed by an initial parameter in GALGO. This implies that 
some of the genes selected in the chromosome could not be contributing to the 
classification accuracy of the correspondent model. GALGO offers the possibility to 
identify these genes and remove them from the chromosomes. This can be done after 
the selection is completed or within the selection process itself. In order to perform 
this task we have implemented a backward selection procedure.  The methodology 
works as follows. A given gene is removed from the chromosome. The classification 
accuracy of the resulting shorter chromosome is then computed. If this is not reduced, 
another elimination cycle is performed. If the Classification accuracy is reduced the 
gene is left in the chromosome and another elimination cycle is performed until all 
genes have been tested. 
 
In order to perform this procedure type: 
 
> rchr <- lapply(bb.nc$bestChromosomes[1:300], 
robustGeneBackwardElimination, bb.nc, result="shortest") 
 
The distribution of the size of the refined chromosome population can be plotted 
using the following function. 
 
> barplot(table(unlist(lapply(rchr,length))), 
main="Length of Shortened Chromosomes") 
 

Figure 14 Refinement of the chromosomes. 

The plot shows that a large proportion of the chromosomes require all five genes to 
accurately classify the samples.  

6.5 Step 4 - Developing Representative Models 
The GA procedure provides us with a large collection of chromosomes. Although 
these are all good solutions of the problem, it is not clear which one should be chosen 
for developing a classifier, for example, of clinical importance or for biological 
interpretation. For this reason there is a need to develop a single model that is, to 
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some extent, representative of the population. The simpler strategy to follow is to use 
the frequency of genes in the population of chromosomes as criteria for inclusion in a 
forward selection strategy. The model of choice will be the one with the highest 
classification accuracy and the lower number of genes. However GALGO also stores 
alternative models with similar accuracy and larger number of genes. This strategy 
ensures that the most represented genes in the population of chromosomes are 
included in a single summary model. 
 
This procedure should be applied to the population of chromosomes generated by 
initial GA search. However, it can also be applied to the population of chromosomes 
that is the result of backward selection procedure explains in the previous paragraph. 
 
The forward selection model can be generated by typing: 
 
> fsm <- forwardSelectionModels(bb.nc) 
> fsm$models 
> ?forwardSelectionModels.BigBang # Help System 
 

Figure 15 Forward selection using the most frequent genes. Horizontal axis represents 
the genes ordered by their rank. Vertical axis shows the classification accuracy. Solid 
line represents the overall accuracy (misclassified samples divided by the total number 
of samples). Coloured dashed lines represent the accuracy per class. 1 model resulted 
from the selection whose fitness value is maximum (black thick line), but 29 models 
were finally reported because they were very similar in absolute value. 
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Figure 15 shows the result of the best models from the most frequent genes using a 
forward selection strategy. Model labelled as 12, containing the most 33 frequent 
genes, was the best model in terms of accuracy. To visualize this model in a heatmap 
plot use the following code. 
 
> heatmapModels(bb.nc, fsm, subset=12) 
 
Details for visualization of models (or chromosomes) are given in section 6.6 and 
GALGO manual. 
 
In order to generate the forward selection model of the population of refined 
chromosomes is slightly more complex. Firstly, we need to compute the gene 
frequency using the refined chromosomes, as follows. 
 
> rchr <- lapply(bb.nc$bestChromosomes[1:300], 
robustGeneBackwardElimination, bb.nc, result="shortest") 
> rgf <- compCount(rchr, bb.nc$saveGeneBreaks) 
> rfsm <- forwardSelectionModels(bb.nc, 
geneIndexSet=order(rgf,decreasing=TRUE)[1:50]) 
 
The gene signatures associated to the resulting model(s) can be visualised using heat 
maps, PCA plots, or gene expression profiles (see section 6.6).  
 
The classification accuracy of the summary models can be plotted using the code 
below:  
 
> plot(bb.nc, type=”confusion”, 
chromosomes=list(fsm$models[[1]])) 
 
Or in a tabular format: 
 
> cpm.1 <- classPredictionMatrix(bb.nc, 
chromosomes=list(fsm$models[[1]]))  
> cm.1 <- confusionMatrix(bb.nc, cpm.1) 
 
Semsitivity and specificicy can also be computed using the following commands: 
 
> mean(sensitivityClass(bb.nc, cm.1)) 
[1] 0.9863334 
> mean(specificityClass(bb.nc, cm.1)) 
[1] 0.9965833 
  
 

6.6 Visualizing Models and Chromosomes 
Gene signatures associated within individual chromosomes or in a representative 
model (derived by forward selection) can be visualised in GALGO using a number of 
graphical functions. In this section, we will demonstrate the use of heat maps and 
PCA. For, the typical heat map format, use the following commands.  
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> heatmapModels(bb.nc, fsm, subset=1) # forward 
> heatmapModels(bb.nc, bb.nc$bestChromosomes[1]) 
 
The results are shown in Figure 16*. 
 

Figure 16 Heatmaps. From a model resulted from forward selection (A) and an original 
evolved chromosome (B). 

 
In order to visualise the relation of samples using the genes selected in a chromosome 
or in a representative model we can also use principal component analysis 
representation. In order to do this, type the following command (Figure 17). 
 
> pcaModels(bb.nc, fsm, subset=1) 
> pcaModels(bb.nc, bb.nc$bestChromosomes[1])  
 
By default, only the first four components are shown, which can be changed 
specifying the npc parameter. 

                                                 
* Remember that the hierarchical clustering of samples given in the heat map is the product of an 
unsupervised algorithm, which may differ from the classification method of our choice. Therefore, the 
relative sample order in the heat map, the original class, and the predicted class by the model may all 
be different. Nevertheless, many of the times, the hierarchical clustering gives a good overview. 
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Figure 17 Depiction of a model (left) and a chromosome (right) in PCA space. 

 

6.7 Predicting Class Membership of Unknown Samples 
An important feature of models developed using GALGO is their ability to make 
predictions. Models developed in GALGO can be used to predict class membership 
from an independent set of samples. The following code exemplify how make 
predictions in a new or independent dataset for all chromosomes collected in the 
BigBang object. This example uses a dummy dataset collected from the same data for 
illustrative purposes. 
 
> data(ALL) 
# dummy data: the first 15 samples from original ALL data 
# which must be EMLLA(E2A-PBX) class 
> dummy <- ALL[,1:15]  
> ?predict.BigBang 
> cpm <- predict(bb.nc, newdata=dummy, 
func=classPredictionMatrix, splits=1:10) 
> cpm 
> plot(bb.nc, cpm, type="confusion") 
 
In the above code, dummy was temporally appended to the original data. Then 
classPredictionMatrix was run for all chromosomes. splits is a parameter used in 
classPredictionMatrix (which was used to illustrate the use of user parameters for any 
function specified in func). The result of the plot is shown in Figure 18 where the new 
data was labelled as “UNKNOWN”. The black bars in these samples indicate that 
they were predicted as EMLLAi (as expected).  
 
To predict new data using an individual model, we may use the classPredictionMatrix 
method using the chromosomes parameter (see ?classPredictionMatrix.BigBang), 
such as in the following code. 
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> cpm <- predict(bb.nc, newdata=dummy, 
func=classPredictionMatrix, chromosomes=fsm$models[1]) 
> cpm 
> plot(bb.nc, cpm, type="confusion") 
 
 

 
Figure 18 Class prediction for unknown samples (the last 15 samples in the right). 

 

6.8 Biological Interpretation of Genes Selected in Models 
Statistical models can be used for classification purposes (e.g. to identify diagnostic 
markers) but are also a useful source of biological information. For this reason the 
biological interpretation of these models can provide an insight in the molecular 
mechanisms behind the biological system. In order to identify associations between 
the collections of models with functional pathways we have mapped the 50 most 
represented genes in the model population on the Ingenuity database using the web-
based Ingenuity pathway analysis tool (Ingenuity® Systems, www.ingenuity.com).  
This database store maps of canonical functional pathways and functional 
relationships supported by published literature and by protein-protein interaction 
data.We found that genes selected in our models are significantly enriched in four 
interaction networks (table 1). Table 1 also show functions that are significantly 
enriched. Table 1 show that all networks are characterised by cell death, cellular 
growth, and cellular division. A particularly interesting network (network 1 in table 1 
and Figure 19) connects IL-1β  to five other genes that are selected with high 
frequency in the models. IL-1β is an essential regulator of proliferation in leukaemia 
and has been demonstrated that the ability of cells to respond to this stimuli is 
predictive of disease outcome (Ezaki et al., 1995; Hulkkonen et al., 2000). These 
results exemplify the interpretation of classification models can be used to formulate 
biologically interesting hypothesis.  
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# 

 

Genes 

 

Score 

Selected 

Genes 

 

Top Functions 

1 BAK1, BCL2, BNIP3, CABP1, CD2, CD24, 

CD44, CTGF, defb4 (human), ENPP1, FLT3, 

FLT3LG, GCH1, H2-D1, IL15, IL1B, IL1RAP, 

INSR, IRF4, ITPR3, MX1, NFATC2, OGN, 

PDCD4, PHLDA1, PRKCQ, PTP4A1, PTPRK, 

RPS3A, SEPP1, SF1, SLC20A1, TCFL5, 

TM4SF2, ZFP36L1 

 

21 13 Cell Death, 

Cellular Development, 

Cellular Growth and 

Proliferation 

2 ALOX5, ALOX5AP, CBFA2T3, CCNE1, 

CD3E, CDKN2B, CTNNA1, E2F5, ERG, 

F13A1, FLT3LG, FOXG1B, FUT7, HDAC1, 

HOXD3, IGFBP7, IGL@, IL4, ITPR1, MEFV, 

NEDD9, PBX1, PHB, PKNOX1, POU2AF1, 

POU2F2, PRKCH, RAG1, RAG2, SCN2A1, 

SMAD5, SMAD6, SPI1, TGFB1, TGIF 

 

19 12 Cellular Development, 

Cell Death, 

Hematological System 

Development and 

Function 

3 BIK, COL4A1, ENPP2, FNBP1, H2-D1, 

HAMP2, HAS1, HPSE, IL6, IL13, IL1F6, LIR9, 

LTB, LY86, MYOD1, NEDD9, P53AIP1, 

PARP2, PSMB4, PTP4A3, PTPRE, SCHIP1, 

SIVA, SLA, Slco1a4, SMAD1, SRC, TERF2, 

TERF2IP, TINF2, TNF, TNFRSF7, TNFSF7, 

TP53, XRCC5 

 

15 10 Cell Cycle,  

Cell Death, 

Hematological Disease 

4 ACTN1, APS, BLK, BLNK, BTK, CAMK2A, 

CD9, CD19, CD22, CD38, CD72, CD81, 

CD79A, CD79B, CDK5R1, CKLFSF3, CR2, 

GRN, HRAS, ITGA1, ITGB4, LRMP, MAPK1, 

MCP, NR0B2, PDLIM1, PLCG2, PPM1F, 

PTGFRN, RHOB, SCNN1A, SH3BP5, SPARC, 

VAV2, VIM 

13 9 Hematological System 

Development and 

Function, 

Immune and Lymphatic 

System Development 

and Function,  

Tissue Morphology 

 
Table 1. Significant Networks. 
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Figure 19 Interaction Network. IL-1ββββ is bolded in blue whereas its interactions are 

highlighted in green. Genes shaded in red are included in the top 50 representative 

genes. Interaction are interpreted both as protein-protein interactions and transcription 

interaction (such as transcription factors) supported by literature. Network 1 from table 

1. 
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Appendix A  
A Comparison between GALGO and Univariate 
Variable Selection Methods 
 

A.1 Background 
The development of statistical models linking the molecular state of a cell to its 
physiology is one of the most important tasks in the analysis of Functional Genomics 
data. Because of the large number of variables measured a comprehensive evaluation 
of variable subsets cannot be performed with available computational resources. It 
follows that an efficient variable selection strategy is required. Variable selection 
strategies can be subdivided into univariate and multivariate methods. Univariate 
approaches test one feature at a time for their ability to discriminate a dependent 
variable. The top most significant features are then used to develop a statistical model 
(see schematic representation in Figure 1A). Multivariate approaches takes into 
consideration that variables are influencing a biological outcome in the context of 
networks of interacting genes rather than in isolation and can take into considerations 
synergy between genes, proteins, or metabolites. Although these approaches have 
been very successful there are still issues in the development of multivariate models 
from large datasets. These issues are related to the extremely large number of possible 
models that would need to be evaluated to identify the most predictive. In order to 
address these issues, a number of variable selection strategies have been developed 
and tested on functional genomics datasets. Among these Genetic Algorithms appear 
to be very efficient in large scale datasets. For this reason we have developed 
GALGO, a software environment to develop and evaluate multivariate statistical 
models that uses a genetic algorithm variable selection strategy (Figure 1B).  
In this Appendix we report the results of a comparison between two common 
univariate variable selection strategies (F-statistic and d-statistic) with GALGO in 
association with a number of classification methods. The models we have developed 
have been analysed in respect to classification accuracy, number of genes required to 
achieve the highest classification accuracy and the identity of the genes selected in the 
models. In order to make sure that our comparison is of general validity we have used 
three different datasets.  
Our results support the use of multivariate variable selection in developing statistical 
models and in particular support the use of GALGO as a general software 
environment for model selection. 
 

A.2 Methods 
Variable selection: In this comparison we have used three variable selection 
strategies. These are: The F test, d statistics and Genetic Algorithms. 
Classification methods: We have compared F statistics and Genetic Algorithms with 
the following methods: 1) Diagonal Linear Discriminant Analysis (DLDA)*, 2) 
Support Vector Machines (SVM), 3) Random Forest (RF) and 4) K-Nearest-
Neighbours (KNN). We have also compared the established tool PAM (d-statistics in 
combination with nearest centroid) with Genetic Algorithm in combination with 
nearest centroid (NC). 
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Construction of a representative model: To generate a representative model we 
used a Forward Selection (FS) strategy in both multivariate and univariate model 
selection. Briefly, an initial model is created using the first two genes from an ordered 
list of genes (using p-values or d-statistic for univariate variable selection or gene 
frequency using GALGO). Then, the model is assessed using a classification method 
to estimate the classification error. Subsequently, the model is lengthened with the 
next gene in the ordered list and the resulted model is re-assesed. This cycle continues 
until all genes in a list have been included. The model whose classification error is the 
lowest is chosen. In the case of draw, the smallest model is selected. 
Method specific gene signatures: To determine the degree of overlap between the 
different models at a gene identity level we have build a pool gene set containing the 
genes from the models generated with all five methods. For each gene in a given 
model, we counted the number of times it appears in the pool set. Genes appearing 
only once were defined as model-specific. 
Implementation: To develop classifiers with a univariate variable selction strategy 
(F- or d-statistics) we have used the Web based tool TNASAS (Vaquerizas et. al. 
2005) (http://tnasas.bioinfo.cipf.es), which is part of the Gene Expression Pattern 
Analysis Suite (GEPAS, http://gepas.bioinfo.cipf.es). All classification methods tested 
in combination with genetic algorithms have been used in the GALGO 
implementation with default settings with the addition of a backward selection step 
for model enhancement (see paragraph 5.5 of the supplementary material for a 
description of the procedure). The representative models were developed from 1,000 
chromosomes.  
 
* NOTE: The MLHD method we implemented in GALGO is equivalent LDA. 
 
 

A.3 Datasets 
ALL-Subclasses Dataset (ALLS): This dataset, developed by Yeoh et al. (Yeoh et 
al. 2002), describes the expression profile of 327 acute lymphoblastic leukaemia 
(ALL) patients representing 7 different disease sub-classes. The authors have  used 
Affymetrix GeneChips.  In this comparison we have selected the five largest classes 
(EMLLA i, Hyp+50, MLL, T, and TEL including respectively 27, 64, 20, 43, and 79 
samples). The original dataset downloaded from 
http://www.stjuderesearch.org/data/ALL1/ comprising 12,600 genes have been 
filtered to eliminate the most invariant genes (original E2A-PBX class was renamed 
to EMLLA). The standard deviation and difference between maximum and minimum 
expression value were calculated for each gene. The genes were ranked by these 
values, and if they were within the top 15% for either, were selected for further 
analysis. The dataset after filtering contained the expression values for 2,435 genes. 
ALL-AML Dataset (ALL/AML): This dataset, developed by Golub et. al. (Golub et. 
al., 1999) describes the transcriptional state of 47 acute lymphoblastic leukaemia 
(ALL) and 25 acute myeloid leukaemia (AML) patients. Data were processed as in 
the original publication. Briefly, intensity values were re-scaled such that overall 
intensities for each chip are equivalent. This was done by fitting a linear regression 
model using the intensities of all genes with "P" (present) calls in both the first sample 
(baseline) and each of the other samples. The inverse of the "slope" of the linear 
regression line becomes the (multiplicative) re-scaling factor for the current sample. 
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This was done for every chip (sample) in the dataset except the baseline which gets a 
re-scaling factor of one. 
A further processing step was performed to eliminate genes that were not detected in 
the majority of the samples. For this reason we filtered out every gene that were not 
expressed (Flagged as M or A) in more then 80% of the samples. 
Breast Cancer Dataset (BC): This dataset was developed by van ’t Veer et al. (van ’t 
Veer et al. , 2002) and represents 78 patients subdivided in two groups with different 
clinical outcome (44 patients with no metastases developed within the first five years 
versus 34 patients positive for metastases within the first five years). Data were 
normalized as described in the original publication. Genes with a p-value (Confidence 
level that a gene’s mean ratio is significantly different from 1) larger then 0.001 in all 
samples were filtered out. 
 

A.4 Results 
Table 1, 2 and 3 show the result of the analysis performed using GALGO with five 
different classification methods (NC, KNN, SVM, MLHD, RF) on three datasets  
(BC, ALL/AML, ALLS). The tables report the classification accuracy and model size 
for the best representative models developed using forward selection and for the top 
five individual chromosomes selected by the GA search. The table show that in all 
cases GALGO can identify accurate models of a relatively small size. 
 
Table 4, 5, 6 and figures 1, 2, and 3 summarize the result of the comparison between 
GALGO and univariate variable selection strategies. In the Breast Cancer dataset 
(table 4 and figure 1) GALGO produced models with higher classification accuracy 
regardless of the classification method used. The size of the models developed with 
GALGO (table 4 and figure 1) was generally smaller than the models developed with 
the univariate variable selection strategy. The largest difference being the models 
developed with the KNN method (these require 2920 genes with univariate model 
selection and 31 genes with GALGO).  
 
In the ALL-AML dataset (table 5 and Figure 2) the classification accuracy of models 
developed with univariate and multivariate models was comparable (Galgo gave 
models in the range between 3% and 10% of error whereas the univariate methods 
gave models with error in the range between 3% and 7 %). However, the models 
developed using GALGO were markedly smaller in size (a range of 4 to 49 genes 
respect to 79 to 1697 in the univariate variable selection) (table 5 and figure 2). 
 
In the ALL-Subclasses dataset (table 6 and Figure 3) GALGO generated either model 
with comparable accuracy (the maximum difference in classification accuracy was 
2%) or higher accuracy respect to univariate models (1% against 17% using Random 
Forest and 1% against 13% with NC). As in the other datasets the size of the models 
developed using GALGO was markedly smaller then models developed with 
Univariate methods (the range of model size in this dataset was between 4 and 49 
whereas the range of model size in the univariate selected models was between 75 and 
1697).  
In two of the datasets the model size is dramatically different making obvious that 
multivariate models are very effective in identifying different gene subsets. In the 
Breast Cancer dataset gene sets are of a more comparable size. Table 7 summarize the 
overlap in gene composition of the models developed with the different methods in 
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Breast Cancer dataset. These results suggest that multivariate model selection tend to 
give very different gene subsets respect to the univariate variable selection strategy. In 
interpreting these results however we should take into account that the classification 
error of models developed from univariate variable selection strategies was very low. 
 

A.5 Discussion 
The models we have developed have been analysed in respect to classification 
accuracy, number of genes required to achieve the highest classification accuracy and 
the identity of the genes selected in the models. All these factors are important in 
determining the usefulness of a methodology. High classification accuracy it is 
obviously a very desirable property but in order for the models to be biologically 
interpretable and of practical use it is also important that the gene set is a manageable 
size. The identity of the genes is also a very important factor. One of the reasons why 
multivariate methods may be a good option is that they allow the identification of 
genes that contribute to a biological effect in association. These could not be 
discovered by univariate variable selection methods where every gene is tested in 
isolation. If univariate and multivariate approaches provide models with comparable 
classification accuracy but with different genes then the two approaches have to be 
considered complementary as they are likely to represent different underlying 
biological processes.  
Our results shows that the methodology we have implemented in the R package 
GALGO tends to produce models with comparable or better classification accuracies 
respect to univariate variable selection strategies. The multivariate selected models 
generally use a smaller number of genes than univariate models in all datasets and 
with all the methods we have tested. This results support the use of a multivariate 
model selection strategy in the analysis of functional genomics data and in 
particularly support GALGO as a general tool. 
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BREAST CANCER (2 Classes) 

Method KNN SVM NC MLHD RF 

Model Size Error Size Error Size Error Size Error Size Error 

GA+FS 1st 32 0.16 12 0.17 35 0.15 4 0.18 47 0.17 

GA+FS 2nd 33 0.16 9 0.18 11 0.15 - - 37 0.18 

GA 1st 5 0.20 5 0.17 5 0.18 5 0.17 5 0.18 

GA 2nd 5 0.21 5 0.18 5 0.19 5 0.18 5 0.24 

GA 3rd 5 0.22 5 0.19 5 0.19 5 0.18 5 0.24 

GA 4th 5 0.22 5 0.19 5 0.19 5 0.19 5 0.25 

GA 5th 5 0.22 5 0.20 5 0.19 5 0.19 5 0.25 

GA+BE+FS 1st 31 0.15 12 0.17 23 0.14 4 0.18 40 0.18 

GA+BE+FS 2nd 32 0.15 - - 9 0.15 - - 14 0.19 

GA+BE 1st 5 0.21 5 0.17 3 0.17 4 0.17 4 0.18 

GA+BE 2nd 3 0.21 4 0.17 4 0.17 3 0.17 3 0.23 

GA+BE 3rd 4 0.21 2 0.18 3 0.18 4 0.17 2 0.24 

GA+BE 4th 4 0.21 2 0.18 5 0.18 4 0.18 4 0.24 

GA+BE 5th 3 0.22 2 0.18 4 0.18 3 0.19 3 0.24 

Table 1. (Appendix) 
 
Abbreviations for all tables:  
GA – Genetic Algorithms, FS – Forward Selection, BE – Backward Elimination. 
DLDA – Diagonal Linear Discriminant Analysis, PAM – Shrunken Centroids, PAMR 
– Shrunken Centroids R package, KNN – K-Nearest-Neighbours, SVM – Support 
Vector Machines, NC – Nearest Centroid, MLHD – Maximum Likelihood 
Discriminant Functions, RF – Random Forest. 
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ALL-AML Dataset (2 Classes) 

Method KNN SVM NC MLHD RF 

Model Size Error Size Error Size Error Size Error Size Error 

GA+FS 1st 42 0.06 50 0.07 37 0.05 9 0.14 47 0.08 

GA+FS 2nd 37 0.06 23 0.07 24 0.06 17 0.14 45 0.08 

GA 1st 5 0.11 5 0.07 5 0.13 5 0.10 5 0.12 

GA 2nd 5 0.12 5 0.11 5 0.15 5 0.10 5 0.15 

GA 3rd 5 0.13 5 0.11 5 0.15 5 0.11 5 0.15 

GA 4th 5 0.13 5 0.12 5 0.15 5 0.12 5 0.16 

GA 5th 5 0.13 5 0.13 5 0.15 5 0.12 5 0.16 

GA+BE+FS 1st 45 0.04 25 0.06 29 0.03 13 0.12 49 0.07 

GA+BE+FS 2nd 40 0.05 24 0.06 27 0.03 34 0.13 32 0.08 

GA+BE 1st 3 0.08 4 0.07 2 0.12 4 0.10 2 0.12 

GA+BE 2nd 3 0.09 3 0.11 2 0.12 5 0.10 4 0.14 

GA+BE 3rd 3 0.11 5 0.11 5 0.13 4 0.11 4 0.15 

GA+BE 4th 3 0.11 3 0.12 4 0.14 4 0.11 5 0.15 

GA+BE 5th 4 0.12 3 0.12 3 0.15 2 0.11 4 0.16 

Table 2 (Appendix) 
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ALL-Subclasses Dataset (5 Classes) 

Method KNN SVM NC MLHD RF 

Model Size Error Size Error Size Error Size Error Size Error 

GA+FS 1st 47 0.00 10 0.02 50 0.01 23 0.01 14 0.01 

GA+FS 2nd 13 0.01 9 0.03 16 0.02 15 0.02 10 0.02 

GA 1st 5 0.06 5 0.05 5 0.06 5 0.06 5 0.08 

GA 2nd 5 0.06 5 0.05 5 0.07 5 0.06 5 0.08 

GA 3rd 5 0.06 5 0.05 5 0.07 5 0.06 5 0.08 

GA 4th 5 0.06 5 0.06 5 0.07 5 0.06 5 0.08 

GA 5th 5 0.06 5 0.06 5 0.07 5 0.06 5 0.09 

GA+BE+FS 1st 47 0.00 10 0.02 50 0.01 20 0.01 19 0.01 

GA+BE+FS 2nd 13 0.01 9 0.03 16 0.02 15 0.02 10 0.02 

GA+BE 1st 4 0.06 5 0.05 5 0.06 5 0.06 4 0.08 

GA+BE 2nd 5 0.06 5 0.05 4 0.07 5 0.06 4 0.08 

GA+BE 3rd 4 0.06 5 0.06 5 0.07 5 0.06 4 0.08 

GA+BE 4th 5 0.06 5 0.06 5 0.07 4 0.06 5 0.09 

GA+BE 5th 4 0.06 4 0.06 5 0.07 5 0.06 5 0.09 

Table 3 (Appendix) 
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BREAST CANCER (2 Classes) 

 Model Selection Optimal Model 

Gene Selection +Classifier Size Error 

F-statistic (univariate) FS+DLDA 2 0.32 

F-statistic (univariate) FS+SVM 5 0.36 

F-statistic (univariate) FS+RF 10 0.35 

F-statistic (univariate) FS+KNN 2920 0.44 

d-statistic (univariate) FS+PAM 51 0.36 

GALGO+MLHD (multivariate) BE+MLHD 4 0.17 

GALGO+SVM (multivariate) SVM 5 0.17 

GALGO+RF (multivariate) FS+RF 47 0.17 

GALGO+KNN (multivariate) BE+FS+KNN 31 0.15 

GALGO+NC (multivariate) BE+FS+NC 23 0.14 

Table 4 (Appendix) 
 
 
 
ALL-AML (2 Classes)    

 Model Selection Optimal Model 

Gene Selection +Classifier Size Error 

F-statistic (univariate) DLDA 500 0.06 

F-statistic (univariate) SVM 120 0.04 

F-statistic (univariate) RF 500 0.03 

F-statistic (univariate) KNN 75 0.07 

d-statistic (univariate) PAM 1697 0.06 

GALGO+MLHD (multivariate) BE+MLHD 4 0.10 

GALGO+SVM (multivariate) BE+FS+SVM 25 0.06 

GALGO+RF (multivariate) BE+FS+RF 49 0.07 

GALGO+KNN (multivariate) BE+FS+KNN 45 0.04 

GALGO+NC (multivariate) BE+FS+NC 29 0.03 

Table 5 (Appendix) 
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ALL-Subclasses (5 Classes)    

 Model Selection Optimal Model 

Gene Selection +Classifier Size Error 

F-statistic (univariate) DLDA 200 0.02 

F-statistic (univariate) SVM 75 0.00 

F-statistic (univariate) RF 1000 0.17 

F-statistic (univariate) KNN 120 0.01 

d-statistic (univariate) PAM 439 0.13 

GALGO+MLHD (multivariate) BE+FS+MLHD 23 0.01 

GALGO+SVM (multivariate) FS+SVM 10 0.02 

GALGO+RF (multivariate) FS+RF 14 0.01 

GALGO+KNN (multivariate) FS+KNN 47 0.01 

GALGO+NC (multivariate) FS+NC 50 0.01 

Table 6 (Appendix) 
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Figure 1 (Appendix) 
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Figure 2 (Appendix) 
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Figure 3 (Appendix) 
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Method 

 

 

Model Size 

 

Method-Specific  

Genes 

Percent of  

Method-Specific 

Genes 

F+DLDA 2 0 0% 

F+SVM 5 0 0% 

F+RF 10 0 0% 

F+KNN 2920 - - 

d+PAM 51 38 75% 

GA+BE+MLHD 4 2 50% 

GA+SVM 5 3 60% 

GA+FS+RF 47 32 68% 

GA+BE+FS+KNN 31 11 35% 

GA+BE+FS+NC 23 11 48% 

Table 7 (Appendix) 
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i Original E2A-PBX class was renamed to EMLLA. 


