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GA — Genetic Algorithms, FS — Forward Selection, BE — Backward Elimination.
DLDA — Diagonal Linear Discriminant Analysis, PAM — Shrunken Centroids, PAMR
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— Shrunken Centroids R package, KNN — K-Nearest-Neighbours, SVM — Support
Vector Machines, NC — Nearest Centroid, MLHD — Maximum Likelihood
Discriminant Functions, RF — Random Forest.

1 Requirements before installing GALGO

* R software for statistical computing v2.0.1 or above.
0 It can be downloaded frofuttp://www.r-project.org/
* R.00 R package installed
o Instructions for installing and downloading R.oo package are published
by their authors imttp://www.maths.lth.se/help/R/R.classdr/
Windows, it can be installed by using the option “Install Packages
from CRAN...” available via the R console (go to Packages menu,
select “Install Package(s)..”, choose a mirror site and then select
“R.00")

2 Installing GALGO

* Download GALGO
o For Windows:galgo_1.0-10.zip
o For UNIX: galgo 1.0-10.tar.gz
* Install GALGO
0 In Windows
* Inthe R console use the option “Install package(s) from local
zip files...” from the “Packages” menu.
= Select the GALGO zip just downloaded and click “open”.

0 In UNIX
= Log on as root or any user with privileges to write in system
directories.

= Use the command “R CMD INSTALL [galgo .gz file]”

3 GALGO Documentation
* Manual Manual.pdj

o This manual includes a brief introduction to statistical modelling with
particular reference to a Genetic Algorithms (GA) strategy faalbbr
selection. It also includes a step by step example with a detailed
description of GALGO functionality and on how to use GALGO as a
general tool to solve optimization problems.

o This file is included in the GALGO package. Once GALGO has been
loaded, options to open these files should be available from the
“Vignettes” menu in the R console.

* Objects, Methods and Functioradlgo.pdj

o This file contains the standard documentation for functions and objects
in R in .pdf format.

* This document as a .pdBEALGO-SupplementaryMaterial. pdf
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* Help system for Objects, Methods and Functions
0 The standard documentation of GALGO in R system can be accessed
in the usual way in R, typing “?” followed by the object name or by the
method “dot” object. Examples:
= ?BigBang
= ?configBB.VarSel
= ?plot.BigBang
» ?fowardSelectionModels.BigBang
= ?confusionMatrix.BigBang
0 The help system can also be explored by HTML typing “help.start()”
or by accessing the option “HTML help” in menu Help in R GUI (for
Windows). Galgo package may be accessed through search engine or
Packages->Galgo.

4 Why developing GALGO?

In the analysis of large datasets, such as data obtained using Functional Genomic
Technologies, the selection of gene signatures predictive of sample feaiures (f
example disease type) is a difficult problem. Commonly the number of samples i
very low (hundreds or dozens) and certain aspects of the samples are known (for
example disease type, strain, treatment, etc). One of the most basic pristileans
selection of genes whose profile is, in some way, associated to the known sample
type, which in turn would allow acquiring more knowledge about the mechanism of
action, generating new hypothesis, directing further research, seleicimgrkers,

and choosing potential drug targets. In statistics, this association of profdeswn
sample types is called “supervised classification” and there are selassafication
methods that “test” if genes are related to samples phenotype. These noathbds
subdivided in univariate and multivariate methods. Univariate methods evaluate each
variable (e.g. a gene) at the time for its ability to discriminate lest\weo or more
groups of samples. PAMR (Tibshiratial. 2002), GeneSpring (Silicon Genetics,
Redwood City, CA), and TNASAS (Vaquerizatsal, 2005) are perhaps the most
commonly used software packages by the Functional Genomics community that
implement univariate variable selection methods for classification. Urteaaaiable
selection methods use some statistics to identify genes that are défgrent

expressed between two or more groups of samples and then uses the most
differentially expressed to construct a statistical model (Figure 1)eThethods

have demonstrated to perform well, however, in some cases they can be ineffective
regardless of the classification method used. An obvious conceptual limitation of
univariate approaches is also the lack of consideration that genes works in the
contexts of interconnected pathways and therefore it is their behaviour as a group tha
may be predictive of the phenotypic variables. Multivariate selectionadset(Figure

2) may seem to be more suitable for the analysis of Biological data shiaieles

(such as gene expression values) are tested in combination to identify ioreract
between genes. However, the extremely large number of models that can be
constructed from different combination of thousands of genes cannot be extensively
evaluated using available computational resources. An alternative to thsiexte
analysis of all possible models is the use of search procedures that “expéodata
looking for good, although not optimal, sets of variables. Recently, Markov Chain
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Monte Carlo methods and Genetic algorithms have been applied successfully to the
analysis of microarray data (Li et al. 2001; Ooi et al. 2003; Sha et al. 2004).

At present, there is no available software package to support the development of
statistical models using multivariate variable selection stratefoeaddress this issue
we have developed GALGO, an R package that uses a genetic algorithm search
procedure coupled to statistical modelling methods for supervised classificati
(Figure 2). GALGO is relatively easy to use, can manage parallehssaand has a
toolset for the analysis of models. Although GALGO include a number of statistical
modelling methodologies to solve classification problems, GALGO can be used as a
general tool to solve optimization problems. This requires rewriting theditne
function to specify the criteria for the selection of good variable subset. Beafius
the functionality that is already available in R, this can be achievetveqjatasily.

This manual provides a step-by-step tutorial to solve classification problemgs usi

microarray data. It also provides examples of the use of GALGO as a geoétal
solve optimization problems.
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Figure 1 Schematic representation of univariate variable selection. A dataset of two
classes of samples (A) is assessed using a univariate test (B) to rank genes by their
sole ability to distinguish between classes (C). Then, a forward selection strategy
using a classification method is used to detect the number of ranked genes that
generates the lowest error (D).
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MULTIVARIATE VARIABLE SELECTION IN GALGO
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Figure 2 Schematic representation of multivariate variable selection. From a dataset of
two classes of samples (A), a genetic algorithm (B) searches and evolves combination
of genes (chromosomes representing a multivariate model) that distinguish between
classes using a classification method. A number of models are generated performing
this procedure several times (C). These models may differ in gene content but with
similar high classification accuracy. Genes appearing multiple times in different
models suggest these genes are important for the classification problem in a
multivariate context. Therefore, the number of times (frequency) a gene appears in a
model is computed (D). These frequencies are used to rank genes (E). Then, a forward
selection strategy is used to select a representative model that generates the lowest

error (F).
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5 Application

The GALGO package has been conceived as an implementation of GA in object-
oriented paradigm under the R language. R is a statistical programming environme
that is platform-independent, robust, freely available, and is widely used for the
analysis of functional genomics data. Because of the large collectionisticih
functions available in R, GALGO can be also used to find optimal variable subsets
that maximize a wide range of user-defined fitness functions. GALGQauSés
procedure for selecting models with a high fitness value (e.g. classifieecuracy)
and implements functions for the analysis of the populations of selected models as
well as functions to reconstruct and characterize representative sumoaels (Li

et al. 2001). In addition, a function for predicting the class of unknown samples is
available.

5.1 What is a Genetic Algorithm?

Genetic Algorithms (GAs) are variable search procedures that ae bashe

principle of evolution by natural selection. The procedure works by evolving sets of
variables (chromosomes) that fit certain criteria from an initial random gapuiaa

cycles of differential replication, recombination and mutation of the fittest
chromosomes. The concept of usingsilico evolution for the solution of

optimization problems has been introduced by John Holland in 1975 (Holland 1975).
Although their application has been reasonably widespread (see Goldberg’s book
(Goldberg, 1989)), they became very popular only when sufficiently powerful
computers became available. What follows is a Step by Step description of the
procedure in the context of a classification problem (see Figure 3) for a schema
representation of the procedure, note that we will use stages here to avoid confusion
with those steps in the general GALGO pipeline):

Stage 1: The procedure initially creates a number of random variable sets
(chromosomes). These variable sets form a population of chromosomes (niche).
Stage 2: Each chromosome in the population is evaluated for its ability to predict the
group membership of each sample in the dataset (fithess function). This is achieved
by training a statistical model. The GA tests the accuracy of the poedactd assigns

a score to each chromosome that is proportional to the accuracy.

Stage 3: When a chromosome has a score higher or equal than a predefined value, this
chromosome is selected and the procedure stops; otherwise, the procedure continues
to stage 4.

Stage 4: The population of chromosomes is replicated. Chromosomes with a higher
fitness score will generate more numerous offspring.

Stage 5: The genetic information contained in the replicated parent chromosomes is
combined through genetic crossover. Two randomly selected parent chromosomes are
used to create two new chromosomes (Figure 4). This crossover mechanism allows a
better exploration of possible solutions recombining good chromosomes.

Stage 6: Mutations are then introduced in the chromosome randomly. These
mutations produce that new genes are used in chromosomes.

Stage 7: The process is repeated from stage 2 until an accurate chromosome is
obtained. The cycle of replication (stage 4), genetic cross-over (stage Syutatidns
(stage 6) is called generation.
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Figure 3 Schematic representation of the GA Procedure.
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Figure 4 Schematic representation of the Crossover.

5.2 Object-Oriented Design

The GA procedure evaluates collections of variable subsets for their &biieyform

a defined task (e.g. supervised classification). It begins from a cotlezftrandom

sets and, using principles of natural selection, evolves better fitted modeks until
model of desired accuracy has been found. In the GA terminology variables are
defined as genes whereas a subset of n variables that is assessed fdy its Abdi
statistical model is called a chromosome. Populations of chromosomes are drganize
in niches that are independently evolving environments. However, niches have the
possibility to occasionally exchange chromosomes with a process calledionigra
Multiple niches can then be part of a world. The object design of the GALGO
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package (illustrated in Figure 5) reflects the structure we described #&bove.

GALGO, Gene object represents a variable whereas the Chromosome object stands
for a set of n variables that will be included in the multivariate model, whiclbevill
evaluated using the fitness function. A Niche object organizes chromosomes in
populations whereas the World object includes several niches. The Galgo object
performs the GA evolutionary process and saves the best chromosome as a result.
Finally, a BigBang object stores the results of the search for furthbrsen These
objects have properties that allow users to control the process. We included most
common GA operators as Reproduction, Mutation, Crossover, Migration, and Elitism
as methods. An important characteristic of GALGO is that the user can add custom
defined properties to add new functionality. All objects can be extended and their
methods can be overwritten to provide more flexibility. In the manual, avaitatie i
supplementary material, we describe an example where the method mutate is
overwritten to allow differential mutation rates or variables with defined
characteristics.
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Figure 5 Simplified object-oriented structure of the GALGO package. Boxes represent
objects, which are connected by one-to-many relationships hierarchically. Major object
properties are marked with solid squares whereas core methods are marked with solid
circles. Dashed box represents the fitness function, which are included in GALGO for
several classification methods. Dashed lines represent logical connections.

5.3 Analysis Strategy

Figure 6 shows a flowchart summarizing a typical analysis pipelineainabe
implemented using the GALGO package. For simplicity the process has been
represented in four steps. The first step consists in specifying the inpuhdateaor
estimation strategy, the statistical modeling technique, the fithessoiu@etd the
parameters for the GA procedure. In the second step the GA procedure searches for
and collects models that have a high value of the fitness function (e.g. cdissific
accuracy, evaluated using a cross-validation procedure). In the third step the
population of models selected in step 2 is analyzed for its variable composition and
classification accuracy. In the fourth step a forward selection streteggd to

develop and test a statistical model that is representative of the model population
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Figure 6 Schematic representation of a typical application of GALGO package. The
figure describes a general analysis pipeline that can be implemented in GALGO. A
summary of functionality in each step is listed in the right side of the scheme. The
number of individual functions is shown in brackets.

5.4 Performance

Developing statistical models using a bona fide multivariate variabletisgle

strategy is a very computer intensive procedure and depends on the particofarities
the dataset. The GA procedure is a very efficient method for developing matgvar
models. For example, a single evolutionary cycle can select a highly prednidel

in seconds. However, it is advisable to sample a large number of solutions to represent
the solution space that can be explored with this procedure. Typically, it is ngcessar
to collect between 200 and 1000 chromosomes before observing some degree of
convergence. In a typical classification problem with a microarray dataseay

require several hours of computation to collect a sufficient number of chromosomes.
Table 1 summarizes the performance of GALGO in three differentfatasisin

problems of increasing complexity. In this example we have collected 500
chromosomes. In order to increase its performance, GALGO has functionsdwat all
the parallelization of the search process on different CPUs (see manual).
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Problem Samples Chromosome Size Average accuracy Running time

2-class 143 5 1.0 Oh 58m 48s
5-class 233 5 0.989 2h 37m 49s
7-class 327 7 0.926 8h 29m 3s

Table 1 — Performance of GALGO.

6 An Example of Supervised Classification Using
GALGO

This section describes a typical application of GALGO in biomarker discarsamnyg
large scale expression profiling data. The aim of this analysis is to idgeti&/sets
that are predictive of disease type in a panel of leukaemia patientsdser 6€).
This tutorial will describe the main basic functionality implemented in GALG
complete description of the functionality available in GALGO can be found in the
Manual and in the software documentation.

6.1 Dataset

The dataset used in this analysis is derived from the work of &te@l(2002). The
dataset represents the gene expression profiles of five groups of patientsEML
Hyp+50, MLL, T, and TEL including 27, 64, 20, 43, and 79 samples respectively).
The original dataset comprising 12,600 genes have been processed to ellminate t
most invariant genes. The standard deviation and difference between maaium
minimum expression value were calculated for each gene. The genes were the
ranked by both values. The genes that had any of these values in the top 15% of the
ranked lists were selected for further analysis. The dataset a#anglcontained the
expression values for 2,435 genes.

6.2 Step 1 — Setting-Up the Analysis

In the GALGO package we have included a data-frame object (ALL) dh#tios the
normalized gene expression values. The object is a matrix in which rows are genes
and columns are samples. The identity of the samples is defined in a different object
called (ALL.classes). Both objects are loaded using the function date (rigect).

In R type:
> library(galgo)
> data(ALL)

> data(ALL.classes)

Data from an external text file can be loaded within the wrapper functioméaeal
for details).

10
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The wrapper function “configBB.VarSel” is used to specify the data, the pemame
for the GA search, the classification method, the error estimation method, and any
other user-defined parameter. This function builds a BigBang object that cahtains
data and the values of all parameters and will eventually store the péghiks
analysis.

To set up the GA search type in R:

> bb.nc <- configBB.VarSel(
data=ALL,
classes=ALL.classes,
classification.method="nearcent”,
chromosomeSize=5,
maxSolutions=300,
goalFitness = 0.90,
main="ALL-Tutorial",
saveVariable="bb.nc”,
saveFrequency=30,
saveFile="bb.nc.Rdata”)

The code above configure a BigBang Object that will store 300 chromosomes
(maxSolutions=30Pwhich will contain 5 genesliromosomeSize33%hat correspond

to models developed using a nearest centroid classifier
(classification.method="nearcen)’with a classification accuracy of at least 90%
(goalFitness=0.9. The other parameters define the name of the saved object that is
created gaveVariable="bb.nc’), the frequency of saving the results in a file
(saveFrequency=30and the name of the file where the results are saved
(saveFile="bb.nc.Rdataj.

In defining the BigBang Object GALGO pre-process the dataset creatngubsets
of data that are used respectively for the selection of the chromosonmaadtcita)
and for the final error estimation of the selected chromosomes (teBOX we
give a brief explanation of the options that GALGO offers to estimate the
classification accuracy. Further information is available in the Manualsgeion 3).

The wrapper functiooonfigBB.VarSetan also be used to configure additional
functions. These are explained in dept in the package Manual. A brief description of
the full list of parameters that can be defined within the wrapping function can be
obtained typing:

> ?configBB.VarSel

6.3 Step 2 - Evolving Models/Chromosomes

Once the BigBang and Galgo objects are configured properly, we are ready to sta
the GA procedure for collecting chromosomes associated to good predictive models
for tumour class. This is achieved by calling the method “blast”.

In R type:

11
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> blast(bb.nc)

This command starts the GA search and will continue until the desire number of
chromosomes is collected. The entire procedure can take from minutes to hours
depending on the degree of difficulty of the classification problem, on the
classification method, and on the GA search parameters.

The default configuration in the wrapping function displays the state of theBigB
and Galgo objects in the command line including the approximated remaining time.

This is an example of the text output for one GA cycle (61 generations):

[e] Starting: Fitness Goal=0.9, Generations=(10 : 200)
[e] Elapsed Time Generation Fitness %Fit [Next Generations]
[e] OhOmOs (m) O 0.64103 71.23% +++++++...+.........

[e] OhOm 6s 20 0.87179 96.87% ..ooovvereverernnn,
[e] OhOm 14s 40  0.87179 96.87% ....+.+....+.+...
[e] OhOm 22s 60  0.92308 102.56% +

[e] OhOm22s ** 61  0.92308 102.56% FINISH: 2164 1612...
[Bb] 300 299 Sol Ok 0.92308 102.56% 61  22.16s 3722s
4054s 14 (Oh Om 14s)

The last line (starting with “[Bb]”) corresponds to the current collection of the
BigBang object. This line shows respectively the number of evolutions (300 in this
case), the number of evolutions that have reached the goal fitness (299), the status of
the last evolution cycle (Sol Ok — the goal fithess was reached), the fithes®va

the best chromosome from the last evolution (0.92408) along with it percentage
relative to the goal fitness (102.56%), the number of generations required (61), the
process time spent in last evolution (22.16 seconds), the cumulative process time
spent in all evolutions (3,722 seconds), the cumulative real time (4,054 seconds,
which considers the time spent by saving the object and other operative system
delays), and the remaining time needed to collect the previously specified mfmber
chromosomes (14 seconds).

Lines starting with “[e]” represent the output of the evolutionary process (tietige
algorithm search). The first line of each evolution shows the goal fitheshand t
configured minimum and maximum number of generations. Successive lines show, in
columns, the elapsed time, the current number of generation (by defauliedfres

every 20 generations) and the current best fithess along with the percetdtige to

the goal fitness. The last column summarize the behaviour of next generations, “+
means that maximum fitness of the current population has increased, “-* means that
has decreased, and “.” means that it has not changed. “G” appears occasicgrally wh
the fitness goal has been reach before the minimum number of generations.

The default configuration would show three plots summarizing the characteoistic

the population of selected chromosomes (see Figure 7). The topmost plot shows the
frequency (vertical axis) of each gene (horizontal axis) in the Chromosome
population. The default settings display the top most frequent 50 genes colour-coded
on the basis of their frequency rank. The middle plot shows the stability of the rank of
the top 50 genes over the number of different search cycles (see section 0). &he plot

12
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the bottom displays the distribution of the number of generations required by the GA
process to reach a solution.
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Figure 7 Default monitoring of accumulated chromosomes in the BigBang object.

The blast method terminates either when all the requested chromosomes have been
found or if the process is interrupted (by typing the ctrl-c keys in Linuxaines
windows). It is recommended to break the process to perform a preliminaryi@nalys
after the initial 200-200 chromosomes are selected. The process can be resumed by
typing the blast command again. The result of the last evolution might be lost but the
accumulated results should remain be intact. Resuming the process will have the
effect of restarting the Galgo object as in any cycle. The possibilityexupt the

process is very useful for initial exploratory analysis since the most upestdtsr

can be analysed and can be saved anyway using the saveObject method. Instead of
interrupting the process, you can open a new R console and benefit from the use of
progressive saving strategy that updates the current object called “bb.nc”ilato a f
named “bb.bc.Rdata” once at least 30 solutions have been reached (controlled by

13
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saveVariable, saveFile, and saveFrequency parameters respeciivalg)this, a
previously saved object can be loaded in GALGO using the loadObject method in a
new R console window:

> library(galgo)
#change directory to yours
> loadObject(“bb.nc.Rdata”)

Once the file is loaded, the loadObject method displays a summary of the loaded
variables and their classes and you can proceed to the analysis step.

GALGO can also summarise the population of evolving chromosomes in real time.
The code below shows the modifications to the definition of the BigBang Obiject that
are required to activate this function (marked in red).

> x11()

> x11()

> bb.nc <- configBB.VarSel(
data=ALL,

classes=ALL.classes,
classification.method="nearcent”,
chromosomeSize=5,
maxSolutions=300,

goalFitness = 0.90,
main="ALL-Tutorial",
saveVariable="bb.nc”,
saveFrequency=30,
saveFile="bb.nc.Rdata” :
callBackFuncGALGO=plot,
callBackFuncBB=function(...){dev.set(2);plot(...);dev.set

3}t )

The topmost panel in Figure 8 shows the gene composition of the evolving
chromosomes. The middle plot shows the evolution of the fitness relative to the goal

in the course of generations. The plot at the bottom shows the gene composition of the
maximum chromosome across generations.

14
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Figure 8 Real-time monitoring of the Genetic Algorithm search. The horizontal axis of
the top and bottom plots display unranked gene indexes. The vertical axis of the top
panel is displaying the chromosome index whereas the vertical axis of the bottom
panel is displaying the generation number. In the middle plot the horizontal axis is
displaying the generation whereas the vertical axis is displaying the fitness value.

6.4 Step 3 - Analysis and refinement of Chromosome
Populations

6.4.1 Are we getting solutions?

The first question we have to answer is whether we are getting acceptabtms.

By default, configBB.VarSel configures the BigBang object to save all chromssome
even if they didn’t reach the goalFitness value. The reason is that we nee@d$o asse

the success of the configured GA search under all searches, not only in those that

reach solutions. We can analyze the success of the configured GA searchrny looki

at the evolution of the fitness value across generations, using the code below.

> plot(bb.nc, type="fitness”)
Figure 9 shows that in average, we are reaching a solution in generation 40. The blue

lines show the average fitness for all chromosomes. The cyan line traceth#tiose
have not reached a goal in a given generation.
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Fitness (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
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Figure 9 Evolution of the maximum fitness across generations in 303 independent
searches.

It is possible to produce a plot that display the evolution of the fitness value for all
cycles that have lead to a “fit” chromosome by typing:

> par(mfrow=c(2,1))
> plot(bb.nc, type="fitness”, filter="solutions”)

Similarly, we can plot the evolution of maximum fitness value of cycles that did not
lead to the fitness goal.

> plot(bb.nc, type="fitness”, filter="nosolutions”)

The “filter” parameter is general and can be used in most functions in GALGO

6.4.2 What is the overall accuracy of the population of selected
models?

Once the chromosomes have been selected we need to asses the classification
accuracy of the corresponding models using one of the three Strategies that we
describe iBOX 1. The default configuration will estimate the accuracy of the models
using Strategy 3 (Figure 11C) as described@X 1.

Use the following command to plot the overall accuracy.

> plot(bb.nc, type="confusion”)

The output of this function is shown in Figure 10. The horizontal axis represents the
individual samples grouped according to the disease class whereas théasagica
represents the predicted classes. The barcharts represent the percentagks dhatode

classify each sample in a given class. For example, samples in secand colu
(marked in red) belong to the HYP+50 class. These are, on average, correctly

16
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classified 85.6% of the times. However, on average, they are “wrongly” clessifie
2.5% of the times as EMLLA5.4% of the times as MLL, 1.5% as T, and 5% as TEL.
The plot also report the value of sensitivity and specificity of the predictioseTdre
measures of the overall prediction per class. The sensitivity of the poadmtia

given class k is defined as the proportion of samples in k that are corressijieth

The specificity for a given class k is defined as the number of true negatnde=ddi

by the sum of true negatives and false positives.

To obtain the confusion matrix, specificity, and sensitivity measures in a isumer
format use the following code.

> cpm <- classPredictionMatrix(bb.nc)
> cm <- confusionMatrix(bb.nc, cpm)
> sec <- sensitivityClass(bb.nc, cm)

> spc <- specificityClass(bb.nc, cm)

Class Confusion (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
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Figure 10 Overall classification accuracy.
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BOX 1: Error estimation Strategiesin GAL GO

There are several methods to estimate Classification accuracy. areeall based on the
fundamental principle that a correct estimate of accuracy musrb@med on a set of
samples that has not been used to develop the model itself.

Classical approaches involve splitting data in training and testl$eggraining set is used to

estimate the parameters of the model whereas the test set $édefand it is used to asses
the accuracy of the model itself. This approach is considered the ppospaate when a
large number of samples is available. However, when the number of sas@hatively
small, as it is the case of a typical microarray experiment, shedecould be too small to
estimate the classification accuracy with acceptable precision.

In order to estimate the accuracy with small datasets it is possiée ta different statistical
technique calledross-validation The dataset is split kdifferent training and test sets. Th
classification accuracy is then defined as the average of tis#fickt#on accuracies

calculated, by default, on the test sets for each df fpdits. GALGO uses a technique called

bootstrapping (Efroet al.,1993) to generate the splits. Within GALGO we can use threg
main strategies for estimating classification accuracy. In thiestirategy a simple cross-
validation or resubstitution error strategy is used to compute the ofatilne fitness function
that guide chromosome selection in the GA procedure. The classificatima@cof the
selected chromosome is defined as the fithess value (Figure 11A). ©he stategy
(Figure 11B) is a classic Training and Test procedure wheretieagy is estimated on the
test data.

In the GA process, the value of the fitness function is estimated byvaladstion on the
training data. Other approaches, such as .632 bootstrap @Efabn1993), combine training
and test accuracies, which can be specified as error weights throughetietear
classification.test.error = ¢(.368, .63®)r training and test respectively. The third strategy
to select the Chromosomes as in the second strategy and to compute tieatiassi
accuracy of the selected chromosomes as the average of thitcalamsiaccuracy estimated
onk data splits as exemplified in Figure 11C.

GALGO defines the initial split (common to both strategies) as $pli

A B C
(no splits} Split 1 Split 2 — Split k:
DATA DATA DATA
2/3 13 2/3 1/3
r L 3 r
Training And Test Training Test Training Test
E-foldcrossvalidation l Efoldcrosevalidation 1 l Fofoud-cr sasvalivition I
;:jf\!:}smnon ﬁﬁfsmnon ngﬁ?smmx
Chromosomes Chromoesomes Chromosomes
train=1 train=2/3 train=rep2/3,k)
tes1=0 test=1/3 test=rep(1/3k;

Figure 11 Schematic Representation of the Estimation of Classification Accuracy. (A)
Strategy 1, using all data as training and test. (B) Strategy 2, classical training and test.
(C) Strategy 3, k repetitions of the strategy 2. The respective values of the parameters,

train and test, needed to perform each strategy is shown at the bottom of the schema.

18

11%

S




Trevino and Falciani GALGO Supplementary Material

6.4.3 Is the rank of the genes stable?

Stochastic searches (such as GA) are very efficient methods to icehtifypns to an
optimization problem (e.g. classification). However they are exploring osrhyadi
portion of the total model space. The starting point of any GA search is a random
population. Different searches therefore are likely to provide different solubrons
order to extensively cover the space of models that can be explored it is netessary
collect a large number of chromosomes. GALGO offers a diagnostic tool to
determine when the GA searches reach some degree of convergence. Our approach i
based on the analysis of the frequency that each gene appears in the chromosome
population. As chromosomes are selected the frequency of each gene in the
population will change until no new solutions are found. Therefore monitoring the
stability of gene ranks (based on their frequency) offers the possibiligualize

model convergence.

To produce the rank stability plot type:
> plot(bb.nc, type="generankstability”)

By default, the most frequent 50 genes are shown in 8 different colours with about 6
or 7 genes per colour (Figure 12). Horizontal axis in Figure 12 shows the genes
ordered by rank. Vertical axis shows the gene frequency (in the top part ofxisg y a

and the colour coded rank of each gene in previous evolutions. Consequently, for a
given gene, changes in ranks are marked by different colours (below the frgquency
Figure 12 shows that the first 7 black genes have been stable at leastttutasg 50
solutions whereas some red genes have recently swap from green. Thus, red and green
genes are not yet stable; this is because 303 chromosomes are not enougizéo stabil
these genes. Probably, 1000 chromosomes would generate more stable results,
however, the more chromosomes the better. For comparison, Figure 13 shows the
result for the same run used here but using 1000 chromosomes, which exhibit more in
ranks. Another property is that top genes are being stabilized in order; folst bla

genes, then red, green and so on. For longer runs comparisons, see further sections
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Gene Rank Stability (All 303 Chromosomes)
[ALL.Bioinformatics.Paper]:nearcent-mean-0,1-kfolds
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6.4.4 Are all genes included in a chromosome contributing to the
model accuracy?

The chromosome size is fixed by an initial parameter in GALGO. This intplas
some of the genes selected in the chromosome could not be contributing to the
classification accuracy of the correspondent model. GALGO offers the pogdbilit
identify these genes and remove them from the chromosomes. This can be done after
the selection is completed or within the selection process itself. In orgerfeom

this task we have implemented a backward selection procedure. The methodology
works as follows. A given gene is removed from the chromosome. The clagsificat
accuracy of the resulting shorter chromosome is then computed. If this esinoed,
another elimination cycle is performed. If the Classification accusmduced the
gene is left in the chromosome and another elimination cycle is performedluntil
genes have been tested.

In order to perform this procedure type:

> rchr <- lapply(bb.nc$bestChromosomes[1:300],
robustGeneBackwardElimination, bb.nc, result="shortest")

The distribution of the size of the refined chromosome population can be plotted
using the following function.

> barplot(table(unlist(lapply(rchr,length))),
main="Length of Shortened Chromosomes")

Length of Shortened Chromosomes

200
)

150
L

100
L

Figure 14 Refinement of the chromosomes.

The plot shows that a large proportion of the chromosomes require all five genes t
accurately classify the samples.

6.5 Step 4 - Developing Representative Models

The GA procedure provides us with a large collection of chromosomes. Although
these are all good solutions of the problem, it is not clear which one should be chosen
for developing a classifier, for example, of clinical importance or for bicdbgic
interpretation. For this reason there is a need to develop a single model that is, to
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some extent, representative of the population. The simpler strategy to follow és to us
the frequency of genes in the population of chromosomes as criteria for inclusion in a
forward selection strategy. The model of choice will be the one with the highest
classification accuracy and the lower number of genes. However GALGO@is® st
alternative models with similar accuracy and larger number of genes. Heggtr
ensures that the most represented genes in the population of chromosomes are
included in a single summary model.

This procedure should be applied to the population of chromosomes generated by
initial GA search. However, it can also be applied to the population of chromosomes
that is the result of backward selection procedure explains in the previous plaragra

The forward selection model can be generated by typing:

> fsm <- forwardSelectionModels(bb.nc)

> fsm$models
> ?forwardSelectionModels.BigBang # Help System

Models Using Forward Selection
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Figure 15 Forward selection using the most frequent genes. Horizontal axis represents
the genes ordered by their rank. Vertical axis shows the classification accuracy. Solid
line represents the overall accuracy (misclassified samples divided by the total number
of samples). Coloured dashed lines represent the accuracy per class. 1 model resulted
from the selection whose fitness value is maximum (black thick line), but 29 models
were finally reported because they were very similar in absolute value.
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Figure 15 shows the result of thest models from the most frequent genes using a
forward selection strategy. Model labelled as 12, containing the most 33 frequent
genes, was the best model in terms of accuracy. To visualize this model imaghea
plot use the following code.

> heatmapModels(bb.nc, fsm, subset=12)

Details for visualization of models (or chromosomes) are given in section 6.6 and
GALGO manual.

In order to generate the forward selection model of the population of refined
chromosomes is slightly more complex. Firstly, we need to compute the gene
frequency using the refined chromosomes, as follows.

> rchr <- lapply(bb.nc$bestChromosomes[1:300],
robustGeneBackwardElimination, bb.nc, result="shortest")
> rgf <- compCount(rchr, bb.nc$saveGeneBreaks)

> rfsm <- forwardSelectionModels(bb.nc,
genelndexSet=order(rgf,decreasing=TRUE)[1:50])

The gene signatures associated to the resulting model(s) can be visuatigdtats
maps, PCA plots, or gene expression profiles (see section 6.6).

The classification accuracy of the summary models can be plotted using the code
below:

> plot(bb.nc, type="confusion”,
chromosomes=list(fsm$models[[1]]))

Or in a tabular format:

> cpm.1 <- classPredictionMatrix(bb.nc,
chromosomes=list(fsm$models[[1]]))
> cm.1 <- confusionMatrix(bb.nc, cpm.1)

Semsitivity and specificicy can also be computed using the following commands

> mean(sensitivityClass(bb.nc, cm.1))
[1] 0.9863334
> mean(specificityClass(bb.nc, cm.1))
[1] 0.9965833

6.6 Visualizing Models and Chromosomes

Gene signatures associated within individual chromosomes or in a representative
model (derived by forward selection) can be visualised in GALGO using a humber of
graphical functions. In this section, we will demonstrate the use of heat nthps a
PCA. For, the typical heat map format, use the following commands.
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> heatmapModels(bb.nc, fsm, subset=1) # forward
> heatmapModels(bb.nc, bb.nc$bestChromosomes[1])

The results are shown in Figure 16
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Figure 16 Heatmaps. From a model resulted from forward selection (A) and an original
evolved chromosome (B).

In order to visualise the relation of samples using the genes selected in a cmemos
or in a representative model we can also use principal component analysis
representation. In order to do this, type the following command (Figure 17).

> pcaModels(bb.nc, fsm, subset=1)
> pcaModels(bb.nc, bb.nc$bestChromosomes[1])

By default, only the first four components are shown, which can be changed
specifying thenpcparameter.

" Remember that the hierarchical clustering of sasiglven in the heat map is the product of an
unsupervised algorithm, which may differ from thassification method of our choice. Therefore, the
relative sample order in the heat map, the origiteds, and the predicted class by the model niay al
be different. Nevertheless, many of the times hikearchical clustering gives a good overview.
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Figure 17 Depiction of a model (left) and a chromosome (right) in PCA space.

6.7 Predicting Class Membership of Unknown Samples

An important feature of models developed using GALGO is their ability to make
predictions. Models developed in GALGO can be used to predict class membership
from an independent set of samples. The following code exemplify how make
predictions in a new or independent dataset for all chromosomes collected in the
BigBang object. This example uses a dummy dataset collected from the sarfor dat
illustrative purposes.

> data(ALL)

# dummy data: the first 15 samples from original ALL data
# which must be EMLLA(E2A-PBX) class

> dummy <- ALL[,1:15]

> ?predict.BigBang

> cpm <- predict(bb.nc, newdata=dummy,
func=classPredictionMatrix, splits=1:10)

> cpm

> plot(bb.nc, cpm, type="confusion")

In the above codelummywas temporally appended to the original data. Then
classPredictionMatrixvas run for all chromosomesplitsis a parameter used in
classPredictionMatriXwhich was used to illustrate the use of user parameters for any
function specified ifunc). The result of the plot is shown in Figure 18 where the new
data was labelled as “UNKNOWN?”. The black bars in these samples indicate tha
they were predicted as EMLLAas expected).

To predict new data using an individual model, we may useldélssPredictionMatrix

methodusing thechromosomeparameter (see ?classPredictionMatrix.BigBang),
such as in the following code.
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> cpm <- predict(bb.nc, newdata=dummy,
func=classPredictionMatrix, chromosomes=fsm$models[1])
> cpm

> plot(bb.nc, cpm, type="confusion")
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Figure 18 Class prediction for unknown samples (the last 15 samples in the right).

6.8 Biological Interpretation of Genes Selected in Models

Statistical models can be used for classification purposes (e.g. to ideaghodiic
markers) but are also a useful source of biological information. For th@nrdes
biological interpretation of these models can provide an insight in the molecular
mechanisms behind the biological system. In order to identify associatioreebetw
the collections of models with functional pathways we have mapped the 50 most
represented genes in the model population on the Ingenuity database using the web-
based Ingenuity pathway analysis tool (Ingenuity® Systems, www.ingerunt).c
This database store maps of canonical functional pathways and functional
relationships supported by published literature and by protein-protein interaction
data.We found that genes selected in our models are significantly enriched in four
interaction networks (table 1). Table 1 also show functions that are signyficant
enriched. Table 1 show that all networks are characterised by cell delatlay cel
growth, and cellular division. A particularly interesting network (network 1hleta
and Figure 19) connects I31to five other genes that are selected with high
frequency in the models. ILBlis an essential regulator of proliferation in leukaemia
and has been demonstrated that the ability of cells to respond to this stimuli is
predictive of disease outcome (Ezakil, 1995; Hulkkoneret al.,2000). These
results exemplify the interpretation of classification models can be uedriolate
biologically interesting hypothesis.

26



Trevino and Falciani GALGO Supplementary Material

Selected
# Genes Score Genes Top Functions
BAK1, BCL2, BNIP3, CABP1, CDX-D24, 21 13 Cell Death,

CD44, CTGF, defb4 (human), ENPPELTS3,
FLT3LG, GCH1, H2-D1, IL15|L 1B, IL1RAP,
INSR, IRF4, ITPR3, MX1, NFATC2, OGN,
PDCD4, PHLDA1PRKCQ, PTP4A1PTPRK,
RPS3A, SEPP1, SF1, SLC20AICFLS5,
TMA4SF2, ZFP36L1

ALOX5, ALOX5AP, CBFA2T3, CCNEL1, 19 12
CD3E, CDKN2B, CTNNAL,E2F5, ERG,

F13A1, FLT3LG, FOXG1B, FUT7, HDAC1,

HOXD3, IGFBP7, IGL@, IL4,ITPR1, MEFV,

NEDD?9, PBX1, PHB, PKNOX1POU2AF1,
POU2F2PRKCH, RAG1, RAG2, SCN2A1,

SMADS5, SMADG6, SPI1, TGFB1, TGIF

BIK, COL4A1, ENPP2FNBP1, H2-D1, 15 10
HAMP2, HAS1, HPSE, IL6, IL13, IL1F6, LIR9,

LTB, LY86, MYOD1, NEDD9, P53AIP1,

PARP2, PSMB4PTP4A3, PTPRE, SCHIP1,

SIVA, SLA, Slcola4SMAD1, SRC,TERF2,

TERF2IP, TINF2, TNFTNFRSF7, TNFSF7,

TPS53, XRCC5

ACTN1, APS, BLK,BLNK, BTK, CAMK2A, 13 9
CD9, CD19, CD22, CD38CD72, CD81,

CD79A, CD79B, CDK5R1, CKLFSF3, CR2,

GRN, HRAS, ITGAL, ITGB4L.RMP, MAPK1,

MCP, NROB2,PDLIM1, PLCG2,PPM 1F,

PTGFRN, RHOB, SCNN1ASH3BP5, SPARC,

VAV2, VIM

Cellular Development,
Cellular Growth and

Proliferation

Cellular Development,
Cell Death,
Hematological System
Development and

Function

Cell Cycle,
Cell Death,

Hematological Disease

Hematological System
Development and
Function,

Immune and Lymphatic
System Development
and Function,

Tissue Morphology

Table 1. Significant Networks.
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Figure 19 Interaction Network. IL-1B is bolded in blue whereas its interactions are
highlighted in green. Genes shaded in red are included in the top 50 representative
genes. Interaction are interpreted both as protein-protein interactions and transcription

interaction (such as transcription factors) supported by literature. Network 1 from table
1.
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Appendix A
A Comparison between GALGO and Univariate
Variable Selection Methods

A.1 Background

The development of statistical models linking the molecular state of a dsll to i
physiology is one of the most important tasks in the analysis of Functional Genomic
data. Because of the large number of variables measured a comprehensiveevaluat
of variable subsets cannot be performed with available computational resaurces. |
follows that an efficient variable selection strategy is required. Marigelection
strategies can be subdivided into univariate and multivariate methods. Univariate
approaches test one feature at a time for their ability to discriminkgpesndent
variable. The top most significant features are then used to develop a statistea
(see schematic representation in Figure 1A). Multivariate approadassimdo
consideration that variables are influencing a biological outcome in the cohtext
networks of interacting genes rather than in isolation and can take into comnsnderat
synergy between genes, proteins, or metabolites. Although these approaehes ha
been very successful there are still issues in the development of multivaoiddés

from large datasets. These issues are related to the extremelydarger of possible
models that would need to be evaluated to identify the most predictive. In order to
address these issues, a number of variable selection strategies havesblepede

and tested on functional genomics datasets. Among these Genetic Algaftbear

to be very efficient in large scale datasets. For this reason we have @evelop
GALGO, a software environment to develop and evaluate multivariate statistica
models that uses a genetic algorithm variable selection strategy (EBjure

In this Appendix we report the results of a comparison between two common
univariate variable selection strategies (F-statistic and d-&tatisth GALGO in
association with a number of classification methods. The models we have developed
have been analysed in respect to classification accuracy, number of geresl tequi
achieve the highest classification accuracy and the identity of the ggleeted in the
models. In order to make sure that our comparison is of general validity we ledve us
three different datasets.

Our results support the use of multivariate variable selection in developiistcth
models and in particular support the use of GALGO as a general software
environment for model selection.

A.2 Methods

Variable selection: In this comparison we have used three variable selection
strategies. These are: The F test, d statistics and Genetic Algorithms

Classification methods. We have compared F statistics and Genetic Algorithms with
the following methods: 1) Diagonal Linear Discriminant Analysis (DLDA)*, 2)
Support Vector Machines (SVM), 3) Random Forest (RF) and 4) K-Nearest-
Neighbours (KNN). We have also compared the established tool PAM (d-ssaitisti
combination with nearest centroid) with Genetic Algorithm in combination with
nearest centroid (NC).
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Construction of a representative model: To generate a representative model we
used a Forward Selection (FS) strategy in both multivariate and univaoale
selection. Briefly, an initial model is created using the first two genesdroordered
list of genes (using p-values or d-statistic for univariate variablets®ieor gene
frequency using GALGO). Then, the model is assessed using a classifroatiood

to estimate the classification error. Subsequently, the model is lengthehdtewit
next gene in the ordered list and the resulted model is re-assesed. Thi®cinles
until all genes in a list have been included. The model whose classification ¢ner is
lowest is chosen. In the case of draw, the smallest model is selected.

Method specific gene signatures: To determine the degree of overlap between the
different models at a gene identity level we have build a pool gene satntogthe
genes from the models generated with all five methods. For each gene in a given
model, we counted the number of times it appears in the pool set. Genes appearing
only once were defined as model-specific.

| mplementation: To develop classifiers with a univariate variable selction strategy
(F- or d-statistics) we have used the Web based tool TNASAS (Vaqueriahs et
2005) qttp://tnasas.bioinfo.cipf.¢swhich is part of the Gene Expression Pattern
Analysis Suite (GEPASittp://gepas.bioinfo.cipf.@sAll classification methods tested
in combination with genetic algorithms have been used in the GALGO
implementation with default settings with the addition of a backward seleatijpn st
for model enhancement (see paragraph 5.5 of the supplementary material for a
description of the procedure). The representative models were developed from 1,000
chromosomes.

* NOTE: The MLHD method weimplemented in GALGO isequivalent LDA.

A.3 Datasets

ALL-Subclasses Dataset (ALLS): This dataset, developed by Yestal. (Yeohet

al. 2002), describes the expression profile of 327 acute lymphoblastic leukaemia
(ALL) patients representing 7 different disease sub-classes. The authersised
Affymetrix GeneChips. In this comparison we have selected the five lafgsses
(EMLLA', Hyp+50, MLL, T, and TEL including respectively 27, 64, 20, 43, and 79
samples). The original dataset downloaded from
http://www.stjuderesearch.org/data/ALL1/ comprising 12,600 genes have been
filtered to eliminate the most invariant genes (original E2A-PBXsaless renamed

to EMLLA). The standard deviation and difference between maximum and minimum
expression value were calculated for each gene. The genes were rankeé by thes
values, and if they were within the top 15% for either, were selected for further
analysis. The dataset after filtering contained the expression valut43&rgenes.
ALL-AML Dataset (ALL/AML): This dataset, developed by Goletb al. (Golubet.
al., 1999) describes the transcriptional state of 47 acute lymphoblastic leukaemia
(ALL) and 25 acute myeloid leukaemia (AML) patients. Data were processed as i
the original publication. Briefly, intensity values were re-scaled sudlotteaall
intensities for each chip are equivalent. This was done by fitting a lirgrassgon
model using the intensities of all genes with "P" (present) calls in bothrgshsdmple
(baseline) and each of the other samples. The inverse of the "slope" of &ine line
regression line becomes the (multiplicative) re-scaling factor farutrent sample.
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This was done for every chip (sample) in the dataset except the baseline whigh get
re-scaling factor of one.

A further processing step was performed to eliminate genes that werdeuédeéen

the majority of the samples. For this reason we filtered out every genveetteanot
expressed (Flagged as M or A) in more then 80% of the samples.

Breast Cancer Dataset (BC): This dataset was developed by van 't Vetal. (van 't
Veeret al., 2002) and represents 78 patients subdivided in two groups with different
clinical outcome (44 patients with no metastases developed within the firgeive
versus 34 patients positive for metastases within the first five yeata)wese
normalized as described in the original publication. Genes with a p-value (Confidence
level that a gene’s mean ratio is significantly different from 1) fatgen 0.001 in all
samples were filtered out.

A.4 Results

Table 1, 2 and 3 show the result of the analysis performed using GALGO with five
different classification methods (NC, KNN, SVM, MLHD, RF) on three dasaset

(BC, ALL/AML, ALLS). The tables report the classification accuracyl model size

for the best representative models developed using forward selection and for the top
five individual chromosomes selected by the GA search. The table show that in all
cases GALGO can identify accurate models of a relatively smell siz

Table 4, 5, 6 and figures 1, 2, and 3 summarize the result of the comparison between
GALGO and univariate variable selection strategies. IiBti@ast Cancer dataset

(table 4 and figure 1) GALGO produced models with higher classification accuracy
regardless of the classification method used. The size of the models developed with
GALGO (table 4 and figure 1) was generally smaller than the models developed with
the univariate variable selection strategy. The largest difference theimgodels
developed with the KNN method (these require 2920 genes with univariate model
selection and 31 genes with GALGO).

In theALL-AML dataset (table 5 and Figure 2) the classification accuracy of models
developed with univariate and multivariate models was comparable (Galgo gave
models in the range between 3% and 10% of error whereas the univariate methods
gave models with error in the range between 3% and 7 %). However, the models
developed using GALGO were markedly smaller in size (a range of 4 to 49 genes
respect to 79 to 1697 in the univariate variable selection) (table 5 and figure 2).

In the ALL-Subclasses dataset (table 6 and Figure 3) GALGO generated either model
with comparable accuracy (the maximum difference in classiic@ccuracy was

2%) or higher accuracy respect to univariate models (1% against 17% using Random
Forest and 1% against 13% with NC). As in the other datasets the size of the models
developed using GALGO was markedly smaller then models developed with
Univariate methods (the range of model size in this dataset was betweegdd a
whereas the range of model size in the univariate selected models was betarén 75
1697).

In two of the datasets the model size is dramatically different makingusbthat
multivariate models are very effective in identifying different geneetsbin the

Breast Cancer dataset gene sets are of a more comparable size. Table rizeumna
overlap in gene composition of the models developed with the different methods in
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Breast Cancer dataset. These results suggest that multivariate etedsbis tend to
give very different gene subsets respect to the univariate variablesesttegy. In
interpreting these results however we should take into account that thecatiesifi
error of models developed from univariate variable selection strategiesevyasw.

A.5 Discussion

The models we have developed have been analysed in respect to classification
accuracy, number of genes required to achieve the highest classificatioacgcand
the identity of the genes selected in the models. All these factors areantport
determining the usefulness of a methodology. High classification accuracy it i
obviously a very desirable property but in order for the models to be biologically
interpretable and of practical use it is also important that the gene seaisageable
size. The identity of the genes is also a very important factor. One of the redisons
multivariate methods may be a good option is that they allow the identification of
genes that contribute to a biological effect in association. These could not be
discovered by univariate variable selection methods where every genedsitest
isolation. If univariate and multivariate approaches provide models with comparable
classification accuracy but with different genes then the two approaahesdbe
considered complementary as they are likely to represent different underlyi
biological processes.

Our results shows that the methodology we have implemented in the R package
GALGO tends to produce models with comparable or better classificatioraeesur
respect to univariate variable selection strategies. The multivagiatdesd models
generally use a smaller number of genes than univariate models in sdltda@tad

with all the methods we have tested. This results support the use of a multivariate
model selection strategy in the analysis of functional genomics data and in
particularly support GALGO as a general tool.
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BREAST CANCER (2 Classes)

Method KNN SVM NC MLHD RF
Model Size Error Size Error Size Error Size Error Size Error
GA+FS 1st 32 016 12 017 35 015 4 0.18 47 0.17
GA+FS 2nd 33 016 9 018 11 0.15 - - 37 0.18
GA 1st 5 020 5 0.17 5 018 5 017 5 0.18
GA 2nd 5 021 5 018 5 019 5 0.18 5 0.24
GA 3rd 5 022 5 019 5 019 5 0.18 5 0.24
GA 4th 5 022 5 019 5 019 5 019 5 0.25
GA 5th 5 022 5 0.20 5 019 5 019 5 0.25
GA+BE+FS1st 31 0.15 12 017 23 014 4 0.18 40 0.18
GA+BE+FS2nd 32 0.15 - - 9 0.15 - - 14  0.19
GA+BE 1st 5 021 5 0.17 3 0.17 4 0.17 4 0.18
GA+BE 2nd 3 021 4 0.17 4 0.17 3 0.17 3 0.23
GA+BE 3rd 4 021 2 0.18 3 0.18 4 017 2 0.24
GA+BE 4th 4 021 2 018 5 0.18 4 0.18 4 0.24
GA+BE 5th 3 022 2 0.18 4 0.18 3 019 3 0.24

Table 1. (Appendix)

Abbreviationsfor all tables:

GA - Genetic Algorithms, FS — Forward Selection, BE — Backward Elimination.
DLDA — Diagonal Linear Discriminant Analysis, PAM — Shrunken Centroids, PAMR
— Shrunken Centroids R package, KNN — K-Nearest-Neighbours, SVM — Support
Vector Machines, NC — Nearest Centroid, MLHD — Maximum Likelihood
Discriminant Functions, RF — Random Forest.
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ALL-AML Dataset (2 Classes)

Method KNN SVM NC MLHD RF
Model Size Error Size Error Size Error Size Error Size Error
GA+FS 1st 42 006 50 007 37 005 9 0.14 47 0.08
GA+FS 2nd 37 006 23 007 24 006 17 0.14 45 0.08
GA 1st 5 011 5 0.07 5 013 5 010 5 0.12
GA 2nd 5 012 5 011 5 015 5 0.10 5 0.15
GA 3rd 5 013 5 011 5 015 5 011 5 0.15
GA 4th 5 013 5 012 5 015 5 012 5 0.16
GA 5th 5 013 5 013 5 015 5 012 5 0.16

GA+BE+FS1st 45 004 25 006 29 003 13 0.12 49 0.07
GA+BE+FS2nd 40 005 24 006 27 003 34 013 32 0.08

GA+BE 1st 3 0.08 4 0.07 2 012 4 0.10 2 0.12
GA+BE 2nd 3 0.09 3 011 2 012 5 0.10 4 0.14
GA+BE 3rd 3 011 5 011 5 0.13 4 011 4 0.15
GA+BE 4th 3 0.11 3 012 4 014 4 011 5 0.15
GA+BE 5th 4 012 3 012 3 0.15 2 011 4 0.16

Table 2 (Appendix)
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ALL-Subclasses Dataset (5 Classes)

Method KNN SVM NC MLHD RF
Model Size Error Size Error Size Error Size Error Size Error
GA+FS 1st 47 000 10 002 50 001 23 001 14 o0.01
GA+FS 2nd 13 001 9 003 16 002 15 0.02 10 0.02
GA 1st 5 006 5 005 5 006 5 0.06 5 0.08
GA 2nd 5 006 5 005 5 007 5 006 5 0.08
GA 3rd 5 0.06 5 005 5 007 5 006 5 0.08
GA 4th 5 0.06 5 0.06 5 007 5 006 5 0.08
GA 5th 5 0.06 5 006 5 007 5 006 5 0.09
GA+BE+FS1st 47 0.00 10 002 50 001 20 001 19 o0.01
GA+BE+FS2nd 13 0.01 9 003 16 0.02 15 0.02 10 0.02
GA+BE 1st 4 0.06 5 005 5 0.06 5 0.06 4 0.08
GA+BE 2nd 5 0.06 5 005 4 0.07 5 0.06 4 0.08
GA+BE 3rd 4 006 5 006 5 007 5 0.06 4 0.08
GA+BE 4th 5 006 5 006 5 0.07 4 0.06 5 0.09
GA+BE 5th 4 006 4 006 5 007 5 0.06 5 0.09

Table 3 (Appendix)
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BREAST CANCER (2 Classes)

Model Selection  Optimal Model
Gene Selection +Classifier Size  Error
F-statistic (univariate) FS+DLDA 2 0.32
F-statistic (univariate) FS+SVM 5 0.36
F-statistic (univariate) FS+RF 10 0.35
F-statistic (univariate) FS+KNN 2920.44
d-statistic (univariate) FS+PAM 51 0.36
GALGO+MLHD (multivariate) BE+MLHD 4 0.17
GALGO+SVM (multivariate) SVM 5 0.17
GALGO+RF (multivariate) FS+RF 47 0.17
GALGO+KNN (multivariate) BE+FS+KNN 31 0.15
GALGO+NC (multivariate) BE+FS+NC 23 0.14
Table 4 (Appendix)
ALL-AML (2 Classes)
Model Selection  Optimal Model
Gene Selection +Classifier Size  Error
F-statistic (univariate) DLDA 500 0.06
F-statistic (univariate) SVM 120 0.04
F-statistic (univariate) RF 500 0.03
F-statistic (univariate) KNN 75 0.07
d-statistic (univariate) PAM 1697 0.06
GALGO+MLHD (multivariate) ~BE+MLHD 4 0.10
GALGO+SVM (multivariate) BE+FS+SVM 25 0.06
GALGO+RF (multivariate) BE+FS+RF 49 0.07
GALGO+KNN (multivariate) BE+FS+KNN 45 0.04
GALGO+NC (multivariate) BE+FS+NC 29 0.03

Table 5 (Appendix)
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ALL-Subclasses (5 Classes)

Model Selection  Optimal Model
Gene Selection +Classifier Size Error
F-statistic (univariate) DLDA 200 0.02
F-statistic (univariate) SVM 75 0.00
F-statistic (univariate) RF 1000 0.17
F-statistic (univariate) KNN 120 0.01
d-statistic (univariate) PAM 439 0.13
GALGO+MLHD (multivariate) BE+FS+MLHD 23 0.01
GALGO+SVM (multivariate) FS+SVM 10 0.02
GALGO+RF (multivariate) FS+RF 14 0.01
GALGO+KNN (multivariate) FS+KNN 47 0.01
GALGO+NC (multivariate) FS+NC 50 0.01

Table 6 (Appendix)
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BREST CANCER
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ALL-AML

Classification Error
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ALL-Subclasses

Classification Error
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Percent of

Method-Specific Method-Specific
Method Model Size Genes Genes
F+DLDA 2 0 0%
F+SVM 5 0 0%
F+RF 10 0 0%
F+KNN 2920 - -
d+PAM 51 38 75%
GA+BE+MLHD 4 50%
GA+SVM 3 60%
GA+FS+RF 47 32 68%
GA+BE+FS+KNN| 31 11 35%
GA+BE+FS+NC | 23 11 48%

Table 7 (Appendix)
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' Original E2A-PBX class was renamed to EMLLA.
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