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1 Introduction

S-PLUS is a powerful, extendible, environment for data analysis and graphics. The
“Standard Version” of S-PLUS provides access to the S-PLUS functionality through a
point-and-click GUI. The “Professional Version” of S-PLUS includes, in addition, access
to the S-PLUS command line and the capability to develop extensions to S-PLUS.
Extensions to S-PLUS may also include additions to the S-PLUS GUI (and this is the
way that the SPLIDA GUI was developed).

SPLIDA is a collection of S-PLUS extensions (both commands and GUI) for planning
and analyzing the data from some reliability studies (e.g., laboratory life tests,
accelerated life tests, warranty repair data, and other field data). SPLIDA has capabilities
for the analysis of censored life data, as well as repeated measures degradation data,
destructive degradation data, and recurrence data.

Most SPLIDA capabilities are available through the SPLIDA GUI (extensions to the S-
PLUS GUI). Thus, SPLIDA can be used with either the Standard or the Professional
versions of S-PLUS (but advanced users with the professional version have access to
additional functionality and the ability to make further extensions to SPLIDA/S-PLUS).

As an example, Figure 1 is a schematic diagram illustrating the steps that a user would
follow in the analysis of a data set.

SPLIDA Graphical User Interface (GUI)
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Destructive measures degradation data Simulation results

Figure 1 Schematic diagram of the SPLIDA GUI

An analysis starts with a data set, usually imported from an Excel file. This is read into
S-PLUS/SPLIDA, and used to create a data object. The data object can then be
conveniently analyzed in many different ways to create various graphical and tabular
outputs. There is an extensive set of user options to control the analyses and outputs.
Whenever it is possible, these choices have sensible defaults to reduce the amount of
effort that is needed to do a sequence of analyses. SPLIDA dialogs have been designed
carefully to guide users through an analysis.



The main part of this document uses a sequence of examples to describe and illustrate the
SPLIDA graphical user interface (GUI) for data analysis for many different kinds of data
and statistical models. A similar sequence of examples is used to illustrate the
corresponding test planning methods. The methods and analyses parallel closely the
methods and examples used in Meeker and Escobar (1998). There are, however, new
methods in SPLIDA, described here, that are not available in that book. The items in the
SPLIDA menu correspond approximately to the chapters in the Meeker and Escobar
(1998) textbook.

The Appendix contains an outline of the SPLIDA menu structure.

There appears to be a non-serious bug in the SPLUS GUI that causes the “ white” part
of a multi-select dialog from a back page of a dialog to appear sporadically when a
dialog first appears. By paging across the different pagesin the dialog, thiswill fix itself
without further difficulty.

2 Getting Started with SPLIDA

All SPLIDA data analyses require a data object. Life data analyses use a SPLIDA “life
data object.” A life data object contains, for a given data set, available information about
failure times (e.g., failure times, running times, intervals in which failures are known to
have occurred, etc.), time units (e.g., hours or days), explanatory variables (if any), and a
data-set title. Having all of this information in a life data object makes it much easier to
do various analyses on a particular data set. There are similar (but different) kinds of data
objects for recurrence data analysis and for degradation data analysis, as described in
subsequent sections of this document.

2.1 Example data sets and a simple example

For convenience of illustrating features of SPLIDA and for purposes of teaching courses,
SPLIDA has a large number of built-in data objects. Data objects are included for most of
the examples and many of the exercises in Meeker and Escobar (1998). The appendix
contains an index of and references for the original sources for these data sets.

To see how easy it is to do an analysis with SPLIDA, click SPLIDA » Single
distribution analysis » Probability plot with nonparametric confidence bands, to
bring the dialog in Figure 2. Choose from the list of SPLIDA life data objects (e.g.,
BearingCage. 1d, for the Bearing Cage data from Abernathy et al. 1983, also
analyzed in Example 8.16 of Meeker and Escobar, 1998). Now choose a distribution
(e.g., Weibull), click “Apply” and a probability plot, like that in Figure 3, will appear in
the graphics window.



Probability plot with nonparametric confidence inter — |EI |£|
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—Required —Some options

Life data ohject IElearingCage.Id vl Percent confidence lewel
|95
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Figure 2 Dialog to request a probability plot of the bearing cage data.
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Figure 3 Weibull probability plot of the bearing cage data.

2.2 Inputting data directly into S-PLUS: Creating a data set

In order to analyze your own data, you first have to enter the data into S-PLUS and
then create a SPLIDA life data object. It is easy to import from an existing file (e.g.,
and Excel file or a text file), as described in Section 2.4. For a small data set,
however, one can simply enter data directly to make a S-PLUS data set and then
create a SPLIDA data object.



Here we use the titanium crack initiation times described in Problem 6.7 of Meeker and
Escobar (1998). A sample of 100 specimens was tested until failure or 100 thousand
cycles, whichever came first. Among these, there were nine crack initiations (failures).
Choose Data P Select Data. Then choose the “New Data” option in the dialog, enter a
name for the data set (e.g. Prob6p7 for Problem 6.7), and click “OK.” A blank
spreadsheet will appear. Type the failure times “18, 32,..., 93" into the first column. In
the second column, type the word “Failure” in each row. Then add a last row with time
100 and the word “Censored.” We also need a column of “Weights” to indicate
observation multiplicity. Put “1” in all rows except the last, where you should put “91”
for the 91 censored units. The S-PLUS default names on the columns are V1, V2, and
V3. You can use these, but it is better to change them to something more meaningful.
Right-click on a column, choose properties, change the name, and click “OK”. Repeat
for other columns. After doing this, your spreadsheet (actually an S-PLUS data set)
should look something like Figure 4.

=

1 2 3 4 ) & 1=

keovcles Type Count —
1 18.00Failure 1.00
2 32 00Failure 1.00
3 39.00Failure 1.00
4 53.00Failure 1.00
5 59.00Failure 1.00
& &38.00Failure 1.00
7 77.00Failure 1.00
8 78.00Failure 1.00
= 93.00Failure 1.00
10 100.00Censored 91.00

4

Figure 4 Worksheet for inputting or editing data by hand.

Users can also easily import a data set from an Excel worksheet or from a text file (as
shown later).

Before doing life data analyses (e.g., when the response is time to failure) with SPLIDA,
one needs to make a SPLIDA life data object (in effect, defining the purpose of the
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columns in the data and adding other important information like a title and time units).
Once constructed, the life data object can be analyzed using different SPLIDA methods
(without having to re-specify all of the detail for each analysis).

Note the distinction between S-PLUS data sets (like the one just created) and SPLIDA
data objects (to be created from the SPLUS data set in the next section).

2.3 Creating a life data object
A SPLIDA data object is constructed by choosing an S-PLUS data set containing the
raw data, specifying which column is the response and, as needed or desired,
specifying a title for the data, units of the response, and making other choices. Once a
data object is created, the corresponding data can be analyzed repeatedly without
having to repeat the often-complicated characteristics of the data.

From the S-PLUS menu bar, choose SPLIDA » Make/summary/view/edit data
object » Make life data object to bring up the dialog shown in Figure 5.

Make a life data object - |EI |£|
Basic | Output options | Censor D | Storage |
—Required inputs —Choose explanatory variahle(s)
Choose an 5-Flus data set Use Cirl key to select multiple vars
|| vl
Fesponse(s) — —
v -
—Optional inputs — Truncation inputs
Censoring identifier calurmmn Truncaticn |2 I VI
I :,v Eesponse(s] —
Failure mode identifier
I jv
v
YWyEights I VI
—Mote to describe data set————————————
Fesponys uriis I Use right-hutton zaom for easy editing
[Warme af resulting lite data ohject I
Title for data inthe life date chject

QK Cancel Appl <] > current Hel
I | pply | || | p |

Figure S Blank (initial) dialog for making a SPLIDA life data object.

Clicking on the “Choose an S-PLUS data set” pull-down arrow will show S-PLUS data
sets in the SPLIDA database and in your working database. Data sets for most of the
examples in Meeker and Escobar (1998) and many other examples from the reliability
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data analysis literature are included on the SPLIDA database. ASCII text data sets are
also given in one of the SPLIDA folders (SPLIDA_text data). Choose the data set
Prob6p7 from the list. After one chooses a data set, SPLIDA will use the column names
in that data set to make lists of variables for other dialog inputs. Choose the response
column (named “kcycles” in the Prob6p7 titanium crack initiation data set). Then choose
the response (kcycles), the censoring indicator (Type), and weights (Count). Then click
“Apply” (or “OK”). In the commands or report window, you will get a brief summary of
the data.

The default name for the life data object is Prob6p7.1d. The Prob6p7 data set also has a
“Count” column indicating observation multiplicity. The Prob6p7 data has no failure
mode column, explanatory variables, or truncation. A note can be added to the life data
object. There is no limit to the length of this note; the note is printed when a summary of
the data object is printed.

In order to simplify use, SPLIDA chooses, when possible, sensible defaults for inputs,
but allows the user to easily change these if desired. The final dialog for mapping the
Prob6p7 data set into a life data object Prob6p7.1d is shown in Figure 6.

Make a life data object - |EI |£|
Basic | Output options | Censor D | Storage |
—Required inputs —Choose explanatory variahle(s)
Choose an 5-Plus data set Use Cirl key to select multiple vars
IProbe? vl
Fesponse(s) = =
v -
—Optional inputs — Truncation inputs
Censoring identifier column Truncation 1D INDne VI

IType :,v Eesponse(s]

Failure mode identifier

INDne VI

Weights ICount VI
—Moteto describe data set——————————————

REspEmES il Ikcycles Use right-button zoom for easy editing
Mame of resulting life data object I

IProbe?IId
Title for data in the life data ohject

IProbe? data

0K Cancel Apply [<| »|| current Help
| | | A |

Figure 6 Dialog to make a life data object.

Now when you launch the analysis dialog by using SPLIDA » Single distribution
analysis » Probability plot with nonparametric confidence intervals (see Figure 7)
Prob6p7.1d will appear in the list of life data objects (actually, if it was just created,
SPLIDA will remember it and chooses it as the default in this list). Now choose a
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distribution (e.g., Weibull), click “Apply” and the probability plot shown in Figure 8 will
come up in the graphics window.

Probability plot with nonparametric confidence in - IEI |£|
Basic | Flot options | Modify plot axes |
—Required —Some options

Life data object IPrDbEp?.Id vl Percent confidence lewvel
Fefresh list(s) I%

Mumber of digits in tables

Option ¢ Choose dist |47
B distributions
Sawve results in I.Iast.cdfest

ﬂ —Monparametric COF estimates
[~ Frinttable

Distribution

—all life data ohjects
[~ Include in life data ohject list

Ok I Cancell Applyl |<|>| current Help |

Figure 7 Dialog to request a probability plot of the titanium crack initiation data.
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Figure 8 Weibull probability plot of the titanium crack initiation data.

In this and the other SPLIDA dialoges, there are other options on the “back” pages of the
dialog, but we do not need to use them at this time. Generally, the required and
frequently-used options are on the front page, with less frequently needed options on the
back pages. In this documentation, the focus will be on the required and other most
important inputs for SPLIDA. Users are encouraged to experiment with the options on
the back pages. These options are, for the most part, self explanatory and, as much as
possible, their operation is consistent across different SPLIDA dialogs.
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2.4 Importing data from Excel and text files

S-PLUS has powerful tools for importing rectangular data sets (in which rows are cases
and columns are variables) into a data set. For example, to import data from an Excel
worksheet, into a data set, use the following:

(a) From the S-PLUS File menu, choose Import Data » From File... This will
bring up the “Import Data” dialog.

(b) Under “File format:,” select “Excel Worksheet (x1?).”

(c) Choose the desired file, using the Browse feature to switch folders, if needed.

(d) The name of the data set can be changed from the default name (aaaa if the Excel file
is aaaa.xls).

(e) Click “Apply” to import the file into the S-PLUS data set object.

Importing from a text (or ASCII) file is similar, except that one needs to specify “.txt”

files (or “All Files”), choose the appropriate column delimiters, and specify whether the

first line in the file contains column names.

See the S-PLUS documentation for more details and other options.

2.5 Graphics options and color schemes in SPLIDA

S-PLUS allows the user to have control over various graphics options. Although it is not
necessary for the beginner, frequent users of S-PLUS or SPLIDA will want to become
familiar with the available options. Some modifications of the default options have been
implemented in the .Prefs file that comes with SPLIDA.

The default color scheme in SPLIDA has been changed from “Standard” to “Cyan
Magenta.” This option provides a much better (sharper and less washed-out looking) set
of colors for SPLIDA graphics. The standard or other build-in options can be chosen
with Options » Graph Style» Color and changing the color option box.

Another useful option is to use Options » Graph Options and change “Graph Style”
to black and white. The SPLIDA default for the black and white graph style (which
differs from the S-PLUS default) uses just black on white, with no grey scales. The S-
PLUS standard black and white Graph option can be restored with Options » Graph
Styles » Black and White Style. And choosing Standard under User
Colors.

Under Options » Graph Options, the SPLIDA default for Auto Pages is “Every
Page” so that new pages automatically are added to a graphsheet as new plots are created.
This makes it easy to compare plots from different analyses. Delete unwanted pages by
right-clicking on the page number to be deleted.

2.6 Controling and locking SPLIDA plot axes

Many Splida dialogs have a Modify plot axes page like the one shown in Figure 9.

14



Probability plot with nonparametric confidence ir - IEI |£|

Basic Plot options | Modify plot axes |
—Axis limits Axis labels
[~ Change axis limits [ Change axis lahels
Specify lower endpoint ofix axis xaxis [ahel W
IAutomatic y avis lakel W

SRecify upper endpaint of x axis

IAuto matic

Speciylower endpoint of s axis

IAutomatic
Specify upper endpaint ofy axis

[atomaic
Cancell Applyl |<|>|| current Help |

Figure 9 A typical Modify plot axes page of a SPLIDA dialog

This dialog allows the user take choose one of the four limits on the axes or to change the
axis labels.
Another SPLIDA feature allows the user to lock the axes of a sequence of similar plots.

The locking is turned on by clicking on the . (for Lock) icon on the tool bar. To turn off

locking, click on the . (for Unlock) icon. “Similar plots” are defined as plots that have
identical X scale axes , identical y scale axes (e.g., linear, log, or other transformation),
and the same titles on both the x-axis and the y-axis. This feature is useful when you want
to make direct comparisons between two or more plots and is much easier to do than the
method of specifying the axis limits directly in the a Modify plot axes page.

3 Changing SPLIDA Default Options

Under certain circumstances, users may want to change SPLIDA defaults. Many defaults
can be changed in individual dialogs (e.g. confidence levels in analysis routines). In
addition, there is a special dialog for making global changes to certain defaults and
controlling defaults cannot be controlled in individual dialogs.

3.1 Basic, plot, and print SPLIDA options

Using SPLIDA » Change SPLIDA default options will bring up the dialog
shown in Figure 10, allowing one to make global changes to the several of the SPLIDA
defaults options. Changes are effected immediately after chosen on the dialog pages (no
need to click on “OK” or “Apply”). Changes made when the “Save changes across
sessions” box is checked remain in effect in future SPLIDA sessions. To restore all of the
original SPLIDA defaults, click on the “Restore defaults” box.
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Change SPLIDA default options {preferences) — |EI |£|

Basic | Flot | Print | Cengor D | Misc |
SFLIDA default memory control——————— — Change SPLIDA basic defaults
[ Save changes across sessions Percent confidence level

Restore defaults | IBE

oK Cancel Apply [<] || current Help
I | | |

Figure 10 Basic page of the dialog for changing SPLIDA operation defaults.

The “Plot” page of the SPLIDA options dialog, illustrated in Figure 11, allows the user
to choose whether to date-stamp each plot (the default) or not. The “label or name on
plot” option allows some personalization in which the user can insert a company or
personal name on the plot.

Figure 12 shows the “Print” page of the dialog, which allows changing the default
number of digits used in SPLIDA tabular output, the default list of quantiles to be
estimated, and an option to print out the variance-covariance matrix of ML estimates
when such estimation is performed.
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Change SPLIDA default options {preferences) — |EI |£|

Basic Flot | Print | Cengor D | Misc |
— Change SFLIDA plot defaults ——————— — Other SPLIDA plot defaults
[~ Date on plots ¥ Solid lines for ploting cdf estimates
Lakel or narme an plot Relative point size in data plots

Title option IfuII vl —-l

1 200
Prabahility plot axis label nn

IFral:tiun Failing vl

[ Flotresponse on the x-axis

Murnber of contour plot grid points

|1DD

MNumber of ticks between axis plot lables

|4
Canu:ell Applyl |<|>| current Help |

Figure 11 Plot page of the dialog for changing SPLIDA default options.

Change SPLIDA default options {preferences) — |I:I |£|
Basic Flot | Frint | Censor 1D | Misc |
— Change SPLIDA print defaults ————— — Change SPLIDA guantile defaults ————
¥ Frint object surmary on $election Quantiles to be estimated

MNumber of digits in tables ID.DD1,D.DDE,D.D1,D.DE,

|4 Specify guantile of interest
v Long condition names I'1

[ Printwariance-covariance matrix

Cancell Applyl |<|>|| current Help |

Figure 12 Print option page of the dialog for changing SPLIDA operation defaults.

3.2 SPLIDA data-type aliases

SPLIDA maintains internal lists of names or aliases that can be used to identify
“exact failures” and three different kinds of censored observations: right censored,
left censored, and interval censored. These lists are used in creating a data object
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when there is a “Status” or “Censoring” identifer column (e.g., used to differentiate
between failures and censored observations). The default aliases for different kinds of
observations are:

e Exact failures: Fail, Failed, Failure, Dead, Died, Exact, E, F, Report, or the
number 1.

e Right censored: Alive, Censored, Censor, C, Noreport, R-Censored, Removed,
Right, R, S, Survived, Survive, Suspend, Suspended, Saturated, or the number 2.

o Left censored: L-Censored, Left, L, L-censored, left, Miss, or the number 3.
Interval censored: Bin, Interval, I, or the number 4.

These aliases are not case sensitive (i.e., you can use “fail” or “Fail”).

Change SPLIDA default options {preferences) - |EI |§|
Basic | Flot | Frint | Censor D | hisc |

—Change censoring type D strings

[ Change any censor D strings

[ ew failure namels) IFaiI.FaiIed,Failure,D

[New right censar namels)

IAIive,CenSDred,Cen

[New eft censar namerls]

IL—Censured,LefLL—u:

Newinterval censor narmels)

IEIin,IntewaI,bin,interv

Cancell Applyl |<|>|| current Help |

Figure 13 Dialog page allowing changes in the default aliases for observation
identification.

It is possible to add to or modify the default alias lists by using the “Censor ID” page of
the “Make life data object” dialog when creating a particular data object. Alternatively, it
is possible to make a persistent change (either for the current session or across sessions)
by using the SPLIDA » Change SPLIDA default options (preferences) menu
item and going to the “Censor ID” page. In either case, the dialog page looks like Figure
13. To edit an entry, check the “Change any censor ID strings” box and then right-click
on the list to be changed and choose zoom, to allow easy editing.

3.3 Other SPLIDA options
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Change SPLIDA default options (preferences) - |EI |£|

Basic | Plat | Print | Censar D | Misc |
—Change SPLIDA storage defaults — SPLIDA GUI
Fut relationship in results name Fe-create |
always hd
I 4 _I — Other SPLIDA options
I"' Create pointing data objects Check far insufficient data
—Model constants strang
Baltzmann/gas canstant units FPseudo random number seed
ey hd Istream VI
Debug lewvel off -

0K I Cancell Applyl |<|>|| current Help |

Figure 14 Misc page of the dialog for changing SPLIDA operation defaults.

The “Misc” page, shown in Figure 14, allows the user to choose other options. In
particular

Whether to include the regression relationship(s) as part of the name of ML
estimation results objects (the choices are: always, never, and multiple regression
only).

“Create pointing data objects” for which the main part of the data object is a
character string giving the name of the data set to use. By default, the main part of
the data object is the data set itself. Usually, the character string version will use
less memory, but require more execution time.

Recreate the SPLIDA GUI. This is most useful when a new version of SPLIDA
has been installed on your system, and for some reason, the automatic update
feature did not work. Clicking the Recreate button will modify the S-PLUS Prefs
directory in the current working folder.

Change the units for Boltzmann’s constant (or gas constant) used in the Arrhenius
relationship.

Choose the level of checking for data that are sufficient to provide unique ML
estimates. The decision rules used here are not perfect and are set, by default, to
“strong.” If you get a message that your data were not sufficient, you can try a
lower level of checking, but should watch the results carefully to make sure that
proper convergence was achieved.

Generally, the debug level should be set to “off.” Otherwise, SPLIDA will print
some level of extra information that is used only in debugging.
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4 Single Distribution Life Data Analyses

Analysis of data for the purpose of estimating a single underlying failure-time
distribution is the most common type of reliability data analysis. This chapter describes
methods for such analyses. Even when there are several different identifiable groups, it is
often desired to focus on one group or another or (when appropriate) to pool data from
different groups for analysis. Choosing SPLIDA » Single distribution life data
analyses shows the SPLIDA single distribution analysis options. For this series of
examples, we will use the turbin fan failure data (based on the diesel generator fan failure
data described on page 133 of Nelson 1982 and reanalyzed in Example 7.12 of Meeker
and Escobar 1998) , for which a life data object Fan.ld, is built into SPLIDA.

Figure 15 iS a snapshot of the SPLIDA » Single distribution life data analyses
part of the SPLIDA menu. The SPLIDA menu items (shown on the left) correspond to
different tasks/analyses (e.g., plan a life test, analyze single-distribution life test data,
compare two different populations, etc.). The SPLIDA submenu items (shown on the
right) are organized according to the order in which a complete analysis would be done,
typically starting with simple graphical methods and then progressing to model fitting,
graphical display of model-fitting results, and sensitivity analyses.
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SPLIDA (5-PLUS Life Data Analysis)

Copyright 1995-2003 W.Q. Meeker
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Figure 15 View of the SPLIDA menu showing the options for single distribution
analyses.

4.1 Event plot

For some data sets, an event plot provides a useful visualization of censoring patterns in
the data. Using SPLIDA » Single distribution life data analyses » Life data
event plot brings up the dialog shown in Figure 16.
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Life data event plot - |EI |£|

Basic |
—Required — Optional inputs
Lite data object Fan.|d - Haow to choose which of 37 to plot?

Refresh list(s) Al hd

—All life data objects

[~ Include in life data ohject list I
Title optian IfuII vl

v ‘Meights an the right of the plot

[ Show Lnit 1D

—Axis labels
" Change axis labels

¥ ais label IAutDmatic:
e s lakel IAutDmatic:

Ok I Cann:ell Applyl |<|>| current Help |

Figure 16 Dialog requesting a life data event plot for the fan data.

After choosing the Fan.ld life data object from the pull-down list, click “Apply” or “OK”
to see the event plot shown in Figure 17. Lines in Figure 17 ending in an * indicate
failures. Lines with a — at the end are units that had not failed at the time that the data
were analyzed. The numbers indicate the observation multiplicity for those observations
that have counts greater than one. In the case of the fan data, there is a complicated
pattern of reported failure times and right-censored observations resulting from the
different amounts of operating time for the systems in which the fans had been used.
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Figure 17 Life data event plot for the fan data.

4.2 Nonparametric estimation of the failure-time cdf

Using SPLIDA » Single distribution life data analyses » Plot
nonparametric estimate of cdf and confidence bands brings up the dialog in
Figure 18.
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Plot of nonparametric estimate of cdf and conficle — |EI |£|

Basic | Flot options |M0difyp|0taxes|

—Required —Some options

Life data object IFan.Id vl Fercent confidence lewel
|95
Refrash list(s)

- - Murnber of digits in tables

—All life data objects |4—
™ Include in life data ohject list

Sawve results in I.Iast.cdfest

—Monparametric COF estimates
" Printtable

Figure 18 Dialog for requesting a plot and table of the estimated fraction failing as a
function of time.

Then choose life data object Fan.1d (the only required input), put a check in “Print
table” and click “Apply.” This will produce a plot like that in Figure 19 and a table of
the nonparametric estimate and confidence intervals for the fraction failing as a function
of time. The estimates are computed using the Kaplan-Meier estimator. When data have
complicated censoring pattterns such as interval-censored observations with overalpping
intervals, the Peto/Turnbull estimator (a generalizationof the Kaplan-Meier estimator), is
used instead (as described in Section 3.10 of Meeker and Escobar 1998). Chapter 3 of
Meeker and Escobar (1998) describes the methods for computing nonparametric
estimates and corresponding confidence intervals/bands from censored data (including
complicated arbitrary censoring) and provides references and examples corresponding to
these SPLIDA capabilities.
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Figure 19 Plot of estimated fraction failing as a function of time for the turbine fans.

Table 1 provides a nonparametric estimate from the turbine fan data, along with standard
errors and approximate 95% pointwise confidence intervals.

Table 1 Kaplan-Meier nonparametric estimate of the fraction failing as a function
of time for the turbine fans.

Nonparametric estimates from Fan Failure Data
with approximate 95% pointwise confidence intervals

Hours-lower Hours-upper Fhat SE Fhat 95% Lower 95% Upper
1 0 450 0.00000 0.00000 NA NA
2 450 1150 0.01429 0.01418 0.002009 0.09449
3 1150 1600 0.04328 0.02444 0.014024 0.12577
4 1600 2070 0.05800 0.02815 0.021934 0.14459
5 2070 2080 0.09225 0.03607 0.041857 0.19121
6 2080 3100 0.10938 0.03925 0.052811 0.21291
7 3100 3450 0.12833 0.04274 0.065085 0.23742
8 3450 4600 0.14770 0.04597 0.078091 0.26173
9 4600 6100 0.17277 0.05100 0.094016 0.29593
10 6100 8750 0.20458 0.05812 0.113253 0.34122
11 8750 11500 0.29296 0.09804 0.140791 0.51166

When using SPLIDA, it is often better to click on “ Apply” rather than on “ OK” to
request an analysis. Then minimize the dialog to better see the results. This allows one to
modify the analysis easily; restore the dialog, make desired changes, click “ Apply,” and
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again minimize the dialog. When completely done with the dialog, click “ Cancel.” If one
uses“ OK” instead, it will be more difficult to modify previous analyses, as certain steps
in the analysis specification would need to be retraced. SPLUS allows one to choose a
previous dialog state by clicking on the buttons at the bottom of the dialog. When doing
this, however, S PLUS does not properly restore whether entriesin the dialog are active
or inactive

4.3 Probability plots and distribution assessment

Probability plots are one of the most important tools for reliability data analysis. The
ideas and concepts underlying probability plots, along with a large number of examples,
is given in Chapter 6 of Meeker and Escobar (1998). The basic idea is to plot a
representation of a nonparametric estimate of the fraction failing as a function of time
(traditionally, this estimate has been a set of points) on special distribution-dependent
nonlinear plotting axes on which the specified theoretical distribution would plot as a
straight line.

Use SPLIDA » Single distribution life data analyses » Probability plot
with nonparametric confidence bands to bring up the basic probability plot
dialog, illustrated in Figure 20. Again, choose the life data object Fan.ld, choose “6
distributions,” click “Apply,” and minimize the dialog. This will make a six-distribution
probability plot like the one in Figure 21, from which one can visually compare several
different distributions, including the popular Weibull and lognormal distributions.

Probability plot with nonparametric confidence - |EI |§|
Basic | Flot options | hodify plot axes |
—Reguired —Some options

Life data object IFan.Id vl Percent confidence level
IBE
Refresh list(s)

MNurmber of digits in tables

Option ™ Choose dist |4—
B distributions
Sawve results in I.Iast.cdfest

Distributian b distributions Ll —MNaonparametric COF estimates

—Alllife deta objects W [Print table:
" Include in life data ohject list

Ok, I Canc:ell Applyl |<|>|| current Help |

Figure 20 Dialog requesting the 6-distribution probability plots with (default)
simultaneous confidence bands.
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Figure 21 Six-distribution probability plots with simultaneous confidence bands.

Now, restore the dialog in Figure 20, change to “Choose dist,” and choose a particular
distribution (e.g., lognormal), and click “Apply.” This will create the probability plot,
shown in Figure 22, that will allow one to focus the reasonableness of the specified
distribution as a model for the data. By default, simultaneous confidence bands are also
provided. See Sections 3.8 and 6.3 of Meeker and Escobar (1998) for technical details,
references, and other examples of these simultaneous confidence bands.
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Figure 22 Lognormal probability plot with simultaneous confidence bands.

Chapter 6 of Meeker and Escobar (1998) provides theory and a detailed description of
methods for interpreting these probability plots. If one can draw a straight line through
the simultaneous confidence band, for the chosen distribution (lognormal in Figure 22),
then there are lognormal distributions that are consistent with the data. Then it is not
possible to rule out the possibility that the data were generated by a lognormal
distribution. One should, of course, try other distributions and compare the results.

4.4 Maximum likelihood estimation of the failure-time cdf

Using SPLIDA » Single distribution life data analyses » Probability plot
with parametric ML fit produces the dialog in Figure 23. This dialog allows the user
to request a probability plot showing the ML estimate for the chosen distribution (plotted
as a straight line) along with the data points usually plotted in the probability plot.
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Probability plot with parametric ML fit - |EI |£|

Basic | Flot options | kodify plot axes | Tabular output | Hazard |
—Reguired —Some options
Life data object IFan.Id vl " Fix shape parameter
Fefresh list(s) Which shiape parameter,
. . Isigma vl
Optian " Choose dist
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I-’-]
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Ok I Cancell Applyl |<|>|| current Help |

Figure 23 Dialog for getting a probability plot with an ML fit.

By default, SPLIDA also plots a set of normal-approximation 95% pointwise confidence
intervals. These intervals allow one to obtain a visualization of estimates of both failure
probabilities and distribution quantiles and the associated statistical uncertainty due to
limited sample size. The Hazard page of the dialog in Figure 23, shown in Figure 24,
allows the user also to obtain a plot of the corresponding parametric ML estimate of the
hazard function versus time. A table of the hazard function estimates and corresponding
confidence intervals can also be requested. The resulting probability plot with ML
estimates is shown in Figure 25 and the plot of the hazard function is given in Figure 26.
Chapters 2, 7 and 8 of Meeker and Escobar (1998) give the theory and methods for
understanding these functions and using the corresponding analyses.
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Probability plot with parametric ML fit - |EI |£|

Basic Flot options | hodify plot axes | Tahular output | Hazard |
—Hazard function estimate —————————  Awis limits
¥ Plat of the hazard functian: [~ Change axis limits
—Hazard function plot options —————— | Specify [ower endpaint of x &xis
[~ Logtime axis IAutomatic
[~ Log hazard axis Specify upper endpoint ofx axis
[~ Hazard function in FITS IAutomatlc
I Grid on plot Specify [ower endpoint ofy axis
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W EififliieE Specify upper endpaint ofy axis
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—Axis labels
[” Change axis labels

¥ axis [akel IAutomatic
0K I Cancell Applyl |<|>|| current Help |

Figure 24 The Hazard page of the probability plot with ML fit dialog, allows the
user to request and customize a plot of the hazard function ML estimate.

Table 2 gives tabular output from fitting the lognormal distribution to the fan data. The
rows with the Greek letters mu () and sigma ( o) are, respectively, ML estimates for

the mean and standard deviation of the distribution of logarithm of fan life. Standard
errors and 95% normal-approximation confidence intervals are also given.
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Table 2 Lognormal ML estimation results for the turbine fan data.

Fan Failure Data

Maximum likelihood estimation results:
Response units: Hours

Lognormal Distribution

Log likelihood at maximum point: -134.5

Parameter Approx Conf. Interval
MLE Std.Err. 95% lower 95% upper
mu 10.14 0.5211 9.122 11.165
sigma 1.68 0.3893 1.066 2.645

Fan Failure Data
with Lognormal ML Estimate and Pcintwise 95% Confidence Intervals
Lognormal Probability Plot

O
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o O
= 0
\ \

005 Phd
- muhat = 10.14

002 1 o )
1 - sigmahat = 1.68
001

200 500 1000 2000 5000 10000

Hours

Figure 25 Lognormal probability plots of the fan data showing the ML estimate and
parametric pointwise confidence intervals.
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Fan Failure Data Lognormal Distribution Hazard Function ML Estimate
and Pointwise 85% Confidence Intervals
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Figure 26 Lognormal hazard function estimate and parametric pointwise confidence
intervals for the fan data.

4.5 Comparison of ML estimates from different distributions

The dialog produced by Single distribution life data analyses » Compare
distribution ML fits on probability plot, shown in Figure 27, allows the
comparison of ML estimates for a chosen baseline distribution with one or more other
distributions. The required inputs are the life data object (for the following example we
continue to use the Fan.Id life data object), the baseline distribution, and the comparison
distribution(s).
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Compare single distribution ML fits on probability
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Figure 27 Dialog requesting a comparison of the lognormal and Weibull ML

estimates on lognormal probability paper.

Suppose that the objective of the analysis of the fan data was to estimate life out to
50,000 hours. In order to do this, select the “Choose cdf evaluation range” in the Plot
Options page, shown in Figure 28, of the “Compare single distribution ML fits on
probability plot” to request extrapolation outside of the range of the data . Clicking on
“OK” or “Apply” will then produce the desired comparison probability plot shown in
Figure 29 (changing the range using the options in the Modify plot axes page of the

dialog will change only the axis range and not the range of cdf evaluation).
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Compare single distribution ML fits on probability pl - |EI |£|
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Figure 28 Plot Options page of the compare ML fits dialog showing how to extend
the range of cdf evaluation
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Figure 29 Lognormal probability plot comparing the lognormal and Weibull ML
estimates for the fan data.

There is little difference between the Weibull and lognormal probability estimates up to
1000 hours. Note, however, the large difference between the estimates of fraction failing
outside the range of the data.
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4.6 Likelihood contour/perspective plot

Using SPLIDA » Single distribution life data analyses » Likelihood
contour/perspective plot produces the dialog shown in Figure 30. This dialog
allows the user to request either a contour or a perspective plot of the relative likelihoood
function or the corresponding joint confidence region (described and compared in
Sections 8.2 and 8.3 of Meeker and Escobar, 1998) for a given set of data. Alternatively,
one can request a perspective (or wire-frame) plot of the relative likelihood function. The
dialog has an option to indicate the position of the ML estimates, to request
correcponding profile likelihood plots, as well as the usual options to control plot axes.

The likelihood can be computed as a function of the underlying location and scale (scale
and shape) parameters of the location-scale (log-location-scale) distributions.
Alternatively one can the scale (shape) parameter and a specified quantile of the
distribution. We will illustrate both.

We illustrate the use of this dialog with the bearing cage data (life data object
BearingCage.1d) from Abernathy et al. (1983). This data object is built into
SPLIDA. Figure 31 shows the perspective plot of the Weibull relative likelihood,
followed by the contour plot of the joint confidence region in Figure 32.
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Likelihood contour /perspective /profile plots - |EI |£|
Basic | kodify plot axes |
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Figure 30 Dialog for requesting likelihood plots of the bearing cage likelihood
function.
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Figure 31 Perspective plot of the relative likelihood function for Weibull parameters
based on the bearing cage data.

Notice the “shark-fin” shape of the relative likelihood in Figure 31. This reflects the
strong positive correlation between the ML estimators of the Weibull parameters; this
correlation is the result of the heavy right censoring in this data set (the estimate of the
fraction failing is less than .06 at the largest failure time). The contour plot of the joint
confidence region for the Weibull parameters shown in Figure 32 is easier to interpret
and shows (by option) the ML estimates.
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Figure 32 Joint confidence region for Weibull parameters based on the relative
likelihood function for the bearing cage data.

Figure 33 shows a similar contour plot for the 0.1 quantile and o for the Bearing Cage
data with the Weibull distribution and Figure 34 shows the corresponding profile
likelihood for the 0.1 quantile. The upper endpoint of the confidence interval for the .1
quantile is NA because the profile likelihood had not dropped far enough to cross the
95% line in Figure 34.

There were problems finding the confidence interval from the computed likelihood profile
The approximate 95% likelihood confidence interval for 0.1 Quantile Hours is: 2082 NA
The approximate 95% likelihood confidence interval for beta is: 0.9697 3.5713

Table 3 Output From the profile likelihood for  and the 0.1 quantile of the Bearing Cage data.
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Figure 33 Joint confidence region for the Weibull 0.1 quantile and S based on the
relative likelihood function for the bearing cage data.
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Bearing Cage Failure Data
Profile Likelihood and 95% Confidence Interval
for 0.1 Quantile Hours from the Weibull Distribution
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Figure 34 Profile likelihood for the Weibull 0.1 quantile from the bearing cage data.

4.7 Bootstrap confidence intervals

SPLIDA has some simple tools for doing parametric bootstrap for a single distribution
(there are plans to extend these tools to more complicated models such as regression). To
do such an analysis of the Bearing Cage data, choose use SPLIDA » Single
distribution life data analyses » Bootstrap confidence intervals produces
the dialog in Figure 35. Choose the Bearing Cage results object
BearingCage.mlest.weibull.out and check both boxes under summary plots.
Then clicking on Apply will result in summary plots like those in Figure 36 and Figure
37.
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Bootstrap confidence intervals — |EI |£|
Basic |
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Figure 35 Dialog to request the computation of bootstrap samples and summary
plots.
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Figure 36 Probability plot showing the ML estimates for 50 of the 2000 bootstrap
samples for the Bearing Cage data.
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Figure 37 Scatter plot showing the ML estimates of 500 of the 2000 bootstrap
samples for the Bearing Cage data.

Restore the bootstrap confidence interval dialog and under Option, choose “Conf
interval.” On the right-hand side of the dialog, choose “Quantile” under “Confidence
interval on” and enter 0.1 in the quantile box. Then click Apply. This will give the text
output shown in Table 4, and the histogram of the bootstrap distribution of the t-like
statistics in Figure 39. The text output also provides diagnostics about the number of
troublesome bootstrap samples. In particular, some samples resulted on no failures.
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Bootstrap confidence intervals — |EI |£|
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Farameter rmu bt
— surmrmary plots
= Probability plotbootstram surmmmany Enter guantile (0<p<1)
= Scatter plot bootstrap summany I 4
T Boot method & Default
= Compare

Murnber of simulated lines to plot
IEIJ

MNumber of simulated points to plot
500

oK Cancel Apply || || current Help
I | | |

Figure 38 Dialog requesting bootstrap confidence interval for the 0.1 quantile of the Bearing Cage
life.

Bearing Cage Failure Data
Bootstrap-t log-transform

6 4 0 2

-10 -8 - ; 2
Z-log(t0. 1hat*)

Figure 39 Histogram of the bootstrap-t distribution for the log 0.1 quantile of the Bearing
Cage data.
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There were 1999 unique bootstrap samples out of
2000 total bootstrap samples

A total of 5 of 2000 (0.25%) bad bootstrap samples
were removed because of convergence difficulties.
These were probably samples with 0 failures

or no variability in the response.

Using the bootstrap t log transformation method,
an approximate 95 percent confidence interval

fort,, is [2256.1, 146649] .

Table 4 Text output from the bootstrap confidence interval procedure.

4.8 Fitting a log-location-scale (location-scale) distribution with a given shape
(scale/slope) parameter

In some applications, especially when the amount of data is limited, it may be useful to
fit a distribution with a given shape parameter. Although it is rare that one would know
such a shape parameter exactly, such evaluations are useful if one repeats the analysis
using different values of the given parameter within given ranges, perhaps based on
previous experience with a similar failure mode. More details are given in Section 8.5 of
Meeker and Escobar (1998).

Fitting a location scale or log location scale distribution with a fixed shape (slope)
parameter is easy in SPLIDA. To illustrate this, we will continue with the bearing cage
example. For the bearing cage data, the wide confidence intervals for F (t) outside of the
range of the data in Figure 29 are due, in large part, to the fact that the Weibull shape
parameter is unknown and that there is only a small amount of data available. Important
improvement in precision can be obtained by specifying a value for the shape parameter.
Using SPLIDA » Single distribution life data analyses » Probability plot
with parametric ML fit produces the dialog in Figure 40.
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Probability plot with parametric ML fit - |EI |£|

Basic | Flot options | kodify plot axes | Tabular output | Hazard |
—Reguired —Some options
Life data object IEearingCage.Id vl V¥ Fix shape parameter
Fefresh list(s) ‘Which shape parameter

Ibeta v|
Optian " Choose dist
B distributions Shape parameter I:2

—Some options

Distribution IWEib”” v| Percent confidence lewvel
— Al life data ohjects |95

" Include in life data ohject list Number of digits in tables
|4
Sawe results in IBearingCage.mIest.

(0] | CanceIHg

|<|>|| current s |

Figure 40 Dialog showing how to fit a Weibull distribution with a fixed shape (slope)
parameter.

The resulting probability plot is given in Figure 41.
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Bearing Cage Failure Data
with Weibull ML Estimate and Pointwise 95% Confidence Intervals
Weibull Probability Plot
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Figure 41 Bearing cage Weibull probability plot with the fixed f=2 ML estimate line.

Notice that the confidence interval lines in the Weibull probability plot are parallel. This
implies that the intervals will be narrower outside of the range of the data. Of course, this
would provide a false sense of precision if the Weibull shape parameter (not to mention
the assumption of a Weibull distribution itself) does not provide an adequate
approximation to the actual bearing cage distribution.

5 Single Distribution Bayes Analysis

This section describes some simple, but useful, procedures for Bayesian estimation with
censored data for log-location-scale distributions. The procedures provide bayesian
“crediability intervals” for quantities of interest such as distribution parameters,
quantiles, and failure probabilities. Graphical outputs of the results from the procedures
provide insight into how the Bayesian methods combine prior information (prior
distribution) with the data (likelihood).
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We will continue the use of the Bearing Cage data used in Section 4.8, where it was
assumed that the Weibull shape parameter was given as 3=2. The example in this chapter
will assume that there is some information about 3, described by a prior distribution.

5.1 Specifying prior information

The first step in the use of these procedures to do a Bayesian analysis is to specify the
available prior information by creating a prior distribution object. This is done with the
dialog obtained by using SPLIDA » Single distribution Bayesian analyses »
Specify a prior distribution produces the dialog in Figure 42. In this dialog, the
Model distribution referrs to the distribution of the response in the data object to be used
in the analysis, Weibull in this case. In the “Prior for” parts of the dialog, one needs to
specify a distribution for each of the Weibull “parameters.”

Specify prior distribution ;Iglil

Basic |

—hodel distribution

Distribution IWeibuII vl

—Priorfor position/quantile —————————— | Lower 9924 limit for beta

Specify guantiles for evaluation |1.5
I'1 Upper 99%: limit for beta

Distribution ILDg-UnifDrm - | I 3
Lower limit for .1 quantile — Prior distribution object name

I 1000 Save results in IBearingCage.weibuI

Upger limitfor .1 guantile

IEDUDEI
Ok I Cancell Applyl |<|>| -laf 3 Help |

Figure 42 Dialog to specify the prior distributions for the Weibull parameters for
the Bearing Cage data.

As described in Section 14.3 of Meeker and Escobar (1998), the quantile parameter
should be chosen such that its prior distribution is approximately independent of the prior
distribution for the shape/spread parameter. In the Bearing Cage example, the 0.1
quantile was chosen because previous experience with such components had seen,
ultimately, somewhat more than 10% failing while in service. The prior distribution is
chosen as log-Uniform between 1000 and 20000 (i.e., a distribution that is uniform on the
log scale between log(1000) and log(20000)). The prior distribution for this parameter
has a very broad range, and was chosen to reflect the small amount of knowledge
available for this quantity for this specific bearing cage. Such a prior is known as a
“diffuse prior distribution.”

More precise information is available for the Weibull shape parameter B. In this case, the
prior distribution is specified to be lognormal with 99% of its probability between 1.5
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and 3 (using such a range for a prior distribution is more convenient than using the
traditional lognormal parameters that have little or no meaning for engineers from which
such information is elicited). By default, the name of the resulting prior distribution
objectis last .distribution.prior, where distribution is automatically
replaced by the chosen distribution. Often it is useful to specify the name of this object,
so that it can be recognized later. BearingCage .weibull.prior was used in the
example. Clicking on OK or Apply will create the prior object (with a summary being
printed).

5.2 Making a posterior distribution

Using SPLIDA » Single distribution Bayesian analyses » Make a
posterior distribution brings up the dialog in Figure 43. This simple dialog is used
to make a posterior distribution (actually what is generated is a sample from the posterior
using the simple method described in Section 14.4.2 of Meeker and Escobar 1998 and
Smith and Gelfand and 1992). All that one needs to specify is the prior object and the life
data object. The default number of points in the posterior is 6000, and this is sufficiently
large for most purposes. There is an option to change the name of the resulting posterior
object, but the default (obtained by pasting together the names of the input object names)
is almost always adequate.

Make posterior distribution - |EI |£|
Basic |
— Regquired —All life data objects
Prior dist object ™ Include in life data object list

Life data ohject IEiearingCage.Id vl — Options

Murnber of points in posteriol
[onn

- Save results in IBearingCage.Elearin
IWelbuII
QK. I Cancell Applyl |<|>| current Help |

Figure 43 Dialog to create a posterior distribution for the Bearing Cage data.

Fefresh list(s)

Distributicn

Clicking on OK or Apply will generate the posterior distribution object (with progress in
the generation and a summary being printed).

5.3 Summarizing a posterior distribution

A posterior distribution can be summarized in a number of different ways, depending on
the interests of the analyst. Using SPLIDA » Single distribution Bayesian
analyses » Summarize prior/posterior distribution brings up the dialog in
Figure 44. From this dialog, the analyst can request plots of the prior distribution sample
or the posterior distribution sample. The plots can be for the joint distribution of the
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shape parameter and another quantity of interest (the scale parameter, a particular
quantile, or a failure probability at a specified time).

sSummarize prior /posterior distribution - |EI |£|
Basic | Modify plot axes |

—Required — Quantity of interest

Llse results in IBearingCage.Ele vl Canfidenca interval on
Refresh list(s) Iquantlle vI

Enter quantile (0<p<1)

—wwhat kind of plat(s)

|.1
Priar or posterior IPriDr vl
; ; - —Some options
Joint or Marginal IJDlntDnIy VI

M Include likelihood countaurs on plot of jo

—Wvhich marginals

: ) ¥ Awxes range default from prior
I” Warginallonpostion

Number of simulated points to plot
500

ok | cancel | [Agpy | 1<| ] curent Help_|

Figure 44 Dialog to request a summarization of a posterior distribution.

I~ Marginal on sigma

Figure 44 is a dialog to request a plot of the joint distribution of the prior distribution, the
result is shown in Figure 45.

Weibull Model Prior Distribution for Bearing Cage Failure Data

beta

1.0 7

1000 2000 5000 10000
0.1 quantile

20000

Figure 45 Sample from the Bearing Cage prior distribution (diffuse for 0.1 quantile
and somewhat informative for p) and likelihood contours.
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Changing “prior” to “posterior” in the dialog in Figure 44 and clicking on Apply will
result in the plot shown in Figure 46.

Weibull Model Posterior Distribution for Bearing Cage Failure Data

3.5
3.0

2.5

beta

2.0 -

15 -

1.0 7

1000 2000 5000 10000 20000
0.1 quantile
Figure 46 Sample from the Bearing Cage posterior distribution (based on a prior

that is diffuse for 0.1 quantile and somewhat informative for ) and likelihood
contours.

It is interesting to compare Figure 45 and Figure 46 to see the effect that the data has on
the sample from the prior distribution, to create the sample from the posterior
distribution.

To focus on the posterior marginal distribution of a particular quantity of interest, ask for
“Marginal only” under “Joint or Marginal.” Figure 47 shows the results of asking for the
marginal posterior distribution of .1 quantile of the bearing cage life. The vertical lines
represent 95% Bayesian credibility limits (obtained by eliminating 2.5% in each tail of
the marginal posterior distribution).
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Weibull Model Posterior Distribution for Bearing Cage Failure Data

f(t_0.1 | DATA)

2000 3000 4000 5000 6000 7000 8000 9000
t 0.1

Figure 47 Marginal posterior distribution for the .1 quantile for the Bearing Cage
data, based on a prior that is diffuse for .1 quantile and somewhat informative for B.

6 Planning a Single Distribution Study

This section describes tools for evaluating proposed lifetest plans. The tools presented
here are based on theory and methods described in Chapter 10 of Meeker and Escobar
(1998).

SPLIDA single distribution life test evaluations are done in three stages. SPLIDA
provides three different dialoges to accomplish these tasks:

1. In the first stage (see Section 6.1 and 6.2) the user specifies the testing situation by
providing planning values (essentially, best guesses for the underlying model,
including information on the life distribution, including the distribution’s parameters
values) in the form of a plan value object. Given such planning information, it is
possible to evaluate any specified test plan or plans.

2. Inthe second stage (see Section 6.3) one can ask for a plot of approximate required
sample size as a function of desired precision. This evaluation, based on large sample
approximate variance computations, allows the test planner to see, at a glance, the
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effect of sample size for a given test length (as specified by time for Type I censoring
and number of test units for Type II censoring).

3. In the third stage of evaluation (see Section 6.4), one can simulate a specified test
plan a specified number of times. Plots of the samples from a few of the individual
simulated experiments and a summary of ML estimates from all of the simulations
(both presented on appropriate probability plots) provides a visualization of the
possible results from a life test experiment and the reasons why estimates of certain
quantiles might or might not be estimated precisely.

6.1 Specifying test planning information (planning values)

Using SPLIDA » Plan Single Distribution Analyis » Specify test
planning information (planning values) brings up the dialog in Figure
48, allowing the user to specify planning values needed to evaluate and compare
different life test plans. The default name for the planning value object is
last.xxx.pv where xxx is the chosen distribution. Generally it is a good idea to edit
the suffix “last” to be something that describes the actual application (in the
example below we use DeviceP). This “planning values object” will be used in
the simulation/evaluation stage of planning. To specify the required distribution-
parameter plannning values, start by choosing a method to specify (on probability
plot) the failure time distribution: a) point and slope or b) two points. Either
method can be used to specify a line on a probability plot (with an underlying
log-location assumed distribution).

DeviceP is an electronic device tat will be tested at standard accelerated test
conditions of 80 Degrees C and 80% RH. We will assume for now that estimate
of life at thse conditions is of interest (in the actual applications, the engineers
intended to multiple the final answer by an “acceleration factor” known to be
approximately correct for the failure mechanism under study).

For DeviceP, the engineers expect approximately 10% of the tested units to fail
by 1000 hours and that the failure time distribution will be adequately described
by a lognormal distribution with a shape parameter sigma (6) in the neighborhood
of 2. After specifing the needed information, click “Apply” and examine the
resulting probability plot reflecting the inputted information, as illustrated in
Figure 49. Some tabular information is also provided in Table 5.
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Fraction Failing

Specify test planning information [planning valuesz] !E[

Basic |

— Baszic inputz — Probability at zecond specified time——
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Time units IH:::urs — Specifty shape [slope] parameter
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Figure 48 Dialog for specifying life test planning information.
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Figure 49 Probability plot depicting life test planning information.
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Table 5 Tabular output from the dialog used to specify planning values.

Distribution: Lognormal
Time units are: Hours

mi = 9.47
sigma = 2

Failure probabilities from the Lognormal distribution
Hours fail.probs
le+001 0.000169

le+002 0.007490
1e+003 0.100000
le+004 0.448181
le+005  0.846381
le+006  0.985084
1e+007  0.999556

6.2 Plot test planning information (planning values)

Using SPLIDA » Plan Single Distribution Analysis » Plot test
planning information (planning values) allows the user obtain a plot and table,
like those in Figure 49and Table 5, describing a previously created plan value
object.

6.3 Plot of approximate required sample size

Using SPLIDA » Plan Single Distribution Analyis » Plot of required
sample will produce the dialog in Figure 50.

Plot of approximate required zample size !E[

Plot optionz | Modify plot a:-cesl

— Required inputs — lnput optionz

Flan values object IDeviceP.Lngnu "’I Particular quartile of interest
- [0

Specify confidence levels

Specify censorng % Cenzaring time 0.5.0.9.0.95.0.99

" Fraction failing
[ Grid on plot

Cenzonng time IEEIEIEI

ok | Cancel | appy | 1 o[ curent Help |
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Figure 50 Dialog for requesting a required sample size plot.

Note that the most recently created plan value object (within the current session) is
remembered and displayed as the default to be used. Alternatively, a different, previously
created, plan values object can be chosen. Then one must choose a censoring type and
either a censoring time or number of failures (for Type I and Type II censoring,
respectively) and, if desired, a quantile of interest of other than the default of .1. Clicking
on “OK” or “Apply” will produce a plot like the one in Figure 51. It is useful to use the
rectangle tool from the S-PLUS annotation toolbar (right click on a blank part of the
toolbar section of the SPLUS GUI and choose annotation, then click on the rectangle) to
help read off values from the plot.

For log-location-scale distributions (Weibull, lognormal, loglogistic) the confidence
interval precision is described in terms of a factor R in that the normal-approximation
confidence interval for a quantile has the form [f /R, f R where R>1 and the interval is

more precise for small values of R (see Chapters 7 and 8 of Meeker and Escobar 1998).
For location-scale distributions (smallest extreme value, normal, logistic) precision is
given in terms of the half-width of the two-sided confidence interval.

Needed sample size giving approximately a 50% chance of having
a confidence interval factor for the 0.1 quantile that is less than R
lognormal Distribution with mu= 9.47 and sigma= 2
Test censored at 2000 Hours with 17.5 expected percent failing

10000 -
5000

2000 -
o 1000 |
500

Sample Siz

200 -
100 -
50 7
\ 95%

20 - \ 90%

10 ] 80%

1.0 1.5 2.0 2.5 3.0 3.5

Confidence Interval Precision Factor R

Figure 51 Plot giving sample size needed as a function of the target confidence
interval precision factor.

For example, Figure 51 shows that a sample size of approximately 70 is required to have
a 95% confidence interval target precision factor of 2. The actual precision factor R,
because it depends on the data, is random for any given life test, but should be no more
than the target value with probability of approximatley .5. To get a sense of how much R

56



might vary from the target value, one can use the simulation tool described in Section
6.4.

6.4 Life test simulation

Although the plot of required sample size versus precision factor is useful for
determining the approximate sample size needed for a life test, simulating the life test
avoids large sample approximations, provides more insight into the results that might be
obtained, and gives one a better sense of the trade-off between sample size and test
length. Using SPLIDA » Plan single distribution analysis » Simulate a life
test requests a dialog like that shown in Figure 52. This dialog allows one to specify the
inputs needed to produce a simulation of a user-specified life test plan.

_lx]

Basic | Plot options |

—Required inputs —Some Options

Flan walues object IDeviceP.Lugnur vl Cluantile line at
IUJ
Fefresh list(s)

Mumber of simulations
Sample size I?D
IBDEID

— Censoring type and specification :
: - Mumber of lines to plot
Type of censaring ITlme Mype ) vl IED—

Censoring time IEDDD ; _
Yiew detail for how many samples
[Wumber of failures I |5

Save results in IDeviceP.Lugnurmal_
Ok | Cancel HAppIyI |<|>|| current Help |

Figure 52 Dialog to request a life test simulation.

The user specifies the number of units to be tested (“Sample size) and test length
(“Censoring time” for time or Type I censoring) or number of units to fail (for failure or
Type II censoring) and, perhaps some other optional inputs (e.g., which quantile of the
distribution is of primary interest).

One can (and in an unfamiliar situation, should) choose to look at the individual samples
from some of the simulated samples by entering a small integer (usually 5 or 6 is
sufficient) into the box marked “View detail for how many samples?” If an integer kK> 0
is given in this cell, then after completion of the simulation, the graphsheet will contain k
probability plots showing the planning value line (with a dark thick line) along with the
observed failures and the ML estimate line (a thin line to contrast with the “true”
planning value line) for each of the k samples. Figure 53 provides an example of such a
plot. It is interesting to observe the variability in the failure times and corresponding ML
estimate lines from sample to sample in a sequence of these plots.

The final probability plot, illustrated in Figure 54, contains, in summary, the ML
estimates from all of the simulated samples. When a quantile (number between 0 and 1)
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is given in the “Quantile line at” cell, a horizontal line is drawn at that level on the
probability plot, allowing a visualization of the sampling variability in the estimates of
that quantile, and the average precision factor for the confidence intervals for the
corresponding confidence intervals is shown in the plot. The average precision is
computed as a geometric average of the individual precision factors for quantiles of log-
location distributions and an arithmetic average of the individual precision factors for
quantiles of location distributions.

Simulated life test with sampel size = 70
Lognormal Distribution with mu= 8.47 and sigma= 2
Lognormal Probability Plot
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Figure 53 Probability plot and ML estimate for the first simulated life test.

Figure 53 shows the probability plot for the first simulated sample. Generally looking at
five or six of these individual simulation results (we only show one here) is sufficient for
getting a good idea how the samples in the proposed life test might behave (assuming that
the inputted planning information is reasonably accurate). One can see clearly the
potential effect that censoring will have on the information from samples and the effect
of changing the sample size and censoring time.
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3000 simulated life tests with sample size = 70
Lognormal Distribution with mu= 9.47 and sigma= 2
Lognarmal Probability Plot
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Figure 54 Summary showing ML estimates for all 30 life test simulations.

Figure 54 shows a summary of the ML estimates from 50 of the 3000 simulations (if
more than 50 lines are plotted, it becomes difficult to judge the density of the lines in
certain parts of the plot). The geometric average of the 3000 individual precision factors
printed in this simulation-summary plot provides a useful measure of sampling variability
and the corresponding precision that one can expect to see in the results of one’s life
test.Unless the number of simulations is very large (e.g., 1000’s of simulated life tests)
the value of this average vary somewhat from simulation to simulation. When the
probability of 0 failures is relatively small (e.g. .005 or less) this numerical summary of
the simulation will agree very well with the value predicted from the sample-size tool
(e.g. Figure 51).

6.5 Probability of successful demonstration

After conducting a life test, a successful demonstration of reliability has occurred if the
lower confidence bound on reliability exceeds the given standard q=1-F(t) [which is the
same as the upper confidence bound on fraction failing being less than a standard
p=F(t)]. Equivalently, the demonstration is successful if lower confidence bound on the
corresponding p quantile of the life distribution is larger than the corresponding standard
(e.g., for demonstrating 95% reliability, the standard would be based on the .05 quantile
of the life distribution). For a log-location-scale distribution, the probability of a
successful demonstration for a Type Il censored life test (test run until a specified number
of units fail) is a function of the level of reliability to be demonstrated, the number of
units to be tested, the number needed to fail, and the underlying true reliability.

SPLIDA has a tool to allow one to compute and make plots of the probability of
successful demonstration. The dialog in Figure 55 allows the user to specify the
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necessary inputs. In Figure 55, sample sizes n=20,30,40 with corresponding number
failing r=10,15,20 (i.e., 50% failures) were chosen. In general, the number failing r must
be at least 2 but no greater than n. The probabilities of successful demonstration are
computed via simulation. The default number of simulations was increased from the
default 300 (which allows quick but rough evaluations) to 3000, which is good enough
for most practical purposes (although 10 thousand simulations might be used to make a
publication-quality figure). The default reliability to be demonstrated was changed from
the default 0.5 to 0.9. Completing the 3000 simulations requires less than a minute of
computer time on a modern PC).

Pr(Successful Demonstration) curves — |EI |£|

Inputs | hodify plot axes |

—Mew simulation or existing results —Use previous results

Cption ¥ Mew specification Chomse PrsD) results ohject

= Existing results I 'l

Choose n/t eombinstion(s)

— Inputs for new simulation

Distribution IWeibuII vl

Separate numbers with commas

Uge il key far multinle select

in the following lists

List sample size for each population

|2D,30,4D

List number failing for each population

I 10,1520 —Plot options
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IBDDD Title option IfuII Vl
Sawve results in IIast.WeibuII.3DElU.n.2 Legend IOn plot v|
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Figure 55 Dialog for requesting the computation of probability of successful
demonstration curves from ¢=0.9.

Figure 56 is a plot of the probability of successful demonstration as a function of the
actual (unknown) reliability. As expected, it is easier to make the demonstration (i.e., the
probability of success is higher) if the actual reliability is much larger than the standard
to be demonstrated.
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Demonstration that Weibull Distribution Reliability
Exceeds 0.9 with 95% Confidence
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Figure 56 Weibull life test probability of successful demonstration curves for ¢g=0.9.

After completing a simulation to compute the probability of successful demonstration,
SPLIDA will save the simulation results as an object, making it possible to reuse the
results to make evaluations for other given values of reliability as the standard. Figure 57
shows a dialog in which the results from the previous simulation will be used to compute
another set of probability of successful demonstration curves with g=0.7. From this
dialog, it is also possible to choose from among the combinations of sample size n and
the number of failures r used in the previous simulation to limit the number of curves to
appear on the plot.
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Figure 57 Dialog using existing results (previously computed simulation) to compute
probability of successful demonstration curves for ¢=0.7.

The resulting plot appears quickly, because the simulations do not need to be run again
and is shown in Figure 58. As expected, the required sample sizes in this plot are smaller
because of the less demanding demonstration.
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Demonstration that Weibull Distribution Reliability
Exceeds 0.7 with 95% Confidence
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Figure 58 Weibull life test probability of successful demonstration curves for ¢=0.7.

7 Analysis of Data with More Than One Cause of Failure

Both laboratory life tests and field-failure reporting systems (e.g., warranty repair
processes) result in data with more than one failure mode. For example, a system may
have several components and the failure of any one of these components could cause the
system to fail. For many purposes, it is important to use failure mode information in the
analysis and interpretation of one’s data. This is especially true when the purpose of the
analysis is to identify opportunities for improving product reliability.

One commonly used model for multiple failure modes supposes that each unit has a
“potential” failure time for each of the possible “modes” of failure and that the
distribution of these failure times can be described with a joint distribution. When it can
be assumed that the different potential times to failure are approximately statistically
independent, this modeling approach provides a simple method of modeling and analysis
that allows estimation of the failure time distribution for any particular failure mode or
for the entire system with any specified combination of failure modes active. See Chapter
15 of Meeker and Escobar (1998) for technical details and other information about the
analysis of such data.

7.1 Summary analysis of individual failure modes

Consider the Device-G data described in Section 15.4 of Meeker and Escobar (1998).
The devices that failed during the study failed from either a surge or a wear out failure
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mode. The underlying mechanisms causing these two failure modes were different and it
would be reasonable to assume that the times to failure for these two different modes
would be independent. In order to estimate the failure time distribution of the individual
failure modes, under the assumption that the failure modes failure times are independent,
use SPLIDA » Multiple failure mode life data analysis » Individual
modes. Then choose the life data object (DeviceG.Id in this case) and distribution
(Weibull for this example) in the dialog, as shown in Figure 59.

Probability plot for individual failure modes — ||:| |£|
Basic | Flot options | Modify plot axes | Tabular output |
—Required —Some options

Lite data object IDeviceG.Id vl Percent confidence leweal
Fefresh list(s) IBE

Murmber of digits in tables

|4
—All life data objects _
. o Sawve results in Ilast.mleprubplot
[~ Include in life data ohject list

Distribution

oK Cancel Apply [<] || current Help
I | | |

Figure 59 Dialog requesting separate analyses of different failure modes for the
Device-G data.

Other options for graphical and tabular output are available in the back pages of the
dialog. When done, click “OK” or “Apply,” producing the probability plot with estimated
distributions for the two individual failure modes in Figure 60. Tabular output giving the
Weibull parameter estimates is also provided, as shown in Table 6.

In this application, management was interested in answering a number of different
questions with these data. Among the requested outputs was the failure-time distribution
for the wear out failure mode alone, which would be the failure time distribution for the
device if the surge failure mode could be eliminated. A table of these estimates
(requested with the “Tabular Output” page of the dialog) is shown in Table 6.
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Figure 60 Analysis of the individual failure surge and wear out failure modes for the
Device-G field data.

Figure 60 shows immediately that the surge failures tend to occur anytime during life,
from early to late. No wearour failures were seen until after 100 thousand cycles. Table 6
provides a summary of separate ML estimations for both the Surge and the Wearout
failure modes and some additional details for the Wearout failure mode

Table 6 Summary of ML estimation for Surge and Wearout failure modes and
details for the Wearout failure mode

Response units: Kilocycles
Weibull Distribution

Likelihood eta se eta beta se beta
1 Wearout -47.16 340.4 36.14 4.337 1.4506
2 Surge -101.36 449.5 191.94 0.671 0.1578

Total likelihood= -148.5

Weibull Distribution Failure Probability Estimates

From DeviceG Wearout Failure Mode Group Wearout

with Weibull MLE and Pointwise 95% Confidence Intervals

Kilocycles Fhat Std.Err. 95% Lower 95% Upper
140 0.02098 0.02270 0.002453 0.1574
160 0.03714 0.03330 0.006179 0.1931
180 0.06113 0.04510 0.013764 0.2330
200 0.09482 0.05712 0.027638 0.2785
220 0.13983 0.06853 0.050521 0.3318
240 0.19722 0.07932 0.084269 0.3961
260 0.26718 0.09088 0.128000 0.4752
280 0.34864 0.10569 0.176941 0.5713
300 0.43911 0.12529 0.224124 0.6797
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7.2 Combined modes (series system) analysis

SPLIDA also computes estimates of the series-system failure-time distribution with all
failure modes operating. To do this, use SPLIDA » Multiple failure mode life
data analysis » Combined modes and again choose the life data object and
distribution and click “OK” or “Apply,” producing the probability plot with estimated
distribution for the system with both failure modes active and acting independently,
shown in Figure 61.
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Figure 61 Series system competing risk analysis for the Device-G data.

7.3 Creating life data objects for individual failure modes

Using SPLIDA » Multiple failure mode analysis » Make life data objects
for individual failure modes will bring up the dialog in Figure 62, allowing the
user to create separate life data objects for each failure mode in the multiple failure mode

life data object.
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Make life data objects for individual modes = |EI |£|

Fequired
’VLife data ohject

(0]4 Cancel Apply [<| || wcurrent Help
| | [ |

Figure 62 Dialog to ask that individual life data objects be made for individual
failure modes.

Names for the life data objects are chosen automatically by appending the failure mode
name to the root of the failure mode life data object name (DeviceG.Surge.ld and
DeviceG.Wearout.ld in the example). Once these individual life data objects have been
created, all of the SPLIDA methods for single-distribution analyses can be applied to the
analysis of the individual failure modes, under the (important) assumption that the
individual failure modes are acting independently.

8 Comparison of Two or More Distributions Using Life Data Analysis

Experiments are commonly conducted for the purpose of comparing the life distributions
of different or competing materials, formulations, designs, manufacturers, and so on.
Similar data arise from warranty data and field tracking studies. The analysis methods
presented here for such data generalize methods in classical statistical methods
commonly known as two-sample comparison and one-way analysis of variance. SPLIDA
generalizes these methods, allowing for censoring, non-normal distributions, and
comparisons with non-constant shape (slope) in the distributions being compared.

8.1 Comparison with different shape (slope) parameters

Using SPLIDA » Comparison of distributions life data analysis »
Probability plot and ML fit: different shapes (slopes) brings up a dialog like
that in Figure 63 asking for input of a comparison life data object and a distribution, as
shown below. A comparison life data object is a life data object that contains at least one
categorical explanatory variable (in S-PLUS, an explanatory variable is assumed to be
categorical (a “factor” in S-PLUS jargon) if it contains any alphabetic characters). The
Life data object list will contain all of the “comparison life data objects” found in the
SPLIDA data base or in the user’s local data base. As done for single distributions life
data objects, comparison life data objects are created by using the SPLIDA »
Make/edit/summary/view data object » Make life data object part to the
SPLIDA menu. If there is more than one categorical explanatory variable in the
comparison life data object, then one needs to choose which one to use in the
comparison. The following example uses the Snubber data (life data object Snubber.1d)
from Nelson (1984, page 529) and reanalyzed in Examples 17.13 to 17.15 in Meeker and
Escobar (1998), comparing two different Snubber designs (a snubber is a toaster
component). Following these previous analyses, the normal distribution is fit to the data.
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Comparison probability plot: different shapes (sl¢ - |EI |£|

Basic | Flot options | Modifyplotaxesl Tabular output |
—Required —All data objects
Life data object ISnubber.Id vl ™ Include in life data object list
Fefresh list(s) —Some options

Fercent confidence lewel

Option @ Choose dist l%i

B distributions
Mumber of digits in tables

Distributian slormal |4
Choose explanatonvariakhle(s) Sawve results in ISnubber.individ.nor

QK Cancel Apply || =|| current Help
| | | A s |

Figure 63 Dialog requesting comparison of the Snubber using separate normal
distributions.

Using SPLIDA » Comparison of distributions life data analysis »
Probability plot and ML fit: different shapes (slopes) brings a dialog like that
shown in Figure 63. After the needed and desired optional inputs have been given in the
dialog, click on “Apply” to do the analysis.

Figure 64 gives the resulting individual probability plots for each (in this case two) of the
samples in the the data set. Table 7 gives a tabular summary of the results. Tests or
confidence intervals to compare particular quantiles or other parameters are easy to
construct, following the general approach given in Section 17.8 of Meeker and Escobar
(1998).
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Table 7 Normal distribution ML estimates for the Snubber data using separate
normal distributions .

Maximum likelihood estimation results:
Response units: Toaster Cycles

Normal Distribution

Log likelihood mu se mu sigma se sigma
1 NewDesign -138.6 1126.6 123.21 546.0 99.5
2 OldDesign -146.8 908.1 76.19 362.4 63.4

Total log likelihood= -285.4

Snubber Failure Data
With Individual Normal Distribution ML Estimates
Normal Probability Plot
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Figure 64 Normal probability plot comparing the new and old snubber designs with
separate normal distribution standard deviations.

8.2 Comparison of likelihood contour plots

Using SPLIDA » Comparison of distributions life data analysis »
Comparison likelihood contour plot brings up a dialog like the one in Figure 65,
allowing one to specify a comparison life data object and distribution in order to produce
corresponding two-parameter contour plots for each of the groups being compared.

69



Figure 66 shows a comparison contour plot of normal distribution joint confidence
regions for i and ¢ for the Snubber data.

Comparison likelihood contour /profile plots = |EI |£|
Basic | Modify plot axes |
—Required —Plot options

Life data object ISnubber.Id - l Type of plot = Relative likelihood

Fiefresh list(s) & Joint confidence re

Distribution INormaI 'l Specify confidence levels

Choose explanatan variahle(s)

Title option

Al data objects Nurnber of grid points
™ Include in life data ohject list 100

—Saome options Legend IOn plot :I'

Fosition/Scale parameter

 Location

& Cluantile

Quantile

—

v Profile Position/Scale

QK Cancel Appl <] > current Hel
I | pply | || | p |

Figure 65 Dialog requesting contour plots to compare the new and old snubber
designs assuming separate normal distributions.
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Figure 66 Contour plot showing joint confidence regions for the normal distribution
parameters for the two snubber designs.

The SW to NE orientation of the contours in Figure 66 is a result of the right censoring.
The degree of overlap provides an alternative visualization of the statistical “closeness”
of the parameters of the lifetime distributions for the two different snubber designs.

The dialog in Figure 65 also produced the optional comparison profile likelihood plots
(not shown here) comparing the distribution median and the lognormal shape parameters
from the New and Old groups.

8.3 Comparison with common shape (slope) parameters

For some applications, it is reasonable to model the different populations or processes
being compared as having the same shape (or slope) parameters, differing only with
respect to scale (for a log-location-scale distribution) or location (for a location-scale
distribution). This tends to simplify the analysis because the equality of any particular
distribution quantile would imply the equality of other distribution quantiles (this can be
seen by noting that, with this assumption, the probability plots of the individual fraction
failing are parallel).
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Using SPLIDA » Comparison of distributions life data analysis »
Probability plot and ML fit: common shapes (slopes) brings up a dialog like
that shown in Figure 67. This dialog is similar to that used for the comparison with non-
common shapes (slopes).

Comparison probability plot (common shape/slo - |EI |£|
Basic | Plot options | hadify plot axes | Tabular output | tModel plot |
—Required —All data objects

Life data object ISnubber.Id vl ™ Include in life data object list
Fefresh list(s) —Some options
. . Fercent confidence level

Option ' Choose dist I%i

B distributions

MNumber of digits in tables

Distribution “ormal |4
Choose comparison variable Sawve results in ISnubber.cIass.nDrm

QK Cancel Appl <] > current Hel
I | pply | || | p |

Figure 67 Dialog requesting a probability plot comparing the new and old snubber
designs assuming normal distributions with a common standard deviation.

As before, choose a “life data object” (by default SPLIDA puts in the list only life data
objects with a comparison or factor explanatory variable) and a “distribution.” An
estimate of the model parameters is given in the S-PLUS report window. The right-most
back page of the dialog provides a dialog that allows one to obtain a plot of the estimated
model (a “model plot” is sometimes called a “stress plot” when the explanatory variable
is a stress variable). Tables of estimates of distribution quantiles and failure probabilities
are also available among the options in the back pages of the dialog. These tabular and

graphical outputs for the Snubber data common standard deviation analysis are given in
Table 8 and Figure 68.
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Figure 68 Normal probability plot comparing the data from the new and the old
Snubber design assuming normal distributions with a common standard deviation.

The probability plot in Figure 68 shows nonparametric estimates of the life time
distributions for both snubber designs along with ML estimates of the assumed normal
distributions. The lines representing the ML estimates of the fraction failing for the two
designs are parallel because of assumption of common normal distribution standard
deviations. For the normal distribution, the slope corresponds to an estimate of the
reciprocal of the standard deviation of life ( the reciprocal of the scale parameter).

Table 8 Normal distribution ML estimates for the Snubber data with a common
normal distribution standard deviation.

Snubber Failure Data

Maximum likelihood estimation results:
Response units: Toaster Cycles

Normal Distribution

Relationship

1 : class

Log likelihood at maximum point: -286.7

Parameter Approx Conf. Interval
MLE Std.Err. 95% lower 95% upper
Intercept 974.63 89.11 800.0 1149.3
DesignNew 86.67 114.21 -137.2 310.5
sigma 458.56 57.67 358.4 586.7
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The table reproduced in Table 8 gives ML estimates and standard errors for an
underlying dummy variable regression model used to distinguish between the two
different designs (see Section 17.8 of Meeker and Escobar for a detailed description of
this model). The Intercept row corresponds to the “baseline” category (old design in this
case) giving the estimated parameter for the corresponding distribution (mean of the
normal distribution in this case). The DesignNew row in the table gives the ML
estimate of the difference in mean life between the baseline and the new design. The
95% approximate confidence interval for the DesignNew coefficient is [-137.5,310.5].

This interval is wide enough to contain 0, indicating that the observed difference between
the two designs could well have been caused by the random variability in the snubber life
distributions. The last row in the output gives the estimate of the normal distribution
standard deviation, which, in the model, is the same for both designs.

The “model plot,” shown in Figure 69, plots estimates of the normal distribution density
functions and distribution quantiles. This figure shows clearly that the observed
difference in the designs is dominated by the variability in snubber life.
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Figure 69 “Model plot” showing the estimated normal distribution densities for the
new and the old snubber designs assuming normal distributions with a common
standard deviation.
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8.4 Make life data objects for individual groups

After comparing different groups, it is often desired to select one or more of the groups
for more focused analysis. It is possible, for example to choose a particular group or
groups and do single-distribution analyses for them. We will illustrate this by making a
separate life data object for the New snubber design. Using SPLIDA » Comparison
of distributions life data analysis » Make life data objects for individual
groups brings up the dialog in Figure 70.

Make a subset life data object — |EI |£|
Basic |
—Choose life data ohject————————— —Choose explanatory variable(s)
Life data object Snubber.|d Choose explanatan variable(s]
Refrash list(s)

—All data ohjects
™ Include in life data ohject list -

Lewvel(s) or combination(s) of levels

—Choose output lite data object name

Sawe results in ISnubber.NewDesig
Ok, I Canc:ell Applyl |<|>|| current Help |

Figure 70 Dialog used to choose a data subset for a new life data object

For the example, we choose the Snubber.ld comparison life data object. Design is the
only explanatory variable in this life data objects, so it is automatically highlighted. Then
choose “New” under the list of available levels (or in general combinations of levels). A
name for the output data object is chosen automatically when the level(s) or
combinations of levels are chosen, but it is possible to edit this name. Clicking on “OK”
or “Apply” will execute the function to produce the new data object. For the example, the
message “Saving subset data object Snubber.NewDesign.|d” is printed and this data
object will appear subsequently in the lists of single-distribution life data objects.

8.5 Probability of correct selection

When planning a life test to compare two or more distributions, an important
consideration is the sample size needed to make the comparison. For example, when
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comparing two different designs (as in the snubber example) if one only tested two units
from each design, it is unlikely that the experiment would indicate a statistically
significant difference, even if there were a difference of practical importance. Thus we
would not have the information needed to choose one design over the other.
Correspondingly, if the experiment had used 10,000 units of each design, it would be
highly likely that any difference of practical importance (or indeed, small differences that
would not be important!) would be detected with high probability. Additionally, when
comparing life distributions, one also needs to decide how long to run the test. Generally
it will not be possible to wait until all units have failed. An important part of planning
the experiment is to determine how long to run the test or, alternatively, how many of the
tested units need to fail before a decision should be made.

Typically, in comparative experiments, with all other things being equal, a decision
would be made to choose the design that gives the best results in the experiment. Such a
decision rule would have the largest probability of making the correct decision. When
planning such an experiment it is important to have some idea about the actual
probability of making a correct decision. An assessment of this probability can be
obtained by using SPLIDA » Comparison of distributions » Probability of
correct selection for specified test plans.

In the dialog in Figure 71, one specifies the assumed distribution, the number of
populations to be compared, as well as the sample sizes (separated by commas) and the
corresponding number to fail within each sample size. Then, as with other SPLIDA
dialoges, click “Apply” and minimize dialog.

Pricorrect selection) curves = |EI |£|

Inputs | kodify plot axes |

—Required inputs Optional inputs

Distribution ILugnurmaI vl Murber of simulations
: ISDDD
Murmber of populations to compare

|2 v Grid on plaot

Separate numbers with commas

inthe following lists

List sample size for each population

IED,3D,15
List nurmber tailing for each population

|2IJ,1D,5
Largestar Smallest IChDDseIargest VI

Figure 71 Dialog requesting a probability of correct selection comparison of three
different proposed comparison life tests.
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Depending on how many simulations have been requested, the complete simulation may
take a substantial amount of time to run. Periodic messages will be printed in the report
window however, to give an indication of the simulation’s progress. Separate simulations
are required for each sample size/number of failures pair and the computational time is
approximately proportional to the number of failures. Figure 72 illustrates the output,
giving a Probability of Correct Selection curve for each combination of sample size and
number of failures, as a function of the standardized difference d. See Escobar, Pascual,
and Meeker (2000) for more information on how to choose d.
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Figure 72 Plot showing the probability of correct selection as a function of the
standardized difference between the populations being compared.

The jaggedness in the lines is due to the limited number of simulations that were done in
this example, but such simulations are quick and adequate for most purposes. If smoother
curves are desired, the simulation sample size can be increased to something like 10000.
With a capable computer the time needed for the computations for this example would
be on the order of a minute.
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9 Simple Regression and Single-Variable Accelerated Life Test (ALT) Data
Analysis

This Chapter describes methods for analyzing life data when there is a single explanatory
variable. Technical background and further examples illustrating the statistical methods
used here are given in Chapter 17 of Meeker and Escobar (1998). A common application
of the methods in this chapter arises in accelerated testing where test units are, for
example, tested at high temperature with the purpose of obtaining reliability information
in a timely manner. Models and methods for accelerated testing are described in detail in
Nelson (1990) and Chapters 18 and 19 of Meeker and Escobar (1998). Chapter 10
extends the methods of this chapter, allowing for more than one explanatory variable.

9.1 Scatter plot of censored data

One should always look first at available data through graphical displays. For single-
variable accelerated test data, a scatter plot of the failure times will provide useful
information. To illustrate the tools in this section, we use the Device-A data from Hooper
and Amster (1990), reanalyzed in Section 19.2 of Meeker and Escobar (1998). In order to
make a scatter plot of the Device-A data, use SPLIDA » Simple regression (ALT)
data analysis » Censored data scatter plot to bring up the dialog shown in
Figure 73. Then choose the one of the life data objects from the list. We use the Device-A
life data object in this example (only those life data objects with explanatory variables
appear in the list). There is only one explanatory variable in the Device-A data object, so
it is chosen automatically. Then choose the axis scales for the response and the
explanatory variable. Linear response and linear explanatory variable axes are the
defaults, but log and Arrhenius axes are chosen for this example, corresponding to the
physically-suggested lognormal-Arrhenius accelerated lifetime model, described and
illustrated in Chapters 18 and 19 of Meeker and Escobar (1998).

Censored data scatter plot ;Iglil
Basic | Modify plot axes |
—Reguired —Plot options
Life data okbject IW Transformation (gxis) for the response

L =
Refresh list(s) °9

_ Transtormation (gxis) for the explan war
Response units IHDurS T
Choose explanatan variakle

[ Plotresponse on the x-axis
ITemp vl
" Grid on plot
—All life data. objects

I Include in life data object list Title option |fu|l v|

] Cancel Ay [¢] || current Help
| | NE |

Figure 73 Dialog requesting a censored-data scatter plot of the Device-A data.
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Finally, click on “Apply” to produce the Arrhenius plot of the data shown in Figure 74.
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Figure 74 A censored-data scatter plot of the Device-A data.

Notice the nonlinear Arrhenius axis for temperature. The open upward-pointing triangles
in the plot indicate right-censored observations For the Device-A data (as in most
examples having heavy censoring), the censoring makes it difficult to assess the
adequacy of the linear relationship between log time and transformed temperature. Still,
however, there is nothing in the plot to suggest that the relationship does not provide a
reasonable description of the relationship.

9.2 Group individual probability plots

After loooking at a scatter plot of data from a single-variable accelerated life tests, the
next step in the analysis is usually to make an individual probability plot of the data at
each level of the accelerating variable (e.g., at each temperature for the Device-A data).
Such a plot can be made by using SPLIDA » Simple regression (ALT) life data
analysis » Probability plot and ML fit for individual conditions to request
the dialog in Figure 75. Then one chooses the life data object and distribution
(Lognormal was used in this example). Clicking “OK” or “Apply” produces ML
estimates of the fraction failing at each individual level of temperature.
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Probability plot
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Figure 75 Dialog requesting a lognormal probability plot for the individual temperature levels in the

Device-A accelerated test.
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Figure 76 shows that the lognormal distribution fits well the data at each level of
temperature. The slopes of the lines (corresponding to the reciprocal of the lognormal
shape parameters) vary somewhat (as expected from variability in the data), but not
systematically.Table 9 summarizes the lognormal distribution ML estimation at each
individual level of temperature for the Device-A accelerated life test. At 10 degrees C,
there were no failures so neither nonparametric nor ML estimates could be computed.

Table 9 Tabular output summarizing lognormal distribution ML estimation at each
individual level of temperature for the Device-A accelerated life test.

[1] “Skipping 10 because too few failures”
Device A data

Maximum likelihood estimation results:
Response units: Hours

Lognormal Distribution

Temp Likelihood mu se mu sigma se sigma
1 10 NA NA NA NA NA
2 40 -115.46 9.815 0.4221 1.0083 0.2737
3 60 -89.72 8.644 0.3474 1.1876 0.3167
4 80 -115.58 7.084 0.2087 0.8046 0.1553
Total likelihood = -320.8

9.3 Probability plot with common shape (slope) parameter

Many accelerated life test models relate the scale parameter of the life-time distribution
(location parameter of the log life distribution) to the accelerating variable but have the
shape of the life-time distribution (scale parameter of the log-life-time distribution)
constant over all levels of the accelerating variable. Some physical-failure models, such
as the Arrhenius relationship, suggest such a statistical model. In order to check the
adequacy of such a model, it is useful to fit the candidate distribution to the data with a
common shape (slope on a probability plot) assumption. This analysis is similar to that in
the comparison-of-distributions example in Section 8.3, with Temperature being used as
a class variable. This analysis can be done with SPLIDA » Simple regression
(ALT) life data analysis » Prob plot and ML fit for indiv cond: common
shapes (slopes). This dialog, shown in Figure 77, is very similar to that in Figure 75.
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Probability plot for individual levels with common sh — |EI |£|
Basic | Plot aptions | Modify plot axes | Tabular output | hodel plot |

—Required —All data objects
Life data object IDeviceA.Id vl " Include in life data ohject list
Refrash list(s) —Same options

Percent confidence lewel

Ciption * Choose dist I%—

" B distributions
Mumber of digits in tables

Distributian ILDgnDrmal vl |4
Choose explanatony varishlels) Sawe results in IDeViceA.dummy.gro

Figure 77 Dialog requesting ML estimates at the different temperatures in the
Device-A accelerated life test, with lognormal shape parameters constrained to be
the same.

Specify the life data object and the distribution and click “OK” or “Apply” to obtain the
multiple probability plot in Figure 78.
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Figure 78 Lognormal probability plot showing ML estimates at the different
temperatures in the Device-A accelerated life test, with lognormal shape parameters
constrained to be the same.

Note the parallel lines in Figure 78, due to the common o (standard deviation of log life)
assumption in the fitted model.

The tabular output in Table 10 summarizes the lognormal distribution ML estimation for
the Device-A accelerated life test. The estimate b, is the estimate of x,, the median of

log life for the baseline of 40 degrees C (there were no failures at 10 degrees C, so these
data are not used in the present analysis). The estimates corresponding to Temp60 and
Temp80 give estimates for the differences u,, —u, and u,, — i, . As expected, these

latter two estimates are negative because of shorter life times at the higher temperatures.
The tabular output in Table 10 can be used to compare this model fit with the
unconstrained model fit to see if there is strong evidence for a departure from the
constant-slope assumption. Figure 78 provides a visual assessment of this assumption.

Table 10 Tabular output summarizing lognormal distribution ML estimation for
the Device-A accelerated life test.

Device A data
Maximum likelihood estimation results:
Response units: Hours
Lognormal Distribution
Relationship

1 : class
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Log likelihood at maximum point: -321.5

Parameter Approx Conf. Interval
MLE Std.Err. 95% Lower  95% Upper
b0 9.7543 0.2465 9.2711 10.2374
Temp60 -1.2330 0.3119 -1.8443 -0.6217
Temp80 -2.6634 0.3484 -3.3463 -1.9806
sigma 0.9656 0.1320 0.7386 1.2623

One can compare the loglikelihoods from fitting the previous two models in order to see
if the differences among the shape parameters at the three different temperature levels
could be explained by random variability. In a formal maner we compute
—2[(-320.8—321.5)]=1.4,  which is small relative to 5.99, the .95 quantile of a chi-square

distribution with 2 degrees of freedom (the unconstrained model had six parameters
while the constrained model had four and thus the difference in dimension is two). This
numerical result suggests that there is not strong evidence of differing slopes.

In addition to the table of ML estimates of the distribution parameters, one can also
request a table of failure probabilities or quantiles for any of the levels of the explanatory
variable in the data by using the options on the Tabular Output of the dialog in Figure 77.

9.4 Fitting simple regression and accelerated life test models

Accelerated life tests are often conducted for the purpose of using data at higher-than-
usual levels of some explanatory variable to make predictions of life at lower typical or
use levels of that variable. A model is used to describe the effect that the explanatory
variable will have on life. For example, when temperatutre is used to accelerate a failure
mechanism related to a chemical reaction, the Arrhenius relationship is often suggested
as a model to describe the effect that temperature will have on life. The data can be used
to estimate the parameters of this model, as described in Section 19.2 of Meeker and
Escobar (1998). Use SPLIDA » Simple regression (ALT) life data »
Probability plot and ML fit of a regression (acceleration) model to bring
up the dialog in Figure 79.
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Probability plot with ML estimate of simple regres - |EI |£|

Basic | Flot options | Modify plot axes | Tabular output | hodel plat |
—Required —All data ohjects
Life data object IDeviceA.Id vl 7 Include in life data object list
Oiption * Choose dist —Some options
= G distributions Percent confidence lewel

IEE
DNl Murmber of digits in tables

Choose explanaton vataklels) |4
Sawve results in IDeviceA.grDupm.lu

— Specify new data for evaluation

— Separate numbers with commas

Additional conditions for evaluation

INDne

-

Relationship IArrhenius VI
Specify Box-Cox povwer

—

Ok I Cancell Applyl |<|>|| current Help |

Figure 79 Dialog used to request a probability plot showing the ML fit of the
lognormal/Arrhenius acceleration model to the Device-A data.

For many single-variable accelerated life tests, the model to be used is initially suggested
by previous experience or physical theory. For the Device-A example, the well-known
Arrhenius relationship will be used to describe the relationship between life and
temperature, as shown on the dialog. One can also specify additional levels of
temperature at which to compute and plot estimates of life and associated confidence
intervals. As with other dialoges, various options for customizing the plots and for
requesting tabular output are available in the back pages of the dialog.

Options on the “Model plot” page of the dialog, shown in Figure 80, allows one to
request and customize a plot of the life versus stress along with the other analyses (hours
to failure as a function of temperature on log/Arrhenius scales for the Device-A
example).
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Probability plot with ML estimate of simple regressi = |EI |£|

Basic Flot options Modify plotaxes | Tabular output | hodel plat |
—Model plot options —Axis limits
v hake a model plot ™ Change axis limits
™ Grid on plot Specify lower endpoint ofx axis

Specify quantiles for plotting,/evaluation IAutomatu:

|.1,.5,.9 Specify upper endpoint of x axis
Censoring time to show on plot IAUtDmaﬂC
I Specity lower endpoint ofiv axis
" Flotresponse on the x-axis IAutDmatlc

Specify upper endpoint of sy axis

IAutDmatic:

¥ Include data an the plot

—Lewels atwhich to plot densities

—Axis labels
[” Change axis labels

¥ ais label IAutDmatic:
e lakel IAutDmatic:

Alternative lite data object for plofting

INone vI
w
Ok | Cancel HAppIyI |<|>|| current Help |

Figure 80 Dialog showing the options on the “model plot” dialog page.

Lse Ctrl key for multiple (de)jselect

To add confidence limits to the plot, visit the Plot options page, ask for “pointwise”
confidence bands, and highlight the level or levels for which the bands should be plotted
(generally the use conditions, 10 in this case).

When all of the requested options have been selected, click on “Apply.” This will
produce the multiple probability plot in Figure 81, showing the lognormal/Arrhenius
model estimates of fraction failing as a function of time at the diferent levels of
temperature in the original (including 10 Degrees C, where there were no failures) and
the Model plot in Figure 82.
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Figure 81 Lognormal probability plot showing the lognormal/Arrhenius model fit to
the Device-A data with an extrapolation to the use conditions of 10 degrees C,
including approximate pointwise 95% confidence intervals.

Table 11 gives a summary of the ML regression output, similar to what one would obtain
from a standard least squares regression output.

Table 11 Maximum likelihood estimation results for the lognormal/Arrhenius model
fit to the Device-A data

Device-A ALT Results
Maximum likelihood estimation results:
Response units: Hours
Lognormal Distribution
Relationship

1 : Arrhenius

Log likelihood at maximum point: -321.7

Parameter Approx Conf. Interval
MLE Std.Err. 95% Lower 95% Upper
Intercept -13.4686 2.88719 -19.1274 -7.8098
Temp 0.6279 0.08284 0.4655 0.7902
sigma  0.9778 0.13265 0.7495 1.2756
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Figure 82 Model plot on Arrhenius paper for the Device-A accelerated life test data
and accelerated failure-time densities as a function of temperature.

There is nothing in either of these plots to indicate any serious departure form the fitted
model. Of course it should be emphasized that just because the data fits the model well
within the range of the data this does not imply that one can safely extrapolate out side of
the range of the data (10 degrees C for the Device-A example). The justification for the
extrapolation comes from the Arrhenius rate-reaction model from physical chemistry. If
this model does not adequately describe the effect of temperature on the underlying
degradation mechanism, then seriously incorrect extrapolations could result.

9.5 Make life subset data objects for individual groups

In many applications, under certain circumstances, it will be desired to select one or more
of the groups of regression data set for more focused analysis. It is possible, for example
to choose a particular level or levels of an accelerating variable and do single-
distribution analyses for them. Alternativley, one may want to delete one or more subsets
from a data set either as a form of sensitivity analysis or because the subset data are
incorrect. We will illustrate this by making a subset life data object for the Mylarpoly.ld
life data object. As described in Section 19.3.1 of Meeker and Escobar (1998), the
specimens tested at 361.4 kV/mm failed from a failure mode different than those at other
levels of voltage stress because the voltage stress of 361.4 kV/mm was too high. It is thus
appropriate to drop these data from the analysis. Using SPLIDA » Simple
regression (ALT) life data » Make life data objects for individual
groups brings up the dialog like that shown in Figure 83.

88



Make a subset life data object = o x|

Basic |

—Choose life data ohject———————————— —Choose explanatorny variahle(s)

Life data object Imylarpuly.ld vl Choose explanaton variable(s)

Fefresh list(s)

—All data objects

[~ Include in life data object list

Lewel(s) or combination(s) of levels

—Choose output life data object name

Sawve results in Imylarsublld
0K I Cancell Applyl |<|>|| current Help |

Figure 83 Dialog requesting the creation of a subset data object for the mylarploy
data, omitting the 361.4 kV data.

For the example, we choose the mylarpoly.ld comparison life data object. The voltage
stress variable kV.per.mm is the only explanatory variable in this life data object, so it is
automatically highlighted. Then choose the desired levels (all except 361.4 in this case)
under the list of available levels (or in general combinations of levels). A name for the
output data object is chosen automatically when the level(s) or combinations of levels are
chosen, but it is possible to edit this name. In this example, because so many levels were
chosen, the automatic name is long, so it was edited to read mylarpoly.subset.ld. After
clicking on “OK” or “Apply” the new life data object is created, in the commands
window, we get the message “Saving subset data object mylarsub.ld,” and this life
data object will appear in subsequent lists of accelerated life test or regression life data
objects.

10 Multiple Regression (ALT) Life Data Analysis

The methods illustrated in Section 9 are easily extended to allow one to fit failure time
regression models with two or more explanatory variables. The methods presented here
provide useful extensions to the multiple regression methods covered in a standard course
in the subject of multiple regression analysis, allowing for non-normal distributions and
censoring. To illustrate the methods for failure-time regression, we will use the New
Spring life data (data object NewSpring.ld) from Meeker, Escobar, and Zayac (2003).
The data came from a factorial experiment to evaluate the life of a new processing
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method for manufacturing a spring as well as to assess the effect of a processing
temperature and spring displacement (stroke) on spring life. Spring displacement was
also to be an accelerating variable (using high values to speed up the test). The tabular
summary of these data in Table 12 was obtained by using SPLIDA »
Make/summary/view/edit data object » Summary/view data object.

Number of rows in data matrix= 80

Response units: kCycles

Response minimum: 89

Response maximum: 5000

Number of cases in data set= 108

Number of exact failures in data set= 73

Number of right censored observations in data set= 35
No truncation information

Summary of numeric columns in X matrix:
min max mean sd cv
Stroke 50 70 62.38 7.671 0.123
Temp 500 1000 775.00 250.316 0.323

List of unique X values (or combinations)
Stroke Temp Method min-Resp max-Resp #Exact #R-cen Total

1 50 500 New 5000 5000 0 9 9
2 60 500 New 1016 5000 3 6 9
3 70 500 New 752 5000 7 2 9
4 50 500 0old 997 5000 4 5 9
5 60 500 0ld 551 4006 9 0 9
6 70 500 0ld 211 2029 9 0 9
7 50 1000 New 1715 5000 2 7 9
8 60 1000 New 1595 5000 6 3 9
9 70 1000 New 808 4563 9 0 9
10 50 1000 0old 489 5000 6 3 9
11 60 1000 0old 371 2630 9 0 9
12 70 1000 Old 89 1301 9 0 9

Table 12 Summary of the NewSpring life data object

10.1 Censored data pairs plot

As described earlier, data analysis should begin with exploration using graphical tools.
The dialog in Figure 84, obtained from SPLIDA » Multiple regression (ALT) life
data » Censored data pairs plot, allows the user to plot all pairs of variables in one
“matrix plot” (also known as a “pairs plot” in S-PLUS).
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Censored data pairs plot - |EI |£|

Lite data object INEWSpring.Id vl Title option IfuII vl

0K | Cancel HAppIyI |<|>|| current Help |

Figure 84 Dialog to request a censored data pairs plot.

Figure 85 shows a pairs plot for the NewSpring data. As shown in the simple regression
example with the Device-A data, the censoring makes it more difficult to interpret a
scatter plot. The pair-wise plots between Method, Temp, and Stroke show the factorial
arrangement of the experiment.
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Figure 85 Censored data pairs plot showing the NewSpring life versus Stroke,
Temperature, and Method.

10.2 Censored data scatter plot

The censored data scatter plot dialog obtained with SPLIDA » Multiple regression
(ALT) life data » Censored data scatter plot is exactly the same as that shown in
Figure 73, obtained with SPLIDA P Simple regression (ALT) data analysis »
Censored data scatter plot. As before the dialog allows one to request a single scatter
plot of the response versus one explanatory variable, with an option to transform either or
both of the data axes.

10.3 Probability plot and ML fit for individual conditions

The dialog obtained from SPLIDA » Multiple regression (ALT) life data »
Probability plot and ML fit for individual conditions, shown in Figure 86 allows one
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to request separate analyses for all combinations of experimental variable levels in one’s
data set, with all of the results plotted on one probability plot.

Probability plot for individual ALT conditions — |EI |£|
Basic | Plot options | hodify plot axes | Tabular output |

—Fequired —All data ohjects

Life data object INewSpring.Id - l [" Include in life data object list

Refresh list(s) —Some options

Percent confidence lewvel

Option & Choose dist l%i

B distributions
MNumber of digits in tables

Distribution IWeibuII vl |4
Choose explanatary variahle(s) Sawve results in INeWSpring.individw

I |<|)|| current Help |

Figure 86 Dialog requesting a probability plot showing individual nonparametric
estimates for each experimental factor level combination on lognormal paper.

After the dialog appears, choose the life data object (only life data objects with
explanatory variables appear in the list), a distribution, and all or some of the explanatory
variables. Then click “Apply” or “OK,” producing a probability plot like that in Figure
87.
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Figure 87 Probability plot showing individual nonparametric estimates for each
experimental factor level combination of the NewSpring data on Weibull paper.

By using the Plot Options page of the dialog in Figure 86, it is possible to suppress the
printing of the legend or have it print on a separate page. There is a considerable amount
of variation among the slopes of the ML estimate lines in Figure 87. This is due to the
small number of failures at some combinations of voltage and temperature.
Corresponding numerical results are given in Table 13. NAs are shown for the test
conditions for which there were not enough failures to compute ML estimates.
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Maximum likelihood estimation results:
Response units: kCycles

Weibull Distribution

Log likelihood eta se_eta beta se beta
1 50Stroke;500Temp; NewMethod NA NA NA NA NA
2 50Stroke;500Temp;O0ldMethod -39.85 6639.6 2122.7 1.868 0.8845
3 50Stroke;1000Temp; NewMethod -21.59 11104.8 7802.5 1.723 1.1772
4 50Stroke;1000Temp;O0ldMethod -56.45 4430.4 1446.9 1.265 0.4536
5 60Stroke;500Temp; NewMethod -31.17 10101.2 6480.1 1.236 0.6723
6 60Stroke;500Temp;O0ldMethod -74.39 2193.1 372.5 2.067 0.5406
7 60Stroke;1000Temp; NewMethod -55.10 4781.6 677.9 2.920 1.0591
8 60Stroke;1000Temp; O0ldMethod -70.45 1606.2 228.4 2.466 0.6460
9 70Stroke;500Temp; NewMethod -63.58 4169.5 700.5 2.250 0.7468
10 70Stroke;500Temp;O0ldMethod -67.43 835.9 194.1 1.521 0.3799
11 70Stroke;1000Temp; NewMethod -74.49 2108.8 408.3 1.831 0.4420
12 70Stroke;1000Temp;O0ldMethod -66.08 665.7 169.7 1.378 0.3730

Total log likelihood= -620.6

Table 13 Individual ML estimates for the different NewSpring life test conditions

10.4 Probability plot and ML fit for individual conditions: common shapes (slopes)

The methods described in this section are similar to those described in Sections 8.3 and
9.3 except that more than one explanatory variable can be specified for the analysis.
Using SPLIDA » Multiple regression (ALT) life data » Prob plot and ML fit for
indiv cond: common shapes (slopes) brings up a dialog like that in Figure 88. This
dialog is very much like that obtained with SPLIDA » Simple regression (ALT) life
data analysis » Prob plot and ML fit for indiv cond: common shapes (slopes),
except that one is allowed to choose more than one explanatory variable (including
categorical variables, known as “factors” in S-PLUS). Using maximum likelihood, a
model is fitted that allows the scale parameter of log-location-scale distributions (location
parameters of location-scale distributions) at the different combinations of experimental
conditions to vary, but constrains the shape (slope) parameter of the log-location
distributions (scale parameters of location-scale distributions) to be the same in the
model.

94




Probability plot for individual levels with common's — |EI |£|
Basic | Plot aptions | Modify plot axes | Tabular output | hodel plot |

—Required —All data objects
Life data object INewSpring.Id vl ™ Include in life data object list
Refrash list(s) —Same options

Percent confidence lewel

Ciption * Choose dist I%—

" B distributions
Mumber of digits in tables

Distribution IWeibuII vl |4
Choose explanatory variahlels) Sen/E rasults in INBWSpring.dummy.

Figure 88 Dialog to request, for the NewSpring ALT data, a probability plot and
maximum likelihood estimation for individual combinations of the NewSpring
experimental conditions, but with a common Weibull shape parameter.

As with previous similar dialoges, choose the life data object, a distribution, the
explanatory variables to be used, and then click “Apply” or OK, giving the probability
plot shown in Figure 89.
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Figure 89 NewSpring ALT data probability plot and maximum likelihood
estimation for individual combinations of the NewSpring experimental conditions,
but with a common lognormal shape parameter.

10.5 Probability plot and ML fit of a regression (acceleration) model

This section describes the fitting a multiple regression model. The dialog for doing this,
while similar to the dialog for fitting a one-variable relationship, differs significantly.
First, the model specification is more complex because more than one
variable/relationship combination has to be specified. Relatedly, it is also more
complicated to specify additional conditions (“new data” in S-PLUS jargon) at which to
do evaluations of distribution properties like failure probabilities and quantiles.
Additionally, there is no option on the dialog for a “model plot.” Instead, after a model is
fit, the user can make a “conditional model plot,” as described in Section 10.6.

Using SPLIDA » Multiple regression (ALT) life data » Probability plot and ML fit
of a regression (acceleration) model brings up a dialog like the one in Figure 90. In this
box, one chooses the life data object, a distribution (or the “6 distribution” option) and
which explanatory variables to use. Then one moves to the model page of the dialog to
specify the model (i.e., life-explanatory variable relationships). To illustrate these
features, we continue with the NewSpring example.

96



After the NewSpring.1ld life data object has been chosen, one chooses the distribution and
explanatory variables. The Plot Option and Tabular Output pages of the dialog will show
(when output options are actually selected) lists of explanatory variable combinations
from which one can choose one or more combinations for particular focus. For example,
as with simple regression analyses, one can ask for confidence intervals for ML estimates
of the cdf (fraction failing as a function of time) on probability plots and for tables of
distribution quantiles or failure probabilities at specified explanatory variable
combinations. It is also possible to input user-specified combinations of levels of the
explanatory variables (“new data” in S-PLUS jargon) other than those implied by the
levels in the input data. This can be done either by the “Direct method” of entering
numbers in the “Additional levels for evaluation” box or by specifying an Splus data set
containing the information with appropriate column headings corresponding to the
variable names in the lifedata object. The first method is illustrated in the dialog shown in
Figure 90 where the string of characters 30;600;New,20;600;New is used to specify two
new conditions for evaluation. Note that semicolons are used to separate the levels within
a condition and that a comma is used to separate the two conditions. When entering these
numbers it is sometimes convenient to use the S-PLUS right-click Zoom option. The
“Save results in:” box gets filled and becomes editable after a the life-explanatory
variable relationships are chosen on the Model page.

Probability plot and ML fit for multiple regressic - |EI |£|
Basic | todel | Plot options | Madify plot axes | Tabular output |
—Fequired — Specify new data for evaluation
Life data object INewSpring.Id vl Data specification method
Refresh list(s)
Option & Choose dist 9 Diject
6 distibutions ® ‘izl

Distribution aibul - Sep. elernnts with " and rows with "

Choose explanatory variable(s)
Additional conditions for evaluation

IBD;BDD;NEW,ZD;BDD;N
Choose data frame
I jv
—All data ohjects

" Include in life data ohject list

—Some options

Percent confidence lewvel
|95

Mumber of digits in tables

|4
Sawve results in INeWSpring.groupm_

o]8 I Cancell Applyl |<|>| current Help |

Figure 90 Basic page of the multiple regression dialog requesting a probability plot
and a fitted regression model for the NewSpring data.
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On the Model page of the dialog (shown in Figure 91), the user first chooses the
relationships for each of the variables (except that categorical variables-like Method---
factors in S-PLUS jargon---are automatically chosen to be class variables). This choosing
process is initiated by clicking on the “relationships” button. For the example below, the
standard log (equivalent to inverse power rule) was chosen for Stroke, a linear (i.e., no
transformation) for Temperature variables, respectively. By default, the fitted model will
include only main effects for each of the variables chosen to be in the model (note the
default equation). It is, however, possible to specify a more complicated model involving
interactions and polynomial terms, if desired. This is done by specifying a model
equation, using standard S-PLUS modeling formula. The easiest way to specify such a
model is by using the Create Formula button, specify main effects and other terms, as
desired. Then, after dismissing the equation-specification dialog, edit the resulting
equation (e.g. to remove unwanted interactions). The right-click zoom option for editing
the equation is useful.

As with previous dialogs for requesting ML estimation, a Tabular Output page allows the
user to request tables of distribution quantiles or failure probabilities for specified levels
or combinations of levels of the explanatory variables.
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Probability plot and ML fit for multiple regressiorn re — |EI |£|
Basic | haodel | Flot options | Modify plot axes | Tabular output |

—Required
Crrder of chosen variables
IStere,Temp,Method

Fush to start choosing relationships

“ariable relationships

ILug, Linear. Class

Box-Cox powers INA MW, Tl

Farmula option & hdain effects anly

" Cuystomize/edit

Create Farmuls |

Formula: ILDcatiDn ~ gfStrokel+ Temp + Method

Ok | Cancell Applyl |<|>|| current Help |

Figure 91 Model-specification page of the multiple regression dialog requesting a
probability plot showing a fitted regression model for the NewSpring data.

The Tabular Output page of the dialog in Figure 90, shown in Figure 92, lists the
available levels of the explanatory variables (this list is full only if the explanatory
variables have been chosen on the basic page and if one of the boxes for Quantiles
Estimates or CDF estimates are checked). The user-inputted values appear at the bottom
of the list. In this case, only the two user-inputted values have been chosen for generating
the output tables.
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Probability plot and ML fit for multiple regressio — |EI |£|

Basic | kodel Plot options | Modify plot axes | Tabular output |
— Quantile estimates — Lewelig) of the warakle(s) for takles
v Printtable Use Ctrl key for multiple select
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Figure 92 Tabular Output page of the multiple regression dialog requesting tables
of quantile and failure probability estimates at particular levels of the experimental
variables for the NewSpring data.

Clicking on “OK” or “Apply” produces the probability plot in Figure 93 and the S-PLUS
tabular output shown in Table 14 and Table 15. Table 14 gives the usual regression
output. Table 15 shows ML estimates for the (Stroke; Temp; Method) conditions of (30;
600; New). The estimates for the conditions (20; 600; New) are not displayed here to
save some space..

Figure 93 shows the probability plot for this example with lines also drawn for the user-
specified combinations of 30 Volts and 5 Degrees C and 30 Volts and 10 Degrees C. The
legend is covering some of the plotted information, so one might want to exercise the
Plot Option to suppress or move the legend to a new page. Note that when the model is
fit, the results are saved in a “results object”

namedNewSpring.groupm.weibull.StrkLog. TempLinr.MthdClss.out. Note that the name
of the results object contains the life data object prefix, distribution name, and
explanatory variable/relationship combinations, relieving the user from the chore of
specifying such names and making it easier to distinguish among different results objects

100



NewSpring data

Maximum likelihood estimation results:
Response units: kCycles

Weibull Distribution

Variable: Relationship (g)

1 Stroke: Log

2 Temp: Linear

3 Method: Class

S-PLUS dummy variable coding method used for Class
variable(s): contr.treatment, contr.poly

Model formula:

Location ~ g(Stroke) + Temp + Method

Log likelihood at maximum point: -625.8

Parameter Approx Conf. Interval
MLE Std.Err. 95% Lower 95% Upper

(Intercept) 32.026955 2.4843573 27.157704 36.8962056
g(Stroke) -5.509575 0.5872085 -6.660482 -4.3586674
Temp -0.000883 0.0002709 -0.001414 -0.0003521

Method -1.272388 0.1475136 -1.561510 -0.9832671

sigma 0.569491 0.0539010 0.473067 0.6855692
weibull.beta 1.755953 0.1661969 1.458642 2.1138649

OO OO0OON

when requesting subsequent analyses (e.g., residual plots, conditional model plots, and
sensitivity analyses).

Table 14 ML estimates for the Weibull distribution acceleration model fit to the NewSpring
accelerated life test data

NewSpring data Model MLE
StrokeLog, TempLinear, MethodClass, Dist:Weibull
Weibull Probability Plot
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Figure 93 Probability plot showing a fitted Weibull regression model to the NewSpring data.
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Failure Probability Estimates

Using NewSpring data at Stroke30;Temp600;MethodNew
Parametric ML CDF Estimates

Pointwise Approximate 95% Confidence Intervals

Weibull Distribution

kCycles Fhat Std.Err. 95% Lower 95% Upper
50 1.7949e-007 2.5544e-007 1.1031e-008 2.9204e-006

100 6.0622e-007 8.0559e-007 4.4822e-008 8.1990e-006

200 2.0475e-006 2.5350e-006 1.8087e-007 2.3178e-005

500 1.0233e-005 1.1511e-005 1.1282e-006 9.2798e-005
1000 3.4560e-005 3.6150e-005 4.4482e-006 2.6846e-004
2000 1.1672e-004 1.1372e-004 1.7290e-005 7.8753e-004
5000 5.8320e-004 5.2102e-004 1.0119e-004 3.3535e-003

Quantile Estimates

Using NewSpring data at Stroke30;Temp600;MethodNew
Parametric ML Quantile Estimates

Pointwise Approximate 95% Confidence Intervals

Weibull Distribution

p Quanhat Std.Err. 95% Lower 95% Upper

0.01 25293 11573 10316 62011
0.05 63992 28770 26512 154459
0.10 96419 43532 39797 233600

Table 15 Maximum likelihood estimates of Failure probabilities and distribution quantiles.

10.6 Conditional model plot

When a fitted regeression model has more than one explanatory variable, it is still
possible to make a “model plot” showing time as a function of stress (or other
explanatory variable). In order to do this, however, it is necessary to specify fixed values
of the other explanatory variables. Using SPLIDA » Multiple regression (ALT)
life data » Conditional model plot brings up the dialog in Figure 94. When the
dialog appears, it will remember the most recent results object (if the analysis was done
in the current session). In this case the remembered name is
NewSpring.groupm.weibull.StrkLog. TempLinr.MthdClss.out. Suppose now that design
engineers want to estimate the life distribution of the spring manufactured with the new
method with a processing temperature of 600 degrees F for different levels of stroke
ranging between 10 and 80 mils. After specifying this information and clicking on
“Apply” or “OK,” produces a plot like that in Figure 96.
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Conditional model plot - |EI |£|

hodel plot | Flot options |M0difyp|0taxes|

—Required inputs
Llse results in INewSpring.grDu vl

Retrash list(s]

Which wariahle to vary on plot

IStru:uke - I

Fixed wariablas ITemp, Method

Fush to start choosing fixed values

Lewvels of fixed variahles
|BO0:New

oK | Cancell Applyl |<|>|| current Help |

Figure 94 Dialog for a conditional model plot.

Conditional model plot = |I:I |£|

Model plot | Flot options | Modify plot axes |
—Model plot options —Model plot evaluation range
[~ Grid on plot v Choose evaluation range

Specify quantiles for plotting,/evaluation Specify lowest level |1U
|'1"5"9 Specify largest level

Censoring time to show on plot IBEI
I —Levels at which to plot densities ———

" Flotresponse on the x-axis Lse Cirl key far multiple (de)select

I Include data on the plot

Figure 95 Plot options page for a conditional model plot.
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NewSpring data StrokeLog, TempLinear, MethodClass, Dist:Weibull
Fixed values of Temp=600, Method=New
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Figure 96 Conditional model plot showing estimated NewSpring life versus stroke
for the new processing method and temperature fixed at 600 degrees F.

10.7  Sensitivity analysis plot

Generally when fitting several alternative models to data, among the models that fit the
data well, there is usually relatively little difference in the results from the fitted models,
as long as one is working within the range of one’s data. SPLIDA has a powerful tool
that allows one to compare directly alternative analyses with different underlying model
assumptions. Using SPLIDA » Multiple regression (ALT) life data analysis

» Sensitivity analysis plot brings up the dialog in Figure 97. Similar to the
“Conditional model plot dialog”, the name of the last results structure used in the current
session is remembered, but any of the other existing results structures could be selected
instead. The primary model purturbation used in the sensitivity analysis is the
relationship assumption relating a continuous explanatory variable to life. This is done by
fitting separate models using several different choices for the parameter in the Box-Cox
family of transformations on the chosen numerical explanatory variable. The default
values are from —1 to 2, in steps of .5, but this was changed to run from —4 to 3 in steps 0f
.25. The output is a plot of the ML estimate of a selected quantile (or quantiles) as a
function of the Box-Cox parameter (1 is the same as a linear transformation, .5 is the
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same as a square root relationship, 0 corresponds to a log relationship, and —1
corresponds to a reciprocal relationship).

Multiple factor relationship sensitivity analysis ;IE'EI
Reguired inputs | Other inputs | Axis options |
— Sensitivity analysis options———— —Flot options
Choose distribution(s) ™ Grid on plot

[weibul = Title option [fun -]

Choose guantile(s) to estimated/plotted Legend Im
|.5
v Plot Box-Cox likelihood profile

Fercent confidence lewvel
|95

Specify evaluation powers:start,.end.inc

|-4,3,.25

ok | cancel | [Agpy | 1<| ] curent Help_|

Figure 97 Dialog requesting sensitivity analysis for the assumed relationship
between spring life manufactured with the new method at 600 degrees F and
operated with a stroke of 30 mils.

If only one quantile and one distribution are used in the comparison (the default),
pointwise confidence intervals for the quantile are also plotted, as shown in Figure 98
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NewSpring data
with Weibull Stroke:log, Temp:linear, Method:class at 30,600, New
Power Transformation Sensitivity Analysis on Stroke

] — ML estimate of the 0.5 quantile
10732 -~ Approximate 95% Pointwise confidence intervals

0.5 Quantile of kCycles Distribution

-4 -3 -2 -1 0 1 2 3
Stroke Box-Cox Transformation Power

Figure 98 Sensitivity analysis plot showing the effect on spring life of the assumed
relationship between life and stroke for a spring manufactured using the new
method at 600 degrees F and operated with a stroke of 30 mils.

Also provided is a plot, like that shown in Figure 99, of the profile likelihood function for
the Box-Cox parameter. This plot allows an assessment of the statistical power to
discriminate among the different relationship parameters. Note that if there are only two
levels of the transformed explanatory variable, the profile likelihood will be constant
because there is no information in the data to discriminate among different
transformations on that explanatory variable.
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NewSpring data
Approximate Profile Likelihood and 95% Coenfidence Interval
for Stroke Box-Cox Transformation Power from the Weibull Distribution
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Figure 99 Profile plot showing the relative likelihood (probability) of the NewSpring
data as a function of the stroke relationship Box-Cox parameter.

In this case, the profile likelihood suggests that a transformation with the Box-Cox
parameter between —4 and 3 are consistent with the data.. Based on previous,
transformations used typically used for similar products have been 0 (corresponding to a
log transformation). To be conservative, however, values between 1 and 3 might be used
in reporting a plausible range of results.

10.8 Make life data objects for individual groups

It may, under certain circunstances be desired to select one or more of the groups of
regression data for more focused analysis. It is possible, for example to choose a
particular combination of levels of explanatory variables and do separate analyses for
them. We will illustrate this by making a separate life data object for the new design
within the NewSpring life data object. Using SPLIDA » Simple regression (ALT)
life data » Make subset life data object brings up the dialog in Figure 100.
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Make a subset life data object = |EI |£|

Basic |

—Choose life data object————————————— —Choose explanatany variablz(s)
Life data object

Choose explanatory wariable(s)

Fefresh list(s)

—All data objects
" Include in life data ohject list

Stroke A

TemE

Levells) ar combinationis) of levels

Qld

— Choose output life data object name

Sawve results in INewSpring.NewMet
Ok I Canc:ell Applyl |<|>| current Help |

Figure 100 Dialog requesting the creation of a life data object using only the New
Design data from the NewSpring lifedata object.

After clicking on “OK” or “Apply” the new life data object is created, we get the
message “Saving subset data object NewSpring.NewMethod.1d,” and this life data
object will appear in subsequent lists of single distribution life data object.

11 Regression Residual Plots

In any kind of statistical modeling, it is important to look for departures from models
being fitted to data. This is especially true for regression models in which explanatory
variables like temperature and humidity are used to describe the characteristics of a
response variable like life time. Because it is possible to specify most model assumptions
in terms of characteristics of model residuals (deviations between the response and some
definition of expected or typical response), a useful method of diagnostic checking is to
examine a model’s residuals, usually with various graphical displays. Examples
illustrating the use of and some technical details concerning the definition of residuals for
censored data are given in Section 17.6 of Meeker and Escobar (1998). We will illustrate
the use of the SPLIDA’s residual plotting capabilities with the mylar-polyurethane
insulating structure accelerated life test data, analyzed in Section 19.3.1 of Meeker and
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Escobar (1998). The ML analysis results object is
(NewSpring.groupm.weibull.StrkLog.TempLinr.MthdClss.out).

Using SPLIDA » Multiple regression (ALT) analysis » Residual analysis
brings up the dialog in Figure 101. By default, all of the possible residual plots are
selected, but it is easy to select one or a few of the possible plots. The Modify plot
axes page becomes active and can be used to control the plot axes if there is just one

plot chosen.

Regression residuals analysis — ||:| |£|
Fequired inputs | Modify plot axes

Results object —Which plots to make

Llse results in Linr hthdClss.outfiied Flot & Al

Refresh list(s) " One/Some

¥ Eesidual vs fitted values
¥ Eesidual probahilitplot
I¥| Besidual vs observation order
¥ | Besidual vs explanaton vars)

Explanatons wvariakle for plot

Stroke
Temp

Method

Ok I Cancell Applyl |<|>|| current Help |

Figure 101 Dialog requesting residuals plots for the NewSpring regression model

11.1 Residuals versus fitted values

It is common practice to plot residuals versus fitted values. Such a plot is useful for
detecting departures from the structural model as well as model departures like
nonconstant spread. Figure 102 shows a plot of the residuals versus the fitted values for
NewSpring regression model. Notice that many of the residuals are right censored and
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that this limits the amount of information in the plot.

MNewSpring data
Residuals versus Fitted Values
Strokelog, TempLinear, MethodClass, Dist:Weibull
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Figure 102 Plot of the regression residuals for the laminate panel data versus fitted
values.

11.2 Residuals versus possible explanatory variables

The residual from a regression model should not have a strong relationship with any
other external variable. If such a relationship is discovered, it suggests that the variable
should have been included into the model. To illustrate this we return to the NewSpring
data used in Section 10.5, but using a model in which life is related to Stroke and Method
only, omitting the temperature variable (this will be referred to as the reduced model).

The results object for the reduced model is chosen (actually it is remembered as the
default choice if the model was fit just before bringing up the dialog). Then DegreesC is
chosen as the variable against which to plot. Clicking on “Apply” or “OK” gives the
plot shown in Figure 103.
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Spring Fatigue Data
Residuals versus Temp
StrokeLog, MethodClass, Dist:Weibull
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Figure 103 Residuals for the Weibull/inverse power relationship model for the
NewSpring data plotted against the omitted variable Temperature.

The plot suggests some relationship between the residuals and Temperature, although the
relationship does not seem to be strong.

11.3 Residuals versus observation number

In some studies, data are obtained over time and the order of the cases in the resulting
data set may have some importance. For example, if units are tested sequentially, one at a
time, on a machine to do fatigue cycling, it is possible that some underlying “lurking
factor” has an effect on the response. For example, there may be gradual drift of machine
settings or an effect due to changes in ambient temperature or other environmental
conditions. An analyst can check for such underlying time-dependent changes in a
process by plotting residuals versus time order of the observations. Of course, in order for
such a plot to be meaningful, it is necessary that the case ordering in the data set
correspond to the actual time ordering that units were tested. If (as is often the case)
available data are ordered according to observed failure time (which might be the natural
ordering for commonly-used simultaneous testing) or according to explanatory variable
levels, the potentially important time-sequence information is lost and plots made versus
time order would probably have no meaning.

11.4 Residual probability plot

As described in Section 17.6 of Meeker and Escobar (1998), residuals from a regression
model, even with censoring, can be examined with the use of standard probability
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plotting methods. Residual probability plots are useful for assessing the reasonableness of
particular distribution choice for a regression model. The multiple probability plots used
in Sections 9 and 10 are useful for making this assessment at individual conditions. After
fitting an overall model, however, plotting the residuals provides more information on the
adequacy of the overall distribution.

Figure 104 is a residual probability plot for the laminate panel data.

Spring Fatigue Data
Residual Probability Plot with 95% Simultaneous Confidence Bands
StrokeLog, TempLinear, MethodClass, Dist:Weibull
Weibull Probability Plot
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Figure 104 Probability plot of the regression residuals for the laminate panel data.

12 Planning an Acccelerated Life Test (ALT)

Accelerated life tests (ALTs) are complicated and expensive experiments. Careful
planning of such experiments is important. SPLIDA provides tools for generating,
modifying, and evaluating accelerated life test plans. To use the evaluation tools, on must
first specify model information (or planning information) and the proposed test plan(s).

12.1 Specification of ALT plan values

The first step in the development and evaluation of ALT plans is specification of a
model and planning values for the model parameters. Generally such informatioin is
obtained from previous experience with similar materials or products or engineering
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analysis and judgement. Using SPLIDA P Plan an accelerated life test »
Specify ALT model information (planning values) brings up a dialog like the
one shown in Figure 105.

Specify ALT model information [planning valuez] !E[
Bazic | Fielationzhip(z] I Parameters |
— Model specification — Optional inputs
Distribution IWeiI:quI "’I Tirne unitz IDa}'S
Mumnber of accelerating wariables Ilze condition level

|1 IEEI
Push to start chooging relationships Save resultz in I.ﬁ.dhesiveB and'\We

ok | Cancel | appy | 1| o curent Help |

Figure 105 Dialog for specifying ALT-planning values.

As an example, we will specify the planning values corresponding to the adhesive bond
used in Example 20.1 on page 535 of Meeker and Escobar (1998). On the Basic page of
the dialog, change “last. ALTpv” to the more descriptive AdhesiveBond.ALTpv, choose a
distribution (Weibull in this case), and edit the time units cell to the more descriptive
“Days,” as shown in Figure 105. Note that the distribution name was automatically
inserted into the “Save results in” cell (the alt planning values object name istoo largeto
see compl etely without using the right-click-Zoom option in the cell). Although it is not
required to enter the use conditions, it is convenient to do so (because the use conditions
will not have to be specified later, although there is opportunity to modify the use
conditions at any time). For the adhesive bond example, the use condition is 50 degrees
C.

Then click the Relationships button to launch pop-ups for each accelerating variable.
You must choose the relationship (transformation) for each accelerating variable. For the
AdhesiveBond example, there is only one explanatory variable; choose Arrhenius. Then,
if you visit the Relationship(s) page, you can see the chosen relationship(s).

Now, visit the Parameters page. In order to specify the ALT model parameters, on this
page you must specify:

e The failure probability or quantile at a specific set of operating conditions

e The regression (or accelerating variable) model coefficients, and
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e The distribution shape (spread) parameter.

For the adhesive bond example, the responsible engineers in the past had used a Weibull
distribution to model the life of adhesives and the Weibull shape parameter was typically
in the neighborhood of 1.667. In addition, for purposes of planning, the .001 quantile of
the life distribution at 50 degrees C is specified as 183 days (or equivalently, the failure
probability at 50 degrees and 183 days is specified to be .001). Additionally, the slope
parameter in the life-temperature relationship is the effective activation energy (.7265 in
eV). The completed dialog is shown in Figure 106. Click on “Apply” to create the ALT
planning value object.

Specify ALT model information [planning yaluez] !E[
Basic | Felationshipls] I Parameters |
— Probability at zpecified timedccar—— — Specify relationzhip slope parameter[s]—l
Time point 1583 ALT slope value

Ao ar level I'?EEE
IEEI — Specify dizt shape [zlope] parameter——

Failure probabily [ .007 Witz e nage B TEE

I beta - I
Shape parameter |1 FE7

ok | Cancel | apphy | 1| o curent Help |

Figure 106 Completed parameter page of the accelerated life test planning values
dialog.

12.2 Specification of an ALT test plan

In order to specify an ALT plan, use SPLIDA » Plan an accelerated life test »
Specify ALT test plan to bring up a dialog like that shown in Figure 107. There are
two different methods for specifying an ALT test plan. For the “Direct method” the plan
characteristics for a test plan are entered directly into the dialog. For test plans with more
than one explanatory variable, a factorial experiment is produced (and if a fraction of this
factorial is desired, this is accomplished by modifying the test plan, as described in
Section 12.4. In the “Frame” method, a test plan is first entered into an S-PLUS data set
specified in the dialog.

Figure 107 illustrates the direct method. Specify the number of accelerating variable
levels; and change the default accelerating variable name(s). At this point, click the
Choose levels button. There will be a popup window for each of the accelerating
variables. In each popup window, you will need to specify the levels of the experimental
variable. In this case the levels for DegreesC are: 78, 98, 120. Next, specify the number
of units to be allocated to each subexperiment (only a single number is allowed here; if
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you want to have a different number allocated to different subexperiments, this is
accomplished by editing the test plan, as shown in Section 12.4). Then, enter the type of
censoring, and the censoring time (again, if you want to have different censoring times at
different subexperiments, this will be accomplished by editing the plan later). You may
also want to specify a particular prefix for the test plan object name (AdhesiveBond1 in
the example). The default suffix last. ALTplan is provided automatically. Then provide
the actual plan information.

Specify accelerated life test plan -|E||ﬂ

Test Flan Input |

— lhput method —"Data zet" inputs
Plan specification method Chomze plan,'data set
v Direct Secelerating variable colurnm(s]
" "Data zet"
— Direct inputs

Humber of accelerating warables
|1—
Accelerating wanable name E

IDEQ’EESE Aillacations columm
Choose levels | I :I"
Urits allocated to each combination Cerizar calun IND”E :IT
155
Type of cenzaring IW
Cenzar time: |183—
Save results in W

|<| >l curent Help |

Figure 107 Completed dialog specifying an ALT plan.

ak. | Eancell

After the plan is specified, click on “OK” or “Apply” (in case that you want to make
more than one related plan). To specify a second or third test plan, edit the dialog and the
suffix of the plan object name (e.g., use AhhesiveBond?2 so that the previously specified
plan(s) will not be overwritten) and again press “OK” or “Apply”.

12.3 Generating special ALT test plans

When planning an ALT with a single accelerating variable, SPLIDA can be used to
generate some special plans such as the following:
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e Traditional plans that use equally spaced levels of the accelerating variable and
equal allocation of test units to each level of the accelerating variable.

e Optimum test plans that minimize the large sample variance of a particular
quantile of interest. Such plans may not be practical (e.g., because they test units
at only two levels of the explanatory variables) but they provide a baseline for the
best that one can do and insight into what is needed to develop a plan that is
statistically efficient.

e (Constrained optimum (or compromise) test plans that have three distinct levels of
the accelerating variable with something like 15% or 20% of the test units
constrained to be tested at the middle level of the accelerating variable.

e Equal expected number failing test plans which are constrained to have three
distinct levels of the explanatory variable with the expected number failing the
same at each of the levels.

Figure 108 shows the dialog to request the optimum test plan for the Adhesive Bond
example, this plan and its evaluation are given in Table 16.

More information about plans like these can be found in Chapter 20 of Meeker and
Escobar (1998).

Generate an accelerated life test plan !E

Basic |

— Required inputs — Required censzanng information

Plan values object I-"i"-dhESi'--'EE omd. "I Cenzaring brme |1 a3

Fiefresh lizt(z] | — Optional inputs
- Specify quantile of interest
Plar type I Cptirmum - I I.I—

Ilze condition level
IED— Sample size 200

Froportion &t middle [evelz]

Highest level of accelerating war |_|5—
|1 20 :
Save resultz in I.ﬁ.dhesiveB and.COpt

|<| >l cLrent Help |

Figure 108 Dialog to generate an optimum ALT plan

1]8 | Eancell
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Optimum test plan based on AdhesiveBond.Weibull.altpv

Test plan summary:

DegreesC n ctime =zeta p efail
1 94 .652 212 183 -1.63 0.17838 37.82
3 120.000 88 183 0.84 0.90054 79.25

Evaluation at use conditions 50 DegreesC
Quantile Days Ase R-Factor
0.1 2990.1 1133.3 2.1019

Table 16 Output from the generation of the AdhesiveBond optimum ALT plan

12.4 Modify an ALT test plan

Suppose that we want to modify the plan that we specified in Section 12.2 so that the
allocations are 155, 60, and 84 specimens tested at 78, 98, and 120 degrees C,
respectively. Use SPLIDA » Plan an accelerated life test » Modify ALT plan to
bring up the dialog in Figure 109. Choose the AdhesiveBond1.altplan test plan object,
and then click on the Edit plan button to bring up the plan’s edit worksheet.

Modify accelerated life test plan ; M= E3
ﬁ Test plan input |
accelvariable | number.units | censar. times — Basic inputs — Choose matris rowscolumns

1 7a.0 155.00 187,00 Choose best plan Choose accelerating variablels)

2 58,00 60.00 163,00 el el

3 120,00 84,00 183.00 Refresh list[s]

4 — Editing/output optiors accelvariable

3 Option = New name

] * Old name

7

o Save results in Im Choose test plan raws

9 Edtplan |

10

11

12

13
4] |

I 40 |> QK I Eancell Applyl I<| >| curment

alid

Figure 109 Dialog and edit worksheet for modifying the AhesiveBond1.ALTplan ALT test plan
object

Edit the number.units column and click on Apply. This will create the new test plan with
the same name. If a new test plan with a new name had been desired, one can choose the
New name Option and then edit the Save results in box.
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12.5 Sample size for an ALT test plan

Using SPLIDA » Plan an accelerated life test » Sample size for an ALT test plan
will bring up the dialog in Figure 110. After choosing the plan values and the test plan
objects, enter the use conditions, and click on Apply. This will generate the plot in Figure
111. This plot is used in the same way as the sample size plot for a single distribution,
described in Section 6.3. For example, the rectangle tool in the S-PLUS annotate toolbar
can be used to draw in a rectangle to show that the predicted precision factor for an
approximate 95% confidence interval for the .1 quantile for this ALT plan is R=2.3.

Sample 5ize for an ALT plan !E[
| npuLts | Modify plot a:-cesl

|nput options — Output optiohz |

Flan values object I.ﬁ.dhesiveE ond. "’I Ize condition lewvel
|5|:|

Test plan object

Riefresh listis] | Specify quantile of interest
|.1

Specify confidence levels in percent

IEEI,EEI,EIE,EIEI

™ Grid on plot

ok | Cancel | pphy | 1] o curent Help |

Figure 110 Dialog for the SPLIDA sample size tool
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Needed sample size giving approximately a 50% chance of having
a confidence interval factor for the 0.1 quantile that is less than R
AdhesiveBond1.altplan AdhesiveBond.Weibull.altpv
use conditions= 50 DegreesC

99%
200 + —— ggzz
100 1 — 80%

1.0 1.5 20 25 3.0

Confidence Interval Precision Factor R

Figure 111 Plot of required sample size as a function of the precision factor R for
the AdhesiveBond accelerated life test example.

12.6 Summarization and approximate evaluation of a specified ALT test plan

Using SPLIDA » Plan an accelerated life test » Summarize, evaluate, and plot an
ALT test plan will bring up the dialog shown in Figure 112. In this box, one specifies
the ALT plan values object (AdhesiveBond.Weibull.altpv in this case), the ALT test plan
object (AdhesiveBond] .altplan) to be evaluated, and the use conditions (50 Degrees C for
the adhesive bond). By default, the output produced includes a tabular summary and a
plot summary of the specified ALT test plan. Figure 113 shows an Arrhenius plot for the
adhesive bond test plan specified in Figure 107, using the planning values that were
specified in Figure 106.
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Summarize. evaluate. and plot ALT ALT plan !E[

[ npLts |

— Required inputs Plot/zummary evaluation output options

Flan values object I.ﬁ.dhesiveBnnd. "I V¥ Table surmary

Test plan object v Plot surmmary

Refresh lizt(z] | Save rezultz in hastuut

— Evaluation optionz |

Ilze condition leve

hﬂ
Specify quantiles far plottingdevaluation

[1.5.3
0K | Cancel | apply | 1| o curent Help |

Figure 112 Dialog asking for a summary evaluation and plot of a proposed
accelerated life test plan for the adhesive bond example.

The output in Table 17 provides a printed summary of the planning values and the test
plan, followed by a listing of the large-sample approximate standard deviation and
confidence interval precision factor for confidence intervals corresponding to each of the
quantiles listed in the “Plot, summarize/evaluate ALT Plan” dialog shown in Figure 112.

Table 17 ALT planning information and test plan specification for the adhesive
bond example.

Accelerated test planning values
Distribution: Weibull
Relationship: Arrhenius

Time units: Days

For a censoring time of 183 Days

the failure probability at 50 Degrees C is: 0.001

Intercept is: -16.7
slope = 0.726
weibull .beta = 1.67
sigma = 0.6

Accelerated Test Plan

level number censor.time xi pi prfail Efail
1 78 155 183 0.4478 0.518 0.0315772 4.89
2 98 60 183 0.7264 0.201 0.242189 14.5
3 120 84 183 1 0.281 0.900543 75.6

Use condition is 50 Degrees C

Total number of test units= 299

The large sample approximate standard deviation
of the 0.1 log quantile at 50 Degrees C = 0.4378
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corresponding to a 95% confidence precision factor or R= 2.358
The large sample approximate standard deviation

of the 0.5 log quantile at 50 Degrees C = 0.4911
corresponding to a 95% confidence precision factor or R= 2.619
The large sample approximate standard deviation

of the 0.9 log quantile at 50 Degrees C = 0.532

corresponding to a 95% confidence precision factor or R= 2.837

Note that the 95% confidence precision factor for the .1 quantile is 2.358, which agrees
closely with the factor read from Figure 111.

Accelerated Test Plan
AdhesiveBond1.altplan AdhesiveBond. Weibull.altpv
Levels = 78,898,120, n=155,60,84
Censor time= 183, parameters= -16.74,0.7265,0.599%

100000 =
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w1000§
= 1
= ]
(i T 90%
100 = 50%
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Degrees C on Arrhenius Scale

Figure 113 Arrhenius plot showing a proposed test plan for the Adhesive Bond
example.

12.7 Simulation of an ALT test plan

Although the approximate evaluation given above is useful, doing a simulation of a
proposed ALT test plan avoids the use of large-sample approximations (which may not
be adequate when some of the test conditions have expected numbers of failures that are
small) and will provide insight into the limitations of a proposed test plan. Using
SPLIDA » Plan an accelerated life test » Simulate an ALT test plan
brings up the dialog in Figure 114, allowing the user to request a simulation of a
proposed ALT test plan.
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Simulate an ALT test plan - |EI |i|

Inputs |

—Required inputs — Output options

Flanwalues ohject IAdhesiveBDnd. vl MNumber of simulations
Test plan object IAdhesiveBDndT vl 500

Refrash list(s) Murmber of lines to plot
|5EI

Yiew detail for how many samples

se condition lewel I5—
|ED
Save results in IAdhesiveBunm alp

—Ewaluation options

Specify quantile for plotting

|.1|
oK I Cancell Applyl |<|>|| current Help |

Figure 114 Dialog requesting a simulation to evaluate a proposed accelerated life
test plan for the adhesive bond example.

Then specify the previously created ALT plan values (e.g.,
AdhesiveBond.Weibull.altpv), the ALT test plan object (e.g.,
AdhesiveBondl.Weibull.ALTplan). If they were specified in the planning
values object, the Use condition level will use that value (those values) as the default
entry, but the box is editable. There is also an option to see some details of the analyses
of the individual simulated samples. Looking at four or five such samples in a new
situation can be useful.

After completing the dialog, click on “Apply.” The simulation will then begin to run,
giving an indication of progress in the output window (completing the simulation will
take from a few seconds to a few minutes depending on the number of simulations
requested and processor speed (500 simulations is sufficient for most purposes). When
completed, five new multiple probability plots, summarizing the first five simulated data
objects, will have been created. For the adhesive bond example, one of these is shown in
Figure 115. Note the deviation from a straight line is the lower tails of the distributions at
98 and 120 degrees C. For an experienced analyst, this behavior is expected, as the
observations in the lower tail of a normal distribution have the most variability (the same
is true of the largest observations from a normal distribution, but these observations have
been censored).
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Simulated data from AdhesiveBond1.altplan AdhesiveBond.Weibull.altpy Model MLE
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Figure 115 Multiple probability plot for one of the simulated adhesive bond ALT experiments

In addition, a summary of the results is depicted in a quantile-life versus accelerating
variable plot for each of the accelerating variables (an Arrhenius plot for the example), as
shown in Figure 116. The results of the simulation are saved in a file (by default, the
name of this file is obtained by pasting together the names of the planning values object
and the test plan object (AdhesiveBond1.altplan.AdhesiveBond.Weibull.altpv.alt.sim.out
for the example). By using this file, one can produce other summaries of the simulation
results, as described in Section 12.8.

Note also that SPLIDA saves the last simulated ALT life data object as last.sim. ALT.1d.
One can use all of the SPLIDA ALT data analysis tools to analyze these data to gain
experience in analyzing such data and to get a sense of the information that can be
expected from the experiment.
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Accelerated life test simulation based on
AdhesiveBond1.altplan AdhesiveBond.Weibull altpy
Failure time 0.1 quantile vs DegreesC
x:Arrhenius |, Dist:Weibull
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Figure 116 Arrhenius plot showing a summary of the simulation of the proposed
accelerated life test for the Adhesive Bond.

12.8 Evaluation of ALT test plan simulation results

Although SPLIDA automatically presents the summary of the simulated results shown in
Figure 116, an analyst may be interested in other summaries of the simulation results. To
produce such summaries, use SPLIDA » Plan an accelerated life test »
Summarize an ALT simulation to bring up the dialog in Figure 117. This dialog
allows the user to request some or all of three different kinds of simulation summaries.
The first page, shown in Figure 117, requires specification of the ALT simulation results
object (SPLIDA will remember the most recent results object if it was created in the
current session). This page also allows the user to choose one or both of two overall
summary plots:

e A plot of a specified quantile versus the accelerating variable

e A plot of the fraction failing as a function of time at a specified level(s) of the
accelerating variable(s)
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For the time versus the accelerating variable plot, the user can choose the quantile to plot.
For the fraction failing as a function of time plot, the user can choose the level of the
accelerating variable, as shown in Figure 117.

summarize ALT simulation results - 0| x|
Basic | kodify plot axes | Focus quantities |
Reguired —Summary plot options
Use results in IAdhesiveBDndT vl W Flottime ws Accvar
Fetresh list(s) Choose which Accvar(s)

Fail time guantile ID.1

Acchvar for F) IEU.

Ok I Cann:ell Applyl |<|>| current Help |

Figure 117 Dialog used to request summarizations of an ALT simulation

In addition to these summary plots, one can also choose to make summary plots of two
specified “focus quantities.” A focus quantity is a quantity of interest: a parameter, a
specified quantile, or a failure probability at a given level (or levels) of the accelerating
variable(s). Specification of the focus quantities is from the Focus quantities page
of the Summarize ALT simulation results Dialog shown in Figure 118. Two
different focus quantities should be chosen. Then one can choose to look at the joint
distribution of the simulated estimates, the marginal distribution, or both at the same
time.
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Summarize ALT simulation results - |EI |i|

Basic | Modify plot axes | Focus guantities |

—Focus gquantity plot options————— —Information on the second focus guantity—;

Joint or Marginal IJDintW,’MarginaI VI Second focus guantity
¥ tdarginal first fozus quantit, Ifailure probability:,v

Choose time for failure probahilit

|1830
IHistugram VI
IWeibuIIShapeEe vl
MNumber of simulated points to plot

00 Explan. war. far second focus gquantity

e
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Figure 118 Dialog to specify details of summarization of ALT focus quantities

Firstfocus quantity

Choose parameter

After completing the dialog, click on “Apply” to generate the summary graphics. First,
another plot like that in Figure 116 is generated (although a different quantile of a
different level of temperature could have been used). Figure 119 is a plot of the ML
estimates of the fraction failing at 50 Degrees C, as a function of time. Figure 120 shows
the joint distribution of the ML estimates of [, (the effective activation energy) and
F(1830), the fraction failing at 1830 days (about 5 years), at the nominal use conditions
of 50 Degrees C. This type of plot provides important insights and explanations for the
results from ALT experiments. For example, the negative association between of ; and
F(1830) suggests that larger estimates of P; will lead to smaller estimates of failure
probabilities.
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Accelerated life test simulation based on
AdhesiveBond1 altplan AdhesiveBond.Weibull altpv
Fraction failing versus Days
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Weibull Probability Plot
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Figure 119 ALT simulation summary plot of ML estimates of fraction failing as a function of time

Accelerated life test simulation based on
AdhesiveBond1.altplan AdhesiveBond.Weibull altpv
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Figure 120 ALT simulation summary plots of ML estimates F(1830) and 131 (effective activation
energy)
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SPLIDA chooses default values for the ranges of the axes of these plots. It is possible for
the user to control these if the dialog is requesting only one of the three kinds of plots. In
order to do this, the dialog must be set so that only one of the three different kinds of lots
is being requested. In this case, the controls on the Modify plot axes page will
become active.

12.9 Compute acceleration factors

SPLIDA provides a tool for computing acceleration factors for the simple acceleration
models. Use SPLIDA » Plan an accelerated life test » Compute
acceleration factor to bring up the dialog illustrated in Figure 121. Specify the range
of accelerating variable levels of interest (the smallest being the use cnditions and the
highest being the highest testing level), the acceleration model. Also, provide the
acceleration model regression coefficient (effective activation energy for the Arrhenius
model and power for the inverse power relationship). Several values can be provided at
one time, as shown in Figure 121. Then click on Apply to get a plot of the acceleration
factor across the specified range of the accelerating variable, as shown in Figure 122.

Compute acceleration factor !E[

Basic |

— Baszic inputz
High lewel 120

Lo level IEEI
Relationship I.-'i'-.rrhenius - I

Sty By ey pawer
IN.&

Activation Energy (Y]

I.E,.?,.E
[«] =} current Help |

Figure 121 Dialog to compute acceleration factors and make a plot of acceleration
factor versus temperature.
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Arrhenius relationship with activation energy in units of eV,
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Figure 122 Plot of acceleration factors with different assumed activations energies
(in units of eV).

13 Recurrence (point process) data analysis

Recurrence data (also known as point process data) arise when events are tracked on a
collection (or sample) of units over time. Such data arise in many different applications.
For example, in field tracking, a group of units is monitored over time and a record is
kept of repairs for individual units, perhaps consisting of data, type of repair, and the cost
of the repair. Interest, for example, may center on the recurrence rate or on the average
cumulative cost of system maintenance as a function of time.

13.1 Structure of recurrence data

In its detailed form (used in this chapter), recurrence data consists of information on the
times and nature of events on a collection of units under observation. An event can be a
recurrence (“Fail” or “Repair” or some other name of the recurrence), the beginning of an
observation period (“Start”) or the end of an observation period (“End”).
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Usually, units are under continuous observation for some specified period of time.
During that time, there may be one or more “recurrences” or “events.” In other
applications, recurrences for a unit may be observed only during “windows of
opportunity” (outside of these windows events that occur are not observed). Each event
may have an associated “cost” or other value (if not, the default value is 1.0, indicating a
counting process).

To illustrate the structure of the data needed by SPLIDA, we will present three simple
“toy” examples, but point to corresponding real examples available among the example
SPLIDA data sets.

Example 13.1 Three vehicles observed continuously over time with events for all
vehicles.

Vehicle Weeks Event Cost
Vi1 0 Start 0
Vi 39 Fail 234
Vi 44 Fail 441
Vi1 50 Fail 120
Vi 80 Fail 233
Vi 81 Fail 671
Vi 92 End 0
V2 0 Start 0
V2 31 Fail 211
V2 73 Fail 432
V2 98 Fail 654
V2 102  Fail 112
V2 112 Fail 256
V2 118 Fail 115
V2 119 End O
V3 0 Start 0
V3 225 Fail 187
V3 340 End O

Example 13.1 illustrates the simplest and most common structure where units begin
observation at time 0 and are monitored continuously (more or less) until observation
terminates for some reason (e.g., the unit is taken out of service, fails catastrophically, or
it is still in service at the time of data analysis). The Start lines are optional if there is
only one per unit and the time of start is 0. The End line is optional if the end of the
observation period is the time of the last recurrence. Examples of data set like this in the
SPLIDA collection include MachineH.txt, Cylinder.txt, and ValveSeat.txt.

Example 13.2 Same three vehicles from Example 13.1, but observed in windows of
opportunity with observed events for two of the three vehicles.
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Vehicle Weeks Event Cost

Vi1 0 Start 0
Vi 39 Fail 234
Vi 40 End O
Vi1 75 Start 0
Vi 80 Fail 233
Vi 81 Fail 671
Vi 90 End O
V2 0 Start 0
V2 31 Fail 211
V2 40 End O
V2 100  Start O
V2 102 Fail 112
V2 112 Fail 256
V2 115 End O
V3 0 Start 0
V3 55 End 0
V3 120  Start O
V3 205 End O
V3 300 Start 0
V3 340 End O

In Example 13.2, there are (required) Start/End pairs for each unit and these define the
observation windows of opportunity. Examples of data set like this in the SPLIDA
collection include AMSAAWindow].xls, and AMSAAWindow?2.xls.

Example 13.3 Fifty vehicles observed continuously over time with events for only
four vehicles.

Vehicle Weeks Event Cost
Vi 0 Start 0
Vi 55 Fail 234
Vi1 150 End O
V2 0 Start 0
V2 57 Fail 211
V2 78 Fail 432
V2 150 End O
V3 0 Start 0
V3 112 Fail 187
V3 19 End O
V4 0 Start 0
V4 225 Fail 187
V4 340 End O

VGl 0 Mstart 14
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VGl 230 Mend 14
VG1 0 Mstart 32
VGl 200  Mend 32

Example 13.3 contains Mstart/Mend pairs for groups of units that had no recurrences.
Such data arise frequently in warranty data in which some units are returned, but large
numbers of units are not returned. Using Mstart/Mend pairs for groups of units relieves
us of having to specify large numbers of Start/End pairs. An example of a data set like
this in the SPLIDA collection is R4490.txt.

13.2 Creating a recurrence data object

As with life data, to do a SPLIDA analysis of recurrence data, one first has to construct a
recurrence data object. Because the structure of recurrence data is different from that of
life data, there is a different dialog to making a recurrence data object. SPLIDA »
Make/edit/summary/view data object » Make a recurrence (point
process) data object to bring up the dialog in Figure 123.

Make a recurrence data object ;IE'EI
Basic | Output options | Censor D |
—Required inputs — Optional inputs
Choose an S-Plus data set Failure mode identifier

IMau:hineH vl INune vl
Choose time column IHDurs vl Count/cost C

Choose unit identification column Time units IHDurS
IUmt :,v MName of resulting recurrence data c

Specify status/event calumn IMachineH.rdu
IStatus :,v Title for the recurrence data object

IMaChineH data

—Mote to describe data set

Use right-button zoom for easy editing

I—
Ok I Cann:ell Applyl |<|>| current Help |

Figure 123 Dialog used to make a recurrence data object.

Clicking on the Choose data set arrow in the dialog illustrated in Figure 123 will show
all of the data sets in the SPLIDA database and in the user’s working database. Only
some of these will be appropriate for making a repeated measures data object. SPLIDA
has no way to distinguish among different generic data sets (as it attempts to do with data
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objects when it decides which to put into a list available for use), so all data sets appear
in the list.

After choosing a data set corresponding to a recurrence data set, one must choose the
time, unit identifier, and the status/event columns from the frame (all are required for
recurrence data). The dialog in Figure 123 uses the earth-moving machine maintenance
data (MachineH is the frame name) from Chapter 16 of Meeker and Escobar (1998). For
the earth-moving machine data there is also a cost variable giving the cost of each
reported maintenance action. Because cost was of primary interest in this application, this
variable is also specified in the dialog. When the needed inputs have been specified, click
on “OK” or “Apply” to create the data object. In addition to creating the recurrence data
object, a short summary of the data in the object is provided (as shown in Table 18) and,
if desired a printout of the data can be requested by using the Output Options page of
the dialog.

Summary of Earth-Moving Machine Repair Labor Hours data
Number of rows in data matrix= 573

Number of units in the recurrence data object: 23

Number of event times = 550

Total cost/weight of events in the recurrence data set= 1958.7
Response units: Hours

Response minimum: 52

Response maximum: 9249.5

Table 18 Summary of: Earth-Moving Machine Maintenance Data in MachineH.rdu

13.3 Recurrence data event plot

As with the analysis of other types of data, one should start with simple graphical
methods that provide insight into the nature of the data. Using SPLIDA »
Recurrence data analysis » Recurrence event plot will produce the dialog in
Figure 124. In this dialog one specifies the name of a recurrence data. There are options
to print the events for a subset of the data. This option is useful when there are a large
number of units in a data set.
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Recurrence data event plot
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Figure 124 Dialog requesting an event plot for the earth-moving machine (Machine

H) maintenance data.

Then, clicking “Apply” produces the event plot in Figure 125, allowing one to visualize
the events (maintenance actions in this example) as they unfolded in time (measured in
hours of operation for this example).

Earth-Moving Machine Repair Labor Hours
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Figure 125 Event plot for the earth-moving machine (Machine H) maintenance
data.
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13.4 Recurrence data mean cumulative function

Using SPLIDA » Recurrence data analysis » Mean cumulative function
plot will generate a dialog from like that shown in Figure 126, from which one can
request a plot of the mean cumulative function (MCF) and corresponding pointwise
confidence intervals for a recurrence data set. There is an option to request a table giving
the same information. Clicking on Apply will give a plot like that in Figure 127. .

Recurrence data MCF plot ;Iglil
Basic Tabular output | Modify plot axes |
Reguired — Plot options
’7Re currence data |LEESIE]gRis( Band type Im

Fercent confidence lewel

|95
Title option Ifull vl

Ok I Cancell Applyl |<|>| current Help |

Figure 126 Dialog requesting a mean cumulative function (MCF) plot for the earth-
moving machine (Machine H) maintenance data.

Figure 127shows the MCF for the earth-moving machine data. As described in Example
16.6 of Meeker and Escobar (1998), some of the irregular behavior in this function in the
early part of life can be traced to the regularly scheduled maintenance of the machines in

the fleet.
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Mean Cumulative Function for Earth-Moving Machine Repair Labor Hours
with 95%Confidence Intervals
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Figure 127 Mean cumulative function (MCF) plot for the earth-moving machine (Machine
H) maintenance data.

In some applications, there is a need to compare recurrence data from two fleets,
manufacturers, methods, etc. The dialog obtained from SPLIDA » Recurrence
data analysis » Compare two mean cumulative functions plot, shown in
Figure 128, allows one to request a plot making such a comparison. As an example, we
use data from Doganaksoy and Nelson (1991) on the lifetime of breaking grids used in
locomotives. This example was also used in Section 16.3 of Meeker and Escobar (1998).
The plot in Figure 129 shows an estimate of the difference between the MCF functions
for two different production batches of breaking grids along with corresponding
pointwise confidence intervals. Because the zero line falls outside of the pointwise
confidence interval, the plot suggests that there is a statistically important difference
between the two batches.
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Recurrence data MCF comparison plot — |EI |£|

Basic | Tabular output | hdodify plutaxesl

Specify recurrence data objects——— —Flot options

Baseline data ohject Band type IF’Dintwise vl
IGrlds1.rdu :Iv Fercent confidence lewel

Comparizon data |[EleErs |g5
Title option Ifull vl

Ok I Cancell Applyl |<|>|| current Help |

Figure 128 Dialog requesting a plot comparing two mean cumulative function (MCF) plots.
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Figure 129 Plot comparing two mean cumulative function (MCF) plots.

13.5 Convert renewal recurrence data to life data (not yet available)

Using SPLIDA » Recurrence data analysis » Convert renewal
recurrence data to life data will allow the user to convert certain kinds of
recurrence data into life data. The underlying assumption that is needed for the output of
the conversion to provide data that will not be misleading is that the randomness in times
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between events (perhaps conditioned on some explanatory variables) in the recurrence
data process can be modeled adequately as a sequence of identically distributed
independent observations.

14 Repeated Measures Degradation Data Analysis

SPLIDA provides convenient tools for doing the “simple degradation analysis™ described
in Chapters 13 and 21 of Meeker and Escobar (1998) and elsewhere (as indicated in their
end-of-chapter bibliographic notes). In this simple method for degradation analysis,
separate regression analyses are run on each individual degradation path to predict failure
times (which we call pseudo failure times) for those units that have not failed. The idea is
to squeeze a little more information out of one’s data. This approach to degradation
analysis (indeed any method of degradation analysis that will require any extrapolation)
needs to have a solid basis for the underlying degradation path model. Ideally, this will
be a model based on well-developed physical-chemical theory (e.g., some simple wear
processes are known to be approximately linear after a break-in period). When such a
physical model is not available, extrapolation may not be justified.

We do not recommend the use of model fitting and experimentation with different
variable transformation in order to find, in a simple way, the relationship of “best fit”
when there will ultimately be more than just a little extrapolation in time. In any case,
when extrapolation is required, analyses should be accompanied by careful, systematic
sensitivity analysis among a collection of models that are plausible. This sensitivity
analysis is critical to obtaining an understanding of the magnitude of model uncertainty
(which when extrapolating can dominate the statistical uncertainty quantified in our
confidence intervals).

14.1 Make a degradation (repeated measures) data object

As with life data and recurrence data, one first has to construct a degradation data object.
Because the structure of different data is different from that of life data, there is a
different dialog to making a recurrence data object. Using SPLIDA »
Make/summary/view data object » Make a degradation (repeated
measures) data object will bring up a dialog like that shown in Figure 130.
Clicking on the Choose data set arrow will show all of the data sets in the SPLIDA
database and in your working database. After choosing an appropriate repeated measures
data set, one must choose the response, time, and unit identifier (all are required for
degradation data), and explanatory variables, if any. There are a number of other optional
inputs to change the defaults. By default, the name of the response is inserted into the
name of the resulting repeated measures data object. This is especially useful in
applications in which there are multiple degradation responses measured on each unit.
The example in Figure 130 uses the GaAs Laser (GaAsLaser is the data set name)
degradation data from Chapter 13 of Meeker and Escobar (1998).

138



When the needed inputs have been specified, click on “OK” or “Apply” to create the
repeated measures data object. In addition to creating the degradation data object, a short
summary of the data in the object is provided and, if desired a printout of the data can be
requested by using the “Output Options” back page of the dialog.

Make a degradation (repeated measures) data o - |EI |£|
Basic | Output options |
—Required inputs — Optional inputs

Choose an S-Flus data set Response units ICurrent
IGaAsLaser :,v Tirme units IHours—

Choose response calumn Unit name IUnlt—
ICurrent vl
MName of resulting data ohject

Choase time calumn IHUL”S j' IGaﬂ\sLaser.Current.r

Choose unit identification column

-
Title for the data object
— Choose explanatony variable(s)———— Gahslaser Curant

Use Ctrl key to select multiple wars

¥ Response in data object name

—Mote to describe data set

Use right-button zoom for easy editing

FY
LInit I

Hours

Ok I Cancell Applyl |<|>|| current Help |

Figure 130 Dialog used to make a repeated measures degradation data object.

14.2 Degradation data plot

Using SPLIDA » Degradation data analysis » Degradation data plot
brings up a dialog, like that shown in Figure 131, which can be used to request a plot of
degradation paths. If there are explanatory variables, there is an option to group paths by
explanatory variable levels, instead of plotting all paths on a single graph. It is possible to
request special axes transforms (e.g., linear, log, or square root axes) to plot either time or
the response. The Modify Plot Options page allows one to control the ranges of the plot
axes.
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Plot degradation (repeated measures) data — |EI |£|

Basic | hiodify plot axes |
—Required —Flot options
Repeated measures data chject Transformation (gxis) for the response
IIinear vI
Fefresh list(s) Transformation (axis) for time

Ilinear vI
—Choose explanatony varakle(s)————
to dividle plots Title optian Ifull vl
Data subset IUse all data vl

= —
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Figure 131 Dialog to request a plot of degradation data for the GaAs Laser data.

Figure 132 shows a simple degradation plot for the GaAs laser data.

GaAsLaser Current data
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Current (mA)
w
|

Figure 132 Plot of degradation data for the GaAs Laser data.
14.3 Degradation data trellis plot

Using SPLIDA » Degradation data analysis » Degradation data trellis
plot brings up a dialog like that shown in Figure 133. This dialog is used to request a

140



trellis plot of degradation paths. If there are explanatory variables, there is an option to
group paths by explanatory variable levels, although the individual plots, as illustrated in
Figure 134, are recommended because they can be importantly revealing.

Trellis plot degradation (repeated measures) data ;IE'EI
Basic | hiodify plot axes |
—Required —Flot options
Repeated measures data chject Transformation (gxis) for the response
Fefresh list(s) Transformation (axis) for time

Ilinear vI

— Choose explanatony variakle(s)
Choose Mane for individuzl plots Title aption IfU” "I
Data subset IUse all data vl

= —

™ Plot units in original order

oK Cancel Apply || || current Help
I | | |

Figure 133 Dialog to request a trellis plot of the GaAs laser degradation paths.
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Figure 134 Trellis plot of the GaAs laser degradation paths.

14.4 Convert/extrapolate data to pseudo failure-time data

The so-called “simple degradation analysis” method mentioned at the beginning of this
section fits a specified model to each of the sample paths in an effort to “squeeze” a little
more information out of such data by exptrapolating the paths (or some of the paths) to
predict the time of failure. Then the “pseudo failure times” are analyzed using the
standard methods for failure-time data. The conversion of degradation path data to
failure-time data can be done easily with the SPLIDA » Degradation data
analysis » Convert/extrapolate data to failure-time data dialog. It is
necessary to specify the repeated measures (degradation) data object and the degradation
level defining failure. For the GaAs lasers, failure was defined as the time at which 10
mA of current was needed to provide a specified (constant) amount of light output. It is
also possible to specify a maximum time (a pseudo censoring time), beyond which no
failures are extrapolated. For the GaAs lasers, focus was on the lower quantiles of the
failure-time distribution and thus the paths were extrapolated only to 5000 hours, where 6
out of 15 lasers had failed (i.e., had predicted current greater than 10 mA). As in the
dialog for plotting degradation paths, on has a choice of axis scales (e.g., linear, square
root, or log). These same transformations are also used to determine the scale in which to
fit the linear regression lines used to extrapolate the degradation paths to the compute the
pseudo failure times. The effect of this choice can be quite pronounced (especially in the
dangerous and discouraged practice where one is extrapolating far in time) and in the
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absence of strong physical motivation for one or the other, sensitivity analysis is strongly
recommended.

Convert /extrapolate degradation data to failure = |EI |£|

Basic |M0difyplutaxes| Output options |

—Reguired —Plot options

Repeated measures data object Transformation (gxis) for the response

IGaAsLaser.rmd vl ILinear vl

Refrash list(s) Transformation (axis) for time

ILinear vl
Degradation level defining failure

Im Censoring time to limit extrapolation
IEDEID
— Choose explanatory wariable(s)

to divide plota Data subset IUse all data v|

- Title for data in the life data ohject

IGaAsLaserH 0CRO0
Title option IfuII v|

—Life data object

MName of resulting life data object

IGaAsLaserFmCEDD
Ok, | Cancal | Chpply |<|>||W Help |

Figure 135 Dialog requesting that the GaAs laser degradation date be mapped into
pseudo failure time data using 10 mA as the definition of failure and a censoring
time of 5000 hours.

After clicking on “OK” or “Apply,” SPLIDA produces the plot in Figure 136 showing
the degradation paths and extrapolations to the failure level of censoring time (which
ever comes first) and the life data object GaAsLaserF10C5000.XLinear.Y Linear.ld is
available for doing failure-time analysis. Note that the default name (which could have
been edited) reflects the failure definition level, pseudo censoring time, and the
transformation/axes used in generating the pseudo faulure times. Such descriptive names
are useful because analysts will often want to experiment with different choices for some
or all of these and the automatic coding makes it easy to do such experiments and to
compare the results of different analyses using all of the previously described tools for
such data.
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GaAsLaserF10C5000.XLinear.YLinear.ld
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Figure 136 Plot showing the GaAs laser degradation data being mapped into pseudo
failure time data using 10 percent as the definition of failure and a censoring time of
5000 hours.

Figure 137 is an event plot showing the six pseudo failure times and the nine units
censored at 5000 hours in GaAsLaserF10C5000.XLinear.YLinear.1d. In this
example, the amount of extrapolation is small (especially because no extrapolation was
done beyond 5000 hours) and the degradation paths are well behaved. Thus, the pseudo
failure times should provide reasonably good predictions for the actual failure times.
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Figure 137 Event plot showing the predicted failure times for the GaAs laser
degradation experiment.

14.5 Degradation residual trellis plot

We have emphasized the importance of having a solid basis for any model used in
extrapolation of sample degradation paths. Whether or not such a model is available, it is
important to assess the adequacy of the fitted models to the degradation paths. If the
model does not even fit the data within the range of the data, careful consideration should
be given to the usefulness of the data for purposes of predicting a failure-time
distribution. Of course, one should always remember that just because the model
provides a good fit to the data and may be adequate for making predictions within the
range of the data, there is no guarantee that the degradation process will continue to
follow the fitted model outside of the range of the available data.

The dialog in Figure 138 allows the user to request a trellis plot of residuals for the
straight lines fit to (possibly transformed) degradation data. Such plots help one to detect
systematic departures from the fitted model. Figure 139 shows the residual trellis plot for
the GaAs laser data. Although there were 15 tested lasers, Figure 139 shows residual
paths for only 12 units. This is because three of the units had crossed the failure
boundary, and thus required no extrapolation to obtain the failure time (simple linear
interpolation was used instead). For this example, there appears not to be any systematic
departures from the fitted straight-line model.
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Plot degradation (repeated measures) resicuals — |EI |£|

Basic |
Feguired — Choose explanatory wariable(s)
Path residual ohject Chomse Nane far individual plats

IGaAsLaserFWC vl

Fefresh list(s)

—FPlot options

Title optian IfuII vl

™ Plot units in original order

Figure 138 Dialog to request a residual trellis plot for each of the GaAs laser data
regression lines.

Residuals from Percent Increase in Operating Current

[ W00 2000 3000 4000
4 TFos
b = o g I toa
i ', B, @ | Foz2
e LY f R L - #
b | - P m & fFoo
4. % "\ % ¥ L.z
o 04
06 r
04+ @ r
7 N LS 45, [
Lol B o THed colea, T s Vi R WAy %
w y a e o
= 07 m
g7
35 0
o B o
o LK)
3 02
o om = . = ' 1 g By @ i P
P NN Boa w | & A T g ot
e : Sy 5 W s/ o . '
vl o S 01
< - 04
e L e | E—— | E——
0E
04
014 ; P ) A r
- P - P - s o = .
o \ 3 J o I Fakc) ! i - ey E
b | W . N / Fa-al 5
oz o N B, S, L
04 L
T T T T T T T T T T T T T
o 1000 2000 3000 4000 [ 1000 X000 3000 4000
TranTime

Figure 139 Trellis plot of residuals for each degradation path for the GaAs laser data.

15 Accelerated Test Repeated Measures Degradation Data
Analysis

15.1 Creating an accelerated degradation data object

Many degradation experiments are run at accelerated conditions (e.g., high temperature)
in order to accelerate the degradation process. A useful plot for such data is a cell-
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average plot giving the average degradation as a function of time for the different level(s)
of an explanatory variable.

The methods used in Chapter 14 can also be used for data with explanatory (or
accelerating) variables. The primary difference is that one needs to specify the
explanatory (accelerating) variable when creating the data object. Use SPLIDA »
Degradation data analysis » Degradation data trellis plot to brings up a
dialog like that shown in Figure 140 This is used to create a repeated measures data
object with an accelerating (explanatory) variable. The resistor example are repeated
measures data on the resistance of carbon-film resistors, tested at different levels of
temperature

Make a degradation (repeated measures) datac - |EI |£|
Basic | Cutput options |
—Required inputs — Optional inputs

Choose an 5-Flus data set Respaonse units IPercentIncrease
IResistDr I : .
= Time units IkHuurs

Choose response column Unit name IW
IPerc:entInc:rease VI
Mame of resulting data ohject

Choose time column IkHDWS :" IResisturPercentIncr

Choose unitidentification colurmn ¥ Response in data objact name

Title for the data object

— Choose explanatony variable(s)———— Besistor Percantiner

se Cirl key to select multiple wars

—Mote to describe data set

Use right-button zoom for easy editing

MNone -~
Resistor I

kHours

Ok I Cann:ell Applyl |<|>| current Help |

Figure 140 Dialog to make a repeated measures degradation data object for a test with acceleration

15.2 Accelerated degradation cell-average plot

When an experiment is conducted with units at several levels of one or more explanatory
variables, it is useful to compute averages across all units at the different combinations of
the explanatory variables. The following example illustrates this with the resistor data in
which three levels of temperature were used. The plot gives a good visual indication of
the effect of temperature on degradation rate. Using SPLIDA » Degradation data
analysis » Accelerated degradation cell-average plot brings up the dialog in
Figure 141. In this case, the names of the most trecently created repeated measures data
object (Resistor.PercentIncrease.rmd) was remembered by SPLIDA because
it had been created in the same session.
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Plot degradation (repeated measures) data cell ave - |EI |£|

Basic | Modify plot axes |
Required —Flot options
Repeated measures data object Transformation (axis) for the response
IResistDrPercentl vl IIinear vl
Fetresh list(s) Transformation (axs) far time

Legend Im
Title optian Im
Data subset Im

Ok I Cancell Applyl |<|>|| current Help |

Figure 141 Dialog requesting a plot of the average reading of all units at the
different temperatures for the carbon-film resistor degradation data.

Figure 142 shows the resulting cell-average plot for the resistor degradation data.
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Figure 142 Plot of the average reading of all units at the different temperatures for
the carbon-film resistor degradation data.
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15.3 Other graphical analysis of the accelerated repeated measures
degradation data

Use SPLIDA » Degradation data analysis » Plot degradation (repeated
measures) data to obtain a dialog like that shown in Figure 143 that can be used to
plot accelerated repeated measures degradation data

Plot degradation (repeated measures) data ;Iglil
Basic | Modify plot axes |
—Required —Plot options
Repeated measures data object Transtormation (axis) for the response
Retrash list(s] Transformation (gxis) far time

IIinear vl
— Choose explanatony variable(s)———
to divide plots Title option Ifull vl
Data subset IUse all data vl

Mone - I

Degradation lewvel defining failure

[None
w
Ok | Cancel HAppIyI |<|>|| current Help |

Figure 143 Dialog to request a plot of the resistor accelerated repeated measures degradation data

15.4 Other steps in the analysis of the accelerated repeated measures
degradation data

Although the details are not presented here, the next steps in the analysis of the resistor
data would be to convert the degradation paths into pseudo failure times and then to
analyze these with the tools described in Chapter 9.

16  Accelerated Destructive Degradation Test Data Analysis

Accelerated tests are used widely in manufacturing industries to obtain timely
information about the durability and reliability of components and subsystems. In a
reliability test, a sample of units is put on test and either monitored over time or inspected
at particular points in time. Acceleration is accomplished by testing at increased levels of
accelerating variables like temperature, voltage, or stress. In accelerated life testing, one
measures the time to failure. In accelerated degradation testing, one measures the amount
of degradation or the degree of progression toward failure. In some applications, actual
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physical degradation measurements are available (e.g., crack size or remaining strength).
In other applications, performance or a surrogate response, such as power output, light
output, or speed might be used instead. Generally, for purposes of physical modeling, it is
better to have a response that is closely related to the degradation mechanism itself.

This section describes and illustrates SPLIDA’s data analysis methods for accelerated
destructive degradation test (ADDT) data. Figure 144 shows the SPLIDA menu along
with the sub-menu for ADDT data analysis.

e sEW Options  Window  Help
SPLIDA [S-PLIUS Life Data Analyziz] = - D
Copyright 1995-2001 .0, Mesker _ m B G|k
SPLIDA Yersion 5.8 October 15, 2001
bk akeeditdzummanview data object
--LIFE D&TA SINGLE DISTRIBUTIOMN---

Flan a zingle digtnbution study

Single distribution data analysiz

Single distribution B avezian analyzis

Multiple failure mode data analyziz

---LIFE DATA COMPARISON AMD REGRESSIOM--
Comparizon of distributionsz life data analysis

Plan an accelerated life test [ALT]

Simple regreszion [ALT] data analyziz

kultiple reqrezsion [ALT] data analysis
--RECURREMCE DATA---

Recurence [paint procesz] data analyziz

--REPEATED MEASURES DEGRADATION DATA---
Fepeated measures degradation [RkMDeg) data analysiz
--DESTRUCTIVE DEGRADATION DAT A--

Flan an accelerated destructive degradation test [A00T]

Accelerated destructive degradation test [ADDT] an Scatter plot ADDT data

--SPLIDA& SPECIAL TOOLS AMD MODELS--- Scatter plot and kL fit for individual conditions

Special modelz ¥ Scatter plot and kL fit of a rearezsion [acceleration] model
Splida tools ¥ ADDT residual analysis

Figure 144 View of the SPLIDA menu for ADDT data analysis.

16.1 Making an accelerated destructive degradation data object

The first step in the analysis of ADDT data is to import the data into S-PLUS (usually
from an Excel spreadsheet or a text file). As usual, the data set should consist of one row
for each observation. The variables, corresponding to columns in the data set would
include the measured degradation response (e.g., strength or size of a crack), the time of
the measurement, and values of any explanatory variables. Optional columns could
contain censoring information or case weights. The order of the columns is not important.
Table 19 shows the variable names and ten rows of the AdhesiveBondB data set (this
data set is one of SPLIDA’s built-in examples).

DegreesC Weeks Newtons
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50 0 70.1
50 0 76.7
50 0 84.5
50 0 88.0
50 0 88.9
50 0 90.4
50 0 91.9
50 0 98.1
50 2 77.8
50 2 78 .4

Table 19 The first ten rows of the AdhesiveBondB data set.

Optionz  “Window  Help

SPLID [S-PLUS Life Drata &nalysiz)
Copyright 13935-20010 ' (. Meeker
SPLIDA Werzion 5.8 October 15, 2001

tfl -] B @ N2

M akededit/zummanyview data object Make a life data object

--LIFE DATA SINGLE DISTRIELITIOM--- b ake a recurence [point process] data object

Flan a zingle distribution study Make a repeated meazures degradation [RMDeg) data object
Single diztribution data analysiz
Single diztrbution B ayesian analpziz Surmmary/view a data object
kultiple failure mode data analyziz Edit life data object attributes

--LIFE DATA COMPARISON AMD REGRESSION---
Comparizon of diztibutions life data analyzis »

Figure 145 SPLIDA menu entry for making an ADDT data object.

Make a destructive degradation data object

As with other types of data, after the degradation data set has been imported into S-
PLUS, it is necessary to use SPLIDA to create a destructive degradation data (.ddd)
object. A data object contains the information about a data set. In particular, a data object
defines the purpose of each variable and captures other information about the data set
(e.g., units of time and the response, as well as a title for the data). This data object
allows the analysis of the data set in various different ways without having to re-specify
this information.

To make the destructive degradation data object, use SPLIDA »
Make/summary/view data object » Make destructive degradation
data object (see Figure 145) to bring up the dialog box in Figure 146. Select the
required inputs (S-PLUS data set name, the response, and the time column). Then choose
other possible variables, as needed, including the explanatory variables and the censoring
variable (Status). For the AdhesiveBondB data, there is no weight variable. The names
of the response and time columns serve as defaults for the units of these variables, so in
this case these inputs need not be specified (SPLIDA tries to use available information as
defaults whenever possible). After the input is entered into the dialog box, click the
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Apply button to create the data object. A brief summary of the data object will be printed
in the command window.

Make a destructive degradation data objeckt -Iﬂlﬂ
Basic | Output options I Cenzor ID I Storage |
—Reguired inputs—————— [~ Choose explanatorny variable(z)
Choosze an S5-Pluz data set Usze Ctrl key to select multiple wars
IAdhesiveBondB -I
Response(s)
Chaoasze time column — Mote to describe data set

IWeeks 'I LUze right-button zaom for eazy editing

— Optional inputs

Censoring identifier column

I Statug 'I

Wweights I MHane 'I
Response units IN ewhons
Tirme units IWeeks

Mame of resulting ADDT data obje
IAdhesiveB ondB.d

Title for data in the data object

[AhesiveBandB d
a4 | EanceIHAppI_l,Jl ﬂ_)l current Help |

Figure 146 Dialog used to create a destructive degradation data object for the
AdhesiveBondB data.

16.2 Degradation data scatter plot

After the data set has been created, it can be used as input to various data analysis
procedures. Generally, data analyses begin with graphical analyses. For destructive
degradation data, we start by plotting degradation versus time, using different symbols to
represent the data at different levels of the explanatory variable(s). To do this, use
SPLIDA » Accelerated destructive degradation test (ADDT) analysis
» Scatter plot ADDT data to bring up the dialog box in Figure 147. Choose the
AdhesiveBondB.ddd destructive degradation data object (SPLIDA will remember the
most recently created .ddd object if it was created in the current S-PLUS session). Then
clicking on Apply will produce a scatter plot. Different transformations for the response
and time can be tried in an attempt to find a combination that provides approximately
linear behavior in degradation over time. Generally, however, it would be preferable if
this part of the model could be determined by physical knowledge of the degradation
mechanism, and checked against data, as described in examples in Chapters 13 and 21 of
Meeker and Escobar (1998).
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Plot destructive degradation [ADDT] data M= E3 |

Basic | b odify pliat a:-:esl

— Required — Plat optiohz
Destructive degradation data object Tranzfarmation [axiz] for the responze

ziveBondE. Log -

Refrezh list[z] | Transfarmation [axiz] for time
; IS quiare rook - I
— Choose explanatorny vanable(z]

ta divide plaks Title: option IfuII "I
Legend I O plat "’I

[ ata subzet

MHone - IUSE all data 'I

Degradation level defining failure

INDne
o0k | cancel| pply | ][ cuent Help |

Figure 147 Dialog requesting a scatter plot of the AdhesiveBondB destructive
degradation data.

For the AdhesiveBondB data, a log transformation for the response and a square root
transformation for time resulted in an approximately linear relationship between
degradation and time. The plot is shown in Figure 148 (also see Figure 150).
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AdhesiveBondB data
Destructive Degradation Scatter Plot
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Figure 148 Scatter plot of the AdhesiveBondB destructive degradation data.

16.3 Individual scatter plot and ML fits for different accelerating variable
levels

Extending the scatter plots described in Section 2.2, we now show how to plot fitted
regression lines to the data at individual conditions (e.g., different levels of temperature).
In general (to allow for censoring), the lines are fit by using maximum likelihood. Use
SPLIDA » Accelerated destructive degradation test (ADDT) analysis
» Scatter plot and ML fit for individual conditions to bring up the dialog
box in Figure 149. Choose the transformations identified previously (or experiment with
others). In this dialog, it is also necessary to specify a degradation distribution to describe
the shape of the spread of the scatter of the response about the regression line (in the
transformed scale). We choose to use the normal distribution because it provides a better
description for the variability than the other distributions. There are also a number of
optional inputs. For example, we have requested that ML lines be plotted and have
entered 40 (Newtons) as the failure definition for the strength of the adhesive bond.
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Scatter plot and ML Fit for individual conditions ADDT data !E[

Basic | tadify plok a:-cesl Felationship |:|I|:|t|
— Required — Plot options
Destructive degradation data object V¥ Make separate plats

I"t""jhewEE 7 3 Transfarmatian [axiz] far the rezponse
Fiefresh lizt[z] | Log -

— Model options Tranzformation [&xiz] far time

Dregradation distibution ISCIUEIFE root "I
ISmaIIest E strem vI :
Title option Im

[Ehoose explamatanwanablels]
Legend IEIn plot 'I

[ ata zubszet

= IUSE all data "’I

— Other optiors Degradation level defining failure

[V Table summary |3-5
Save resultz in I.Iast.gru:uupi..i‘-.DDT

0K | cancel | apply | 1| ] curent Help |

Figure 149 Dialog for individual scatter plots for the different levels of the
explanatory variables.

After clicking on Apply, the plot in Figure 150 and the results in Table 20 are produced.
The slopes in Table 20 are degradation rates that represent the change in log(Newtons)
for a unit change in the square root of time for each of the temperatures. Figure 150
shows degradation versus time at each of the three different temperature conditions (on
the transformed axes), along with the fitted regression lines (there is an option in the
dialog to suppress plotting of the fitted lines). The horizontal failure-definition lines are
also shown at 40 Newtons.
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AdhesiveBondB data

Individual estimates and 95% confidence intervals for the slope at each
condition.

Normal distribution.

DegreesC sample.size intercept slope se.slope slope.lower slope.upper
50 39 4.490 -0.1088 0.01494 -0.1424 -.08309
60 32 4.489 -0.2089 0.02214 -0.2571 -.16969
70 33 4.400 -0.3626 0.01944 -0.4028 -.32643

Table 20 Estimates, standard errors, and confidence intervals for the estimated
slopes (degradation rates) for the individual levels of temperature.

AdhesiveBondB data
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Figure 150 Individual scatter plots for the AdhesiveBondB destructive degradation
data.

The default for the dialog in Figure 149 is to make a figure with a separate plot for each
level (or combination of levels) of the explanatory variable(s). The check box in the
upper right-hand side of the dialog allows the user to put all of the data and fitted lines on
a single plot. The resulting plot is shown in Figure 151.
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AdhesiveBondB data
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Figure 151 Scatter plot of the AdhesiveBondB data with individual ML lines.

The fitted regression lines in Figure 150 and Figure 151 were estimated individually for
each level of temperature. For purposes of making inferences at other levels of
temperature, (usually estimates of degradation rate or characteristics of the failure-time
distribution at lower levels of temperature), it is necessary to fit a model relating
degradation rate to temperature. As a first step in identifying such a model, the dialog in
the Relationship plot page in the dialog box shown in Figure 149 allows one to request
and control of some options for the “relationship model plot” of degradation rate versus
the explanatory variable(s) (temperature for the AdhesiveBondB example). The
underlying regression model assumes that the logarithm of degradation rate is linearly
related to some transformation of the explanatory variable. When temperature is believed
to affect the rate of a chemical reaction, the Arrhenius rate reaction model is commonly
used to describe the relationship.

Figure 152 is a relationship model plot showing degradation rate (on a log axis) as a
function of temperature (on a Arrhenius axis).

157



Degradation rate versus DegreesC on Arrhenius Scale for
AdhesiveBondB data
Resp:Log, Time:Sqguare rootcArrhenius, Dist:Normal
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Figure 152 Relationship model plot showing degradation rate (log axis) as a function
of temperature (Arrhenius axis) for the AdhesiveBondB destructive degradation
data.

As shown in Meeker and Escobar (2002a), an Arrhenius relationship will plot as a
straight line on Figure 152 (log axis for the rate or slope and an Arrhenius axis for
temperature). The 95% (pointwise) confidence intervals (error bounds) for degradation
rate in Figure 152 allow an assessment of statistical uncertainty. The line in Figure 152
was drawn using the line tool in the S-PLUS annotation tool bar. Although the points do
not fall exactly on the straight line, the width of the error bounds, relative to the
deviations from the straight line, suggest that the Arrhenius model could not be ruled out
as a descriptor of the available data. Strictly speaking, one should use simultaneous
confidence intervals to make this comparison, and these would be wider than the
pointwise intervals displayed in Figure 152). The curvature exhibited in the three points
suggests, however, that extrapolation to lower temperatures (like 25 degrees C) may not
be justified. Generally, the justification for such extrapolation is not a statistical issue, but
rather requires input from understanding of the physical/chemical aspects of the
degradation-causing mechanism.

16.4 Scatter plot and ML fit of a regression (acceleration) model

158



To fit an ADDT model that includes the relationship between degradation rate and
explanatory variables like temperature, use SPLIDA P Accelerated destructive
degradation test (ADDT) analysis » Scatter plot and ML fit of a
regression (acceleration) model to bring up the dialog box shown in Figure 153.
In addition to the inputs required for the individual analyses described in Section 16.3,
the user must now also specify the failure-definition level and the acceleration
relationship (these were optional in previous dialogs). In addition, there are a number of
optional inputs, as shown in Figure 153. For the AdhesiveBondB example, the product
engineers wanted an assessment of degradation rate and the failure-time distribution at 25
degrees C. The results of the analysis will be saved, by default, in an object with the
name AdhesiveBondB.groupm.ADDT.DegrArrh.normal.out (although it is generally
not necessary, the user may edit and change this name). It is also necessary to visit the
Relationship page (not shown here) to specify the relationship between log rate and the
explanatory variable(s). For the AdhesiveBondB example the Arrhenius relationship was
used.
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Figure 153 Dialog box used to fit an acceleration model to the ADDT data.

As shown in Nelson (1990) and Meeker and Escobar (2002a), for a given failure-
definition level, the degradation model induces a failure-time distribution. The properties
of this distribution are usually of primary interest to product engineers. The Tabular
output page allows the user to request tables of failure probabilities or quantiles of the
induced failure-time distribution.

The Model plot page of the dialog allows the user to request a plot of the quantiles of the
failure-time distribution versus the accelerating variable (temperature for the
AdhesiveBondB example). This page of the dialog is shown in Figure 154.
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Figure 154 Model plot page of the ADDT acceleration model-fitting dialog box.

After pressing the Apply button, SPLIDA will estimate the parameters of the degradation
model and produce the plots in Figure 155 and Figure 156 as well as the information in
Table 21.
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AdhesiveBondB data
Destructive Degradation Regression Analyses
Resp:Log, Time:Square root,DegreesC Arrhenius, Dist:Normal
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Figure 155 Plot of the ADDT normal-Arrhenius model for the AdhesiveBondB
destructive degradation data.

In Figure 155, we see the fitted lines corresponding to the different levels of temperature,
including the line for the specified use conditions 25 degrees C (obtained by
extrapolation from the fitted Arrhenius model that relates degradation rate to
temperature). Unlike the individual analyses displayed in Figure 151, all of the lines for
the acceleration model cross at the intercept exp(Bo)=exp(4.471) = 87.44. The horizontal
line at 40 Newtons allows one to visualize the failure-time distribution, at least at 70
Degrees C (the axes could be extended on the plot by using controls on the Modify plot
axes page of the dialog box in Figure 153).

The model plot in Figure 154 shows estimates of the quantiles of the induced failure-time
distribution as a function of temperature. As shown in Meeker and Escobar (2002a), a
given quantile of the failure-time distribution is linear in the Arrhenius transformation of
temperature. The .05, .5, and .95 quantile lines have been drawn (by default .10, .50, and
.90 are used, but this was changed in the Figure 154 dialog) along with densities at the
given levels of temperature (all levels of temperature in the data set plus additional levels
entered on the Basic page of the dialog in Figure 153).
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Model plot for AdhesiveBondB data
Resp:Log,Time:Square root,DegreesC Arrhenius, Dist:Normal
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Figure 156 Model plot of failure-time distribution quantiles versus temperature for
the AdhesiveBondB destructive degradation data.

Although the underlying degradation distribution is assumed to be a particular location-
scale distribution, the form of the failure-time distribution is not simple. The form of the
failure-time distribution depends on the assumed transformations on the response and on
time. Also, as shown in Meeker and Escobar (2002a), the failure-time distribution
induced by our degradation model has an “atom” of probability at time zero,
corresponding to the probability that the degradation level is beyond the failure threshold
at time 0. In Figure 154, the Probability spike at time zero = 0.011418 gives the ML
estimate of the probability that a unit of AdhesiveBondB has a strength less than 40
Newtons at time 0 (note that this probability does not depend on temperature level).

The horizontal line at 84 hours is the time of the last inspection. Inferences beyond this
point involve extrapolation in time. Figure 154 shows that the amount of extrapolation in
time for this application is substantial (in both temperature and time).

Table 21 provides a summary of the ML estimation for the normal-Arrhenius model fit to
the AdhesiveBondB destructive degradation data. Table 22 is a table of ML estimates and
confidence intervals for several quantiles of the failure-time distribution at 25 degrees C,
with a failure definition of 40 Newtons (obtained with the controls on the Tabular output
page of the dialog in Figure 154.
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Degradation

Response units: Newtons
Time units: Weeks
Normal Distribution

Relationship: Resp:Log, Time:Square root,DegreesC:Arrhenius
Maximum likelihood estimation results

Appears to have converged; relative function convergence
Log likelihood at maximum point: 34.97

MT.F St+d RErr OR% T.ower OR% TInner

Table 21 Summary of ML estimation for normal-Arrhenius model fit to the
AdhesiveBondB destructive degradation data.

Parametric ML Failure-time Quantile Estimates
at 25. DegreesC for failure defined at a level of 40 Newtons
Pointwise Approximate 95% Confidence Intervals

Dead-on-Arrival-Normal Distribution

o) Weeks Std.Err. 95% Lower 95% Upper

0.01 757.42 370.37 290.48 1975.0
0.05 1201.38 596.53 453.97 3179.3
0.10 1479.71 742 .95 553.09 3958.8
0.50 2692.88 1402.10 970.56 7471.5
0.95 4778.27 2572.08 1663.72 13723.

Table 22 Table of ML estimates of quantiles of the AdhesiveBondB failure-time
distribution

16.5 ADDT model residual analysis

After fitting an ADDT model, it is important to assess the adequacy of the fit of the
model by plotting the residuals in various ways. To do this in SPLIDA for ADDT data,
use SPLIDA » Accelerated destructive degradation test (ADDT)
analysis » Residual analysis to bring up the dialog box in Figure 157. The
dialog will recall the most recent ADDT model output that was created in the current S-
PLUS session (if any). The default for this dialog is to get all possible residual plots. It is
easy, however, to request one or some of the available plots.
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Figure 157 ADDT residual analysis dialog
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Figure 158 is a plot of the residuals versus fitted values for the normal-Arrhenius plot fit
to the AdhesiveBondB data. This plot suggests that the amount of variability does not
differ importantly as a function of temperature.
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_ AdhesiveBondB data _
Destructive Degradation Residuals versus Fitted Values
Resp:Log, Time:Square root DegreesC Arrhenius, DistMormal
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Figure 158 Plot of the residuals versus fitted values for the Arrhenius plot fit to the
AdhesiveBondB data.

Figure 159 is a probability plot of the residuals for the normal-Arrhenius plot fit to the
AdhesiveBondB data. This plot suggests that the normal distribution provides a
reasonably good fit to the residuals. This is in contrast with the smallest extreme value
probability plot in Figure 160 (based on fitting a model in which the residuals were
assumed to have a smallest extreme value distribution) where there is some deviation in
the lower tail of the distribution.
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AdhesiveBondB data
Destructive Degradation Residual Frobability Flot with 95% Simultaneous Confidence Bands
esp Log Time: Square root DegreesC: Arrhenius, DistMNormal
Marmal Probability Plot

e »
*

;-“"::_T— *
et

Probability

)

Standardized Residuals

Figure 159 Normal distribution probability plot for the Arrhenius model fit to the
AdhesiveBondB data.
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AdhesiveBondB data
Destructive Degradation Residual Probability Plot with 95% Simultaneous Confidence Bands
Resp:Log, Time:Square root,DegreesC:Arrhenius, Dist:Smallest Extreme Value
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Figure 160 Normal distribution probability plot of the residuals for the Arrhenius
model fit to the AdhesiveBondB data.

16.6 Analysis of destructive degradation data with two accelerating
variables

ADDT Data Object

This section shows how to use SPLIDA to analyze a set of ADDT data with two (or
more) experimental factors (or accelerating variables). Because of the similarities with
the one variable analysis methods described in Sections 16.1 to 16.5, this section presents
an example and focuses particularly on concepts and tools that differ from those used in
the single-variable analysis.

In this section, we use the AdhesiveBondD destructive degradation data from an
experiment on the strength of an adhesive bond tested at different levels of temperature
and humidity. The data available in the SPLIDA destructive degradation data object
AdhesiveBondD.ddd. To look at the data, use SPLIDA »
Make/edit/summary/view data object » Summary/view a data object
to bring up the dialog box. Select destructive degradation objects for type of dataset
objects, choose the AdhesiveBondD.ddd data object. The default optional output is to
print a summary of the data but you can also check “Print data” to view all the data.

Then click Apply. This produces the data summary; see Table 23 for the first few lines
of the summary for the AdhesiveBondD data. In addition to information about each of
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the experimental factor (Weeks, DegreesC, RH), the summary displays information about
the response and number of observations at each of the unique experimental factor level
combinations.

The experiment design has a 3x2x8 factorial arrangement with three levels of
temperature (50, 60, 70 DegreesC), two levels of relative humidity (20 and 80 percent
RH), and eight levels of time (0, 1, 2, 4, 6, 8, 12, 16 weeks). The response is strength of
the adhesive measured in Newtons; an adhesive strength below 25 Newtons is considered
a failure. There are 288 observations with 6 observations for each combination of
temperature, relative humidity, and time. Note that, as in the single-accelerating variable
example, the time factor is treated in a special manner. In particular, one objective of the
experiment is to assess the life distribution of the adhesive at use conditions of 25
DegreesC and 50% RH.

Number of rows in data matrix= 288

Time units: Weeks

Response units: Newtons

Response minimum: 11

Response maximum: 56.8

Number of cases in data set= 288

Number of exact failures in data set= 288

Summary of numeric columns in X matrix:
min max mean sd cv
Weeks 0 16 6.125 5.264 0.8594
DegreesC 50 70 60.000 8.179 0.1363
RH 20 80 50.000 30.052 0.6010

unique X values (or combinations)
List of unique X values (or combinations)
Weeks DegreesC RH min-Resp max-Resp #exact

1 0 50 20 31.5 50.1 6
2 1 50 20 33.1 45.7 6
3 2 50 20 29.8 48.6 6
4 4 50 20 28.6 47.8 6
5 6 50 20 27.6 43.2 6
6 8 50 20 28.6 42 .6 6

Table 23 Summary of the AdhesiveBondD data set.

Scatter Plot

To get a scatter plot of the response versus time, use SPLIDA » Accelerated
destructive degradation test (ADDT) analysis » Scatter plot and ML fit
for individual conditions to bring up the dialog box similar to the one in Figure
149. Specify the AdhesiveBondB.ddd as the “destructive degradation data object.” For
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this example, choose the log transformation for the response and the square root
transformation for time. Specify normal for the degradation distribution and enter 25
(Newtons) as the failure definition for the strength of the adhesive bond. In the
“Relationship plot page,” verify that DegreesC is the Focus variable and that the
Relationship is Arrhenius (these are the defaults). Then click on Apply. This generates
the scatter plots in Figure 161, the relationship model plot Figure 162, and a summary of
the individual ML fits, as shown in Table 24.

Adhesive Bond Humidity/Temperature Test
Resp:Log, Time:Square root, Dist:Normal
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Figure 161 Individual scatter plots for the AdhesiveBondD destructive degradation
data.

Figure 161 is similar to Figure 150, showing strength versus time at the distinct
experimental factor level combinations of DegreesC and RH. The fitted lines are
individual fits using the normal distribution. Table 24 provides information on the
regression lines fitted to each factor combination. The sample size in the table
corresponds to the six units at each of the eight time points. One can get a single plot
with an overlay of all the scatter plots by deselecting the “Make separate plots” in the
“Plot options” of the dialog box.

Adhesive Bond Humidity/Temperature Test

Individual estimates and 95% confidence intervals
for the slope at each condition.

Normal degradation distribution.
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DegreesC RH sample.size intercept slope se.slope slope.lower slope.upper
50 20 48 3.658 -0.02242 0.01982 -0.1267 -0.003966
50 80 48 3.646 -0.05104 0.02035 -0.1115 -0.023361
60 20 48 3.597 -0.03124 0.01937 -0.1053 -0.009271
60 80 48 3.667 -0.10221 0.02292 -0.1586 -0.065864
70 20 48 3.645 -0.10885 0.01960 -0.1549 -0.076486
70 80 48 3.604 -0.17038 0.02249 -0.2207 -0.131549

Table 24 Estimated slopes (degradation rates) for the individual combinations of
DegreesC and RH for the AdhesiveBondD data.

Degradation rate versus DegreesC on Arrhenius Scale for
Adhesive Bond Humidity/Temperature Test
Resp:Log,Time:Square root,x:Arrhenius, Dist:Normal
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Figure 162 Relationship model plot showing degradation rate (log axis) as a function
of temperature (Arrhenius axis) for each level of RH for the AdhesiveBondD data.

Relationship plots like the one in Figure 162 are used to assess relationship between the
degradation rate (degradation versus time slope) and a chosen accelerating variable
(focus variable). The crosses in Figure 162 indicate the degradation rate estimates for
different levels of temperature (the chosen focus variable) when RH is 80%. Similarly,
the open circles indicate the degradation rate estimates for different levels of temperature
when RH is 20%. The horizontal segments depict approximate 95% pointwise
confidence intervals for the degradation rates. As shown in Meeker and Escobar (2002a)
for a model without interaction, for each fixed level of RH, the degradation rate estimates
should fall approximately along a straight line and the lines for different values of RH
should be approximately parallel. The lines in Figure 162 were drawn using the line tool
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in S-PLUS annotation tool bar. The estimates for 20% RH show some curvature and
extrapolations to low levels of temperature and RH may be seriously incorrect. To make
a definite assessment of the apparent departure from linearity one would need a more
elaborate statistical procedure. A similar relationship plot for RH is obtained by
choosing RH as the focus variable and Humidity for the relationship in the dialog box.
This plot (not shown here) shows degradation rate estimates as a function of RH for each
fixed value of temperature. Because, for these data, there are only two levels of RH for
each fixed level of temperature, the model plot for RH is only informative to assess the
parallelism of the lines for different levels of temperature.

Fitting an Acceleration Model

To fit an ADDT model that includes the relationship between degradation rate and the
accelerating factors DegreesC and RH, use SPLIDA » Accelerated destructive
degradation test (ADDT) analysis » Scatter plot and ML fit of a
regression (acceleration) model to bring up the dialog box shown in Figure 163.
In addition to the inputs required for the individual analyses described above, specify the
use conditions 25;50 for “Additional conditions for evaluation,” then go to the
“Relationship page” (see Figure 164) click on “Relationships” and choose Arrhenius for
DegreesC and Humidity for RH. Then go to the “Model plot” page and check the
“Make a model plot” option. Click on “Choose” to specify the fixed value of 50 for RH
and then click on “Apply.” SPLIDA generates Figure 165 and Figure 166, and the ML
estimates for the model parameters. Table 25 shows part of the output generated by
SPLIDA.
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Figure 163 Dialog box used to fit a two variables acceleration model.
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Figure 164 Model plot page of the dialog box used to fit a two variables acceleration
model.

Figure 165 shows the strength versus time data in a scatter plot as well as the fitted lines
corresponding to different combinations of DegreesC and RH, including the extrapolated
line for 20 DegreesC and 50% RH. Figure 166 shows estimates of the quantiles of the
induced failure-time distribution as a function of temperature when RH is fixed to 50%.
One can get a similar plot in which the focus variable is RH, where DegreesC is fixed to
a given value. To generate such a plot, go back to the “Model plot page” in Figure 164
and pick RH as the variable to vary on the plot at the same time specify the fixed value of
DegreesC to use in the plot.
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Adhesive Bond Humidity/Temperature Test
Destructive Degradation Regression Analyses
Resp:Log, Time:Square root,DgrC:Arrh,RH:Hmdt, Dist:Normal
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Figure 165 Plot of the ADDT normal-Arrhenius-Humidity model for the
AdhesiveBondD.
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Model plot for Adhesive Bond Humidity/Temperature Test
Conditional on 50 RH
Resp:Log,Time:Square root,DegreesC:Arrhenius,RH:Humidity, Dist:Normal
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Figure 166 Model Plot of failure-time distribution quantiles versus temperature
when RH=50% for the AdhesiveBondD data.

Response units: Newtons
Time units: Weeks

Normal DistributionRelationship: Resp:Log, Time:Square
root,DegreesC:Arrhenius,RH:Humidity

Maximum likelihood estimation results
Log likelihood at maximum point: 86.92
Interpretation parameter MLEs

beta0 betal Dbeta2 beta3 sigma
3.641 -2024525684 0.6921 0.2105 0.1789

Table 25 ML estimates of the normal-Arrhenius-RH model for the AdhesiveBondD
data.
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Residual analyses provide checks on model adequacy. To get the residual plots for the
fitted normal-Arrhenius-RH model use SPLIDA » Accelerated destructive
degradation test (ADDT) analysis » Residual analysis to bring up the
residual dialog box and request the plots. SPLIDA remembers the name of the most
recent ADDT model output object that was created during the current S PLUS session.
Otherwise you need to choose the output from the available list in the dialog box. The
default output object name corresponding to the output in Figure 163 for the normal-
Arrhenius-RH analysis is
AdhesiveBondD.groupm.ADDT.DgrCArrh.RHHmdt.normal.out, but the name is
editable in the analysis dialog (shown in Figure 163) allowing one to choose a shorter
and more convenient name.

17 Planning an Accelerated Destructive Degradation Test

This section describes methods for planning accelerated destructive degradation tests
(ADDTs). Figure 167 shows the menu for SPLIDA’s ADDT planning capabilities. As
with other SPLIDA sub-menus, one generally starts at the top item and progresses
through the ordered sequence of steps. To provide an example for test planning we will
revisit the AdhesiveBondB example, and explore the possibility of using a test plan that
is different from the one in the original example.
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Figure 167 View of the SPLIDA menu for ADDT planning.

17.1 Specifying ADDT test planning information (planning values)

The first step in planning an ADDT is to elicit information about the testing situation.
The needed planning information consists of the model and the model parameters. Such
information is usually obtained from previous experience with similar materials or
products, pilot tests, or engineering judgment. In the example presented here, we will use
the parameter estimates from the analysis in Section 16.4 as our planning values.

The planning information is provided to SPLIDA using the dialog box obtained with
SPLIDA » Plan a destructive degradation test (ADDT) » Specify ADDT
test planning information (planning values). This will bring up the dialog box
in Figure 168. As usual, the required inputs are at the top/left in the dialog. When making
the test planning values object, it is generally useful to provide most of the optional
inputs (e.g., time and response units), to make the planning output easier to understand.
The degradation level defining failure and the use conditions need not be specified here,
but it is generally convenient to do so. Otherwise, these values will have to be specified
in various places later in the planning process (it is, of course, possible to alter these
values in subsequent dialogs). The default name for the planning values object is
last.Distribution. ADDTpv, where “Distribution” is replaced by the chosen distribution.
Generally, however, it is a good idea to edit this to something more meaningful. For the
example, we use AdhesiveBondB.Normal. ADDTpv.
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Figure 168 Basic information page of the dialog box for providing ADDT planning
values.

Figure 169 shows the Parameter page of the dialog box for providing ADDT planning
values. There are two options in this page. One can specify the basic parameters [y, B,
B2, and o, as defined in Meeker and Escobar (2002b). A problem with this approach is
that B; has no practical interpretation and it generally has a rather large magnitude (e.g.,
on the order of 10'"). The alternative is to specify the slope of the regression line at a
given level of the accelerating variable (e.g., slope at 50 degrees C) in place of ;. This
can be done because of the relationship v"'= B, exp(B,X) where v" is the slope at
transformed temperature X = -11605/(degrees C + 273.15). For the example, the planning
value for the slope at 50 degrees C is v"=B"exp(B,X) = -8.641e+008*exp(-

.6364%35.912) =-0.10257.
FEE

Bazic IHeIatiDnship[s]I Parameterz |

Parameter specification method — Parameter value inputs

Specification method ADDT betal |4.4?1
ADDT Betal |-853883E32.?DDD4

(¢ Slope at AccVar | | ADDT beta? valus

" Basic 0.6364

Spread pararmeter [zsigra)
ID.1 58

— Slope at specified Acchar

Slope at Acchar I 010257
AocVar value IED

0K | Eancel||§'";5.ppij,3m§| ﬂ_>| curent Help |

Figure 169 Parameter page of the dialog box for providing ADDT planning values.

After clicking on Apply, a small summary table of the planning information is given.
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17.2 Generating an ADDT test plan

SPLIDA has a tool to generate a simple ADDT test plan. Subsequently the plan can be
modified to have a more complicated structure, if needed. Use SPLIDA » Plan a
destructive degradation (ADDT) test » Generate an ADDT test plan to
generate the dialog box in Figure 170. Fill the accelerating variable name and then push
the Choose levels button to choose the levels of the accelerating variable (50,60,70 for
temperature in this case). The time units given here should agree with what is given in
the planning values object. Then enter a list of times (integers separated by commas) at
which inspections are to be conducted. Finally, enter the number of units per time/level
combination. Usually this number would be somewhat greater than the default of one. It
is generally a good idea to provide a meaningful name for the test plan object to be
created. The default is last. ADDTplan, but we will use AdhesiveBondB.ADDTplan.
After providing the required and the desired inputs, click on Apply. The plan shown in
Table 26 will be printed.

Specify an accelerated destructive deqgradatio -|I:I|ﬂ

Test plan input |

— Basic inputs Cptional inputs

MHumber of accelerating variables Save rezultz in I.ﬂ.dhesiveB ondB A
|1 MHumber of unitz per ime/lewvel combination

Aocelerating vanable name IE
ITemp

Chooze levels |
Time units IWeeks

Choose integer inspection imes

ID,2,4,E,1 216,32
I<| >l current Help |

Figure 170 Dialog box to generate a simple ADDT plan.

ak. | Eancell{

Weeks0 Weeks2 Weeks4d Weeks6 Weeksl2 Weekslé Weeks32

50Temp 8 8 8 8 8 8 8
60Temp 8 8 8 8 8 8 8
70Temp 8 8 8 8 8 8 8

Table 26 Simple test plan generated from the dialog in Figure 170.

17.3 Modifying an ADDT test plan
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The test plan generated in Section 17.2 (shown in Table 26) provides a convenient
starting point for creating other test plans. The dialog box launched by using SPLIDA
» Plan a destructive degradation (ADDT) test » Modify an ADDT test
plan, shown in Figure 171, allows the user to choose subsets of the rows or columns in
the original plan and to change the allocations in the individual cells. First, one chooses
an existing test plan object from those on the database. One option is to replace the
original plan. Alternatively, the original plan can be left intact by specifying a new name
for the modified plan. One can then choose a desired subset of the times and levels of the
explanatory variables.

US - Lommands =191 *]

File Edit View Insert Data Statistics Graph Splida  Options  Window  Help
DB H & 2R o+ o+ B 0% E 3| & unear

G

[
1 2 3 4 5 6 7 B =
Temp WweeksD | \WeeksZ Weeks4 | Weekst | Weeksl2 | Weeksls | WWeeks3z2

1 50 0.00 0.00 8.00 B.00 5.00 8.00 16.00

2 60 0.00 8.00 8.00 B.00 5.00 8.00 0.00

3 70 0.00 8.00 8.00 B.00 5.00 0.00 0.00

4 23 8.00 0.00 0.0o Muodify accelerated destructive degrad

'L_'| | Test plan inpull
oo [ e e
A | Chome test plan Chooze accelerating waniablels)

UeeksD WeeksZ Weeksd Weeks6 UeckslZ Weeksle IAdhE’SiVE’ED”dB:I'

= . . & g & 8 | Refresh list(s] |
& 0Tenp 1] g g g g g
T0Tenp i} g g a g 0~ Editing/output options
25Tenp B o o o u 0| Option &+ Mew name
Total nuwber of units in the plan = 112 £ Oid name

o Save results in IAdhesiveBondB 2. Choose time calumins
Edit plan |

Figure 171 Screen shot showing the modify ADDT plan dialog and the pop-up
spreadsheet for editing allocations.

As an alternative to the original plan, the allocations for cells on the extremes of the
matrix (NW and SE corners) were set to zero (by editing the spreadsheet). It was thought
that very little degradation would be observed early in the experiment at low
temperatures and that too much degradation would have occurred by the end of the test at
high levels of temperature. Note that it is possible to add rows to the test plan matrix by
editing the spreadsheet, but that to add a new column (time point) one must return to the
dialog in Figure 170. It will also be of interest to add the inspection point at 32 weeks
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(with 16 units at 50 degrees C) to see if this will improve estimation precision. Then, for
comparison, the inspection at 32 weeks was de-selected on the dialog, so that the range of
times would be the same as the original plan.

17.4 Sample size for an ADDT test plan

SPLIDA has a tool that allows the user to determine the sample size needed to produce a
desired degree of estimation precision for a particular quantity of interest. The sample
size depends on the specified planning values and corresponds to a given experimental
layout, as defined by an ADDT plan object. To use the sample use tool, use SPLIDA

» Plan a destructive degradation (ADDT) test » Sample size for an
ADDT test plan to launch the sample size tool dialog shown in Figure 172. Choose the
desired plan values object and test plan object (as in other dialogs, SPLIDA will
remember and use as defaults the most recently created objects if they were created in the
current session). Clicking on Apply will produce the plot in Figure 173.

Sample Size for an ADDT plan -|I:I|ﬂ

[nputs | tadify plok a:-:esl

|nput options — Output optiohz

Plan values object I-"i"-dhESi'--'EE ohdB *I Deqradation level defining Failure
Test plan ohject I.&dhesiveE ondB - [40

Riefresh listis] | Ilze condition level
IEE.

Specify quantile of interest

e

Specify confidence levels in percent

IED,EIEI,EIE,EIE

[ Grid on plat

|<| >l current Help |

Figure 172 Dialog box for the ADDT sample size tool.

] 4 | Eancell{

We quantify the precision in terms of the “precision factor” R. When a confidence
interval is computed for a positive quantity 0 using the normal-approximation, it has the
form [§xR, 6/R]wheredis the ML estimate of 6 and R>1. Thus the upper endpoint of the
confidence interval is 100(R-1)% larger than the estimate of 6 and the lower endpoint is
100(R-1)/R% smaller than the estimate of 6.

The plot in Figure 173 gives the needed sample size as a function of the precision factor
R for the test plan that includes the 32 Weeks inspection point. The precision factor
reflects the width of the confidence interval that one can expect to achieve approximately
50% of the times in repeated tests like the one being planned. The rectangle tool from the
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annotate tool bar was used to mark the sample size needed to obtain a precision factor of
R=1.5. The total required sample size is approximately 220. The computation assumes
that the 220 units would be allocated in approximately the same proportion as the units in
the test plan matrix. The sample size is considerably larger than the original plan because
of the desire for more precision (From Table 22, the original plan had an R factor of
about 3179.3/1201.38=2.64 for the .05 quantile of the failure time distribution at 25
degrees C).

The sample size tool was also used for the test plan without the 32 Week inspection and a
total sample size closer to 250 units would be required to achieve the same degree of
precision. The needed sample size is, in general, highly dependent on the range of time
and temperature, but not too dependent on the allocation within that range.

Needed sample size giving approximately a 50% chance of having
a confidence interval factor for the 0.05 quantile that is less than R
use condition= 25, DegreesC and a failure definition= 40

AdhesiveBondB.ADDTplan AdhesiveBondB.Normal ADDTpv

10000 -
5000 -
2000 -
1000 -
500

Sample Size

200 A
100 -
50

99%

95%
90%

20 E 80%

10

1.0 1.5 2.0 2.5 3.0

Confidence Interval Precision Factor R
Figure 173 Output for the ADDT sample size tool for the modified plan.
17.5 Summarizing and evaluating an ADDT test plan

To get a quick evaluation of the precision for a given test plan, use SPLIDA » Plan
a destructive degradation (ADDT) test » Summarize, plot, and
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evaluate an ADDT test plan to request the dialog box in Figure 174. By default,
SPLIDA will evaluate the properties of the estimates of the .10, .50, and .90 quantiles of
the failure-time distribution, but we have asked for .05, .5, and .95. As with the sample
size tool, SPLIDA will remember the most recently created ADDT test plan and planning
value objects, if they were created in the current S-PLUS session. Then clicking on Apply
will produce the results in Table 27.

Summarize, evaluate, and plot ADDT plan

[nputs |

FEE

— Required inputs

Plan values object I.ﬁ.dhesiveB onhdB vI
Test plan object I.ﬁ.dhesiveBDndE vI

Plot/zummary evaluation output options
¥ Table summary

¥ Plot surmmary

IIast. aut

Save resultz in

Refresh lizt(z] |

— Exaluation optionz

Degradation level defining failure

e —
|25.—

Specify quantiles for plottingdevaluation

|.1,.5,.EI

ak. | Ear‘u:ell

Ilze condition level

lef =0 curent

Help |

Figure 174 Dialog box to obtain a summary and evaluation of a given ADDT plan
for a given set of planning values.

With a failure definition of 40 Newtons,

the large sample approximate standard deviation

of the 0.1 guantile at 25. DegreesC = 442.3 Weeks and the
corresponding 95% confidence precision factor of R= 1.8

With a failure definition of 40 Newtons,

the large sample approximate standard deviation

of the 0.5 gquantile at 25. DegreesC = 851.3 Weeks and the
corresponding 95% confidence precision factor of R= 1.861

With a failure definition of 40 Newtons,

the large sample approximate standard deviation

of the 0.9 guantile at 25. DegreesC = 1396 Weeks and the
corresponding 95% confidence precision factor of R= 1.902

Quantile ML estimate precision information
Quantile Weeks Ase R-Factor
0.1 1474.9 442.31 1.8000
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0.5 2685.4 851.28 1.8614
0.9 4255.8 1396.23 1.9022

Table 27 Summary of the large-sample approximate standard errors and
approximate precision factors for the modified test plan.

17.6 Simulating an ADDT test plan

The sample size and evaluation tools described in Sections 17.4 and 17.5, respectively,
are useful for doing initial specification and evaluation of a proposed ADDT plan. It is
useful, however, to supplement these tools by further evaluation of a test plan with
simulation.

Using SPLIDA » Plan a destructive degradation (ADDT) test »
Simulate an ADDT test plan will bring up the dialog box in Figure 175. In this
case, because SPLIDA remembered the most recent planning values object and test plan
object, and because we entered the degradation-defining level and the use conditions into
the planning values object, there is no addition required information that needs to be
specified. In the Output options part of the dialog, one can choose the number of
simulations to run. Because the simulations are computationally intensive, the number of
simulations used in an initial evaluation should usually be small (20 is the default). For
an accurate evaluation of test plan properties, at least 200 to 400 simulations should be
used. It is also possible to request to see the results of the analyses for some of the
individual simulated samples, and looking at four or five of these is useful.

Simulate an ADDT plan - ||:|| ﬂ

Inputs | hodify plat axes |

—Required inputs — Output options

Flanwalues object IAdhesiveBundB. vl MNumber of simulations
Test plan object IAdhesiveBundE}. vl ey

Refresh list(s) Mumber of lines to plot
|5EI

Yiewy detail for how many samples

Degradation lewvel defining failure =
|4D I
Sawve results in IAdhesiveBundB_AD

— Ewvaluation options

Ilse condition lewel

—

Specify quantile for plotting

IEI.IJE,.IJS,IJ.95
I |<|>|| current Help |

Figure 175 Dialog box to request a simulation of an ADDT plan.

DK | Cancel”?

After clicking on Apply, the simulations will begin, with information being printed to
indicate progress, including the amount of memory being used by S-PLUS (some
versions of S-PLUS will require additional memory for each iteration and it is useful to
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monitor this “buildup”). Figure 176 is an example of the graphical output for the analysis
of one of the simulated samples. In some cases, after viewing several of the plots like
Figure 176, it is useful to use the Modify plot axes page of the dialog in Figure 175 to
“lock in” the minimum and maximum values of the y-axis of these plots. This makes it
easier to compare visually the sample-to-sample variability in the estimates of the
degradation model.

Simulated Data based on AdhesiveBondB.ADDTplan AdhesiveBondB.Normal ADDTpv
Destructive Degradation Regression Analyses
Resp:Log, Time:Square root, Temp:Arrhenius, Dist:Normal

90
38
70 -
60 -
50 1
2 40 -
S
% 30 7
=z |
20 - 8
| & —— 25Temp o
+  —— 50Temp
60Temp
¢ —— 70Temp
10_| y e
0 ) 10 15 20 25 30

Weeks

Figure 176 Detailed view of one of the simulated ADDT data sets and ML estimates.

After the final simulation, SPLIDA will make a simple summary plot like the one in
Figure 177 of the ML estimates of the .05 quantile of the failure-time distribution as a
function of temperature. The longer dark solid line is the .05 quantile line implied by the
model and the planning values. The first quantile listed in the Figure 175 dialog is used
as the quantile to be plotted in this summary plot. The shorter, lighter lines are the sample
estimates of this quantile line. This plot provides an initial evaluation of the precision of
estimates from the proposed ADDT plan and allows one to visualize the approximate
width of confidence intervals for this quantile as a function of the explanatory variable
(temperature in Figure 177).

The simulation results also are saved in an object (the name of the object combines the
names of the planning values object and the test plan object, but can be modified in the
box Save results in of the dialog box shown in Figure 175). Then, using this object,
other evaluations of the results of the simulation (e.g., focused on particular quantities of
interest) can be done as described in the next section. In addition, the last simulated data
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set is always saved as the degradation data object last.sim.ADDT.ddd. When in the test
planning stage, it is sometimes useful to do a more complete analysis of such a data set,
using the data analysis tools described in Section 16to get a better feeling for the
characteristics of the results that might follow from a particular experimental program.

Accelerated destructive degradation test simulation based on
AdhesiveBondB.ADDTplan AdhesiveBondB.Normal. ADDTpv
Failure time 0.05 quantile vs DegreesC for failure definition 40 Newtons

Resp:Log, Time:Square root,x Arrhenius , Dist:Normal

10000
1000 -
. 1
$ 100 =
= ]
10 5

17\'"'\“"|""|“"\""\

20 30 40 50 60 70

DegreesC

Figure 177 Initial default summary of an ADDT plan simulation showing the true
and estimates of the .05 quantile from simulated accelerated tests, as a function of
temperatures.

17.7 Summarization of ADDT test plan simulation results

The results of the simulations described in Section 17.6 are saved in a destructive
degradation simulation results object. The results of the simulation can then be used to
generate various summaries that focus on particular quantities of interest (especially
characteristics of the failure-time distribution of the product or material under study).
Using SPLIDA » Plan a destructive degradation (ADDT) test »
Summarize ADDT test plan simulation results will launch a dialog box like the
one in Figure 178. In this dialog, one must first choose a simulation results object. Then
there are various choices for graphical outputs (and in some cases there are
corresponding tabular summaries are generated). First there are options to get three
overall summary plots: a particular quantile of the failure-time distribution versus an
accelerating variable, degradation versus time at the use conditions for the accelerating
variable, and fraction failing versus time at the use conditions for the accelerating
variable. The first option is the same plot given when the simulation is actually run (e.g.,
Figure 177), and so is not shown again. Examples of the other two plots, based on a
simulation like that used in Section 17.6, but with 200 simulation trials, are given in
Figure 179 and Figure 180, respectively. It is possible to control the axes of these plots
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with the controls on the Modify plot axes dialog in Figure 178, if just one plot at a time
is requested. Otherwise the Modify plot axes page of the dialog is inactivated.

Summarize ADDT simulation results = ||:|| ﬂ
Basic | hodify plot axes | Focus guantities |
—Required — Summanry plot options
Uze results in IAdhesiveBDndB. v| ™ Plottime ws Acchyar
Fetresh list(s) Choose which Acevar(s)

Degradation lewvel defining failure

e ——

Failtirme guantile IIJ.1

¥ PlotDif) vs time

Dif) gquantile |.5
Accvar for Dit) |25.

Acchvarfor Fit) |25.

ok | cancel | appty | (<] o[ curent Help |

Figure 178 Dialog box to request additional evaluation(s) or the results of an ADDT
simulation.
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Accelerated destructive degradation test simulation based on
AdhesiveBondB.ADDTplan AdhesiveBondB.Normal. ADDTpv
0.5 quantile of degradation versus Weeks at 25. DegreesC
Resp:Log, Time:Square root x:Arrhenius, Dist:Normal

Newtons

0 5 10 15 20 25 30
Weeks

Figure 179 Simulation summarization giving 200 estimates of the relationship
between strength (in Newtons) versus time (Weeks) at 25 degrees C.
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Accelerated destructive degradation test simulation based on
AdhesiveBondB. ADDTplan AdhesiveBondB.Normal ADDTpv
Fraction failing versus Weeks for 40 Newtons at 25. DegreesC
Resp:Log, Time:Square root,x;Arrhenius, Dist:Normal
Lognormal Probability Plot
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Figure 180 Simulation summarization giving 200 estimates of fraction failing versus
time (Weeks) at 25 degrees C.

In addition to these summary plots, it is possible to request plots of the joint and/or
marginal distributions of particular “focus quantities.” Choose the “Focus quantities”
page. Two different focus quantities can be chosen. The particular focus quantities can be
the basic parameters of the model, a particular quantile of the failure-time distribution (at
specified use conditions) or a probability of failure (for a specified time and use
conditions). Figure 182, for example, shows the joint distribution and marginal
distributions of the .05 quantile of the failure-time distribution at use conditions (25
degrees C) and for a failure definition of 40 Newtons of strength. As with the simple
summary plots described in Section 17.6, these summary plots allow one to visualize the
repeated-sampling variability in estimates of quantities of interest and to approximately
gauge the width of confidence intervals.
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Summarize ADDT simulation results - ||:|| ﬂ

Basic | Modify plot axes | Focus quanties |
—Focus guantity plot options ————— —Information on the second focus quantity —
Joint or Marginal IElc:th j Second focus quantity
I~ kdarginal first focus quantity Iparameter j
™| karginal second focus guartity
IbetaZ

Histogram ar density for marginals
IHisthram j

Mumber of simulated points to plat
[500

Choose parameter

IbetaE j
Explan. war. for second focus gquantity

—Information on the first focus quantity

Iquantile j

Choose guantile (0<p<1)
[ 05

First focus quantity

Explan. war. forfirst focus quantity
|25

|<| 3| current Help |

Figure 181 Focus quantities page of the Summarize ADDT simulation result dialog
box

Ok, | Cancel |
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Accelerated destructive degradation test simulation based on
AdhesiveBondB.ADDTplan AdhesiveBondB.Normal ADDTpv
Failure time 0.05 quantile vs DegreesC for failure definition 40 Newtons

Resp:Log, Time:Square root,x:Arrhenius , Dist:Normal
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Figure 182 Simulation summarization giving the joint and marginal distributions of
200 estimates of the .05 quantile of the failure-time distribution at the use conditions
(25 degrees C) for the failure definition of 40 Newtons and the degradation path
acceleration parameter f,.

17.8 Planning an ADDT study with two accelerating variables

This section shows how to use SPLIDA to plan a test for ADDT data with two
accelerating variables. Because of the similarity with the test planning methods for a
single variable ADDT data described in Sections 17.1-17.7, we present an example and
focus on concepts and tools that differ from those used in the single-variable planning.

The Test Plan Problem and Preliminary Information

We evaluate, perturb, and simulate a test plan for a temperature-humidity experiment to
assess the reliability of an adhesive strength. This experiment is similar to the
experiment analyzed in Section 16.6 and the following planning information is available.
Use the log transformation for the response and the square root transformation for the
time. The transformed data can be reasonable modeled with the normal distribution. The
logarithm of the degradation rates can be modeled with the [Arrhenius, Humidity (logit)]
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relationship. The failure definition is an adhesive strength below 25 Newtons. There are
216 units for testing, the test can last up to 32 weeks, but there is interest in evaluating a
shorter 16 weeks long test.

Specifying ADDT test planning information

To specify the planning information, use SPLIDA » Plan a destructive
degradation test (ADDT) » Specify ADDT test planning information
(planning values). Choose normal for the distribution, Log for the “Transformation
for the response,” and Square root for “ Transformation for time.” Type in 2 for the
“Number of accelerating variables,” Newtons for “Response units,” 25 for “Degradation
level defining failure,” and 25,50 for “Use condition levels.” Edit the results object name
in “Save results in” to read AdhesiveBondD.Normal. ADDTpv. Click on
“Relationships” and choose Arrhenius for the “Relationship 1” and RH for
“Relationship 2.” Select the “Parameters” dialog page and type in the parameter
planning values as shown in Figure 183.

Specify ADDT model information {planning vz -|E||ﬂ

Basic |Helatinnship[s]| Parameters |

— Parameter specification method — Parameter value inputzs

S pecification methad ADDT betal |3.541
AT betal |-2EI1 BE7E7R4. B07E
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Figure 183 Parameters page of the ""Specify ADDT model information (planning
values)" dialog box.

In Figure 183, the entry “ADDT beta2 values” refers to model parameters (3,,8,). The
planning values for beta0, betal, beta2, and sigma are obtained directly from Table 25.
Similar to Section 17.1, we use as planning values,v", the slope of the log degradation
rate at (50 DegreesC, 80% RH) rather than the planning value for B,. In this case,

vV=Bexp(B% +B1%,) with x, =-11605/(DegreesC+273.15), and x, = log[RH /(100 — RH)]
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where RH is expressed as a percent. For the example, the planning value for the slope at
50 degrees C and 80% RH is equal to —2.0245e+009*exp (-
.6921*%35.912+.2105*1.3863) = -0.0435.

Generating an ADDT test plan

To generate a test plan with duration of 32 weeks, use SPLIDA » Plan a
destructive degradation (ADDT) test » Generate an ADDT test plan.
Specify DegreesC and RH for the “Accelerating variable name(s).” Click on “Choose
levels,” enter 50, 60, 70 for “DegreesC” levels and click on “ OK.” Then enter 20, 80 for
RH levels and click on “ OK” again. Specify Weeks for “Time units.” Enter 0, 1, 2, 4, 6,
8,12, 16, and 32 for “Inspection times.” Enter 4 for “Number of units per time/level
combination.” Edit the name of the object under “Save results in” to read
AdhesiveBondDLong.ADDTplan. Click on “Apply.” Then SPLIDA generates the
plan given in Table 28; observe that the test is 32 weeks long and it has 216
observations.

Weeks0 Weeksl Weeks2 Weeks4 Weeks6 Weeks8 Weeksl2 Weeksl6é Weeks32
50DegreesC;20RH
60DegreesC; 20RH
70DegreesC; 20RH
50DegreesC; 80RH

60DegreesC; 80RH

L
L
L
N
L
L
L
L
L

70DegreesC; 80RH

Table 28 A 32 week long ADDT test plan for the temperature-humidity study.

Modification, sample size computations, and evaluation of the test plan.

After the ADDT test planning information AdhesiveBondD.Normal. ADDTpv and the
test plan AdhesiveBondDLong.ADDTplan for the two accelerating variable have been
defined, the modification, sample size computations, and evaluation of the test situation
are very similar to one variable procedures described in Sections 17.3 to 17.5. For
example,

To modify the test plan above such that the new test plan is only 16 weeks long with 4
observations at each factor level combination, we proceed as in Section 17.3. Use
SPLIDA » Plan a destructive degradation (ADDT) test » Modify an
ADDT test plan to open the “Modify accelerated destructive degradation test plan”
dialog box. Then select AdhesiveDLong.ADDTplan for the “Choose test plan” and edit
the name in “Save results in” to read something like AdhesiveDShort.ADDTplan. Go to
the “Time columns” window and unselect “Week32.” The dialog box should look like
Figure 184. Now click on Apply. SPLIDA generates the modified plan given in Table
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29. One can also edit the plan to change the allocations to the different factor level
combinations, the editing process is exactly as shown in Section 17.3.

Modify accelerated destructive degradation k -||:||ﬂ

Tezt plan input |

— Basiz inputs — Choosze matris rows columng

Choose test plan Choose accelerating variable(z)

Refrezh liztz] |

— Editing/output optians

Optios % MNew name
" 0Old name

Save resultz in I.ﬁ.dhesiveDShnrt..ﬁ. Choosze time columns
Edit plan |

0K | Cancel | apply | K| o curent Help |

Figure 184 ADDT dialog to modify the 32 weeks long temperature-humidity ADDT
plan

Weeks0 Weeksl Weeks2 Weeks4 Weeks6 Weeks8 Weeksl2 Weekslé
50DegreesC; 20RH 4 4 4 4 4 4 4
60DegreesC; 20RH
70DegreesC; 20RH
50DegreesC; 80RH
60DegreesC; 80RH
70DegreesC; 80RH

NN HNEN NN
NGV NN NS
IO NN NN
NGV NN IS
IO NN NN
NN NN IS
NN NN IS
NN NN NN

Table 29 A 16 weeks long ADDT temperature-humidity study.

Simulation of the test plan.

To simulate and evaluate the specified 32-week test plan , use SPLIDA » Plan a
destructive degradation (ADDT) test » Simulate an ADDT test plan.
SPLIDA remembers the most recent “Plan values object” and “Test plan object” if they
were created in the current S-PLUS session. Make sure that those object names agree
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with the names you assigned in previous steps. For this example, they are
AdhesiveBondD.Normal. ADDTpv and AdhesiveBondDLong.ADDTplan, respectively.
Change “Number of simulations” from the default value 20 to 200 and “View detail for
how many samples” to 0. SPLIDA keeps the results of the simulation in the object listed
under “Save results in,” keep track of this name for future reference, but edit the object
name if you prefer a different name. Then click Apply. SPLIDA generates a figure (not
shown here) similar to Figure 177.

Summarize ADDT simulation results JE| ﬂ
Basic | Modify plot axes | Focus quanties |
—Required —Summary plot options
Use rasultsin - [AdhesiveBondD. || | || Plottime vs stress
Refresh list(s) | Fail time quantls [0
Dearadation level defining failure I™ PlotDif) vs time
|25 Dty guantile |.5
Stress for D) |25.50
™ Flot Fif) ws time
Siress for i) [25.50

Ok | Cancell Applyl |<|>| current Help |

Figure 185 Dialog box to request the conditional plots of life versus accelerating
variables.

Now we use the simulation results to evaluate the test plan. Use SPLIDA » Plan a
destructive degradation (ADDT) test » Summarize an ADDT plan
simulation. Verify that that the name under “Use results in” agrees with the name
given to the simulation results in a previous step. Check the “Plot time vs stress” plot
option. Click on Apply and SPLIDA generates the conditional plots given in Figure 186
and Figure 187. Figure 186 is the conditional plot of life, the .10 quantile, as function of
DegreesC with RH fixed at 50% according to the use conditions. Similarly, Figure 187 is
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the conditional plot of life versus RH when temperature is fixed at the use condition of 25
Degrees. These use conditions were specified as inputs for the simulation through the
plan values object AdhesiveBondD.Normal. ADDTpv

Accelerated destructive degradation test simulation based on
AdhesiveBondDLong.ADDTplan AdhesiveBondD.Normal. ADDTpv
Failure time 0.1 quantile vs DegreesC for failure definition 25 Newtons
Resp:Log,Time:Square root,x:Arrhenius ,Humidity 50, Dist:Normal
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Figure 186 Conditional plot of life versus DegreesC when RH is fixed at 50%
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Accelerated destructive degradation test simulation based on
AdhesiveBondDLong.ADDTplan AdhesiveBondD.Normal. ADDTpv
Failure time 0.1 quantile vs %RH for failure definition 25 Newtons
Resp:Log,Time:Square root,x:Arrhenius 25,Humidity , Dist:Normal
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Figure 187 Conditional plot of life versus RH versus DegreesC is fixed at 25.

Additional simulation summaries for quantiles, failure probabilities, and model
parameters estimates can be obtained using the “Focus quantities” page of the
“Summarize ADDT simulation results” dialog box. The steps to request those summaries
are very similar to the ones described in Figure 181 of Section 17.7 and we don’t show
them here.

18 Special Models

SPLIDA contains a collection of functions that were developed to allow a user who
knows SPLUS programming to write additional S-PLUS functions that will allow one to
relatively easily fit special models to data. Dialogs have been developed to provide an
interface to some of these models. Some other models are available only at the command
line. Examples of these models can be found in the files echapterll.q and
echapterlla.qof the SPLIDA folder.

18.1 Generalized gamma distribution

SPLIDA » Special models » Generalized gamma distribution launches the
dialog in Figure 188. Presently, when launching this dialog, you will get a warning
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message. This is because there is some change, especially with data with heavy
censoring, that the likelihood will not be well behaved, and that there might be some
problems with the algorithm that is trying to maximize the likelihood. Also, asking to do
the profile plot for the lambda parameter will take a large amount of computer time.

Extended generalized ML fits on probability plot — ||:| |£|
Basic | Flot options | Modify plot axes |
—Required — Lambda parameter contour

Life data object Ilzbearing.ld vl The following option will take

Refresh list(s)

significant time to compute.

—All lite data objects
" Include in life data ohject list

v Do profile plot for lambda param.

— Dptional

Flot probability scalelAutDmatic vl —Some options

Percent confidence lewel
|95

Murber of digits in takles

|4
Sawe results in Ilzbearing.gmle.egen

Cancell Applyl |<|>|| current Help |

Figure 188 Dialog for fitting the generalized gamma distribution

Figure 189 is a Weibull probability plot showing the generalized gamma MLE on
Weibull probability paper and Figure 190 shows the profile plot for the A parameter.
Table 30 shows a summary of the ML estimates, because the confidence interval for A
contains the values 0 and 1, the data are consistent with both the Weibull and the
lognormal distribution.
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Lieblein and Zelen Ball Bearing Failure Data with Extended Generalized Gamma ML Estimate
and Pointwise 85% Confidence Intervals
Weibull Probability Plot
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Figure 189 Weibull probability plot showing the ML estimate of the generalized
gamma distribution fit to the Ball Bearing data.

Lieblein and Zelen Ball Bearing Failure Data
Profile Likelihood and 95% Confidence Interval
for lambda from the egeng Distribution
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Figure 190 Profile plot of the generalized gamma distribution lambda parameter.
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Lieblein and Zelen Ball Bearing Failure Data

Response units: Megacycles

Extended Generalized Gamma Distribution

Maximum likelihood estimation results

Appears to have converged; relative function convergence

Log likelihood at maximum point: -17.51

MLE Std.Err. 95% Lower 95% Upper

mu 4.2301 0.17705 3.8831 4.5771
sigma 0.5100 0.07934 0.3545 0.6655
lambda 0.3076 0.54861 -0.7676 1.3829

Table 30 Summary of the ML of the generalized gamma to the Ball Bearing data.

18.2 Fit other special distributions
SPLIDA » Special models » Generalized gamma distribution

Special distribution ML fits on probability plot M= |
Basic | Plat options | MDdMprtaHeq
— Required —Some options
Life data object Fercent confidence level

Ilucnmutive.ld - I IEIE

Dhigtribution IBirnbaum-S Al "I Murnber of digits in tables
—Allfe data objacls [+

[ Include in life data object list? Save results in Ilucnmntive.gmle.bi

— Plat gzale and comparison

Flot probability scale

I.-i'-.uh:umatic - I

Comparizon distributionz]

MHone -
EHEDnentiaI —
Weibull
Loglogistic =
] | Eancell | [«] =0 ocument Help |

Figure 191 Dialog for requesting a comparison between the Birnbaum-Saunders
and lognormal distributions on lognormal probability paper.
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Locomotive Control Data with bisa ML Estimate
and Pointwise 95% Confidence Intervals
Lognormal Probability Plot
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Figure 192 Comparison of the ML estimates for the Birnbaum-Saunders and
lognormal distributions on lognormal probability paper.

18.3 Limited failure population model
SPLIDA » Special models » Limited failure population model

(not yet available in theGUI)

18.4 Generalized (two failure modes) limited failure population model

SPLIDA » Special models » Generalized (two failure modes) limited
failure population model

(not yet available in the GUI)

18.5 Random fatigue limit model
SPLIDA » Special models » Random fatigue limit model

(not yet available in the GUI)
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18.6 Two-dimensional warranty bivariate model
SPLIDA » Special models » Two-dimensional warranty bivariate model

(not yet available in the GUI)

19 SPLIDA Tools

This section describes some special tools that are available in SPLIDA.

19.1 Delete SPLIDA objects

As one uses SPLIDA, objects of different kinds are saved in the users workspace (folder
SplidaUser, by default). These include data objects, analysis results objects, simulation
results objects, etc. The amount of time it takes to launch or refresh some dialogs is
proportional to the number of objects (because the list of objects must be searched to
create lists for appropriate objects in the dialogs). Thus, especially if one notices
bothersome slowdown, it is a good idea to delete unneeded objects from time to time.
Although the S-PLUS object browser might be used for this purpose, using SPLIDA »
Special tools » Delete SPLIDA objects will launch the dialog in Figure 193,
allowing the user to choose the object type. This provides a listing of all objects of that
type, from which the user can choose the particular object or objectss to delete.

Delete SPLIDA objects —ofx|

Basic |

Required
Ohbjecttype ISingIe distributio vl

Single distribution (mlest) result

tiveChangeF0.6C5000 «Squareroot vLinear.individlognormal.o

oK Cancel Apply [<] || current Help
| | | M |

Figure 193 Dialog to allow deletion of selected SPLIDA objects

19.2 Custom blank probability/relationship paper

SPLIDA has powerful tools for creating special graphics that are useful in reliability data
analysis. These plots have special nonlinear axes. These include probability plots with
axes that linearize the cumulative distribution function, and relationship or model plots
that linearize the relationship between a response (e.g. time to failure) and an explanatory
variable (like temperature). SPLIDA allows the under to create blank plotting paper with
these axes. These are useful for making plotting paper on which data can be plotted by
hand. Alternatively, on could create a blank plotting page and then use S-PLUS
commands to add additional information (e.g. plotted points) to the plot. Using SPLIDA
» Special tools » Custom probability paper will launch a dialog like that in
Figure 194.
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Custom probability paper — |EI |£|

Basic |
—Flot paper options —Axis limits
Type of paper = Prabahility ¥ Change &xis limits

Specify lower endpaint of x axis

" Relationship
|1EI
Title option |fu|| vl
Specify upper endpoint of x &xis

v Grid on plot 1000

riatyalalliye o e jteloiel 0 sl Specify lower endpaint of v axis

Distribution IWelbuII vl o0

v Add shape parameter scale

Specify upper endpaoint of v axis
¥ Add linear axes IAutDmatic:

—Relationship plot paper options ————— [~ Axis lakels

far Termp IArrhenius vl v Change axis labels

Specify Box-Cox power x axis [abel IAutDmatic
I v axis label IAutomatiu:

Transformation (2xis) forthe explan war
| jv

["| Flatrespense onthe waxis

Cann:ell Applyl |<|>| current Help |

Figure 194 Dialog to request a blank Weibull probability plot.

Several options, including requesting a grid (useful for plotting by hand or reading off numbers from a
probability plot) and changes in the range of the axes have been exercised. Clicking on Apply results in
the plot in Figure 195.
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Figure 195 Custom blank Weibull probability paper

20 SPLIDA Setup and Operation

SPLIDA is distributed as a self-extracting executable file SPLIDA.exe. When
SPLIDA.exe is executed, a Winzip window like the one in Figure 196 appears and when
the unzip option is chosen, Winzip creates a folder (¢ : \Splida by default) that
contains other folders and files. This is known as the “SPLIDA folder.” A snapshot of the
inside of this folder is given in Figure 197.

WinZip Self-Extractor - Dec1120038SplidaSyd.exe x|
Tounzip all files in Decl120035plidaswd.exe to the Unzip
specified falder press the Unzip buttan. —

Fun indip
Unzip to folder:
IE Browse... Close
v Crwerwrite files without prompting AL
Help

Figure 196 Winzip window to extract SPLIDA
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Fil=  Edt Mew Favorites Tools Help i
“Back v = v [£]| QSearch SuFolders 3|l 0 X = | Edv
Address |1 C\Splida j 6o
1 M
- echapters grmled gmledatad  Splida_sxcel...
Splida
Select an item to view its D D
description, ! i
EPLIDCA_ftew...  Spidalser  ReleaseMote...  SplidaGuipdf
See also;
My DocUrments
iy MNetwork Places %| %| TPLIS 5-PLIS
My Computer | | At =
Splidalnstall.... SPLIDAncte.., Splidalsersl
12 object(s) 2.21MB W My Computer Y

Figure 197 View inside the SPLIDA folder

20.1 Simple setup for SPLIDA

To install a new version of SPLIDA over an existing version, you should always delete
the old SPLIDA folder before unzipping the new SPLIDA folder. Generally, you should
not have to make any manual changes in any SplidaUser folder (some automatic
changes are made when a new version of SPLIDA is installed).

The following description assumes that you are running Splus 6.2 and that it is installed
in the default location C:\Program Files\Insightful\splus62\cmd. If you are using some
other version if Splus (6.0 or higher), the approach is similar, but you should use the
alternate shortcut.

To install SPLIDA using default locations (the simple recommended setup):

1. Move the SPLIDA.exe file to some location (like your Desktop) and double-click
to execute the file. Do not change any defaults, but click on “Unzip” (see Figure
196) to make the c:\Splida folder shown in Figure 197. You should get a message
saying that xxx files have been unzipped (where xxx is 147 for the December
2003 version of SPLIDA).

2. Make a copy of the SPLIDAUser62 shortcut in a convenient place (e.g., the
desktop).
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3. Make a copy of the SPLIDAUser folder to C: \SPLIDAUser. This is the place
where user-created objects will be stored.

4. To complete the setup, click on the SplidaUser shortcut. This will bring up the
warning in Figure 198. Click “OK.” S-PLUS will create a . Prefs folder in the
SplidaUser folder and SPLIDA will create the SPLIDA menu items (this could
take a few minutes).

x|

The path found for s_proj 'cSplidalUser’ does not contain folders
'Data’ and/or " Prefs' for project related files. Specify another path
ot acceptthis one and the necessary folders will be created.

Cancel

=N
_fowee. |

Ic:\SpIidaUser Browse...

Figure 198 S-PLUS Invalid path warning

When done, SPLIDA will be one of the items on the S-PLUS menu bar. To
preserve the setup, exit S-PLUS and then again, click on the SplidaUser
shortcut.

5. SPLIDA is now ready for use. To test SPLIDA, from the S-PLUS menu bar use
Splida » Single distribution analysis » Probability plot with
parametric ML fit. Then choose life data object BearingCage.ld and
distribution lognormal. Click "Apply."

It may be desirable (on Windows 2000 and XP, where it is possible) to install SPLIDA in
a write-protected folder to reduce any chance that files in the installed folder will become
corrupted.

20.2 Installing SplidaUser folders in other places or with other names

Some S-PLUS users like to use separate startup folders for different projects, so that
created objects do not get confused from one project to another. Similarly, if different
users work on the same computer usually they would want to operate using separate S-
PLUS/SPLIDA startup files. If you copy a SplidaUser folder to other than C: \ or use
a name other than SplidaUser for the folder, then the SplidaUsr62 shortcut
properties must point to both the location of S-PLUS and the SplidaUser folder

a. Make a copy of the SplidaUser folder (do not just move it) in a convenient
place (e.g., in c:\ or in a project folder elsewhere) and, if desired, give the folder a
new name, say corresponding to a user’s name or a project name.
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b. Make a copy of the SplidaUsr62 shortcut (do not just move it) in a convenient
place (e.g., the desktop) and, if desired, give the shortcut a new name.

c. Right-click on the shortcut, choose properties, and go to the shortcut tab. On the
right-hand side of the target line, edit the S PROJ="C:\SplidaUser" so that it
points to the location of your particular SplidaUser folder (or what ever name
the folder now has) and its location.

20.3 Installing Splida in another place

In some cases, it may be necessary to install the Splida folder (as it is called now) in a
place other than C: \. This can be done by changing the Winzip option to some other
location (e.g., D: \Program Files\Splida). If the SPLIDA folder is installed in a
place other than the default ¢ : \SPLIDA, the file Path. txt in any SplidaUser folder
should be modified (e.g., using Notepad) to point to the chosen location of SPLIDA.
Again, may be desirable to install SPLIDA in a write-protected folder to reduce any
chance that files in the installed folder will become corrupted.

An alternative to using the Path. txt file to identify the location of SPLIDA is to set an
environmental variable in Windows. In particular SplidaHome should be set to the
SPLIDA path (e.g., D: \Program Files\Splida). Doing this is particularly useful
if you move a SplidaUser folder from one computer to another and have SPLIDA
located in different places on those computers.

20.4 Modifying the shortcut when S-PLUS is installed in other than the default
location

If S-PLUS is installed somewhere other than the default location for S-PLUS 6.2 (i.e.,
C:\Program Files\Insightful\splus62\cmd), the SplidaUsr62 shortcut
provided with the distribution must be modified to point to the actual location of S-
PLUS. Right-click on the shortcut, choose properties, and go to the shortcut tab. Edit the
target line so that the first part points to S-PLUS (looking at an existing shortcut to S-
PLUS will show how to do this). Make sure that the right-hand side of the target line still
points to the SplidaUser folder (S PROJ="C:\SplidaUser" by default).

20.5 Creating a SPLIDA/S-PLUS shortcut from scratch

For most purposes, the SplidaUsr62 shortcut (perhaps modified as described in
Sections 20.2 or 20.4) provided with the SPLIDA distribution should be all that is
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needed. For completeness, however, we describe how to create such a shortcut from
scratch.

Copy or create a new shortcut to S-PLUS. Use right-click New P Shortcut to bring
up the Windows Shortcut Wizard. Browse to the location of SPLUS and select
SPLUS.exe (C:\Program Files\Insightful\splus62\cmd\SPLUS.exe for S-PLUS 6.2. Click
next and choose a name for the shortcut (e.g. SplidaProjX). Then click Finish. This
creates a standard S-PLUS shortcut. Now to make it into a SPLIDA shortcut, right click
on the new shortcut and choose "properties" under "shortcut." Set S PROJ on the
"Target" command line (note: do this on the "Target" and not"Start in" command line) of
this shortcut to read:

" C:\Program Files\Insightful\splus62\cmd\SPLUS.exe " S PROJ="c:\SplidaUser"

where " C:\Program Files\Insightful\splus62\cmd\SPLUS.exe " is the existing path to S-
PLUS 6.2 and depends on the version of S-PLUS and the option used when S-PLUS was
installed. Do not change the first part. Only add the S PROJ="c:\Splida" to the end
of the line. Make sure there is at least one space before the
S _PROJ="c:\SplidaUser". After typing the S PROJ="c:\SplidaUser", click
on “apply” and “Close.”

20.6 Manually making or remaking the SPLIDA menu structure and startup
(.Prefs) folder

SPLUS uses a . Prefs folder to define user preferences and the graphical under
interface (GUI). When you attempt to use S-PLUS in a target folder that does not contain
either the . Prefs or the Data folder, they are generally created automatically by S-
PLUS (S-PLUS first asks if you want to do this). At the time of distribution, the
SplidaUser folder does not contain . Prefs folders, but it is created in the setup
described in 20.1. This is because each version/release of SPLUS may have a different
.Prefs. SPLUS will generate the . Prefs folder automatically, appropriate for your
version of SPLUS if a . Prefs folder is not detected in your SplidaUser folder.
When SPLIDA is started, it will make the necessary changes to install or update (after
you install a new version of SPLIDA over an older version)..

If you are using the “professional” version of S-PLUS and, for some reason, you would
like to regenerate the SPLIDA . Prefs folder from scratch, you can follow the
following steps (you need the Professional version of S-PLUS to do this):

a. Delete the .Prefs folder in the SPLIDA target folder.
b. Fire up S-PLUS using a shortcut that points to the target folder (e.g.,
SplidaUser).
c. When S-PLUS warns you that .Prefs and/or . Data are missing, click OK.
At the command line, give the command CreateSplidaPrefs () .

Depending on the speed of your processor, it may take from 1 to 3 or 4 minutes to
complete and you will see something like the following output:
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SPLIDA Version XXX

Loading advanced SPLIDA life data analysis symbols.

Advanced SPLIDA life data analysis symbols successfully dyn.loaded.

Removing the old SPLIDA menu structure.

SPLIDA menu was not detected---nothing to remove.

Remaking all of the SPLIDA GUI properties and dialogs---wait.

Finished remaking all of the SPLIDA GUI properties and dialogs.

Remaking the SPLIDA menus.
Done remaking the SPLIDA GUI.

You should exit and restart S-PLUS now, in order to preserve the changes.

20.7 Comments on using SPLIDA (and S-PLUS) on Windows

a.

b.

If S-PLUS seems to be hanging or taking too long to execute, you can sometimes
type <ESC> to break out of a command.

If graphics window becomes corrupted, kill the graphics window (by clicking the
x in the upper right-hand corner of the graphics window). A fresh graphics
window will be started. It is also necessary to do this to make newly-selected
graphics options (e.g., switching from color to black and white) take effect.

As you use S-PLUS over time, memory usage can build up, and it may be
necessary (especially if you are only working with 128MB or less memory) to
restart S-PLUS. The command check.memory( ) will allow you to monitor this. If
you can afford it, install more memory. We have noticed a big improvement when
going from 128MB to 512 MB, and now we use 256 MB or better. If you run
short on memory and are using an old version of Windows (98 or ME), S-PLUS
may hang, Windows can crash, and it may be necessary to reboot your machine.

21 Outline of the SPLIDA Menu Structure

The following table contains an outline of the SPLIDA menu structure. The GUI dialogs
for the items shown in regular-faced type are still in development.

SPLIDA »

Make/summary/view data object »
Make a life data object
Make recurrence (point-process) data object
Make degradation (repeated measures) data object
Summary/view a data object
Edit a life data object
Plan single distribution study »
Specify life test planning information (planning values)
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Plot life test planning information (planning values)
Plot of approximate required sample size
Simulate a life test
Probability of successful demonstration
Single distribution life data analyses »
Plot nonparametric estimate of cdf and confidence bands
Probability plot with nonparametric confidence bands
Probability plot with parametric ML fit
Compare distribution ML fits on probability plot
Likelihood contour plot and confidence intervals
Bootstrap confidence intervals
Threshold parameter probability plot with parametric ML fit
Single distribution Bayes analysis life data analyses »
Specify a prior distribution
Make a posterior distribution
Summarize a posterior distribution
Multiple failure mode life data analysis »
Individual modes
Combined modes (with one or more omitted)
Make life data objects for individual modes
Comparison of distributions life data analysis »
Probability plot and ML fit: different shapes (slopes)
Comparison likelihood contour plot
Probability plot and ML fit: common shapes (slopes)
Make life data objects for individual groups
Probability of correct selection for specified test plans
Plan an accelerated life test (ALT) »
Specify an ALT model information (planning values)
Specify an ALT test plan
Plot, summarize, and evaluate an ALT test plan
Simulate an ALT test
Simple regression (ALT) data analysis »
Censored data scatter plot
Probability plot and ML fit for individual conditions
Prob plot and ML fit for indiv cond: common shapes
(slopes)
Probability plot and ML fit of a regression (acceleration)
Make life data objects for individual groups
Multiple regression (ALT) life data analysis »
Censored data pairs plot
Censored data scatter plot
Probability plot and ML fit for individual conditions
Prob plot and ML fit for indiv cond: common shapes
(slopes)
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Probability plot and ML fit of a regression (acceleration)
Conditional model plot
Sensitivity analysis plot
Make life data objects for individual groups
Regression residual analysis »
Residuals versus fitted values
Residuals versus possible explanatory variables
Residuals versus observation order
Residual probability plot
Recurrence (point process) data analysis »
Recurrence event plot
Mean cumulative function plot
Compare two mean cumulative functions plot
Convert renewal recurrence data to life data
Degradation (repeated measures) data analysis »
Degradation data plot
Degradation data trellis plot
Accelerated degradation cell-average plot
Convert/extrapolate degradation data to life data
Degradation residual plot
Destructive degradation data (ADDT) analysis »
Scatter plot of ADDT data
Scatter plot and ML fit for individual conditions
Scatter plot and ML fit of a regression (acceleration) model
Residual analysis
Plan a destructive degradation (ADDT) test »
Specify ADDT test planning information (planning values)
Generate an ADDT test plan
Modify an ADDT test plan
Sample size for an ADDT test plan
Summarize, plot, and evaluate an ADDT test plan
Simulate an ADDT test plan
Summarize ADDT test plan simulation results

Special models »

Generalized gamma distribution

Fit other special distributions

Limited failure population (LFP) model

Dead on arrival (DOA) population model

Generalized (two failure modes) limited failure population
model

Random fatigue limit (RFL) model

Two-dimensional warranty bivariate model
Change SPLIDA default options (preferences)
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d.

22 SPLIDA Data Set Index

This Chapter describes the source and, when not included in Meeker and Escobar (1998),
a little background for some of the data sets supplied with SPLIDA. The first part of the
file does this by data set name. The second is organized according to the numbered
Examples and Exercises in Meeker and Escobar (1998, page 684), making it easy to find
data sets used in that book (if the name is not obvious).

Complete references not given below (e.g. Nelson 1982) are given at the end of Meeker
and Escobar (1998). Also see the "Examples" entry in the index of Meeker and Escobar
(1998).

AlloyC.txt ~ Meeker and Escobar (1998), Example 11.16, page 276.

Appliance01.txt Nelson (1982) page 121

BearingCage.txt Abernethy, Breneman, Medlin, and Reinman, (1983) also Meeker
and Escobar (1998), Example 10.12, 12.10, 14.1, 14.2, 14.3, 14.4, 14.5

Concrete.txt Holmen (1979), analyzed in Castillo and Hadi (1995) and discussion of
Pascual and Meeker (1999)

ConnectionStrength.txt Nelson (1982), page 111.

DeviceA.txt Hooper and Amster (1990) and also Meeker and Escobar (1998),
Examples 12.9, 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7, 19.8, 19.9

DeviceB.txt Meeker, Escobar, and Lu (1998) also Meeker and Escobar (1998), Chapter
21

DeviceC.txt Meeker, Unpublished ALT data use in Meeker and Escobar (1998),
Exercise 19.2
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DeviceG.txt Meeker and Escobar (1998), Example 15.6, page 383

DeviceH.txt Doganaksoy, Hahn, and Meeker (2000)

DiskBer.txt  Murray (1993) and also Meeker and Escobar (1998), Exercise 13.9

Fan.txt Nelson (1982), pages 133, 318 and also Meeker and Escobar (1998),
Examples 7.12, 7.13, 11.3, 11.17

GaAsLaser.txt Meeker and Escobar (1998), Example 13.10

HeatExchanger.txt =~ Meeker and Escobar (1998), Example 3.1, 3.2, 3.3,
34,3.6,3.11,6.4,9.8,9.9,9.10,9.11

LaminatePanel.txt ~ Shimokawa and Hamaguchi~(1987) and also Pascual and Meeker
(1999)

LocomotiveControl.txt Nelson (1982), page 33

MachineH.txt Meeker and Escobar (1998), Example 16.6

MetalWear.txt Meeker and Escobar (1998), Example 21.6

NiCdBattery.txt Brown and Mains (1979) and Meeker and Escobar (1998),
Example 1.9

NewSpring.txt Meeker, Escobar, and Zayac (2003), A factorial experiment to
compare the life times of springs as a function of a processing temperatire and amount of
displacement in the spring test (stroke).

PartA.txt Unpublished Meeker (1999) An experiment to compare the life times of
units tested by three different operators.

PhotoDetector.txt Weis et al. (1986), also Meeker and Escobar (1998), Exercise 3.12
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PrintedCircuitBoard.txt Meeker and LuValle (1995), and also Meeker and Escobar
(1998), Examples 1.8 and and 18.7

RepairTimes.txt Unpublished Meeker (1997) Recorded times to repair a particular
kind of electronic system, without regard to failure mode.

RocketMotor.txt Olwell,D. H. and Sorell, A. A. (2001)

ShockAbsorber.txt ~ O'Connor (1985), also Examples 3.8, 3.9, 3.10, 6.3, 8.1, 8.3, 8.4,
8.5,8.6,8.7,8.8,8.10,8.11, 8.12, 8.13, 8.14, 8.15, 9.4, 9.5, 9.6, 9.7, 9.12 from Meeker
and Escobar (1998)

Snubber.txt  Nelson (1982) also Meeker and Escobar (1998) Examples
17.13,17.14, 17.15

TurbineDevice.txt ~ Unpublished Meeker (1999)

ValveSeat.txt Nelson, W. (1995a) also Meeker and Escobar (1998), Examples 16.3, 16.4

WorkStation.txt Meeker and Escobar (1998), Exercise 16.1

ZelenCap.txt  Zelen (1959) also Meeker and Escobar (1998), Example 17.11

at7987.txt Meeker and Escobar (1998), Examples 6.2, 6.6, 6.7, 11.18

berkson10220.txt Berkson (1966) also Meeker and Escobar (1998), Examples 7.1-
7.4

berkson20.txt Berkson (1966) also Meeker and Escobar (1998), Examples 7.1-7.4
berkson200.txt Berkson (1966) also Meeker and Escobar (1998), Examples 7.1-

7.4
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berkson2000.txt Berkson (1966) also Meeker and Escobar (1998), Examples 7.1-
7.4

bkfatiguel0.txt Bogdanoff and Kozin (1985) also Meeker and Escobar (1998),
Example 11.4

bleed.txt Abernethy, Breneman, Medlin, and Reinman (1983) also Meeker and
Escobar (1998), Example 6.9

bulb.txt Davis (1952) and Nash (19xx)

cirpack5.txt  Hooper and Amster (1990), Table 8.2

cirpack6.txt Meeker and Escobar (1998), Table 1.3, Example 1.3, 11.8

comptime.txt Meeker and Escobar (1998), Example 17.1, 17.3,17.4,17.5, 17.6, 17.7

cylinder.txt  Nelson and Doganaksoy (1989) also Meeker and Escobar (1998),
Example 16.5

doatrun.txt ~ Meeker (1996), unpublished Data are truncated because an unknown
number of DOA's were removed from the data set.

electro_mech.txt Hahn and Meeker (1982a)

grampus.txt Lee (1980) and also Ascher, H., and Feingold, H. (1984) also Meeker and
Escobar (1998), Examples 16.9, 16.10, 16.11, 16.12

grids1.txt Doganaksoy, N., and Nelson, W. (1998) also Meeker and Escobar (1998),
Example 16.7

grids2.txt Doganaksoy, N., and Nelson, W. (1998) also Meeker and Escobar (1998),
Example 16.7
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haltbeak.txt  Ascher, H., and Feingold, H. (1984) also Meeker and Escobar (1998),
Example 16.7

icdevice(02.txt Meeker and Escobar (1998), Example 19.11

inconel.txt ~ Shen (1994) also Pascual and Meeker (1999)

1fp1370.txt ~ Meeker (1987) also Meeker and Escobar (1998), Examples 3.5, 11.5, 11.6,
11.7

Izbearing.txt Lieblein and Zelen (1956), also Lawless (1982) and Meeker and Escobar
(1998), Examples 1.1, 6.8, 8.16, 11.1, 11.2, 12.2, 12.3, 12.4, 12.5, 12.6

muliple fail classh.txt Nelson (1990), page 32

mylarpoly.txt Kalkanis and Rosso (1989) also Meeker and Escobar (1998), Examples
18.5, 19.10

piccioto.txt  Picciotto (1970)

piccioto_sub.txt subset of data in piccioto.txt

Resistor.txt  Suzuki, Maki, and Yokogawa (1993) also Meeker and Escobar (1998),
Example 18.2 and Table C.3

superalloy.txt Nelson (1990) also Meeker and Escobar (1998), Examples 17.2, 17.8,
17.9, 17.10

tantalum.txt  Singpurwalla, Castellino, and Goldschen (1975) also Meeker and Escobar
(1998), Examples 19.11, 19.12

titanium.txt
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titaniumO1.txt Meeker and Escobar (1998), Exercise 6.7

turbine.txt Nelson (1982) also Meeker and Escobar (1998), Examples 1.7, 3.x

v7tube.txt Davis (1952) also Meeker and Escobar (1998), Example 1.6, 6.10

Meeker and Escobar (1998) examples and exercises using data

Example 1.1 |zbearing.txt
Example 1.2 1fpl1370.txt
Example 1.3 cirpack6.txt

Example 1.4  Fan.txt

Example 1.5  HeatExchanger.txt
Example 1.6  vTtube.txt

Example 1.7  turbine.txt

Example 1.8  PrintedCircuitBoard.txt

Example 1.9  NiCdBattery.txt
Example 1.10  AlloyA.txt

Example 3.1 HeatExchanger.txt
Example 3.2 HeatExchanger.txt
Example 3.3 HeatExchanger.txt
Example 3.4  HeatExchanger.txt
Example 3.5 1fp1370.txt

Example 3.6  HeatExchanger.txt
Example 3.7  HeatExchanger.txt

Example 3.8  ShockAbsorber.txt
Example 3.9 ShockAbsorber.txt
Example 3.10  ShockAbsorber.txt

Example 3.11 HeatExchanger.txt
Example 3.12
Example 3.13 turbine.txt

Example 6.2  at7987.txt
Example 6.3 ShockAbsorber.txt
Example 6.4  HeatExchanger.txt
Example 6.5 turbine.txt
Example 6.6 at7987.txt
Example 6.7  at7987.txt

Example 6.8  lzbearing.txt
Example 6.9  Dbleed.txt
Example 6.10 v7tube.txt

Example 7.3 berkson20.txt
Example 7.12  Fan.txt
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Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

7.14  Fan.txt

8.1t08.16  ShockAbsorber.txt
8.16 lzbearing.txt

9.1-93 berkson20.txt
9.4-9.7 ShockAbsorber.txt
9.5 ShockAbsorber.txt xt
10.12 BearingCage.txt
11.1-11.2 lzbearing.txt
11.3 Fan.txt

11.4  bkfatiguel0.txt
11.5-11.7 1fp1370.txt

11.8 cirpacké6.txt

11.9 Life Data?

11.10 Kalbfleisch and Lawless
11.11 cirpack6.txt

11.16 AlloyC.txt

11.17 Fan.txt

11.18 at7987.txt

12.2-12.8 lzbearing.txt
12.9 AlloyA.txt

12.10 BearingCage.txt

13.1 AlloyA.txt

13.6  AlloyA.txt

13.9 AlloyA.txt

14.1-14.10  BearingCage.txt
15.3

15.6 DeviceG.txt

16.1  grampus.txt

16.2-16.4 ValveSeat.txt
16.5 cylinder.txt

16.6 MachineH.txt

16.7  gridsl.txt, grids2.txt
16.8  gridsl.txt, grids2.txt
16.9-16.11 grampus.txt

16.12 halfbeak.txt
17.1 comptime.txt
17.2 superalloy.txt

17.3-17.7 comptime.txt
17.8-17.10  superalloy.txt
17.11-17.12  ZelenCap.txt

17.13-17.14  Snubber.txt

18.1

18.2 resistor.txt

18.5 mylarpoly.txt

18.7 PrintedCircuitBoard.txt

19.1-19.12 DeviceA.txt
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Example
Example
Example
Example
Example
Example
Example
Example
Example

Exercise 19.2

19.10
19.11
19.12
20.1
21.1
21.2
21.3
21.4
21.5

mylarpoly.txt
icdevice02.txt
icdevice02.txt

DeviceB.txt
DeviceB.txt
DeviceB.txt
DeviceB.txt
DeviceB.txt

DeviceC.txt

Data references not in Meeker and Escobar (1998)

1. Doganaksoy N., Hahn, G. J., and Meeker, W. Q. (2000), Product life analysis: a
case study, Quality Progress, June 2000.

2. Doganaksoy, N., and Nelson, W. (1998) “A Method to Compare Two Samples of Recurrence
Data,” Lifetime Data Analysis 4, 51-63.

3. Pascual, F.G. and Meeker, W.Q. (1999), Estimating Fatigue Curves with the
Random Fatigue-Limit Model (with discussion). Technometrics 41, 277-302.

4. Roberto, Picciotto (1970) “Tensile Fatigue Characteristics of a Sized
Polyester/Viscose Yarn and Their Effect on Weaving Performance. A thesis
submitted to the Graduate Faculty of North Carolina State University at Raleigh
in partial fulfillment of the requirements for the Degree of Master of Science.
Department of Textile Technology.

5. Shen, C. L. (1994), “Statistical Analysis of Fatigue Data,”” unpublished Ph.D.
dissertation, University of Arizona, Department of Aerospace and Mechanical
Engineering.

6. Shimokawa, T., and Hamaguchi, Y. (1987), **Statistical Evaluation of Fatigue
Life and Fatigue Strength in Circular-Holed Notched Specimens of a Carbon
Eight-Harness Satin/Epoxy Laminate," in Satistical Research on Fatigue and
Fracture (Current Japanese Materials Research, Vol. 2), eds. T. Tanaka, S.
Nishijima, and M. Ichikawa, London: Elsevier, pp. 159-176.

7. Castillo, E. and Hadi, Ali S., (1995) Modeling lifetime data withapplication to
fatigue models, Journal of the American Satistical Association, 90, 1041-1054

8. Olwell, D. H. and Sorell, A. A. (2001), Proceedings of the 2001 Annual
Relaibility and Maintanability Symposium.
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