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Circular–linear density estimation

Motivation

Air pollution studies

I Investigation of the relation between pollutant concentrations
from monitoring sites and the emission sources.

I Circular variables (wind direction) play a relevant role.
I Some previous works:

I Somerville et al (1996): Estimation of the wind direction of
maximum air pollutant concentration and identification of
emission sources.

I Jammalamadaka and Lund (2006), Fernández–Durán (2007):
Wind direction and ozone levels.

I We focus on sulphur dioxide (SO2) pollutants.
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Circular–linear density estimation

Motivation

Figure: Locations of monitoring stations
and power plant.

Distances to power plant

I B1: 0.9 km

I G2: 18.6 km

Goal of the work

Study wind direction and SO2

concentration relation.
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Figure: Rose diagrams for wind direction stations B1 and G2, with
average SO2 concentrations for August 2009.
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Circular–linear distributions

Simulation results

Real data application
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Circular–linear distributions

Circular distributions

Definition (Mardia and Jupp, 2000)

A circular random variable Θ has its support in S1.

In the a.c.
case, its density fΘ must satisfy:

1. fΘ(θ) ≥ 0, ∀θ ∈ R.
2.
∫ 2π+r
r fΘ(θ)dθ = 1, ∀r ∈ R.

3. fΘ(θ) = fΘ(θ + 2πk), ∀θ ∈ R, ∀k ∈ Z.

Example (von Mises distribution vM(µ, κ))

The von Mises distribution has density

ϕvM (θ;µ, κ) = (2πI0(κ))−1 exp [κ cos(θ − µ)] ,

where µ ∈ [0, 2π) is the circular mean, κ ≥ 0 is the concentration
in µ direction. Its distribution is denoted by ΨvM .
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E. Garćıa–Portugués et al. Circular–linear density estimation



Circular–linear density estimation

Circular–linear distributions

Circular distributions

Definition (Mardia and Jupp, 2000)

A circular random variable Θ has its support in S1. In the a.c.
case, its density fΘ must satisfy:

1. fΘ(θ) ≥ 0, ∀θ ∈ R.
2.
∫ 2π+r
r fΘ(θ)dθ = 1, ∀r ∈ R.

3. fΘ(θ) = fΘ(θ + 2πk), ∀θ ∈ R, ∀k ∈ Z.

Example (von Mises distribution vM(µ, κ))

The von Mises distribution has density

ϕvM (θ;µ, κ) = (2πI0(κ))−1 exp [κ cos(θ − µ)] ,

where µ ∈ [0, 2π) is the circular mean, κ ≥ 0 is the concentration
in µ direction. Its distribution is denoted by ΨvM .
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Circular–linear distributions

Circular distributions
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Figure: Circular and linear representations of the density and distribution
of a von Mises with κ = 0 (circular uniform distribution).

E. Garćıa–Portugués et al. Circular–linear density estimation



Circular–linear density estimation

Circular–linear distributions

Circular distributions

0

π

2

π

3π

2

0 0.5 1 1.5

Density
Distribution

θ

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

− π 0 π 2π 3π

Density
Distribution

Figure: Circular and linear representations of the density and distribution
of a von Mises with µ = π and κ = 5.
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Figure: Circular and linear representations of the density and distribution
of a von Mises with µ = π and κ = 10.
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Circular–linear distributions

Johnson and Wehrly model

Denote by

I Θ a circular variable with density ϕ and distribution Ψ.

I X a linear variable with density f and distribution F .

Joint distribution of (Θ, X) ?

Theorem (Johnson and Wehrly, 1978)

Let g be a circular density. Then

p(θ, x) = 2πg [2π (Ψ(θ) + F (x))]ϕ(θ)f(x)

is a circular–linear density with marginal densities ϕ and f .

I It is a construction of p from ϕ and f , not a characterization.

I Θ and X independent⇔ g(ω) = (2π)−1, ∀ω ∈ [0, 2π)

E. Garćıa–Portugués et al. Circular–linear density estimation



Circular–linear density estimation

Circular–linear distributions

Johnson and Wehrly model

Denote by

I Θ a circular variable with density ϕ and distribution Ψ.

I X a linear variable with density f and distribution F .

Joint distribution of (Θ, X) ?

Theorem (Johnson and Wehrly, 1978)

Let g be a circular density. Then

p(θ, x) = 2πg [2π (Ψ(θ) + F (x))]ϕ(θ)f(x)

is a circular–linear density with marginal densities ϕ and f .

I It is a construction of p from ϕ and f , not a characterization.

I Θ and X independent⇔ g(ω) = (2π)−1, ∀ω ∈ [0, 2π)
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Circular–linear distributions

Johnson and Wehrly model

Example (Circular uniform and Normal marginal densities)

Densities: ϕ = (2π)−1, f = φ and g = ϕvM (µ, κ).

p1(θ, x) = (2πI0(κ))−1 exp [κ cos(θ − 2πΦ(x)− µ)]φ(x)
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Figure: Joint density p1 with µ = π and κ = 2.
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Circular–linear distributions

Johnson and Wehrly model

Example (von Mises and Normal marginal densities)

Densities: ϕ = ϕvM (µ1, κ1), f = φ and g = ϕvM (µ, κ).

p2(θ, x) = I0(κ)−1 exp [κ cos (2π(ΨvM (θ)− Φ(x))− µ)]ϕvM (θ)φ(x)
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Figure: Joint density p2 with µ1 = π
2 , κ1 = 2, µ = π and κ = 5.
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Circular–linear distributions

Estimation algorithm

Our model

p(θ, x) = 2πg [2π (Ψ(θ) + F (x))]ϕ(θ)f(x)

Estimation algorithm

1. Obtain estimators for the marginal densities ϕ̂, f̂ and the
corresponding marginal distributions Ψ̂, F̂ .

2. Compute an artificial sample
{

2π
(

Ψ̂(θi) + F̂ (xi)
)}n

i=1
and

estimate the joining circular density ĝ.

3. Obtain the circular–linear density estimator as

p̂ (θ, x) = 2πĝ
[
2π
(

Ψ̂(θ) + F̂ (x)
)]
ϕ̂(θ)f̂(x).
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Circular–linear distributions

Estimation algorithm

Estimation approaches

I Parametric. Estimate parametrically ϕ, f and g, for example
by ML. Fernández–Durán (2007) estimates the model using
ML for the linear density and Nonnegative Trigonometric
Sums for the circular densities.

I Mixed. Estimate ϕ and f parametrically (some intuition) and
g nonparametrically (no intuition) or other possible
combinations.

I Nonparametric. Estimate nonparametrically both marginals
ϕ and f and the joining density g by kernel smoothing.
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Circular–linear distributions

Kernel estimation

Kernel estimation

I Let f be a linear density and X1, . . . , Xn a sample from
X ∼ f . The kernel estimator of f is

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
.

I For a circular density ϕ and a sample Θ1, . . . ,Θn, the kernel
estimator defined by Hall, Watson and Cabrera (1987) is

ϕ̂ν(θ) =
c0(ν)

n

n∑
i=1

L (ν cos(θ −Θi)) .
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Circular–linear distributions

Kernel estimation

I In the linear case,

hAMISE = O
(
n−

1
5

)
.

I For the circular case, Taylor (2008) shows that for the von
Mises distribution,

νAMISE = O
(
n

2
5

)
.

I The circular bandwidth parameter ν behaves as 1/h2.
I Large values of ν undersmooth and small ones oversmooth

(inverse behaviour of h).
I A possible choice of ν is by LSCV

νLSCV = arg min
κ≥0

∫
f̂κ(ω)2dω − 2

n

n∑
i=1

f̂−iκ (Θi).
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E. Garćıa–Portugués et al. Circular–linear density estimation



Circular–linear density estimation

Circular–linear distributions

Kernel estimation

I In the linear case,

hAMISE = O
(
n−

1
5

)
.

I For the circular case, Taylor (2008) shows that for the von
Mises distribution,

νAMISE = O
(
n

2
5

)
.

I The circular bandwidth parameter ν behaves as 1/h2.
I Large values of ν undersmooth and small ones oversmooth

(inverse behaviour of h).
I A possible choice of ν is by LSCV

νLSCV = arg min
κ≥0

∫
f̂κ(ω)2dω − 2

n

n∑
i=1

f̂−iκ (Θi).
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Circular–linear distributions

Kernel estimation
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Figure: Effects of the circular bandwidth in the density estimator. Sample
of size n = 100 from an equal mixture of vM(π

2 , 2) and vM( 3π
2 , 5).
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Circular–linear distributions

Kernel estimation
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Figure: LSCV, KL and Taylor bandwidths. Sample of size n = 100 from
an equal mixture of vM(π

2 , 2) and vM( 3π
2 , 5).
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Simulation results

Examples

Example 1

I ϕ a circular uniform.

I f ∼ N (0, 1).

I g ∼ vM(π, 2).

theta

x

D
ensity

Example 2

I ϕ ∼ vM
(
π
2 , 2
)
.

I f ∼ N (0, 1).

I g ∼ vM(π, 5).

theta

x

D
ensity
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Circular–linear density estimation

Simulation results

Using copulas

Our model

p(θ, x) = 2πg [2π (Ψ(θ) + F (x))]ϕ(θ)f(x)

I In terms of copulas, can be expressed as

p(θ, x) = c(Ψ(θ), F (x))ϕ(θ)f(x)

I Copula formulation helps for random simulation from p1 and
p2 (our examples).
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Simulation results

Using copulas

Definition
A copula C is a bivariate distribution function with uniform
marginals. It allows to express joint distributions in terms of
marginal distributions.

Sklar’s Theorem
Let X, Y two random variables with joint distribution F and
marginals F1 and F2. There exists a copula C such that

F (x, y) = C(F1(x), F2(y)), ∀x, y ∈ R.

Sklar’s Theorem in terms of densities:

f(x, y) = c(F1(x), F2(y))f1(x)f2(y), ∀x, y ∈ R.
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Circular–linear density estimation

Simulation results

Using copulas

Copula simulation (for our examples)

Consider a circular–linear variable (Θ, X) with joint distribution
P = CΘ,X (Ψ, F ).

Simulation from (Θ, X)

1. Simulate (U, V ) ∼ CΘ,X (U and V are uniforms).

2. Compute Θ = Ψ−1(U) and X = F−1(V ).

3. (Θ, X) ∼ P .

I Simulation by copulas is easier due to the structure of p.

I The copula density is c(u, v) = 2πg(2π(u+ v)).
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Circular–linear density estimation

Simulation results

Simulation setting

Simulation setting

I Parametric: Maximum Likelihood.

I Mixed: ϕ and f by ML and g by kernel estimation with LSCV
bandwidth.

I Nonparametric: Linear and circular kernel estimation with
linear BCV bandwidth and circular LSCV bandwidths.

I Other bandwidth selectors: Seather & Jones (linear);
Kullblack–Leibler and Taylor (circular). Similar results.

I Sample sizes: n = 50, 200, 500, 1000. Samples generated
using copula simulation.

E. Garćıa–Portugués et al. Circular–linear density estimation



Circular–linear density estimation

Simulation results

Simulation setting

Simulation setting

I Parametric: Maximum Likelihood.

I Mixed: ϕ and f by ML and g by kernel estimation with LSCV
bandwidth.

I Nonparametric: Linear and circular kernel estimation with
linear BCV bandwidth and circular LSCV bandwidths.

I Other bandwidth selectors: Seather & Jones (linear);
Kullblack–Leibler and Taylor (circular). Similar results.

I Sample sizes: n = 50, 200, 500, 1000. Samples generated
using copula simulation.
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Circular–linear density estimation

Simulation results

Simulation setting

Error criterion

MISE =

∫∫
E [p̂(θ, x)− p(θ, x)]2 dθdx.

I MISE aproximated by Monte Carlo with M = 1000 replicates.

I Benchmark: Parametric model.

I Relative MISE efficiencies for Mixed and Nonparametric
approaches.
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Simulation results

Simulation setting

Estimation method Relative efficiency

n Param. Mixed Nonpar. Mixed Nonpar.

Example 1 50 0.0054 0.0095 0.0168 0.5674 0.3208
200 0.0013 0.0029 0.0052 0.4802 0.2483
500 0.0005 0.0012 0.0025 0.4267 0.2078

1000 0.0003 0.0007 0.0014 0.3897 0.1840

Example 2 50 0.0402 0.0483 0.0977 0.8331 0.4115
200 0.0104 0.0137 0.0363 0.7595 0.2862
500 0.0043 0.0060 0.0185 0.7140 0.2296

1000 0.0021 0.0032 0.0107 0.6783 0.2006

Table: MISE for estimating the circular–linear density in Example 1 and 2.
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Circular–linear density estimation

Real data application

Figure: Locations of monitoring stations
and power plant.

Raw data

I SO2 measured in µg/m3.
Detection limit: > 3µg/m3.

I Wind direction.

Our data

I Hourly averaged SO2 and
wind direction (circular
mean).

I Perturbation to avoid
repeated data.

I Box–Cox in SO2.
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Circular–linear density estimation

Real data application

Data perturbation

How to proceed with repeated data?

I Linear case: Azzalini (1981) proposes a perturbation that
allows a consistent estimation of the distribution:

X̃i = Xi + bεi, εi ∼ Epanech
(
−
√

5,
√

5
)
,

where b = C∗n−δ. Optimum choice of δ is 1
3 , derived from

bAMISE = O(n−
1
3 ). C∗ is chosen as 1.3σ̂.

I Circular case: open problem. Our perturbation:

θ̃i = θi + dεi, εi ∼ vM(0, 1),

with d = n−
1
5 . Analogy with the bidimensional (S1) linear

bAMISE = O(n−
1
5 ) (Liu and Yang, 2008).
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Circular–linear density estimation

Real data application

Testing independence

Are wind direction and SO2 independent?

Circular–linear correlation coefficients (Mardia, 1976):

I ρCL: R2 for X ∼ cos(Θ) + sin(Θ).

I Dn: ranks correlation. Test for H0 : Dn = 0.

Our model
Θ and X independent⇔ g(ω) = (2π)−1, ∀ω ∈ [0, 2π)

Uniformity tests (Mardia and Jupp, 2000):

I Kuiper: Kolmogorov–type test.

I Watson: Cramer–von Mises test.

I Rayleigh: Alternative hypothesis is a unimodal distribution.

I Rao’s Spacing test.
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Real data application

Station B1
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Real data application

Station B1

2π(Ψ̂(θ) + F̂(x))
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Figure: Estimation of g in B1.

Test Statistic p–value

Kuiper 2.8196 < 0.01
Watson 0.6425 < 0.01
Rayleigh 0.1552 < 0.01
Rao 140.8554 < 0.05

Table: Uniformity tests for g.

Circular–linear correlation
I ρCL = 0.1515.

I Dn = 0.1422 with
p–value=0.
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Real data application

Station B1

Another exploratory tool: circular regression.

I Consider a circular regression model:

Y = m(Θ) + ε, m(θ) = E (Y |Θ = θ)

with ε a zero–mean variable independent from Θ.

I The circular Nadaraya–Watson, with von Mises kernel, is

m̂(θ; ν) =

∑n
i=1 yi · ϕvM (θ − θi; 0, ν)∑n
i=1 ϕvM (θ − θi; 0, ν)

I Possible selection of ν:

νLSCV = arg min
κ≥0

n∑
i=1

(
yi − m̂−i(θi;κ)

)2
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Figure: Circular regression of SO2 (Box–Cox) in wind direction for B1.
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Real data application

Station G2
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Figure: Circular regression of SO2 (Box–Cox) in wind direction for G2.
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Real data application

Station G2
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Figure: Estimation of g in G2.

Test Statistic p–value

Kuiper 1.2042 > 0.15
Watson 0.0748 > 0.10
Rayleigh 0.0259 0.737
Rao 130.7370 > 0.10

Table: Uniformity tests for g.

Circular–linear correlation
I ρCL = 0.0103.

I Dn = 0.0124 with
p–value=0.0622.
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Figure: Right: contourplot of the estimated density in G2. Left:
contourplot under independence.
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Real data application

Station G2

Conclusions

I B1:
I Moderate dependence between wind direction and SO2.
I Higher SO2 concentrations linked to the NE and N wind,

opposite direction to the power plant.

I G2: independence between wind direction and SO2.
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Some final comments

Open problems

1. Circular data perturbation.

2. Goodness–of–fit test for the Johnson and Wehrly family of
circular–linear distributions.
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