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1. Introduction. Directional data analysis has been extensively
developped in the last twenty years, and various new techniques have appeared
to meet the needs of scientific workers dealing with data when the observations
are directions. This is a frequent situation often met in astronomy, biology,
geology, medicine and meteorology as noted in Mardia (1975(a)) where some
nice examples are developped such as the analysis of a cancer cell data, or the
analysis of long-period comet data. Recently, a unified view of the theory of
directional data with an extensive bibliography was done by Jupp and Mardia
(1989).

Parametric methods for directional data have grown up from the earlier
papers by Fisher (1953), Watson and Williams (1956), Stephens (1969), and
a series of papers by Mardia (1967, 1969, 1972(a), 1972(b), 1975(a), 1975(b)).
Some more recent results can be found in Jupp and Mardia (1980), Chang
(1986, 1989), Prentice (1989), Liu and Singh (1988) and the references men-
tioned therein.

In recent years a great deal of work has also been done in nonparametric
regression methods, and these methods are now more and more used in appli-
cations in hidrology, meteorology, medicine, economy, biology and all subjects
where modelling is required and there is no a clear parametric model pro-
vided. Some examples are given in Watson (1964), Cleveland (1979), Gasser
et al.(1984), Yakowitz (1987) among others. These smoothers can be classi-
fied into three families: a) convolution type methods (kernel, nearest neighbor
and nearest neighbor with kernel methods); b) splines estimates; c) Fourier-
type estimates (estimates based on finite dimensional Fourier approximation).
However, the first two families are the most extensively studied. A review
on asymptotic results for these families can be found in Collomb (1981) and
Silverman (1985) respectively.
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Some work has also been done in nonparametric methods for directional
data as mentioned in Jupp and Mardia (1989). A kernel type smoothing al-
gorithm was given by Watson (1985) although most of the work done in non-
parametric spherical regression is based on spline methods (see, for instance,
Fisher and Lewis (1985), Watson (1985), Jupp and Kent (1987)).

In this paper we are interested in nonparametric regression methods for
directional data. We develop some nonparametric estimation methods for a
regression curve when data and the true regression curve itself are at the p− 1
dimensional sphere, Sp−1 based on general weight functions.

Since nonparametric regression functions can be viewed, for random car-
riers, as conditional expectation, our approach to the problem will be to define
a natural notion of conditional expectation on the sphere, and then to use a
empirical weighted version to estimate this functional.

The paper is divided as follows. In Section 2 conditional expectation for
directional data is defined, and it is shown that the usual parametric models
are included as particular cases. In Section 3 normalized weighted averages of
the responses variables are considered to estimate the regression function. Con-
sistency, strong convergence rates and asymptotic distribution results are given
for kernel, nearest neighbor and nearest neighbor with kernel weights. Confi-
dence regions are also provided under some regularity assumptions. Finally in
Section 4, the case of dependent data is discused.

2. Conditional expectation for directional data. We
will define a notion of conditional expectation for directional data; in order to
provide nonparametric regression models and estimates when data are at the
p − 1 dimensional sphere, Sp−1 .

Let (X, Y ) be a random vector with X ∈ Rd , Y ∈ Sp−1 . Denote by
‖ ‖ the euclidean norm in Rp , by µ the probability measure associated to
the vector X and by r(x) = E(Y |X = x) .

It is quite natural to define the conditional expectation on the sphere Sp−1

of Y given X as the unique function g which minimizes

E‖Y − h(X)‖2 for h ∈ L2(µ) (2.1)

subject to the constraint ‖h(X)‖ = 1 a.s. (µ) ; i.e. if
L = {h ∈ L2(µ) : µ{‖h(X)‖ = 1} = 1}

g(X) = arg min h∈L E(‖Y − h(X)‖2) (2.2)
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However, if P (r(X) = 0) > 0 , the function g(X) will not be uniquely
defined. More precisely, denote by A = {r(X) = 0} , by Ac the complement
of A and by IB the indicator function of the set B . Since

E‖Y − h(X)‖2 = E‖Y ‖2 − 2E[Y ′h(X)] + 1 = E‖Y ‖2 − 2E[r(X)′h(X)] + 1
= E‖Y ‖2 − 2E[r(X)′h(X)IAc ] + 1

for h ∈ L , the Cauchy Schwartz inequality entails that h(X) = r(X) IAc

/
‖r(X)IAc‖+

h1(X)IA , where h1(X) is any function of L , is a minimizer of (2.1).
Thus, if r(x0) 6= 0 any minimizer will satisfy h(x0) = r(x0)

/
‖r(x0)‖ . On

the other hand, if r(x0) = 0 the mean direction will not be identifiable and
there is no a natural way to define it.

Remark 2.1. Note that if the conditional distribution of Y |X = x is the
von Mises–Fischer distribution F (g(x), κ) , κ > 0 , ‖g(x)‖ = 1, with density
f(y, g(x), κ) = a(κ)−1 exp(κ g(x)′y) with respect to the uniform distribution
on the sphere, the conditional expectation defined above is just the mean di-
rection g(x) . Moreover, the same holds for the conditional Fisher–Bingham
family (see Mardia (1975(a))) and for the models with symmetry introduced
by Saw (1978, 1984) (see also Jupp and Mardia (1989)).

3. Nonparametric regression estimation for data in
the sphere. Let (Xi, Yi) 1 ≤ i ≤ n be i.i.d. random vectors Yi ∈ Sp−1 ,
Xi ∈ Rd . Denote by {Wni(x) 1 ≤ i ≤ n} a sequence of probability weight
functions, Wni(x) = Wni(x, X1, . . . , Xn) . Possible examples include the usual
weight functions such as kernel weights, nearest neighbor and nearest neighbor
with kernel weights.

Let rn =
∑n

i=1 Wni(x)Yi , be the usual nonparametric estimate of the
regression function r(x) .

Briefly the weight functions mentioned above can be described as:
(a) The kernel-type methods, introduced for regression by Nadaraya (1964)

and Watson (1964), correspond to

Wni(x) = K((Xi − x)/hn)
/ n∑

j=1

K((Xj − x)/hn), (3.1)

where h = hn is a sequence of real positive numbers and K is a non-negative
real function on Rd with

∫
K(u)du < ∞ .
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(b) For each 1 ≤ j ≤ n define Inj(x) = {i : ‖Xi − x‖ > ‖Xj − x‖} .
Rank the (Xi, Yi) , 1 ≤ i ≤ n , according to increasing values of ‖Xi − x‖ and
obtain a vector of indices (R1, . . . , Rn) where XRi

is the i th nearest neighbor
of x for all i . Let k = kn be a sequence of positive integers, 1 ≤ k ≤ n .
A weight function {Wni(x)} is called a k -nearest neighbor weight function if
Wni(x) = 0 for all i ∈ InRk

(x) .
(c) The nearest neighbor methods studied, for instance, by Stone (1977)

and by Devroye (1981, 1982) correspond to the sequence {Wni} satisfying

Wni(x) = (vn,vi
+ · · ·+ vn,vi+λi−1)/λi for 1 ≤ i ≤ n , (3.2)

where vi = 1 + #{j : 1 ≤ j ≤ n, j 6= i , and ‖Xj − x‖ < ‖Xi − x‖} ,
λi = 1 + #{j : 1 ≤ j ≤ n, j 6= i , and ‖Xj − x‖ = ‖Xi − x‖} and {vni, i ≥ 1}
is a sequence of real numbers such that vn1 ≥ vn2 · · · ≥ vnn ≥ 0 , vni = 0, for
i > n and vn1 + · · ·+ vnn = 1. If vni = 0 for i > kn we obtain a k-NN weight
function.

(d) Denote by Hn = Hn(x) = ‖XRk
− x‖ , where k = kn is a sequence of

positive integers, 1 ≤ k ≤ n . Then, the nearest neighbor with kernel weights,
which were introduced for regression by Collomb (1980) are defined by

Wni(x) = K((Xi − x)/Hn)
/ n∑

j=1

K((Xj − x)/Hn) , (3.3)

where K : Rd → R is a non-negative function on Rd .
If K(u) = 0 for ‖u‖ > 1 , we also obtain a k-NN weight function. The

choice of K(u) = I‖t‖≤1(u)λ(V1)−1 , where λ(V1) is the Lebesgue measure of
the unit ball on Rd leads to the more usual k -nearest neighbor estimates.

We define, in a natural way, a nonparametric regression estimate in the
sphere as gn(x) = rn(x)/‖rn(x)‖ if rn(x) 6= 0 and as gn(x) = e1 if rn(x) =
0 with e1 the first canonical vector in Rp . In this section, we will obtain
consistency results for gn(x) and its asymptotic distribution. Obviously, gn(x)
is the conditional expectation in the sphere with respect to the conditional
empirical distribution.

For the sake of notational simplicity, we will assume that P (A) = 0;
otherwise, the results will be valid changing the statement “for almost all x(µ)”
by “for almost all x in Ac(µ)”.
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Consistency.
Consider the following assumptions:
A1. There exists a sequence {cn : n ≥ 1} of real numbers such that

cn ≥ 0 , cn log n → 0 , ncn → ∞ as n → ∞ , for which
max

1≤j≤n
Wnj(x, X1, . . . , Xn) ≤ cn a.s. for almost all x(µ) .

A2. There exists a random variable Kn and a real number c > 0 verifying∑
i∈InRKn

Wni(x, X1, . . . , Xn) → 0 as n → ∞ a.s. for almost all x(µ) , and

sup
n

(cnKn) < c a.s. for almost all x(µ) .

Conditions under which A1 and A2 are fulfilled are given in Boente and
Fraiman (1989(a)).

Let r(x) = (r1(x) . . . rp(x))′ rn(x) = (r1n(x), . . . , rpn(x))′ .

Theorem 3.1. Let {Wni(x) 1 ≤ i ≤ n} be a probability weight functions
verifying A1 and A2. Then we have that gn(x) → g(x) a.s. for almost all
x(µ) .

Proof. Since ‖Y ‖ = 1 from Lemma 3.1 of Boente and Fraiman (1989(a)) we
obtain rjn(x) → rj(x) a.s. for almost all x(µ) . Therefore rn(x) → r(x) and
‖rn(x)‖ → ‖r(x)‖ a.s. for almost all x(µ) ; which completes the proof since
P (A) = 0.

Remark 3.1. For the weight functions corresponding to kernel methods A1
is not fulfilled, however the conclusion of Theorem 3.1 still hold if K and hn

satisfy the assumptions:
(i) hn → 0 nhd

n/ log n → ∞ as n → ∞
(ii) There exist positive constants, r, c1, c2, c3 , and a bounded Borel func-
tion H decreasing on (0, +∞) such that c1H(‖x‖) ≤ K(x) ≤ c2H(‖x‖) ,
c3I‖x‖≤r(x) ≤ K(x) , and tdH(t) → 0 as t → ∞ ,
by applying, for instance, Theorem 2 of Greblicki, Krzyzak and Pawlak (1984)
in the proof.

Strong convergence rates.
In Boente and Fraiman (1991 Lemma 2.1) strong convergence rates of

the conditional distribution function were obtained. In a similar way, strong
convergence rates of the regression function can be derived under the following
additional assumptions:

A3. The vector X has a density continuous and positive at x .
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A4. For each 1 ≤ j ≤ p rj(x) is a Lipschitz function, i.e., there exists
δ > 0 and c > 0 such that

‖u − x‖ < δ =⇒ |rj(x) − rj(u)‖ ≤ c‖u − x‖.

A5. There exists c > 0 such that P (θ−1
n

∑
i∈InRKn

Wni(x) ≤ c) = 1,

where θn = (cn log n)1/2 .

A6. There exists a0 > 0 such that a0 < c
1+2/d
n n2/d log n for all n .

Since P (A) = 0, from the following equality

θ−1
n

[
‖rn(x)‖2 − ‖r(x)‖2

]
=

p∑

j=1

[
θ−1

n (rjn
(x) − rj(x))

][
rjn

(x) + rj(x)
]

it is easy to derive the following result

Theorem 3.2. Under A1 to A6 we have that

θ−1
n (gn(x) − g(x)) = 0(1) a.s.

Remark 3.2. As noted in Boente and Fraiman (1991) the conclusion of The-
orem 3.2 will also hold for kernel weights under A3 and A4 provided that the
sequence {hn : n ≥ 1} and the kernel K satisfy the conditions given in Remark
3.1 and the following additional conditions: hnθ−1

n ≤ A < ∞ for all n , where
θn = (log n/nhd

n)1/2 and td+2H(t) is bounded.

Asymptotic Distribution.
In Theorem 3.3 we derive the asymptotic distribution of gn(x) by reducing

the problem to obtain the asymptotic distribution of the classical nonparamet-
ric regression estimate, rn(x) .

Theorem 3.3. Let x be a point such that ‖r(x)‖ > 0 . Assume that
there exists a sequence of positive numbers θn , converging to 0 , such that
θ
−1/2
n (rn(x) − r(x)) w−→ N(η, B) with B positive definite, then we have that

θ
−1/2
n (gn(x) − g(x)) w−→ N(η1, B1)

where η1 = ‖r(x)‖−1Hη , B1 = ‖r(x)‖−2HBH ′ , H = I − δδ′ , δ = g(x) =
r(x)/‖r(x)‖ , I is the identity matrix in Rp×p and w−→ stands for weak
convergence.
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Remark 3.3. Clearly, the asymptotic covariance matrix B1 has rank p − 1
and corresponds to the covariance matrix of a gaussian vector Z which can be
obtained from a gaussian vector U , with mean η and covariance matrix B ,
through a projection, rescaled by ‖r(x)‖−1 , in the orthogonal complement of
r(x) .

In order to prove Theorem 3.3 we will need the following Lemma due to
Rubin and proved by Anderson (1963).

Lemma 3.1. Let Fn(u) be the cumulative distribution function of a random
matrix Un . Let Vn be a (matrix-valued) function of Un , Vn = fn(Un) and
let Gn(v) be the (induced) distribution of Vn . Suppose lim

n→∞
Fn(u) = F (u)

[in every continuity point of F (u) ] and suppose for every continuity point u of
f(u) , lim

n→∞
fn(un) = f(u) when lim

n→∞
un = u . Let G(v) be the distribution

of the random matrix V = f(U) , where U has the distribution F (u) . If the
probability of the set of discontinuities of f(u) according to F (u) is 0 , then
lim

n→∞
Gn(v) = G(v) [in every continuity point of G(v) ].

Proof of Theorem 3.3. Denote by Un = θ
−1/2
n [rn(x) − r(x)] and by Vn =

θ
−1/2
n [gn(x)−g(x)] . We have that Un

w−→ U where U is a random vector with
distribution N(η, B) . Let

fn(u) = [u/‖θ1/2
n u + r(x)‖]−

− δ[θ1/2
n ‖u‖2 + 2r(x)′u]/{‖θ1/2

n u + r(x)‖[‖r(x)‖+ ‖θ1/2
n u + r(x)‖]}

f(u) = [u/‖r(x)‖]− δ‖r(x)‖−2r(x)′u = ‖r(x)‖−1Hu

Then it is easy to see that Vn = fn(Un) and that fn(un) → f(u) as n → ∞
when un → u as n → ∞ . Thus, from Lemma 3.1 we have that Vn

w−→ f(U)
which concludes the proof.

We will now derive an explicit form for the asymptotic bias and covari-
ance matrix of the regression estimates related to kernel, nearest neighbor and
nearest neighbor with kernel weights under the following assumptions:

N1. The kernel K : Rd → R is bounded, nonnegative,
0 <

∫
K2(u)du < ∞ , and ‖u‖dK(u) → 0 as ‖u‖ → ∞ .

N2. There exists 0 ≤ β < ∞ such that hnn1/(d+2) → β as n → ∞ .
N3. The vector X has a density f( . ) which is positive at x .
Denote by σ2

j (u) = E[(Yj1 − rj(x))2|X1 = u] , by
`tj(u) = E(Yj1Yt1|X1 = u) and by Σ(x) the covariance matrix of Y1|X1 = x .
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N4. (a) rj verifies a Lipschitz condition of orden one at x and there exists
lim
ε→0

[rj(x + εu) − rj(x)]/ε = r′j(x, u) .

(b) σ2
j and `tj are continuous in a neighborhood of x .

N5. The kernel K is twice continuously differentiable and verifies:
(a) 0 <

∫
|K1(u)|du < ∞ ;

∫
K2

1(u)du < ∞ and ‖u‖dK1(u) → 0 as

‖u‖ → ∞ where K1(u) =
∑d

j=1

∂K

∂uj
(u)uj .

(b) ‖u‖d+1K2(u) → 0 as ‖u‖ → ∞ where K2(u) =
∑

i,j

∂2K

∂ui∂uj
(u)uiuj

and u = (u1, . . . , ud) .

N6. There exists 0 ≤ β < ∞ such that k
1/d
n n1/(d+2)−(1/d) → β .

Let vn1 ≥ · · · ≥ vnn ≥ 0 ,
∑n

i=1 vni = 1 denote by τn =
∑n

i=1 v2
ni .

N7. lim
n→∞

vn1 = 0 and there exists a sequence of positive integers kn

such that kn → ∞ , kn/n → 0 as n → ∞ and knvn1 is bounded and∑
j>kn

vnj → 0 as n → ∞ .

N8. vn1/τ
1/2
n → 0 as n → ∞ .

N9. lim
n→∞

τ−1
n

∑
j>kn

vnj = 0 and lim
n→∞

τ−1/2
n (kn/n)1/d = 0.

From Lemmas 3.2, 3.3 and 3.4 of Boente and Fraiman (1991) we obtain

Proposition 3.1. Let (Xi, Yi) 1 ≤ i ≤ n be i.i.d. random vectors, Xi ∈ Rd ,
Yi ∈ Sp−1 . Assume that N4 holds.
(a) Under A3, N1, N2 and N3 we have that

(nhd
n)1/2(rn(x) − r(x)) w−→ N(η, B)

where

ηi = β(d/2)+1

∫
r′i(x, u)K(u)du (3.4)

Bij = Σij(x)f(x)−1

∫
K2(u)du (3.5)

when Wni(x) are the kernel weights given by (3.1).
(b) Under A3, N1, N3, N5 and N6 we have that

k1/2
n (rn(x) − r(x)) w−→ N(η, B)
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where

ηi = β(d/2)+1

∫
r′i(x, u)K(u)du[f(x)λ(V1)]1/2 (3.6)

Bij = Σi,j(x)λ(V1)
∫

K2(u)du (3.7)

when Wni(x) , given in (3.3), are the nearest neighbor with kernel weights.
(c) Under N7, N8 and N9 we have that

τ−1/2
n (rn(x) − r(x)) w−→ N(0, B)

with B = Σ(x) when Wni(x) , given in 3.2, are the nearest neighbor weights.

Confidence regions.
Throughout this section we assume η = 0.
In order to obtain confidence regions we can proceed in two different ways:

(a) to look for circular regions on the sphere, centered at gn(x) ,
Rn = {u ∈ Sp−1 : ‖u − gn(x)‖ ≤ Cn} which will bring over some problems of
numerical integration to obtain the corresponding percentiles, since the covari-
ance matrix is not necessarily idempotent.
(b) to look for confidence regions which adequately transformed will lead to
circular regions for which percentiles can be easily derived.

We will describe briefly the second option.
Let B1 = ΓΛΓ where ΓΓ′ = Γ′Γ = I , Γ = (γ1, . . . , γp) and Λ =

diag(λ1, . . . , λp−1, 0) with λ1 ≥ · · · ≥ λp−1 and B1 is given in Theorem 3.3.
Denote by Γ̃ = (γ1, . . . , γp−1) Λ̃ = diag(λ1, . . . , λp−1) then Λ̃−1/2Γ̃′Z ∼
N(0, Ip−1) , P (γ′

pZ = 0) = 1 with Z ∼ N(0, B1) .
Thus if χ2

p−1,α denotes the (1−α) -percentile of a chi-square distribution
with (p − 1) degrees of freedom, the region

R = {u ∈ Sp−1 ‖Λ̃−1/2Γ̃′(u − gn(x))‖2 ≤ θnχ2
p−1,α}

is a confidence region for g(x) with asymptotic level 1 − α .
In practice the matrix B1 which envolves the conditional covariance matrix

of Y1|X1 = x and the marginal density f(x) is unknown. However, it can be
estimated from the data using the empirical distribution function and estimates
of the density function.
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4. Some extensions
The dependent case. The way in which these results have been obtained al-
lows us to extend them to the dependent case. More precisely, let {(Xt, Yt) t ≥
1} be a stationary α -mixing sequence, Xt ∈ Rd , Yt ∈ Sp−1 . We will only
consider kernel and k -nearest neighbor with kernel weights. From Theorems
4.1 and 4.2 of Boente and Fraiman (1989(b)) and Lemma 2 and an argument
similar to that used in Theorem 2 of Boente and Fraiman (1990) we obtain the
following result:

Theorem 4.1.

(i) Under H1 to H4 of Boente and Fraiman (1989(b)) we have that gT (x) →
g(x) a.s. for almost all x(µ) where rT (x) =

∑T
t=1 WTt(x)Yt , WTt(x) is given

by (3.1) and gT (x) = rT (x)/‖rT (x)‖ .
(ii) Under H1, H2’ to H5’ of Boente and Fraiman (1989(b)) we have that
ĝT (x) → g(x) a.s. for almost all x(µ) where r̂T (x) =

∑T
t=1 ŴTt(x)Yt , ŴTt(x)

are given by (3.3) and ĝT (x) = r̂T (x)/‖r̂T (x)‖ .
(iii) Let x be a point such that ‖r(x)‖ > 0 . Assume that the mixing coefficients
verify N

∑∞
j=N+1 α(j) → 0 as N → ∞ and that for all s ≥ 1 the density

fs(u, v) of (Xt, Xt+s) is bounded uniformly in s . Moreover, assume that N1
to N4 hold. Then, we have that

(Thd
T )1/2(gT (x) − g(x)) w−→ N(η1, B1)

with η1 = ‖r(x)‖−1Hη , B1 = ‖r(x)‖−2HBH ′ where H = I − g(x)g(x)′ , η
and B are given by (3.4) and (3.5).
(iv) Let x be a point such that ‖r(x)‖ > 0 . Assume that the assumptions
of (iii) and N5, N6 hold, then we have that k

1/2
T (ĝT (x) − g(x)) w−→ N(η1, B1)

where η1 = ‖r(x)‖−1Hη , B1 = ‖r(x)‖−2HBH ′ and η and B are now given
by (3.6) and (3.7).

Strong convergence rates can also be obtained.
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