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1 Introduction

On the torus there are two common approaches to constructinga distribution which is the analogue of the
bivariate normal distribution in the plane. These approaches are often termed the sine and cosine models,
respectively, and in addition the cosine model comes in two versions. Each approach has its strengths and
weaknesses. In this paper we develop a hybrid version which combines the strengths of each approach.
The development of bivariate circular models has recently become important in applications to protein
structure in bioinformatics (e.g. Mardia et al., 2007, and Boomsma et al., 2008).

A general bivariate circular model, which we call the “full”bivariate von Mises distribution, was intro-
duced by Mardia (1975a),

f(θ1, θ2) ∝ exp
{

κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)+

[

cos(θ1 − µ1) sin(θ1 − µ1)
]

A

[

cos(θ2 − µ2)
sin(θ2 − µ2)

]

}

,
(1)

where the anglesθ1, θ2 ∈ (−π, π) lie on the torus, that is, a square with opposite sides identified, and
whereA is a 2 × 2 matrix. This model has eight parameters and allows for dependence between the
two angles. However, since the analogous bivariate normal distribution in the plane contains only 5
parameters, this bivariate circular model seems overparameterized. Hence various submodels have been
proposed.

The starting point is the 6-parameter model of Rivest (1988)and Mardia (1975b) obtained by setting the
off-diagonal elements ofA equal to 0 in (1),a12 = a21 = 0. In the each of the subsequent models,
one degree of freedom in removed from the Rivest-Mardia model, leaving 5 parameters to mimic the
bivariate normal distribution. To simplify the presentation, put the mean angle parameters equal to 0,
µ1 = µ2 = 0, so that there are three remaining parameters to describe the concentration of each angle
and their interaction. These models are
(i) the cosine model with positive interaction

f(θ1, θ2) ∝ exp{κ1 cos θ1 + κ2 cos θ2 + γ1 cos(θ1 − θ2)}, (2)

(ii) the cosine model with negative interaction

f(θ1, θ2) ∝ exp{κ1 cos θ1 + κ2 cos θ2 + γ2 cos(θ1 + θ2)}, (3)

(iii) the sine model (Singh et al., 2002)

f(θ1, θ2) ∝ exp{κ1 cos θ1 + κ2 cos θ2 + δ sin θ1 sin θ2}. (4)

Mardia et al. (2007) gives a systematic study of models (i) - (iii) and a comparison between them.

Under high concentration about(θ1, θ2) = (0, 0), each of the models behaves as a bivariate normal
distribution with inverse covariance matrix of the form

Σ−1

1
=

[

κ1 + γ1 −γ1

−γ1 κ2 + γ1

]

, Σ−1

2
=

[

κ1 + γ2 γ2

γ2 κ2 + γ2

]

Σ−1

3
=

[

κ1 −δ
−δ κ2

]

. (5)
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By high concentration we mean that the relevant parameters from κ1, κ2, δ, γ1, γ2 get large while
remaining in constant proportion to one another, under the constraint that the inverse covariance matrix
is positive definite. For the three models this constraint reduces to

(i) κ1 + γ1 > 0, κ2 + γ1 > 0, γ2

1 < (κ1 + γ1)(κ2 + γ1),

(ii) κ1 + γ2 > 0, κ2 + γ2 > 0, γ2

2 < (κ1 + γ2)(κ2 + γ2),

(iii) κ1 > 0, κ2 > 0, δ2 < κ1κ2.

In addition, for the cosine models we requireκ1 > 0, κ2 > 0 to ensure the global mode off is at
(θ1, θ2) = (0, 0).

For each of the three models, it is possible to choose the parameters to match any positive definite
inverse covariance matrix. However, the cosine model can show some unattractive multimodal behavour
if κ1 < 0 or κ2 < 0. Hence we restrict attention to cosine models for whichκ1 > 0, κ2 > 0. In
this case the corresponding inverse covariance matrixΣ−1 possesses what can be called the “dominated
covariance” property, that is,|σ12| < σ11 and|σ12| < σ22.

2 Symmetry properties

By construction, each of the sine and cosine models is symmetric, f(θ1, θ2) = f(−θ1,−θ2). This
symmetry accommodates an elliptical pattern in the contours of constant probability density off about
the mode(θ1, θ2) = (0, 0).

However, for each of the three models,f has a further symmetry since it is a continuous function on the
torus,

f(θ1, π) = f(θ1,−π), f(π, θ2) = f(−π, θ2).

This latter property means that an elliptical pattern in thecontours of constant probability forf will
generally become distorted as(θ1, θ2) approaches the boundary of the square on whichf is defined.
In particular, this distortion complicates the development of efficient simulation algorithms using a 2-
dimensional envelope since the density will not necessarily be monotonically decreasing on the rays
from the origin to the edge of the square.

For simplicity restrict attention to the dominated covariance situation. It turns out the positive-interaction
cosine model involves the least distortion under postive correlation (γ1 > 0) and that the negative-
interaction cosine model involves the least distortion under negative correlation (γ2 > 0). Ideally it
would be nice to use a positive-interaction cosine model under positive correlation betweensin θ1 and
sin θ2 and negative-interaction cosine model under negative correlation. Unfortunately the crossover
between the two models is not continuous at the independencemodel. Hence we consider a hybrid
model to provide a smooth transition.

3 A hybrid model

For small concentration, the exact character of any departure from the uniform distribution is not too
important. Hence we suggest the following hybrid model:

f(θ1, θ2) ∝ exp
{

κ1 cos θ1 + κ2 cos θ2 + β[(cosh λ − 1) cos θ1 cos θ2 + sinhλ sin θ1 sin θ2]
}

(6)

The parameterβ is a tuning parameter which we fix to the value 1 for simplicity(note that when both
β andλ are free parameters, model (6) is just a reparameterizationof the Rivest-Mardia model). For
λ near 0 the model behaves like a sine model withβλ ≈ δ. For largeλ > 0 (or large−λ > 0) the
model behaves like a positive-interaction (or negative-interaction) cosine model withβ exp(λ1)/2 ≈ γ1

(or β exp(−λ)/2 ≈ γ2).

Thus for small correlation the model behaves as a sine model,and for large correlation the model behaves
as a cosine model, with positive or negative interaction as appropriate.

71



4 Simulation

Consider the problem of simulating from the full distribution (1) or one of its subfamilies. One possibility
is to use an MCMC algorithm based on the fact that the conditional distributions ofθ1|θ2 andθ2|θ1 are
von Mises (Mardia et al., 2008a). However, such a strategy can be overly cumbersome.

At least for the sine and cosine models there is a simpler approach. First simulateθ1 from its marginal
distribution and then simulateθ2|θ1 from the von Mises distribution using, e.g., the Best-Fisher algorithm
(Best and Fisher, 1979). The web supplements to Mardia et al.(2007) and to Boomsma et al. (2008)
discuss the empirical selection of a suitable von Mises distribution in the unimodal case (or a mixture
of of two such distributions in the bimodal case) to use an an envelope in an acceptance-rejection al-
gorithm. More recently, in unpublished work a theoretical justification has been found to confirm the
appropriateness and efficiency of the von Mises envelope in the unimodal case.

5 Discussion

The geometry of the torus implies that it is not possible to get a single fully satisfactory analogue of the
bivariate normal distribution. Though a complete comparison between the virtues of the cosine and sine
models is not yet available, it is possible to make some interim conclusions.

(a) In most situations there is not much difference between the sine and cosine models. Further, under
high concentration, using either model is equivalent to fitting a bivariate normal distribution in a
tangent plane.

(b) For routine applications the sine model is somewhat easier to use, since it can be matched to any
positive definite matrixΣ−1, whereas the cosine models are limited to the dominated covariance
case.

(c) However, if a more refined model is needed, the cosine or hybrid models may provide a better fit.

(d) For any of the models, statistical inference is intractable using the full likelihood, but becomes
straightforward using a composite likelihood (sometimes called the pseudo-likelihood) obtained
by taking a product of the conditional densities (Mardia et al., 2008a). Limited evidence at present
suggests that the marginal angular distributions will be closer to the von Mises distribution for the
cosine model than for the sine model, and that the composite likelihood estimation will be more
efficient in this situation.

(e) The sine and cosine models on the bivariate torus can be easily extended a higher dimensional
torus (Mardia and Patrangenaru, 2005, and Mardia et al., 2008b).
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