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1 Introduction

On the torus there are two common approaches to constructigiribution which is the analogue of the
bivariate normal distribution in the plane. These appreadre often termed the sine and cosine models,
respectively, and in addition the cosine model comes in ®ysigns. Each approach has its strengths and
weaknesses. In this paper we develop a hybrid version witiotbmes the strengths of each approach.
The development of bivariate circular models has recerglyolme important in applications to protein
structure in bioinformatics (e.g. Mardia et al., 2007, armbBisma et al., 2008).

A general bivariate circular model, which we call the “fublivariate von Mises distribution, was intro-
duced by Mardia (1975a),

f(61,02) xxexp {m cos(0 — p1) + ko cos(B — po)+

) cos(fa — ,ug)} 1)
cos(f1 — sin(#, — Al ,
[cos(01 — 1) sin(61 — )] [SIH(Qz ) }
where the angle8,, 0, € (—m,7) lie on the torus, that is, a square with opposite sides ifiedtiand
where A is a2 x 2 matrix. This model has eight parameters and allows for ddgrere between the
two angles. However, since the analogous bivariate norisédfiltition in the plane contains only 5
parameters, this bivariate circular model seems overpaterined. Hence various submodels have been
proposed.

The starting point is the 6-parameter model of Rivest (1288) Mardia (1975b) obtained by setting the
off-diagonal elements ofl equal to 0 in (1),a12 = a1 = 0. In the each of the subsequent models,
one degree of freedom in removed from the Rivest-Mardia deaving 5 parameters to mimic the
bivariate normal distribution. To simplify the presentati put the mean angle parameters equal to 0,
11 = pe = 0, so that there are three remaining parameters to descebeotitentration of each angle
and their interaction. These models are

(i) the cosine model with positive interaction

f(01,02) xx exp{k1 cos by + kg cos by + 1 cos(61 — 62)}, 2
(i) the cosine model with negative interaction
f(61,02) o< exp{ri cos Oy + ko cosbs + v2 cos(01 + 02)}, 3)
(iiif) the sine model (Singh et al., 2002)
f(01,03) ox exp{ry cos b + kg cos Oz + dsin O sin O }. 4)
Mardia et al. (2007) gives a systematic study of models (i))-and a comparison between them.

Under high concentration abof;,6,) = (0,0), each of the models behaves as a bivariate normal
distribution with inverse covariance matrix of the form

ool = Hl_+ oo oyt = K1+ 72 V2 S 515 -0 . 5)
7 Ko +m Y2 K2 + 72 )
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By high concentration we mean that the relevant parameters £, «2, J, 71, 72 get large while
remaining in constant proportion to one another, under timstcaint that the inverse covariance matrix
is positive definite. For the three models this constraidtices to

() k14+7 >0, ko+7 >0, 72 < (k1 +7) (k2 +7),
(i) k1 +72 >0, Ko +72 >0, 75 < (K1 +72)(k2 + 72),
(i) k1 >0, ko >0, 8% < Kika.

In addition, for the cosine models we requite > 0, k2 > 0 to ensure the global mode g¢fis at
(91’ 92) = (0’ 0)

For each of the three models, it is possible to choose tharedess to match any positive definite
inverse covariance matrix. However, the cosine model caw slome unattractive multimodal behavour
if k1 < 0orky < 0. Hence we restrict attention to cosine models for whigh> 0, ko > 0. In

this case the corresponding inverse covariance matrixpossesses what can be called the “dominated
covariance” property, that isz'2| < 0! and|o!?| < 022,

2 Symmetry properties

By construction, each of the sine and cosine models is synangt(6,,62) = f(—61,—62). This
symmetry accommodates an elliptical pattern in the costoficonstant probability density gf about
the mode(61, 63) = (0, 0).

However, for each of the three modefshas a further symmetry since it is a continuous function en th
torus,

f(01,m) = f(Or,—7), f(m 02) = f(—m,02).
This latter property means that an elliptical pattern in ¢batours of constant probability fof will
generally become distorted &8, 60,) approaches the boundary of the square on wifich defined.
In particular, this distortion complicates the developmehefficient simulation algorithms using a 2-
dimensional envelope since the density will not necessagl monotonically decreasing on the rays
from the origin to the edge of the square.

For simplicity restrict attention to the dominated covada situation. It turns out the positive-interaction
cosine model involves the least distortion under postiveetation ¢, > 0) and that the negative-
interaction cosine model involves the least distortionamadegative correlatiom§ > 0). Ideally it
would be nice to use a positive-interaction cosine modekumpositive correlation betweesin 6; and
sin 6, and negative-interaction cosine model under negativeelation. Unfortunately the crossover
between the two models is not continuous at the independencil. Hence we consider a hybrid
model to provide a smooth transition.

3 A hybrid model

For small concentration, the exact character of any demaftam the uniform distribution is not too
important. Hence we suggest the following hybrid model:

f(01,02) x exp {Iil cos 0 + kg cos O + [B[(cosh A — 1) cos 01 cos B2 + sinh A sin 6 sin 92]} (6)

The parametep is a tuning parameter which we fix to the value 1 for simpligitpte that when both
6 and \ are free parameters, model (6) is just a reparameterizafitine Rivest-Mardia model). For
A near 0 the model behaves like a sine model with~ . For largeA > 0 (or large—\ > 0) the
model behaves like a positive-interaction (or negatiterarction) cosine model withexp(A1)/2 ~ 1
(or Bexp(—=A)/2 = 72).

Thus for small correlation the model behaves as a sine madeffor large correlation the model behaves
as a cosine model, with positive or negative interactionpgsapriate.
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4 Simulation

Consider the problem of simulating from the full distrilmrti(1) or one of its subfamilies. One possibility
is to use an MCMC algorithm based on the fact that the conwitidistributions of, |0, and6,|6, are
von Mises (Mardia et al., 2008a). However, such a strategybeaoverly cumbersome.

At least for the sine and cosine models there is a simpleroagpr First simulaté; from its marginal
distribution and then simula# |0, from the von Mises distribution using, e.g., the Best-Fisiigorithm
(Best and Fisher, 1979). The web supplements to Mardia €280D7) and to Boomsma et al. (2008)
discuss the empirical selection of a suitable von Misegildigion in the unimodal case (or a mixture
of of two such distributions in the bimodal case) to use anrarelepe in an acceptance-rejection al-
gorithm. More recently, in unpublished work a theoretiagtification has been found to confirm the
appropriateness and efficiency of the von Mises envelopeeimmimodal case.

5 Discussion

The geometry of the torus implies that it is not possible tioeggingle fully satisfactory analogue of the
bivariate normal distribution. Though a complete compmaribetween the virtues of the cosine and sine
models is not yet available, it is possible to make someimteonclusions.

(&) Inmost situations there is not much difference betwbersine and cosine models. Further, under
high concentration, using either model is equivalent tinfjte bivariate normal distribution in a
tangent plane.

(b) For routine applications the sine model is somewhateasiuse, since it can be matched to any
positive definite matrix> !, whereas the cosine models are limited to the dominatediemz
case.

(c) However, if a more refined model is needed, the cosine loridhynodels may provide a better fit.

(d) For any of the models, statistical inference is intraktausing the full likelihood, but becomes
straightforward using a composite likelihood (sometimalted the pseudo-likelihood) obtained
by taking a product of the conditional densities (Mardialet2908a). Limited evidence at present
suggests that the marginal angular distributions will lbset to the von Mises distribution for the
cosine model than for the sine model, and that the compadkékhlood estimation will be more
efficient in this situation.

(e) The sine and cosine models on the bivariate torus candily eatended a higher dimensional
torus (Mardia and Patrangenaru, 2005, and Mardia et al8t200
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