
Chapter 4

Ordinary Kriging

Variograms provide a lot of information about the parameter under study, but es-

sentially they are tools for other geostatistical calculations. One of the possible

(and perhaps the most important) use of variograms is in the estimation of pa-

rameter values at unsampled locations, and/or the estimation of the average of the

parameter over a certain area. The simplest geostatistical procedure doing this is

ordinary kriging. Ordinary kriging is the procedure which is most widely known

(and often labeled by the single word kriging).

4.1 Point kriging

One of the most common interpolation (and extrapolation) problems is the esti-

mation of a parameter at unsampled location u. In the framework of regionalized

variables this can be done with the help of the procedure labeled point kriging.

A linear estimator, i.e. a linear combination of the values of the regionalized

variable at known locations, is to be found. This means that the estimator is of the

form:

Z∗(u) =
n

∑
i=1

λiZ(ui) (4.1)

There are infinitely many possible choices for the weights λi. It is desirable to
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select them in order to have an unbiased estimator which also has the smallest

possible estimation variance. Using the second order stationarity or the intrinsic

hypothesis one has:

E[Z(u)] = m for all u ∈ D (4.2)

This means for the linear estimator

E[Z∗(u)] =
n

∑
i=1

λiE[Z(ui)] = m (4.3)

so the weights have to fulfil:
n

∑
i=1

λi = 1 (4.4)

This is the so called unbiasedness condition. Using the second order stationarity

hypothesis the estimation variance can be calculated with the help of the covari-

ance function C(h) as:

σ2(u) = Var[Z(u)−Z∗(u)] = E

[
(Z(u)−

n

∑
i=1

λiZ(ui))2

]
=

= E

[
Z(u)2 +

n

∑
i=1

n

∑
j=1

λiλ jZ(ui)Z(u j)−2
n

∑
i=1

λiZ(ui)Z(u)

]
=

= C(0)+
n

∑
j=1

n

∑
i=1

λ jλiC(ui −u j)−2
n

∑
i=1

λiC(ui −u) (4.5)

The estimation variance is a quadratic function of the weights λi. The best linear

unbiased estimator (BLUE) is the one which minimizes the estimation variance

with respect to the unbiasedness condition. This constrained optimization prob-

lem can be solved with the help of a Lagrange multiplier µ. The function

σ2(u)−2µ

(
n

∑
i=1

λi −1

)
(4.6)

is to be minimized. Using the partial derivatives with respect to the unknown

parameters λi and µ one has to solve the linear equation system:
n

∑
j=1

λ jC(ui −u j)−µ = C(ui −u) i = 1, . . . ,n
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n

∑
j=1

λ j = 1 (4.7)

Solving (4.7) yields the weights λi for the linear estimator. The equation system

(4.7) is called kriging system in terms of covariances.

If the intrinsic hypothesis is used the estimation variance can be expressed

with the help of the variogram:

σ2(u) = Var[Z(u)−Z∗(u)] = −
n

∑
j=1

n

∑
i=1

λ jλiγ(ui −u j)+2
n

∑
i=1

λiγ(ui −u) (4.8)

The goal is to minimize σ2(u) under the unbiasedness conditions. This optimiza-

tion problem can also be solved with the help of a linear equation system. Intro-

ducing the Lagrange multiplier µ the weights that minimize σ2(u) are the solution

of:
n

∑
j=1

λ jγ(ui −u j)+µ = γ(ui −u) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (4.9)

The above equation system is called kriging system, the weights λi are the kriging

weights. The minimal estimation variance can be obtained by substituting the

kriging weights into (4.8). This variance is called kriging variance σ2
K(u). It can

be proved that :

σ2
K(u) =

n

∑
i=1

λiγ(ui −u)+µ (4.10)

This equation is of no theoretical interest, but it simplifies the calculation of the

estimation variance.

EXAMPLE 4.1 :

Suppose that using two points on a straight line the value at a third point is

to be estimated. The points are u1 = 1 and u2 = −2. The point for which the

estimation is to be done is u = 0. Figure 4.1 shows the configuration. Let the
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measurement values be Z(u1) = 2 and Z(u2) = 4. Suppose the variogram is linear

γ(h) = h.

u2 u u1

Figure 4.1: Data configuration for example 4.1

The kriging equations are:

0λ1 +3λ2 +µ = 1

3λ1 +0λ2 +µ = 2

λ1 +λ2 = 1 (4.11)

From this one has λ1 = 0.6667, λ2 = 0.3333 and µ = 0. Thus σ2 = 1.3333 and

Z∗(u) = 2.6667. It is clear that kriging yielded the same weights as linear inter-

polation or inverse distance method.

Suppose the configuration is changed and u2 is moved to the other side of the

origin: u2 = 2. Figure 4.2 shows the modified configuration.

u u1 u2

Figure 4.2: Modified data configuration for example 4.1

The kriging equations are:

0λ1 +1λ2 +µ = 1
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1λ1 +0λ2 +µ = 2

λ1 +λ2 = 1 (4.12)

From this one has λ1 = 1.0, λ2 = 0.0 and µ = 1.0. Thus σ2 = 2.0 and Z∗(u) = 2.0.

The result is different from the previous, but it would not be different in the case

of the inverse distance method. This example demonstrates that the data configu-

ration plays an important role in kriging. The increased estimation variance shows

that the extrapolation in the second case is more uncertain than the interpolation

in the first.

4.2 Block kriging

Quite often applications require average values of the parameter over certain areas,

instead of point values. These averages could be calculated using point kriging for

a great number of points in the area and taking their average. A simpler way of

doing this is using block kriging.

Suppose the average of the parameter over a volume V (block) in the domain

D is to be estimated.

Z(V ) =
1
|V |

∫
∨

Z(u)du (4.13)

Again a linear estimator of the form :

Z∗(V ) =
n

∑
i=1

λiZ(ui) (4.14)

is to be found. The unbiasedness condition leads again to:

n

∑
i=1

λi = 1 (4.15)

The estimation variance in this case is:

σ2(V ) = Var[Z(V )−Z∗(V )] = −γ(V,V )−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui −u j)+2
n

∑
i=1

λiγ(ui,V )

(4.16)
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here γ is the average variogram value:

γ(ui,V ) =
1
|V |

∫
∨

γ(ui −u) du (4.17)

γ(V,V ) =
1
|V |

∫
∨

∫
∨

γ(u− v)dudv (4.18)

The minimization of σ2(V ) under the unbiasedness condition leads to the linear

equation system:
n

∑
j=1

λ jγ(ui −u j)+µ = γ(ui,V ) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (4.19)

EXAMPLE 4.2 :

Suppose that for the same configuration as in the first part of example 4.1

instead of point u = 0 the average over the interval [−0.5,0.5] is to be found.

Block kriging is applied for the estimation. The left hand side of the equation

system is identical to the point kriging case. The right hand side is:

γ(u1,V ) =
∫ +0.5

−0.5
|t −1|dt = 1

γ(u2,V ) =
∫ +0.5

−0.5
|t +2|dt = 2

Thus the kriging equations are again:

0λ1 +3λ2 +µ = 1

3λ1 +0λ2 +µ = 2

λ1 +λ2 = 1 (4.20)

From this one has λ1 = 0.6667, λ2 = 0.3333 and µ = 0. To calculate the estimation

variance one also needs the value of γ(V,V ). This is:

γ(V,V ) =
∫ +0.5

−0.5

∫ +0.5

−0.5
|t − s|dt ds = 2

∫ +0.5

−0.5

∫ s

−0.5
s− t dt ds =

1
3
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Thus σ2 = 1.000 and Z∗(V ) = 2.6667. For this case block kriging yielded the

same weights as point kriging, but the estimation variance is smaller using block

kriging. (The weights calculated for the center of a block using point kriging are

not necessarily equal to the weights corresponding to the block !)

4.3 Properties of ordinary kriging

The kriging estimator has several interesting partly advantageous and partly dis-

advantageous properties. First some general properties are listed, then the rela-

tionship between kriging and the variogram is investigated.

4.3.1 Kriging as an interpolator

Kriging is an interpolation (and extrapolation) technique. Important properties of

the kriging interpolator are:

1. Kriging is an exact interpolator: for each observation point ui Z(ui) =
Z∗(ui), and the corresponding estimation variance is zero. This is because

taking λi = 1 and λ j = 0 if i �= j the kriging equations are satisfied.

2. Kriging weights are calculated with the help of the variogram and the lo-

cations of the measurement points and the point to be estimated. Not only

distances between measurement points and the point to be estimated are

considered but also the relative position of the measurement points.

3. Kriging weights sum up to 1, but they can also be negative. Thus the usual

hypothesis

max{Z(ui)} ≤ Z∗(u) ≤ min{Z(ui)}
is not true.

4. Kriging weights are not influenced by the measurement values. If the same

configuration appears at two different locations the kriging weights will be
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the same, independently from the measured values. The measured values

influence the variogramm which is the basis for the calculation of the krig-

ing weights.

5. Kriging weights show a screening effect, distant points receive lower weights

if closer measurements are available. This effect is demonstrated in example

4.3.

47



EXAMPLE 4.3 :

�1 �2

�3�4

�5

�6

�

Figure 4.3: Data configuration for example 4.3

Suppose the value of the regionalized variable has to be estimated at the point

(0,0) with the help of a subset of the points listed in table 4.1. The configuration

is also displayed on figure 4.3. The variogram is known :

γ(h) = C0 +C1γS(h) for h > 0 (4.21)

where γS(h) is a spherical model with a range a = 10. C0 = 0.05 is the nugget

effect and C1 = 0.20.

Three different cases are considered:

1. kriging using points 1,2,3 and 4

2. kriging using points 1,2,3,4 and 5
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No. x y

1 -1.00 -1.00

2 1.00 -1.00

3 2.00 2.00

4 -1.00 2.00

5 1.00 1.00

6 -1.10 1.90

Table 4.1: Different possible measurement locations

3. kriging using points 1,2,3,4 and 6.

Weights calculated for each case are shown in table 4.2.

Comparing case 1 and case 2 one can see that the weight corresponding to

point 3 decreased substantially because of the inclusion of point 5. The other

weights did not change drastically.

In case 3 part of the weight associated to point 4 was shifted to point 6, the

other weights were much less influenced.

These two examples show that kriging filters out the useful information and

assigns less weight to points which are close to other points or which are screened

by other points.

4.3.2 Kriging and the variogram

As the estimation variance is calculated with the help of the variogram, and the

kriging equations also contain variogram values it is obvious that the variogram

plays a central role in kriging.

Using the variogram kriging delivers not only estimated values but also pro-
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Weights

Point Case 1 Case 2 Case 3

1 0.322 0.294 0.304

2 0.317 0.255 0.311

3 0.144 0.047 0.130

4 0.217 0.163 0.123

5 — 0.240 —

6 — — 0.132

Table 4.2: Kriging weights for the three different cases

vides corresponding estimation variances. (Unfortunately these weights only de-

pend on the data configuration and the variogram but not on the actual data val-

ues.) These estimation variances express the quality of the interpolation, high es-

timation variance means uncertain interpolation — low estimation variance shows

good interpolation. Estimation variances are often used as normal error variances.

As mentioned previously the estimation variance is zero if the parameter is

to be estimated at a measurement point location. In the neighbourhood the es-

timation variance is low (depending on the variogram) and as the distance from

measurement points increases so does the estimation variance. Points (or blocks)

with high estimation variances indicate areas where the estimation is uncertain.

Comparing estimation variances obtained using point and block kriging one

can see that the latter are substantially smaller. This is because of the additional

term γ(V,V ) for the block variances. As γ(V,V ) increases with the block dimen-

sions the estimation variance decreases. This fact is in full agreement with the fact

known from statistics, that a mean can be estimated with much higher accuracy

than an individual value.
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EXAMPLE 4.4 :

To show the role of the nugget effect consider the data of example 4.3. Three

different variogram models were used to calculate the kriging weights.

γ(h) = C0 +C1γS(h) for h > 0 (4.22)

where γS(h) is a spherical model with a range a = 10. For γ1 C0 = 0.05 is the

nugget effect and C1 = 0.20. For γ2 C0 = 0.20 is the nugget effect and C1 = 0.05.

For γ3 C0 = 0.0 is the nugget effect and C1 = 0.25.

Weights

Point γ1 γ2 γ3

1 0.322 0.265 0.341

2 0.317 0.262 0.352

3 0.144 0.230 0.098

4 0.217 0.243 0.210

Table 4.3: Kriging weights for the three different variograms

Kriging weights for the three different models are shown in table 4.3. Note

that for γ2, where the nugget value is increased, the weights are almost equal.

The highest weight differences are for the case of γ3, where there is no nugget

effect. This example shows that a high nugget effect leads to estimators around

the sample mean.

If the variogram γ(h) is replaced by its constant multiple cγ(h) then the kriging

weights do not change. This is a consequence of (4.8), as the estimation variance

is also multipled by the same constant, thus the minimum variance is realized

using the same weights.
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If γ(h) is replaced by another variogram which is close to it, then the kriging

weights do not change substantially. Unfortunately the possible changes depend

both on the configuration of the data points and the actual data values.

4.4 Practice of kriging

4.4.1 Selection of the neighbourhood

As example 4.3 already demonstrated the screening property of kriging leads to

small weights for distant samples. On the other hand the intrinsic hypothesis

is supposed to hold locally within a certain distance. These two facts and the

numerical efficiency of the solution imply that only the closest few samples should

be used in kriging.

Usually the points used for the kriging of a point or block are selected within a

certain distance (usually around the range) with taking into account the anisotropy.

If there are still too many points in such a neighbourhood the closest n are taken,

where n is a prescribed limit.

It is important to notice that the above procedure fails to work properly if the

points are very irregularly spaced. In such a case different criteria have to be

given. (for example directional search)

In three dimensions when the number of points is too high a regrouping of the

points into blocks and then kriging from these blocks can reduce the computations.

4.4.2 Kriging with a “false” variogram

Kriging is sometimes used also without the calculation of an experimental vari-

ogram, but only assuming a theoretical model. As mentioned above the selection

of the variogram parameters can influence the kriging results. Usually a complex

model of two elements a nugget effect and a simple model (spherical, exponen-

tial, gaussian or linear) is assumed. As the multiplication of the variogram by a
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constant does not influence the kriging results, the most important factor in this

case is the relative nugget effect (= sill divided by the nugget effect).

In any case an interpolator having the above mentioned properties is used. The

estimation variances calculated without a proper variogram will be meaningless.

4.5 Cross validation

As previously mentioned the uniqueness of the realization makes the use of sta-

tistical test in geostatistics quite difficult. However, the subjective “by eye” fit

of theoretical variograms should be checked somehow to reduce its effects. One

possible way of doing this is the so called “cross validation”. This procedure tests

the variogram by a procedure where it is most often used, namely the kriging

procedure.

For each measurement location ui the values are estimated (using kriging) as if

they were unknown. This estimator is now denoted by Zv(ui) and the correspond-

ing kriging standard deviation is σv(ui). Then the estimated values are compared

with the true values Z(ui). If the kriging standard deviation can be interpreted as

an estimation error with normal distribution then

S(ui) =
Zv(ui)−Z(ui)

σv(ui)
(4.23)

should be normally distributed with 0 mean and 1 as standard deviation (N(0,1)).
The mean indicates whether the estimator is unbiased or not, the variance of S

indicates the correctness of the kriging standard deviations.

The calculation of the S(ui) values with the fitted variogram is the first test

of the appropriateness of the fit. If the distribution is different from N(0,1) then

variation of the coefficients can improve the fit.

Cross validation techniques can be used to detect outliers of the measurement

values.
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4.6 Kriging with uncertain data

It is quite often the case that the same parameter is measured or estimated with

the help of different methods. If these methods yield different accuracies the

corresponding measurement values should also be handled differently.

Suppose that for each point ui there is an unknown error term ε(ui) having the

following properties:

1. Unbiased :

E[ε(ui)] = 0 (4.24)

2. Uncorrelated :

E[ε(ui)ε(u j)] = 0 if i �= j (4.25)

3. Uncorrelated with the parameter value:

E[ε(ui)Z(ui)] = 0 (4.26)

For convenience the estimation for a block V is given here, but the same applies

for point values, too. The linear estimator in this case is:

Z∗(V ) =
n

∑
i=1

λi (Z(ui)+ ε(ui)) (4.27)

The unbiasedness condition has to hold as in the case of ordinary kriging. So :

n

∑
i=1

λi = 1 (4.28)

The estimation variance is:

Var[Z(V )−Z∗(V )] =−γ(V,V )−
n

∑
j=1

n

∑
i=1

λ jλiγ(ui−u j)+2
n

∑
i=1

λiγ(ui,V )+
n

∑
i=1

λ2
i E[ε(ui)2]

(4.29)
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To minimize the estimation variance an equation system similar to the ordinary

kriging system has to be solved. Namely:

n

∑
j=1

λ jγ(ui −u j)+λiE[ε(ui)2]+µ = γ(ui,V ) i = 1, . . . ,n

n

∑
j=1

λ j = 1 (4.30)

To illustrate the above methodology consider the following example:

EXAMPLE 4.5 :

Hydraulic conductivity is measured with different methods:

1. Direct measurements

2. Gravimetric measurements

3. Nuclear measurements

In the case of gravimetric and nuclear measurements the logarithm of the hy-

draulic conductivity is estimated from the measured water content and the dry

density with the help of a nonlinear regression. The regression error for gravimet-

ric measurements is D[εG] = 0.30997, for nuclear measurements D[εN ] = 0.32828.

The measurement data are listed in table 4.4. The average log K value of the

square block V with opposite corner coordinates (0,0) and (3,3) is to be estimated.

Figure 4.4 shows the data configuration.

The variogram of log K was estimated on the basis of other measurement data,

and a theoretical model was fitted:

γ(h) = C0 +C1γS(h) for h > 0 (4.31)

where γS(h) is a spherical model with a range a = 6 m. C0 = 0.05 is the nugget
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No. x y log K Measurement type

1 -1.00 -1.00 -7.07 Direct

2 4.00 1.50 -7.89 Direct

3 -1.00 1.50 -6.41 Gravimetric

4 4.00 -1.00 -6.84 Gravimetric

5 4.00 4.00 -7.69 Nuclear

6 1.50 -1.00 -7.94 Nuclear

Table 4.4: Different log K measurement data

effect and C1 = 0.15. The equation system (4.30) for this case is:

+ 0.199λ2 + 0.138λ3 + 0.194λ4 + 0.200λ5 + 0.138λ6 + µ = 0.167

0.199λ1 + + 0.194λ3 + 0.138λ4 + 0.138λ5 + 0.167λ6 + µ = 0.141

0.138λ1 + 0.194λ2 − 0.096λ3 + 0.199λ4 + 0.199λ5 + 0.167λ6 + µ = 0.141

0.194λ1 + 0.138λ2 + 0.199λ3 − 0.096λ4 + 0.194λ5 + 0.138λ6 + µ = 0.167

0.200λ1 + 0.138λ2 + 0.199λ3 + 0.194λ4 − 0.108λ5 + 0.199λ6 + µ = 0.167

0.138λ1 + 0.167λ2 + 0.167λ3 + 0.138λ4 + 0.199λ5 − 0.108λ6 + µ = 0.141

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + = 1

The solution of the equation system is shown in table 4.5. The value of γ(V,V ) is

0.1003, the estimation variance is 0.0778 and the estimated log K value is -7.36.

In the case of ordinary kriging without error terms the kriging equations would

be the same except the main diagonal being zero. The solution in this case is can

also be found in table 4.5.
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�1

�2�3

�4

5

6

V

Figure 4.4: Data configuration for example 4.5

Note that observations 2,3, and 6 have similar weights as they are the closest

observations to the block to be estimated. Weights for the direct measurements

decreased, as all measurements are handled equally in this case.
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Weights Kriging with Point kriging

uncertainty

λ1 0.147 0.042

λ2 0.303 0.252

λ3 0.210 0.294

λ4 0.077 0.051

λ5 0.108 0.126

λ6 0.155 0.235

µ 0.020 0.009

Table 4.5: Weight calculated using uncertain and exact data
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4.7 Simple Kriging

The Ordinary Kriging procedure is based on the assumption that the expected

value of the underlying process is the same over the domain under study. The

knowledge of this constant was not neccessary. Simple kriging is an alternative to

OK supposing the mean m(u) is known (not neccessarily constant) in the whole

domain. In this case the estimator: Again a linear estimator of the form :

Z∗(u) = m(u)+
n

∑
i=1

λi(Z(ui)−m(ui)) (4.32)

is to be found. The unbiasedness condition means in this case:

E[Z∗(u)−Z(u)] = m(u)+
n

∑
i=1

λiE[Z(ui)−m(ui)]−m(u) = 0 (4.33)

This condition does not imply any additional constraints. The variance of the

estimator is expressed using the covariance function C:

Var[Z∗(u)−Z(u)] = E[Z∗(u)2 +Z(u)2 −2Z∗(u)Z(u)] =

n

∑
i=1

n

∑
j=1

λiλ jC(ui −u j)+C(0)−2
n

∑
i=1

λiC(ui −u) (4.34)

The estimation variance is minimal if:

∂Var[Z∗(u)−Z(u)]
∂λi

= 0 (4.35)

This leads to the simple kriging equation system:

n

∑
j=1

λ jC(ui −u j) = C(ui −u) (4.36)
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