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Abstract. Estimation of the distribution function of a spatial random process can be addressed in a
parametric way, by imposing a shape or analytical expression for the distribution function. However,
the data provided do not always support the distribution model assumption. An additional option is to
proceed via the indicator kriging approach, which demands estimation of the indicator variogram (or
the indicator covariance function). In this paper, we suggest a kernel-type estimator for the latter aim,
as a nonparametric alternative to the empirical indicator variogram, typically used in this setting.
Consistency of the kernel indicator variogram will be proved, under several assumptions. In addi-
tion, we will check that approximation of the sill of the kernel indicator variogram provides another
mechanism for estimation of the distribution function.
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1 Introduction

There are practical situations where approximation of the distribution function of a spatial random
process{Z(s) : s∈ D ⊂ IRd} is the issue of interest. For instance, in the estimation of metal deposits
or recoverable reserves, in assessing soil contamination or in the classification schemes for map analysis,
among others. Typically, a finite number of spatial locationssi is selected,1≤ i ≤ n, where measure-
ments of the variable involved are taken and used to derive information for the whole observation region,
including the non-sampled locations. In this setting, estimation of the distribution function can be ad-
dressed in a parametric way, by imposing a shape or analytical expression for it. However, the data
provided do not always support the distribution model assumption, so that a nonparametric approach
must be adopted instead. Then, an alternative is provided by the indicator kriging, as described in [4],
which proves to be an efficient method.



P. García-Soidán and R. Menezes Kernel indicator variogram

The indicator approach is based on the interpretation of the distribution function as the expectation
of an indicator random variable, namely:

P(Z(s)≤ x) = Fs(x) = E[I(s,x)]

with I(s,x) = 1 if Z(s)≤ x and zero otherwise. In practice, the distribution is approximated atQ thresh-
oldsxq, previously fixed, and the remainder values are obtained by interpolation.

The least-squares (kriging) estimator of the indicator function is also the least-squares estimator of
its expectation, according to the projection theorem, as noticed in [2]. Consequently, an approximation
of the distribution function at locations and thresholdx is given by the indicator kriging predictor of
I(s,x), expressed as:

Î(s,x) =
n

∑
i=1

λi I(si ,x) (1)

where{λi : 1≤ i ≤ n} are obtained by solving the corresponding kriging equations. The latter implies
that a variogram (or covariance function) needs to be inferred for each threshold, referred to as indicator
variogram (or indicator covariance function). This paper deals with this issue, which is called indicator
structural analysis.

To develop this theory, we will assume that the random process is strictly stationary, so thatFs(x) =
Fs′(x) = F(x), for all x∈ IR and alls,s′ ∈ D. Then, the indicator variogram is defined as:

2γI (t,x) = Var[I(s,x)− I(s+ t,x)] = E
[
(I(s,x)− I(s+ t,x))2

]

for eacht ∈ IRd andx∈ IR.

An estimator of the indicator variogram is given by the experimental or empirical variogram, derived
from the method of moments:

2γ̂I (t,x) =
1

N(t) ∑
(i, j)∈N(t)

(I(si ,x)− I(sj ,x))
2

whereN(t) denotes the set of distinct pairs(i, j) satisfying thatsi−sj = t.

The indicator kriging also demands using a valid variogram estimator, satisfying the conditionally
negative-definiteness property. The maximum likelihood method is applied in [5] with this purpose, al-
though it is noticed that the appearance of the empirical indicator variogram can be noisy as the threshold
moves away from the median, resulting in significant uncertainty in the fitted model.

In this paper, we suggest a nonparametric alternative to the empirical variogram, similar to that
analyzed in [1] and adapted to the indicator setting, defined as follows:

2γ̂I ,h(t,x) =
∑i 6= j K

(
t−(si−sj)

h

)
(I(si ,x)− I(sj ,x))

2

∑i 6= j K

(
t−(si−sj)

h

) (2)

whereK represents ad-dimensional kernel function andh is the bandwidth parameter.

The kernel indicator variogram provides a smoother estimator, whose consistency will be derived
under several assumptions. In addition, we will check that a direct estimation of the distribution function
can be obtained through that of the sill of the indicator variogram, as proposed in [4].
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2 Main results

Let {Z(s) : s∈ D⊂ IRd} be a spatial random process and denote byZ(s1), ...,Z(sn), then data collected
at the spatial locationss1, ..., sn. An increasing observation regionD will be considered and a random
design will be assumed for the spatial locations, as suggested in [3] to achieve consistent estimation.

In addition, a dependence condition will be required from the random process, similar to that im-
posed in [7]. For this purpose, givenS,S′ ⊂ IRd, takeZ[S] as theσ-field generated by{Z(s)/s∈ S}
andd(S,S′) = inf{‖s− s′‖ : s∈ S,s′ ∈ S′}, where‖ · ‖ denotes thel1-norm onIRd. Write α1(S,S′) =
sup{|P(A∩B)−P(A)P(B)| : A∈ Z[S],B∈ Z[S′]}. Theα-mixing coefficient is defined as:

α(k,b) = sup
{

α1
(
S,S′

)
: S,S′ ∈ Rp(b),d

(
S,S′

)≥ k
}

with Rp(b) =
{∪p

i=1Di : D′
isare disjoint and∑p

i=1‖Di‖ ≤ b
}

.

Next, we will describe the main hypotheses to be assumed.

(H1) Fs1,...,sj (x1, ...,x j) = Fs1+d,...,sj+d (x1, ...,x j), for all d ∈ IRd and j ≥ 1, with Fs1,...,sj (x1, ...,x j) =
P(Z(s1)≤ x1, ...,Z(sj)≤ x j)

(H2) For all j ≤ 4 and(s1, ...,sj) ∈ D j , Fs1,...,sj (x1, ...,x j) admits two continuous derivatives in a neigh-
borhood of(s1, ...,sj), as a function of(s1, ...,sj).

(H3) For all (s1,s2) ∈ D2, Fs1,s2 (x1, ...,x j) admits three continuous derivatives in a neighborhood of
(s1,s2), as a function of(s1,s2).

(H4) D = Dn = βD0, for someβ = βn diverging to+∞ and some bounded regionD0⊂ IRd containing a
sphere with positived-dimensional volume.

(H5) The spatial locations will be taken assi = βui , for 1≤ i≤ n, whereu1, ...,un represents a realization
of a random sample of sizen drawn fromg0, whereg0 is the density function considered onD0.

(H6) For a givent ∈ IRd, g0 admits three continuous derivatives in a neighborhood oft.

(H7)
{

h+(nh)−1 +β−1 +n−2βdh−d
}

n→∞−→ 0.

(H8) α(k,b)≤ c1k−c2bc3, for some positive real numbersc1,c2,c3.

(H9) K is ad-variate, compactly supported, symmetric and bounded density function, withK(0) > 0.

Under assumptions (H1)-(H9), estimatorγ̂I ,h(t,x) satisfies several properties, such as asymptotically
unbiasedness and consistency, for allt ∈ IRd andx∈ IR. More specifically, we can check that:

Bias[2γ̂I ,h(t,x)] = 2h2∑
i, j

∂2γI ,h

∂t(i)∂t( j)

∣∣∣∣
(t,x)

Z
z(i)z( j)K(z)dz+o

(
h2) and Var[2γ̆h(s)] = o(1) (3)

In consequence, the MSE and the MISE of the kernel indicator variogram tend to zero as the sample
size increases, so that minimization of the above quantities can provide asymptotically optimal bandwidth
parameters. An alternative for selection ofh may be that of considering a balloon estimator, namely, a
kernel estimator where the bandwidth is allowed to vary with the lagt, as developed in [6] for density
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estimation. For instance, we could takeh = hk(t) as the euclidean distance fromt to the k-nearest
distances between locations in the sample.

Denote byF the univariate distribution function, namely,Fs = F for all s∈ IRd. The kernel indi-
cator variogram can be used for approximation ofF either in an indirect way, by applying the kriging
techniques, or directly, as an application of the proposal given in [4]. For both approaches, estimation
of the distribution functionF will be discretized atQ thresholdsxq, previously fixed, and the remainder
values will be approximated by interpolation. To proceed in the first way, the kernel indicator variogram
2γ̂I ,h(·,xq) must be obtained for eachq and used to solve the kriging equations, which providesQ values
of the distribution functionF .

The second alternative for estimation ofF will be derived from that of the sill of the indicator vario-
gram. With this aim, bear in mind that the sillS(x) of the indicator variogram is linked to the distribution
function as follows:

S(x) = lim
‖t‖→∞

γI ,h(t,x) = F(x)−F(x)2

Furthermore,S(x) is increasing in(−∞,xM] and decreasing in[xM,∞) and takes values in[0,0.25], where
xM stands for the median of the distributionF . Then, we propose to proceed as follows:

• Approximate the sill at each threshold,S∗ (xq).

• Determine the value of the median,x∗M, by selecting the valuexq for which S∗ (xq) is maximum
and close to 0.25, so thatF (x∗M)≈ 0.5.

• For eachxq, takeF(xq)≈ 0.5
(
1+ ε(xq)

√
1−4S∗ (xq)

)
, with ε(x) = sign(x−x∗M).

Numerical studies will be included to illustrate the performance of both approaches for approxima-
tion of the distribution function.
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