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Abstract. This paper focuses on the problem of functional statistical classification of gene expression
curves. A local wavelet-vaguelette-based functional logistic regression approach is presented. This
approach offers an alternative to the Functional-Principal-Component-Analysis-based logistic regres-
sion (see [4]). The performance of the methodology proposed is illustrated by implementing it for
classification of yeast cell-cycle temporal gene expression data from [5] data set, where leave-one-out
cross-validation error shows high accuracy of the model.
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1. INTRODUCTION
Functional wavelet bases have been widely used in the analysis of fractal biological signals, since their
provide a localized multiscale decomposition of such signals. The wavelet transform of a random bi-
ological signal {X(t), t ∈ R} leads to a sequence of correlated random wavelet coefficients. To avoid
redundancy in such coefficients a local version of the wavelet-vaguelette decomposition of a random
signal is considered (see [1]), to obtain suitable response variables for a functional logistic regression,
providing low-error rate classification for the yeast cell-cycle gene expression profiles analyzed.
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Figure 1: Left panel: Temporal gene expression profiles of yeast cell cycle. Right panel: Reconstruction
of the temporal gene expression profiles in left panel from wavelet-vaguelette transform.

2. MODELS AND METHODS
The sample curves are assumed to be independent realizations of a mean-square integrable stochastic
process X(t) on [0,S]. Let Xi(th) be the observation of the ith sample function at time th, for h = 1, . . . ,n,
and i = 1, . . . ,M. Non-parametric kernel-based estimators, µ̂(t) and ĈX(s, t), are computed from a grid
with N = 2p, p ∈ N, equally spaced points in [0,S]. Diagonal elements σ2(s) = ĈX(s,s), s ∈ [0,S], are
approximated by interpolated values σ̂2(s), s ∈ [0,S].
Multiresolution-like Analysis
The empirical eigenvalues λ̂l, l = 1, . . . ,N, and the corresponding empirical eigenvectors (ρ̂l(t1), . . . , ρ̂l(tN)),
l = 1, . . . ,N, of the covariance estimate Ĉ = Ĉ(tl, tm), l,m = 1, . . . ,N, allow us to define the empirical ker-
nel t̂X , factorizing the covariance function ĈX(s, t), and the empirical kernel l̂X , approximating the inverse
LX = T −1

X of operator TX , respectively as follows:

t̂X(th, tm) =
N

∑
l=1

λ̂
1/2
l ρ̂l(th)ρ̂l(tm), l̂X(th, tm) =

N

∑
l=1

λ̂
−1/2
l ρ̂l(th)ρ̂l(tm). (1)

for h,m = 1, . . . ,N. The construction of the empirical wavelet-vaguelette functions is given in terms of
kernels t̂X and l̂X , and a given orthonormal wavelet basis. We have chosen Haar system, with the father
wavelet, φ(x) = I[0,1)(x), and the mother wavelet, ψ(x) = I[0,1/2)(x)− I[1/2,1)(x). Thus,(see [1],[6]), for
h = 1, ...,N,

ϕ̂0(th) =
N

∑
m=1

t̂X(th, tm)φ(tm), γ̂ j,k(th) =
N

∑
m=1

t̂X(th, tm)ψ j,k(tm), k = 0, . . . ,2 j−1, j = 0, . . . , p−1.

In matrix form, we denote by ϕ0 = {ah} the vector with entries ah = ϕ̂0(th), for h = 1, . . . ,N, given by
the product of the matrix T̂ = {bh,m}, with bh,m = t̂X(th, tm), for h,m = 1, . . . ,N, and the vector Φ = {cm},
with cm = φ(tm), for m = 1, . . . ,N. Similarly, for j = 0, . . . , p−1, the matrix Γ j = {dh,k+1}, with entries
dh,k+1 = γ̂ j,k(th), for h = 1, . . . ,N, and k = 0, . . . ,2 j − 1, is the product of matrices T̂ and Ψ j, where
Ψ j = {lm,k+1} has entries lm,k+1 = ψ j,k(tm), for m = 1, . . . ,N, and k = 0, . . . ,2 j − 1. Additionally, we
have ϕ0 = [T̂−1]T ×Φ and Γ j = [T̂−1]T ×Ψ j.

For each sample curve Xi, evaluated at time t ∈ [0,S], the following local empirical coefficients are
computed:

X̂ σ̂(t);ϕ̂0

i =
N

∑
m=1

(Xi(tm)− µ̂(tm))ϕ̂σ̂(t);0(tm) X̂ σ̂(t); j,k,̂γ
i =

N

∑
m=1

(Xi(tm)− µ̂(tm))̂γσ̂(t); j,k(tm)

where {ϕ̂σ̂(t);0, γ̂σ̂(t); j,k, k = 0, . . . ,2 j − 1, j = 0, . . . , p− 1} = {σ̂(t)ϕ̂0, σ̂(t )̂γ j,k, k = 0, . . . ,2 j − 1, j =
0, . . . , p−1} denotes the locally re-scaled empirical dual Riesz basis of {ϕ̂σ̂(t);0, γ̂σ̂(t); j,k, k = 0, . . . ,2 j−
1, j = 0, . . . , p−1}= {(1/σ̂(t))ϕ̂0,(1/σ̂(t))̂γ j,k, k = 0, . . . ,2 j−1, j = 0, . . . , p−1}. Note that

〈ϕ̂σ̂(t);0, ϕ̂
σ̂(t);0〉= 1, 〈̂γσ̂(t); j1,k1

, γ̂σ̂(t); j2,k2〉= δ j1, j2δk1,k2 , 〈ϕ̂σ̂(t);0, γ̂
σ̂(t); j,k〉= 0, 〈ϕ̂σ̂(t);0, γ̂σ̂(t); j,k〉= 0.

(2)
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The M sample curves can then be approximated in terms of the following empirical local wavelet-
vaguelette decomposition: For i = 1, . . . ,M, and for each t ∈ [0,S],

Xi(t)' µ̂+ X̂ ϕ̂0

σ̂(t);iϕ̂σ̂(t);0(t)+
p−1

∑
j=0

2 j−1

∑
k=0

X̂ j,k,̂γ
σ̂(t);iγ̂σ̂(t); j,k(t), t ∈ [0,S]. (3)

This decomposition will be considered in the implementation of functional logistic regression to classify
the data into two groups, G0 and G1.
Functional Logistic Regression
Consider a response variable Y with Bernoulli distribution, having mean µ and variance σ2 = µ(1− µ).
The response variable Y takes the value Y = 1 if the sample curve is in group G1, or Y = 0 if it isn’t.
We define ηi = g(µi) = α +

∫
β(t)Zi(t)dt, for α a constant, g the logit function, g−1(x) = ex/(1 + ex),

and Zi(t) = Xi(t)− µ̂(t). Thus, Yi = g−1(ηi)+ ei, with errors ei, i = 1, . . . ,M, considered as independent
random variables with zero-mean and finite variance.

Due to the square integrability of β, the functional parameter β admits the local decomposition:

β(t) = βσ(t);ϕ0ϕ
σ(t);0(t)+

p−1

∑
j=0

2 j−1

∑
k=0

βσ(t); j,k,γγ
σ(t), j,k(t), t ∈ [0,S], (4)

in terms of the dual local Riesz bases {ϕσ(t);0,γσ(t); j,k, k = 0, . . . ,2 j−1, j = 0, . . . , p−1} and {ϕσ(t);0,k,

γσ(t); j,k, k = 0, . . . ,2 j−1, j = 0, . . . , p−1}. In the development below, the local Fourier coefficients of
parameter function β, with respect to the empirical scaled basis {(ϕσ̂(t);0, γσ̂(t); j,k, k = 0, . . . ,2 j−1, j =

0, . . . , p−1}, will be denoted as β̂t
ϕ0

= βσ̂(t);ϕ0
, β̂t

j,k,γ = βσ̂(t); j,k,γ, k = 0, . . . ,2 j−1, j = 0, . . . , p−1, for
each t ∈ [0,S]. The above approximations of Zi(t) from (3), and of β(t) from (4), considering (2), lead to
the following estimation of ηi(t) :

ηi(t)' α̂
t +∑

k
Ẑσ̂(t);ϕ̂0

i β̂
t
ϕ0

+
p−1

∑
j=0

2 j−1

∑
k=0

Ẑσ̂(t); j,k,̂γ
i β̂

t
j,k,γ.

The functional model is then reduced to a generalized linear model (see [2]), for each t ∈ [0,S], where
iterated weighted least square estimation is usually applied to compute β̂t , from the following equations:
For i = 1, . . . ,M,

∑
i

(Yi−µi(t)) = 0 ∑
i

(Yi−µi(t))(Ẑt
i )

T = 0,

where (Ẑt
i )

T is the vector of Fourier coefficients of Zi(t) on the empirical locally scaled wavelete-
vaguelette basis {ϕ̂σ̂(t);0, γ̂σ̂(t); j,k, k = 0, . . . ,2 j−1, j = 0, . . . , p−1}.
The mean β̂ over t of the obtained β̂t , for each t = t1, . . . , tM, is computed. A prior probability p0 is
considered for G0 memberships, and similarly, a prior probability p1 is considered for G1 memberships.
Thus, if p̂r(Yi = 1|Xi(t)) = η̂i = g−1((ẐT

i ,1) ∗ β̂) ≥ p1, the ith curve is a member of G1. Otherwise, it
belongs to G0.

3. RESULTS
Application to the analysis of yeast cell cycle gene expression profiles
We use the temporal gene expression data (α factor synchronized) for M = 90 genes involved in the yeast
cell cycle obtained by [5] as sample curves. The gene expression is measured every 7 minutes between 0
and S = 119 minutes (both time instants included), thus, n = 18 observations for each gene. It is known
that 44 of these genes are related to G1 phase regulation and 46 to the S,S/G2,G2/M and M/G1 phases.
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Figure (1) displays the original data with their approximation in terms of the local wavelet-vaguelette
decomposition, considering a grid with N = 64 = 26 equally spaced time points. Convergence of the
iterated weighted least squares algorithm is achieved for every point t in the grid after 100 iterations
or less controlled by de deviance. β̂t for a grid with N = 64 equally spaced time points, are displayed
with the mean vector β̂ in Figure 2. In order to measure the accuracy of the model, the cross-validation

Figure 2: Components of β̂t for 64 equally spaced points t ∈ [0,119], the coarsest line is the mean vector
β̂, note bigger influence of the first coefficients in the response variable.

classification error rate (CVE) is obtained. Suppose the i-th gene is missing, the mean and the covariance
function estimates, based on the other 89 genes, and parameters β̃, from the reduced functional sample,
are then computed. These parameters are tested to obtain the approximation η̂−i of η̂, based on the
sample information provided by the 89 gene expression curves, removing the i-th gene.This procedure
is repeated with every gene, if g−1(η(−i))≥ p1 the i-th gen is member of G1, otherwise is from G0. The
CVE is defined as the quotient between the total number of genes misclassified under cross-validation,
and the total number of genes. High accuracy of the model is assured by a CV E = 0.13.

4. CONCLUSIONS
In this paper, a local wavelet-vaguelette decomposition is considered for the non-redundant representa-
tion of gene expression profiles, since it holds for a large class of stochastic process, including processes
with fractal and heavy-tailed covariance functions (see [3]).
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