

Local wavelet-vaguelette-based functional logistic regression for classification of gene expression data

M.M Rincón¹, M.D. Ruiz-Medina^{2,*}

¹ mmrh@ugr.correo.es ² mruiz@ugr.es *Corresponding author

Abstract. This paper focuses on the problem of functional statistical classification of gene expression curves. A local wavelet-vaguelette-based functional logistic regression approach is presented. This approach offers an alternative to the Functional-Principal-Component-Analysis-based logistic regression (see [4]). The performance of the methodology proposed is illustrated by implementing it for classification of yeast cell-cycle temporal gene expression data from [5] data set, where leave-one-out cross-validation error shows high accuracy of the model.

Keywords. Functional data; Functional logistic regression; Gene expression profile; Local waveletvaguelette decomposition; Yeast cell cycle gene expression data.

1. INTRODUCTION

Functional wavelet bases have been widely used in the analysis of fractal biological signals, since their provide a localized multiscale decomposition of such signals. The wavelet transform of a random biological signal $\{X(t), t \in \mathbb{R}\}$ leads to a sequence of correlated random wavelet coefficients. To avoid redundancy in such coefficients a local version of the wavelet-vaguelette decomposition of a random signal is considered (see [1]), to obtain suitable response variables for a functional logistic regression, providing low-error rate classification for the yeast cell-cycle gene expression profiles analyzed.

Figure 1: Left panel: Temporal gene expression profiles of yeast cell cycle. Right panel: Reconstruction of the temporal gene expression profiles in left panel from wavelet-vaguelette transform.

2. MODELS AND METHODS

The sample curves are assumed to be independent realizations of a mean-square integrable stochastic process X(t) on [0,S]. Let $X_i(t_h)$ be the observation of the *i*th sample function at time t_h , for h = 1, ..., n, and i = 1, ..., M. Non-parametric kernel-based estimators, $\hat{\mu}(t)$ and $\hat{C}_X(s,t)$, are computed from a grid with $N = 2^p$, $p \in \mathbb{N}$, equally spaced points in [0,S]. Diagonal elements $\sigma^2(s) = \hat{C}_X(s,s)$, $s \in [0,S]$, are approximated by interpolated values $\hat{\sigma}^2(s)$, $s \in [0,S]$.

Multiresolution-like Analysis

The empirical eigenvalues λ_l , l = 1, ..., N, and the corresponding empirical eigenvectors $(\widehat{\rho}_l(t_1), ..., \widehat{\rho}_l(t_N))$, l = 1, ..., N, of the covariance estimate $\widehat{C} = \widehat{C}(t_l, t_m)$, l, m = 1, ..., N, allow us to define the empirical kernel \widehat{t}_X , factorizing the covariance function $\widehat{C}_X(s, t)$, and the empirical kernel \widehat{l}_X , approximating the inverse $L_X = \mathcal{T}_X^{-1}$ of operator \mathcal{T}_X , respectively as follows:

$$\widehat{t}_X(t_h, t_m) = \sum_{l=1}^N \widehat{\lambda}_l^{1/2} \widehat{\rho}_l(t_h) \widehat{\rho}_l(t_m), \quad \widehat{l}_X(t_h, t_m) = \sum_{l=1}^N \widehat{\lambda}_l^{-1/2} \widehat{\rho}_l(t_h) \widehat{\rho}_l(t_m).$$
(1)

for h, m = 1, ..., N. The construction of the empirical wavelet-vaguelette functions is given in terms of kernels \hat{t}_X and \hat{l}_X , and a given orthonormal wavelet basis. We have chosen Haar system, with *the father wavelet*, $\phi(x) = I_{[0,1)}(x)$, and *the mother wavelet*, $\psi(x) = I_{[0,1/2)}(x) - I_{[1/2,1)}(x)$. Thus,(see [1],[6]), for h = 1, ..., N,

$$\widehat{\varphi}_{0}(t_{h}) = \sum_{m=1}^{N} \widehat{t}_{X}(t_{h}, t_{m}) \phi(t_{m}), \quad \widehat{\gamma}_{j,k}(t_{h}) = \sum_{m=1}^{N} \widehat{t}_{X}(t_{h}, t_{m}) \psi_{j,k}(t_{m}), \quad k = 0, \dots, 2^{j} - 1, \ j = 0, \dots, p - 1.$$

In matrix form, we denote by $\varphi_0 = \{a_h\}$ the vector with entries $a_h = \widehat{\varphi_0}(t_h)$, for h = 1, ..., N, given by the product of the matrix $\widehat{T} = \{b_{h,m}\}$, with $b_{h,m} = \widehat{t}_X(t_h, t_m)$, for h, m = 1, ..., N, and the vector $\Phi = \{c_m\}$, with $c_m = \phi(t_m)$, for m = 1, ..., N. Similarly, for j = 0, ..., p - 1, the matrix $\Gamma_j = \{d_{h,k+1}\}$, with entries $d_{h,k+1} = \widehat{\gamma}_{j,k}(t_h)$, for h = 1, ..., N, and $k = 0, ..., 2^j - 1$, is the product of matrices \widehat{T} and Ψ_j , where $\Psi_j = \{l_{m,k+1}\}$ has entries $l_{m,k+1} = \Psi_{j,k}(t_m)$, for m = 1, ..., N, and $k = 0, ..., 2^j - 1$. Additionally, we have $\varphi^0 = [\widehat{T}^{-1}]^T \times \Phi$ and $\Gamma^j = [\widehat{T}^{-1}]^T \times \Psi_j$.

For each sample curve X_i , evaluated at time $t \in [0,S]$, the following local empirical coefficients are computed:

$$\widehat{X}_{i}^{\widehat{\sigma}(t);\widehat{\varphi}^{0}} = \sum_{m=1}^{N} \left(X_{i}(t_{m}) - \widehat{\mu}(t_{m}) \right) \widehat{\varphi}^{\widehat{\sigma}(t);0}(t_{m}) \quad \widehat{X}_{i}^{\widehat{\sigma}(t);j,k,\widehat{\gamma}} = \sum_{m=1}^{N} \left(X_{i}(t_{m}) - \widehat{\mu}(t_{m}) \right) \widehat{\gamma}^{\widehat{\sigma}(t);j,k}(t_{m})$$

where $\{\widehat{\varphi}^{\widehat{\sigma}(t);0}, \widehat{\gamma}^{\widehat{\sigma}(t);j,k}, k = 0, \dots, 2^{j} - 1, j = 0, \dots, p - 1\} = \{\widehat{\sigma}(t)\widehat{\varphi}^{0}, \widehat{\sigma}(t)\widehat{\gamma}^{j,k}, k = 0, \dots, 2^{j} - 1, j = 0, \dots, p - 1\}$ denotes the locally re-scaled empirical dual Riesz basis of $\{\widehat{\varphi}_{\widehat{\sigma}(t);0}, \widehat{\gamma}_{\widehat{\sigma}(t);j,k}, k = 0, \dots, 2^{j} - 1, j = 0, \dots, p - 1\} = \{(1/\widehat{\sigma}(t))\widehat{\varphi}_{0}, (1/\widehat{\sigma}(t))\widehat{\gamma}_{j,k}, k = 0, \dots, 2^{j} - 1, j = 0, \dots, p - 1\}$. Note that

$$\langle \widehat{\varphi}_{\widehat{\sigma}(t);0}, \widehat{\varphi}^{\sigma(t);0} \rangle = 1, \quad \langle \widehat{\gamma}_{\widehat{\sigma}(t);j_1,k_1}, \widehat{\gamma}^{\sigma(t);j_2,k_2} \rangle = \delta_{j_1,j_2} \delta_{k_1,k_2}, \quad \langle \widehat{\varphi}_{\widehat{\sigma}(t);0}, \widehat{\gamma}^{\sigma(t);j,k} \rangle = 0, \quad \langle \widehat{\varphi}^{\sigma(t);0}, \widehat{\gamma}_{\widehat{\sigma}(t);j,k} \rangle = 0.$$
(2)

The *M* sample curves can then be approximated in terms of the following empirical local waveletvaguelette decomposition: For i = 1, ..., M, and for each $t \in [0, S]$,

$$X_{i}(t) \simeq \widehat{\mu} + \widehat{X}_{\widehat{\sigma}(t);i}^{\widehat{\varphi}^{0}} \widehat{\varphi}_{\widehat{\sigma}(t);0}(t) + \sum_{j=0}^{p-1} \sum_{k=0}^{2^{j}-1} \widehat{X}_{\widehat{\sigma}(t);i}^{j,k,\widehat{\gamma}} \widehat{\gamma}_{\widehat{\sigma}(t);j,k}(t), \quad t \in [0,S].$$
(3)

This decomposition will be considered in the implementation of functional logistic regression to classify the data into two groups, G_0 and G_1 .

Functional Logistic Regression

Consider a response variable *Y* with Bernoulli distribution, having mean μ and variance $\sigma^2 = \mu(1-\mu)$. The response variable *Y* takes the value Y = 1 if the sample curve is in group G_1 , or Y = 0 if it isn't. We define $\eta_i = g(\mu_i) = \alpha + \int \beta(t)Z_i(t)dt$, for α a constant, *g* the *logit* function, $g^{-1}(x) = e^x/(1+e^x)$, and $Z_i(t) = X_i(t) - \hat{\mu}(t)$. Thus, $Y_i = g^{-1}(\eta_i) + e_i$, with errors $e_i, i = 1, ..., M$, considered as independent random variables with zero-mean and finite variance.

Due to the square integrability of β , the functional parameter β admits the local decomposition:

$$\beta(t) = \beta_{\sigma(t);\phi_0} \phi^{\sigma(t);0}(t) + \sum_{j=0}^{p-1} \sum_{k=0}^{2^j-1} \beta_{\sigma(t);j,k,\gamma} \gamma^{\sigma(t),j,k}(t), \quad t \in [0,S],$$
(4)

in terms of the dual local Riesz bases { $\varphi_{\sigma(t);0}, \gamma_{\sigma(t);j,k}, k = 0, ..., 2^j - 1, j = 0, ..., p - 1$ } and { $\varphi^{\sigma(t);0,k}, \gamma^{\sigma(t);j,k}, k = 0, ..., 2^j - 1, j = 0, ..., p - 1$ }. In the development below, the local Fourier coefficients of parameter function β , with respect to the empirical scaled basis { $(\varphi_{\widehat{\sigma}(t);0}, \gamma_{\widehat{\sigma}(t);j,k}, k = 0, ..., 2^j - 1, j = 0, ..., p - 1$ }, will be denoted as $\widehat{\beta}_{\phi_0}^t = \widehat{\beta}_{\widehat{\sigma}(t);\phi_0}, \widehat{\beta}_{j,k,\gamma}^t = \widehat{\beta}_{\widehat{\sigma}(t);j,k,\gamma}, k = 0, ..., 2^j - 1, j = 0, ..., p - 1$, for each $t \in [0, S]$. The above approximations of $Z_i(t)$ from (3), and of $\beta(t)$ from (4), considering (2), lead to the following estimation of $\eta_i(t)$:

$$\eta_i(t) \simeq \widehat{\alpha}^t + \sum_k \widehat{Z}_i^{\widehat{\sigma}(t);\widehat{\varphi}^0} \widehat{\beta}_{\varphi_0}^t + \sum_{j=0}^{p-1} \sum_{k=0}^{2^j-1} \widehat{Z}_i^{\widehat{\sigma}(t);j,k,\widehat{\gamma}} \widehat{\beta}_{j,k,\gamma}^t$$

The functional model is then reduced to a generalized linear model (see [2]), for each $t \in [0, S]$, where iterated weighted least square estimation is usually applied to compute $\hat{\beta}^t$, from the following equations: For i = 1, ..., M,

$$\sum_{i} (Y_i - \mu_i(t)) = 0 \quad \sum_{i} (Y_i - \mu_i(t)) (\widehat{Z}_i^t)^T = 0,$$

where $(\widehat{Z}_i^t)^T$ is the vector of Fourier coefficients of $Z_i(t)$ on the empirical locally scaled wavelete-vaguelette basis { $\widehat{\varphi}^{\widehat{\sigma}(t);0}, \widehat{\gamma}^{\widehat{\sigma}(t);j,k}, k = 0, ..., 2^j - 1, j = 0, ..., p - 1$ }.

The mean $\widehat{\beta}$ over *t* of the obtained $\widehat{\beta}^t$, for each $t = t_1, \dots, t_M$, is computed. A prior probability p_0 is considered for G_0 memberships, and similarly, a prior probability p_1 is considered for G_1 memberships. Thus, if $\widehat{pr}(Y_i = 1 | X_i(t)) = \widehat{\eta}_i = g^{-1}((\widehat{Z}_i^T, 1) * \widehat{\beta}) \ge p_1$, the *i*th curve is a member of G_1 . Otherwise, it belongs to G_0 .

3. RESULTS

Application to the analysis of yeast cell cycle gene expression profiles

We use the temporal gene expression data (α factor synchronized) for M = 90 genes involved in the yeast cell cycle obtained by [5] as sample curves. The gene expression is measured every 7 minutes between 0 and S = 119 minutes (both time instants included), thus, n = 18 observations for each gene. It is known that 44 of these genes are related to G_1 phase regulation and 46 to the $S, S/G_2, G_2/M$ and M/G_1 phases.

Figure (1) displays the original data with their approximation in terms of the local wavelet-vaguelette decomposition, considering a grid with $N = 64 = 2^6$ equally spaced time points. Convergence of the iterated weighted least squares algorithm is achieved for every point *t* in the grid after 100 iterations or less controlled by de deviance. $\hat{\beta}^t$ for a grid with N = 64 equally spaced time points, are displayed with the mean vector $\hat{\beta}$ in Figure 2. In order to measure the accuracy of the model, the cross-validation

Figure 2: Components of $\hat{\beta}^t$ for 64 equally spaced points $t \in [0, 119]$, the coarsest line is the mean vector $\hat{\beta}$, note bigger influence of the first coefficients in the response variable.

classification error rate (*CVE*) is obtained. Suppose the i-th gene is missing, the mean and the covariance function estimates, based on the other 89 genes, and parameters $\tilde{\beta}$, from the reduced functional sample, are then computed. These parameters are tested to obtain the approximation $\hat{\eta}^{-i}$ of $\hat{\eta}$, based on the sample information provided by the 89 gene expression curves, removing the i-th gene. This procedure is repeated with every gene, if $g^{-1}(\eta^{(-i)}) \ge p_1$ the i-th gen is member of G_1 , otherwise is from G_0 . The *CVE* is defined as the quotient between the total number of genes misclassified under cross-validation, and the total number of genes. High accuracy of the model is assured by a CVE = 0.13.

4. CONCLUSIONS

In this paper, a local wavelet-vaguelette decomposition is considered for the non-redundant representation of gene expression profiles, since it holds for a large class of stochastic process, including processes with fractal and heavy-tailed covariance functions (see [3]).

Acknowledgments. This work has been supported in part by COLFUTURO, Colombia; projects MTM2009-13393 of the DGI, MEC, and P09-FQM-5052 of the Andalousian CICE, Spain.

References

- [1] Angulo, J.M. & Ruiz-Medina, M.D. (1999). Multiresolution approximation to the stochastic inverse problem. *Advanced Applied Probability* **31**, 1039–1057.
- [2] McCullagh, P. & Nelder J.A. (1989). Generalized Linear Models. Chapman & Hall
- [3] Kelbert, M., Leonenko, N.N. & Ruiz-Medina, M.D. (2005). Fractional random fields associated with stochastic fractional heat equations. *Advanced Applied Probability* **37**, 108–133.
- [4] Leng, X. & Müller, H.G. (2006). Classification using functional data analysis for temporal gene expression data. *Bioinformatics* 22 (1), 68–76. *Annals of Statistics* 33, 774–805.
- [5] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. & Futcher, B. (1998). Comprehensive identification of cell-cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hibridization. *Molecular Biology of the Cell* 9, 3273–3297.
- [6] Vidakovic, B. (2006) Statistical Modelling by Wavelets. John Wiley and sons. New York.