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Abstract. We describe the spatial structure of the earthquakes magnitude in aeterggographical
zone, by means of the nonparametric local polynomial regression astimWe propose to use a
bandwidth selection method to take the spatial dependence into accourntatn bbtter smoothing
parameters. Additionally, a parametric bootstrap technique is used totijudhne variability of the
spatial maps produced with the nonparametric estimation method, and ssajermaps that shows
the probability of being at high and low seismic risk in the considered ardaeséd techniques are
applied to an earthquakes data set of the Galician region (Spain).
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1 Introduction

A seismic series is a set of earthquakes occurring in a given period of tiengiuen area. Earthquakes
of a seismic series are considered as stochastic mathematical variablegjrzeto a continuous space-
time-energy medium with dimension(%!, X2, X3,t;,Y;), whereX! andX? are the latitude and longitude
of the epicenterX? the depth of the focug; the origin time andy; the magnitude. In this paper we
suggest the application of nonparametric methods for analyzing seismichata.concretely, we are

interested in mapping the (bidimensional) spatial distribution of the earthquakgsitudes, by means
of the model

Y, =m(X! X?) 4+, i=12...,n 1)

wherem(+) is a regression function, in which we do not suppose any concretenptiia model and;
are random errors that may or may not be spatially correlated. Herdhavwethe utility of a particular
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type of nonparametric method, the named “local linear regression” [3]etspihtial statistical analysis
of earthquakes data. We will do this by considering the problem of visuglitia spatial pattern of
earthquakes magnitude, and applying to a seismic data set. The represeotdtie magnitude as
a smooth spatial function, jointly with the use of bootstrap techniques, poeadsseful “first step” in
identifying areas of high and low seismic risk. The organization of this extgatistract is the following:
Section 1 describes the statistical model, reviews the nonparametric estimatmantweidth selection
method used, as well as the bootstrap method used. Section 2 providesitiéoron the study area and
data, and shows the behavior of the nonparametric spatial methods omehbsarthquake data.

2 Statistical methods

2.1 Local linear regression for spatial data

In this work, the following spatial nonparametric regression model for éinlhguakes data will be used.
Assume that a set &3-valued random vector$( X; ,Yi)}in:1 , are observed in a concrete interval of time,
where they; are scalar responses variables andXheare predictor variables with a common dendity
and compact suppof2 C R2. We will refer to theX; as thdocations(latitude and longitude, expressed
in degrees) corresponding to tidmagnitude). The relationship between the locations and the responses
variable is assumed to be of the form (1), whexe) is an unknown continuous and smooth function,
ande is a second order stationary process with:

Cov(s,gj| Xi, Xj) =C(Xi — Xj), )

whereC(u) is a positive-definite function, called the covariogram (v@{i0) = Var (& X;) = ¢2).
Our first goal is to estimate the mean functio(t) using a nonparametric estimator. Classical non-

parametric regression estimators are based on explaining the relationshgebedhe data by using
weighted local means, that is, the estimatomgf) can be written as

() = ,_iwmx,a:)vi.

When the explicative variables are bivariate variables, the local lingarater form(-) at a locationz
is the solution fory to the least squares minimization problem

Th“i{“—v—WXi @)} Ker (X~ ),

whereH is a 2x 2 symmetric positive definite matrik: is a bivariate kernel andg (v) = |H| K (H u).

2.2 Bandwidth selection

Here, we propose to use a modified version of the generalized criddatican (GCV) criterion [1], called
the “bias-corrected” GCV criterion proposed in [4], based on seletliadpandwidthH that minimizes

the function )
12 (Yi—ma(Xi)
GOW(H) = Z<H<SR> ’ ©
i= n
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with R the correlation matrix of the errors atithen x n matrix whosdth row is equal to the smoother
vector fore = Xj, and tr(S R) is the trace of matrixXS R.

In practice, matrixR is unknown, so that, (3) is not yet a practical bandwidth selection criterion
Following [4] we will assume a parametric form for the covariogram, fronicWwithe correlogram

pe(u) =Cq(u)/Co(0) can be obtained, and then replace the unkn&y&) in (3) by an estimatd?(6).
This method is called the “bias-corrected and estimated” GCV criterion

The theoretical optimality properties of this last criterion were discussed.ii\[dimilar approach
will be used here, but traditional geostatistical methods will be employed irefpendience modelling (in
order to avoid bias in the dependence parameter estimation). The estimatienspftial dependence
was done through the variogramu) = C(0) — C(u) (see e.g. [2], section 2.4.1, for a explanation
about why variogram estimation is preferred to covariogram estimatior® d€hkcription of the general
algorithm can be seen in [5].

2.3 Parametric bootstrap

Now, in order to incorporate variability assessments in our analysis of tilegeakes magnitude, we
extended the paramettiootstrapfor correlated data discussed in [6]. It follows the steps detailed in [5],
and is especially designed for when the errors are supposed to bélppatielated.

3 Earthquakesanalysis

Our area of interest focus on the Northwest of the Iberian Peninsoleretely the area limited by
the coordinates 42N — 44 N and & W — 1(° W, that involves the autonomic region of Galicia. We
have selected the data bank of the National Geographic Institute (IGNyaih guntil April of 2008) at
http://www.ign.es/ign/es/IGN/SisCatalogo.jsp.

Following an exploratory analysis of the data, it could be seen that an péo&gponential covar-
iogram model is apparently adequate to describe the spatial dependaheeresiduals. This model
specification is used in the selection of bandwidth values and does nahidetehe actual shape of the
spatial distribution functiom(x).

The bandwidth matrix obtained with the selection criterion (3) was:

H =

054 O
0 113}’

This bandwidth corresponds to a moderate amount of smoothing, since tiigidéh matrix im-
plies that for any locatiom: not on the boundary of the study region, 20-40% of the observatians ar
contributing (have non-zero weight) to the nonparametric regression &kt, Me use the bootstrap
method described before to plot maps of estimates of the likelihood of an eakéngvith magnitude
larger or equal than a threshold occurring in each location of the argdaenést. Figure 1 show the
maps with pointwise bootstrap probabilities of being considered at risk affiieg an earthquake with
magnitude larger or equal than the threshold considered. To evaluatenigvity to the choice of the
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threshold, we considered two thresholds: 2.5 in the left picture and 2.7% inght picture. We can
observe that there is an important difference between both maps. SoaMigeroportion of the area
is in high risk of occurring an earthquake with a magnitude larger or eqaal2tb, only the area lim-
ited, approximately, by the coordinates. 42 N — 435° N and 65° W — 8 W has an important risk of
occurring an earthquake with a magnitude larger or equal than 2.75. @ihiehand, in this map, the
highest values in the North limit are possibly due to a boundary effect, makiikglit these very high

risk values (close to one) are indeed spurious.
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Figure 1: Maps with bootstrap probabilities of areas with seismic risk forréiffiethreshold values.
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