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Abstract. We describe the spatial structure of the earthquakes magnitude in a concrete geographical
zone, by means of the nonparametric local polynomial regression estimator. We propose to use a
bandwidth selection method to take the spatial dependence into account to obtain better smoothing
parameters. Additionally, a parametric bootstrap technique is used to quantify the variability of the
spatial maps produced with the nonparametric estimation method, and to generate maps that shows
the probability of being at high and low seismic risk in the considered area. These techniques are
applied to an earthquakes data set of the Galician region (Spain).
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1 Introduction

A seismic series is a set of earthquakes occurring in a given period of time ina given area. Earthquakes
of a seismic series are considered as stochastic mathematical variables, belonging to a continuous space-
time-energy medium with dimension 5(X1

i ,X2
i ,X3

i , ti ,Yi), whereX1
i andX2

i are the latitude and longitude
of the epicenter,X3

i the depth of the focus,ti the origin time andYi the magnitude. In this paper we
suggest the application of nonparametric methods for analyzing seismic data.More concretely, we are
interested in mapping the (bidimensional) spatial distribution of the earthquakesmagnitudes, by means
of the model

Yi = m(X1
i ,X2

i )+ εi , i = 1,2, . . . ,n. (1)

wherem(·) is a regression function, in which we do not suppose any concrete parametric model andεi

are random errors that may or may not be spatially correlated. Here, we show the utility of a particular
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type of nonparametric method, the named “local linear regression” [3], to the spatial statistical analysis
of earthquakes data. We will do this by considering the problem of visualizing the spatial pattern of
earthquakes magnitude, and applying to a seismic data set. The representation of the magnitude as
a smooth spatial function, jointly with the use of bootstrap techniques, provides a useful “first step” in
identifying areas of high and low seismic risk. The organization of this extended abstract is the following:
Section 1 describes the statistical model, reviews the nonparametric estimator, thebandwidth selection
method used, as well as the bootstrap method used. Section 2 provides information on the study area and
data, and shows the behavior of the nonparametric spatial methods on thosereal earthquake data.

2 Statistical methods

2.1 Local linear regression for spatial data

In this work, the following spatial nonparametric regression model for the earthquakes data will be used.
Assume that a set ofR3-valued random vectors,{(Xi ,Yi)}

n
i=1 , are observed in a concrete interval of time,

where theYi are scalar responses variables and theXi are predictor variables with a common densityf
and compact supportΩ ⊆ R

2. We will refer to theXi as thelocations(latitude and longitude, expressed
in degrees) corresponding to theYi (magnitude). The relationship between the locations and the responses
variable is assumed to be of the form (1), wherem(·) is an unknown continuous and smooth function,
andε is a second order stationary process with:

Cov
(

εi ,ε j
∣

∣Xi ,X j
)

= C(Xi −X j), (2)

whereC(u) is a positive-definite function, called the covariogram (withC(0) = Var(εi |Xi) = σ2).

Our first goal is to estimate the mean functionm(·) using a nonparametric estimator. Classical non-
parametric regression estimators are based on explaining the relationship between the data by using
weighted local means, that is, the estimator ofm(x) can be written as

m̂H(x) =
n

∑
i=1

wH(X,x)Yi .

When the explicative variables are bivariate variables, the local linear estimator form(·) at a locationx
is the solution forγ to the least squares minimization problem

min
γ,β

n

∑
i=1

{

Yi − γ−βT(Xi −x)
}2

KH(Xi −x),

whereH is a 2×2 symmetric positive definite matrix;K is a bivariate kernel andKH(u)= |H|−1K(H−1u).

2.2 Bandwidth selection

Here, we propose to use a modified version of the generalized cross-validation (GCV) criterion [1], called
the “bias-corrected” GCV criterion proposed in [4], based on selectingthe bandwidthH that minimizes
the function

GCVc(H) =
1
n

n

∑
i=1

(

Yi − m̂H(Xi)

1− 1
ntr(SR)

)2

, (3)
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with R the correlation matrix of the errors andS then×n matrix whoseith row is equal to the smoother
vector forx = Xi , and tr(SR) is the trace of matrixSR.

In practice, matrixR is unknown, so that, (3) is not yet a practical bandwidth selection criterion.
Following [4] we will assume a parametric form for the covariogram, from which the correlogram
ρθ(u) = Cθ(u)/Cθ(0) can be obtained, and then replace the unknownR(θ) in (3) by an estimateR(θ̂).
This method is called the “bias-corrected and estimated” GCV criterion

The theoretical optimality properties of this last criterion were discussed in [4]. A similar approach
will be used here, but traditional geostatistical methods will be employed in the dependence modelling (in
order to avoid bias in the dependence parameter estimation). The estimation of the spatial dependence
was done through the variogram,γ(u) = C(0)−C(u) (see e.g. [2], section 2.4.1, for a explanation
about why variogram estimation is preferred to covariogram estimation). The description of the general
algorithm can be seen in [5].

2.3 Parametric bootstrap

Now, in order to incorporate variability assessments in our analysis of the earthquakes magnitude, we
extended the parametricbootstrapfor correlated data discussed in [6]. It follows the steps detailed in [5],
and is especially designed for when the errors are supposed to be spatially correlated.

3 Earthquakes analysis

Our area of interest focus on the Northwest of the Iberian Peninsula, concretely the area limited by
the coordinates 42o N – 44o N and 6o W – 10o W, that involves the autonomic region of Galicia. We
have selected the data bank of the National Geographic Institute (IGN) of Spain (until April of 2008) at
http://www.ign.es/ign/es/IGN/SisCatalogo.jsp.

Following an exploratory analysis of the data, it could be seen that an isotropic exponential covar-
iogram model is apparently adequate to describe the spatial dependence of the residuals. This model
specification is used in the selection of bandwidth values and does not determine the actual shape of the
spatial distribution functionm(x).

The bandwidth matrix obtained with the selection criterion (3) was:

H =

[

0.54 0
0 1.13

]

,

This bandwidth corresponds to a moderate amount of smoothing, since this bandwidth matrix im-
plies that for any locationx not on the boundary of the study region, 20-40% of the observations are
contributing (have non-zero weight) to the nonparametric regression fit. Next, we use the bootstrap
method described before to plot maps of estimates of the likelihood of an earthquake with magnitude
larger or equal than a threshold occurring in each location of the area ofinterest. Figure 1 show the
maps with pointwise bootstrap probabilities of being considered at risk of occurring an earthquake with
magnitude larger or equal than the threshold considered. To evaluate the sensitivity to the choice of the
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threshold, we considered two thresholds: 2.5 in the left picture and 2.75 in the right picture. We can
observe that there is an important difference between both maps. So, whilea big proportion of the area
is in high risk of occurring an earthquake with a magnitude larger or equal than 2.5, only the area lim-
ited, approximately, by the coordinates 42.75o N – 43.5o N and 6.5o W – 8o W has an important risk of
occurring an earthquake with a magnitude larger or equal than 2.75. On theother hand, in this map, the
highest values in the North limit are possibly due to a boundary effect, making itlikely these very high
risk values (close to one) are indeed spurious.

Figure 1: Maps with bootstrap probabilities of areas with seismic risk for different threshold values.
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