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Abstract. We propose a wavelet based hypothesis test for assessing isotropy in spatial point pro-
cesses. We use the empirical logarithm of directional scalogram to build the test statistic. Under the
null hypothesis of isotropy, a random point pattern should be expected to have the same value of the
directional scalogram for all possible directions. Hence, Monte Carlo simulations of the logarithm of
directional scalograms over all directions are used to approximate the test distribution and the critical
values. Artificial and real data are then used to show the method.
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1 Introduction

Spatial point process models are useful tools for the analysis of scattered point patterns in many fields
(biological, ecological, epidemiological, seismical, etc.). Most applications refer the detection of clus-
ters, or particular patterns or the determination of weather the points are randomly distributed through
the space. Relatively little attention has been focused on the analysis and testing of anisotropy. A spatial
point process is said isotropic if its distribution is invariant under rotations about the origin. Otherwise
is said anisotropic. In order to detect anisotropy or to assess isotropy it is necessary to perform a direc-
tional analysis of the point process. Some hypothesis tests of isotropy for spatial point processes have
been proposed by Ohser and Stoyan (1981), Castelloe (1998), Rosenberg (2004), and Guan, Sherman,
and Calvin (2006).

In this paper, we propose a wavelet based approach to test for isotropy in spatial point processes. The
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method can be considered an extension of Rosenberg (2004) by using the two dimensional directional
wavelet transforms.

2 Directional wavelets

For any function f (x),x ∈ IR2, the continuous directional wavelet transform for a scale a and orientation
θ is given by

Wf (a,b,θ) = 〈 f ,ψa,b,θ〉=
∫

IR2
f (x)ψa,b(x,θ)dx, (1)

where the overline denotes complex conjugate. In literature, many different directional wavelets ψa,b(x,θ)
have been proposed. Neupauer and Powell (2005) introduced a flexible function called fully-anisotropic
directional Morlet wavelet and given by:

ψ(x,θ) = eik0·Cxe1/2Cx·AT ACx (2)

where k0 = (0,k0) is a wave vector with k0 ≥ 5.5; A = diag(D,1) denotes a diagonal matrix and D is the
anisotropy ratio defined as the ratio of the length of the elliptical envelope in the y-direction to length of
the elliptical envelope in the x-direction. The matrix C is a linear transformation given by

C =
(

cosθ sinθ
−sinθ cosθ

)

In order to identify the behavior of the process in different directions, Kumar (1995) introduced the
function

η(a,θ) =
∫
|Wf (a,b,θ)|2db (3)

which characterizes the distribution of the energy at different scales and directions. The variance of
wavelet coefficients for each scale and each direction, that is E[|Wψ f (b,a,θ)|2], produces the so called
“directional scalogram”.

3 A Test of Significance

In this section, the Morlet wavelet transforms proposed by Neupauer and Powell (2005) are applied to
the intensity function λ̂(x), estimated by the box counting method, where x denotes locations. Assume
that we have m possible directions θi ∈ (0,π] with i = 1, ...,m, L possible scales a j with j = 1, ...,L,
and N points, bk, with k = 1, ...,N. The directional wavelet transforms Wλ̂(a j,bk,θi) are conducted for a
range of scales and orientations at all positions in the domain of λ̂(x). Denote by Sθi,a j the variance of
the corresponding wavelet coefficients for a particular direction θi and scale a j,

Sθi,a j =
1
N ∑ |Wλ̂(a j,bk,θi))|2. (4)

The significance of the directional wavelet coefficients is determined through a Monte Carlo simulation.
We assume that the null hypothesis is isotropy. Hence, a isotropic random point pattern should be ex-
pected to have the same value of the directional scalogram for all possible directions. Then, we consider
the logarithm of the variance of the wavelet coefficients over all scales as test statistic, given by

T (θi) =
1
L ∑

j
logSθi,a j . (5)

METMAV International Workshop on Spatio-Temporal Modelling 2



Nicolis et al. Testing anisotropy

In order to estimate to approximate the distribution of the test statistic T (θi), we simulated 1000 data
sets with the same number of points as in the observed data. Because we assume that the directional
scalogram has the same value in all possible directions under the null hypothesis of isotropy, we evaluate
the distribution of (5) for all simulations and over all directions θi. The critical value under the null
hypothesis of isotropy is given by the maximum values of T (θ j) in the empirical distribution.

3.1 Simulations

In order to show the ability of the method to assess the presence of anisotropic linear patterns, we per-
formed a Monte Carlo simulation study. We considered different classes of spatial point processes, each
describing a different type of directional pattern. For each class we simulated 100 data sets of 1000
points and we used the significance test of Section 3 for testing the null hypothesis of isotropy. In Fig-
ure 2 shows the directional wavelet analysis for two examples: the isotropic case (Fig. 1 a-c) and the
anisotropic case with θ = 45 as dominant direction (Fig. 1 d-f). The behavior of T (θi) for each direction
θi (with i = 1, ...,180), (in Fig. 1b) shows that no significant dominant directions are detected and the
proposed statistical test accepts the null hypothesis of isotropy. Differently, in the anisotropic example
of Figure 1 (d) the behavior of T (θi) outlines a dominant direction around 45 degree (peak). In this
case the test rejects the null hypothesis of isotropy. The anisotropic component is also evident from the
directional scalogram of Fig.1(f).
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Figure 1: Directional wavelet analysis of N = 1000 simulated isotropic random points (upper) and
anisotropic random points (bottom) with θ = 45 degree. (b) and (c) show the behavior of the test statistic
T (θi). Dotted and long dashed lines indicate the mean and the critical value of the empirical distribution,
respectively. (c) and (f) show directional scalograms.
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3.2 Application

We consider the data set Ambrosia Dumosa consisting of 4358 points (plants) in a 1-ha (100m×100m)
covering the area of Joshua Tree National Park in California (see, Miriti et al. 1998 for a detailed
description). Fig. 2 shows the wavelet analysis of the data set. The directional scalogram (Fig. 1d)
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Figure 2: Directional wavelet analysis for the Ambrosia Dumosa data set. (a) Ambrosia Dumosa data; (b)
Test statistic T (θi). Dotted and long dashed lines indicate the mean and the critical value of the empirical
distribution, respectively. (c) Directional scalogram.

identify a dominant direction around 165 degree and a second direction around 43 degree. The statistical
test (Fig. 1b) clearly rejects the null hypothesis of isotropy.
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