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Abstract. Indicators of recurrence, persistence, and in general, distribution patterns of extremal events
defined by random field threshold exceedances provide relevant information on critical phenomena for
risk assessment. Such indicators are directly related to geometrical properties describing the structure
of the corresponding excursion sets. Given the intrinsic nature of the latter, marked point processes
provide a natural approach to analyze distribution patterns of such extremal events in relation to spe-
cific characteristics of interest. In this paper, based on simulations from a flexible model separating
long range dependence and fractality effects, we analyze the structure of threshold exceedances in
terms of various second-order characeristics. In particular, we focus on the variations in size and dis-
tance heterogeneities in the components of excursion sets, as well as in clustering/inhibition patterns,
depending on both the underlying model parameters and the threshold specifications.
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1 Introduction and motivation

Analysis of environmental phenomena for risk assessment usually involves the construction of indicators
related to structural characteristics of extremal events defined by exceedances over critical thresholds.
Recurrence and persistence, among others, are examples of such characteristics, which provide informa-
tion about the distribution patterns of extremal events. Formally, these concepts are intimately related
to the geometrical characteristics of the excursion sets defined by threshold exceedances over a given
(bounded) domain. In particular, useful mathematical descriptions can be given in terms of the Lipschitz-
Killing curvatures or, equivalently, the intrinsic volumes of such sets (see Adler and Taylor, 2007). In
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Angulo and Madrid (2010), the effect of blurring and deformation transformations on the structure of
a random field is studied in terms of the modifications implied on the Euler characteristic and hyper-
volume of threshold exceedance sets, depending on fractality and long range dependence parameters,
as well as on the threshold considered. Note that, under suitable conditions, the expected value of the
Euler characteristic approximates, for high thresholds, the probability of exceedance in at least one point
of the domain considered (Adler and Taylor, 2007), whilst the hypervolume provides an estimate of the
probability of having an exceedance in a generic point of such domain.

Given the fragmented nature of threshold exceedance sets, depending on the variation properties
inherited by sample paths from the probabilistic structure of a random field and the threshold considered,
marked point processes provide a powerful framework for the analysis of their structural properties.
In fact, this approach can be exploited to help establishing the bridge between the construction and
interpretation of risk indicators and the properties of the underlying random field generating critical
events. More specifically, connected components of a threshold exceedance set can be treated as single,
isolated events, with some geometrical properties as size, contour length, relative intensity of dominant
orientation, etc., being considered as possible marks of interest for complementary analysis of diverse
forms of heterogeneity and anisotropy. Hence, a variety of marked point process characteristics can be
used to describe some features of interest, in particular for risk assessment purposes.

2 Methodology and simulations

A point process is a stochastic model governing the locations of events {xi} in some set X , where X is
considered a bounded region in ℜ2 (Stoyan et al., 1995). If the locations contain associated measure-
ments or marks, the point process is referred to as a marked point process.

In this paper we consider the Cauchy class, defined by the homogeneous and isotropic covariance
function C(h) = σ2(1+hα)−β/α, α∈ (0,2] and β > 0. This class has an interesting property consisting of
allowing a separately characterization of local variability and dependence ranges. Specifically, parameter
α determines the fractal dimension of realizations, D = n + 1−α/2 (for a random field on ℜn), and,
independently, β specifies the Hurst coefficient, H = 1−β/2 (see Gneiting and Schlather, 2004). Several
realizations are shown in Figure 1. When a threshold is fixed, we can build a spatial point pattern
through the centroids of the connected components defining the corresponding excursion sets. We can
then associate the size as a mark, defining thus the marked point pattern. Figure 2 shows the point
patterns coming from Figure 1 when fixing the threshold to 0.9.

A marked point process is stationary if its distribution is invariant under translations. One way to
investigate the stationarity condition is by analyzing the intensity (expected number of points per unit
area) of the point process. The intensity may be constant (the process is said ‘homogeneous’) or may
vary from location to location (the process is said ‘inhomogeneous’). The intensity function or intensity
measure can be estimated by nonparametric techniques such as quadrat counting and kernel smoothing.
In classical literature, the homogeneous Poisson process (CSR) is usually taken as the appropriate ‘null’
model for a point pattern. Our basic task in analysing a point pattern is to find evidence against CSR by
using quadrat counts. A widely used second-order characteristic is the K-function: for a stationary point
process, λK(r) defines the expected number of other points of the process within a distance r of a typical
point of the process. A commonly used transformation of K is the L-function, which transforms the
Poisson K-function to the straight line Lpois(r) = r, making visual assessment of the graph much easier.
The square root transformation also approximately stabilises the variance of the estimator. Both functions
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Figure 1: Simulated realizations of Cauchy class with α = 0.5,2 (from left to right) and β = 0.1,0.9
(from top to bottom).

Figure 2: Excursion sets for threshold corresponding to percentile 0.9, based on realizations of Figure 1.
Black dots represent centroids of connected components.

can be used to detect departures from random structures (see Mateu, 2000). There is a modification of
the K and L functions that applies to inhomogeneous processes. Although the L-function is intended
primarily for exploratory purposes, it is also possible to use it as a basis for statistical inference. We can
use the language of hypothesis testing. Our null hypothesis is that the data point pattern is a realization
of complete spatial randomness. The alternative hypothesis is that the data pattern is a realization of
another, unspecified point process. Then, a Monte Carlo test can be run based on simulations from the
null hypothesis and generate envelopes from the simulations; see Figure 3. We shall also make use of the
mark correlation function, which is the natural extension of the pair correlation to the marked case. This
function detects spatial dependencies between the marks (sizes) of the connected components.

3 Conclusions

We have focused on the analysis of structural changes in marked point processes based on excursion sets
corresponding to different thresholds, depending on the fractality and long range dependence properties
of the generating random field. Specifically, for thresholds corresponding to various high percentiles
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Figure 3: L(r)− r function for point processes defined by centroids of connected components, for those
excursion sets corresponding to percentiles 0.8 (red), 0.9 (green) and 0.97 (blue), based on realizations
of Figure 1.

in the empirical distribution of sample-path values, we analyze size heterogeneities of isolated events
defined by connected components, as well as distance ranges where the spatial distribution of the cen-
troids representing such components display clustering/inhibition patterns. The results show significant
differences, depending on the scenario determined by the model parameters, which have interesting in-
terpretations related to the underlying random field probabilistic structure as well as in terms of risk
indicators. It is shown that both an increase in the threshold and a decrease in the dependence range
make the pattern inhomogeneous with more variability in the sizes and distances among components. In
addition, the degree of clustering or inhibition is notoriously increased.

We aim at considering marks describing orientations to analyze anisotropic characteristics. Also
evolution in time could be considered.
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