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Abstract. Information criteria such as AIC and BIC are often used for model selection. However, their
asymptotic behaviors in geostatistical model selection have not been well studied. In this article, we
provide some asymptotic results for the generalized information criterion, including both AIC and BIC.
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1 Geostatistical Models

Consider a spatial process {S(s) : s ∈ D} of interest defined over a d-dimensional region D⊂ Rd . Sup-
pose that we observe data Z = (Z(s1), . . . ,Z(sn))′ at locations s1, . . . ,sn ∈D, according to the measure-
ment equation:

Z(si) = S(si)+ ε(si); i = 1, . . . ,n,

where ε(s1), . . . ,ε(sn)∼ N(0,σ2
ε) are white noise variables representing measurement errors, and are in-

dependent of the process S(·). In addition, we observe p explanatory variables, xi = (x1(si), . . . ,xp(si))′

for i = 1, . . . ,n. We model Z(si) in terms of a linear combination of xi by considering the following
geostatistical regression model:

Z(si) = µ(si)+η(si)+ ε(si)

= β0 +
p

∑
j=1

β jx j(si)+η(si)+ ε(si); i = 1, . . . ,n , (1)
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where µ(·) = β0 +
p

∑
j=1

β jx j(·) is the deterministic mean process, β j’s are unknown regression coefficients,

and η(·) is a zero-mean, L2-continuous spatially dependent Gaussian process.

Instead of using all p variables, it is sometimes preferable to select only a subset of important vari-
ables. By doing this, we are able to trade off some bias for smaller variance. We consider a class of
candidate models indexed by α ∈ A ⊂ 2{1,...,p} with each α corresponding to a subset of p variables.
Then the geostatistical regression model corresponding to α can be written as:

Z = Xαβα +η +ε,

where βα is the parameter vector consisting of β0 and {β j : j ∈ α}, Xα is the n× (pα + 1) design
matrix corresponding to α with pα being the number of elements in α, η = (η(s1), . . . ,η(sn))′, and
ε = (ε(s1), . . . ,ε(sn))′. Let αc = { j : |β j|> 0}, which is the smallest correct model, and let Ac = {α ∈
A : αc ⊂ α} be the set of all correct models.

2 Generalized Information Criterion

Suppose that Σ = var(Z) is known. Then the log-likelihood function of Z is

l(βα;Z) = constant− 1
2
(Z−Xαβα)′Σ−1(Z−Xαβα).

The maximum likelihood estimate of βα can be written as β̂α =
(
X ′

αΣ
−1Xα

)−1
X ′

αΣ
−1Z. A com-

monly used loss function for the parameters fitted by model α is the Kullback-Leibler loss, which satis-
fies

L(α) =
1
2
(
µ̂α−µ

)′Σ−1(µ̂α−µ
)
,

where µ = E(Z) and µ̂α = Xαβ̂α. We consider the generalized information criterion (GIC) [2]:

GICλ(α) = constant+(Z− µ̂α)′Σ−1(Z− µ̂α)+λ pα ,

where λ is a penalty parameter with a smaller λ corresponding to a larger model, and vice versa. The
criterion includes the commonly used Akaike information criterion (AIC) [1] corresponding to λ = 2,
and the Bayesian information criterion (BIC) [3] corresponding to λ = log(n) as special cases.

Let α̂2 = argmin
α∈A

GIC2(α) be the model selected by AIC. The following theorem provides sufficient

conditions under which AIC is asymptotically efficient.

Theorem 1 Suppose that min
α∈A\Ac

E(L(α))→ ∞, as n→ ∞.

(i) If Ac = /0, then L(α̂2)
/

min
α∈A

L(α)
p−→ 1, as n→ ∞.
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(ii) If Ac = {αc}, then P(α̂2 = αc)→ 1, as n→ ∞.

However, AIC is not able to distinguish among Ac when |Ac| ≥ 2, and hence may select an over-
fitted model. To avoid over-fitting, it is natural to consider a larger penalty. Let α̂λ = argmin

α∈A
GICλ(α) be

the model selected by GICλ. The following theorem provides some results when λ is large.

Theorem 2 Suppose that λ→ ∞ and min
α∈A\Ac

λ−1E(L(α))→ ∞, as n→ ∞. Then

L(α̂λ)
/

min
α∈A

L(α)
p−→ 1, as n→ ∞.

In addition, if Ac 6= /0, then P(α̂λ = αc)→ 1, as n→ ∞.

In what follows, we provide an example in the one-dimensional space. Suppose that the data
{xi : i = 1, . . . ,n} and Z are sampled at si = inδ−1 ∈ D = [0,nδ]; i = 1, . . . ,n, for some 0 ≤ δ ≤ 1,
according to (1) with p fixed, where cov(η(s),η(s + h)) = σ2

η exp(−κη|h|). Note that different δ val-
ues correspond to different asymptotic frameworks. When δ = 0, increasingly dense observations are
sampled in a bounded fixed region D = [0,1], corresponding to the fixed-domain asymptotic framework.
On the other hand, when 0 < δ ≤ 1, the region D increases with the sample size, corresponding to the
increasing-domain asymptotic framework. Suppose that x j(·)’s are independently generated from zero-
mean Gaussian processes with cov(η(s),η(s+h)) = σ2

j exp(−κ j|h|), for j = 1, . . . , p, where σ2
j > 0 and

κ j > 0. We have the following results showing whether selection consistency is satisfied may depend on
which asymptotic framework is chosen.

Theorem 3 Under the setup above, suppose that κη > 0, σ2
η > 0, and σ2

ε > 0 are known. If Ac 6= /0, and
λ→ ∞ and λn−(1+δ)/2 → 0, as n→ ∞, then P(α̂λ = αc)→ 1, as n→ ∞.

Corollary 1 Under the conditions of Theorem 3, consider two sampling schemes with δ given by δ1
and δ2, where δ1 < δ2. Suppose that λ = n(2+δ1+δ2)/4. Then lim sup

n→∞
P(α̂λ = αc) < 1 for δ = δ1, and

lim
n→∞

P(α̂λ = αc) = 1 for δ = δ2.
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